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ABSTRACT

Learning complex multi-agent system dynamics from data is crucial across many
domains, such as in physical simulations and material modeling.Extended from
purely data-driven approaches, existing physics-informed approaches such as
Hamiltonian Neural Network strictly follow energy conservation law to introduce
inductive bias, making their learning more sample efficiently. However, many
real-world systems do not strictly conserve energy, such as spring systems with
frictions. Recognizing this, we turn our attention to a broader physical principle:
Time-Reversal Symmetry, which depicts that the dynamics of a system shall re-
main invariant when traversed back over time. It still helps to preserve energies
for conservative systems and in the meanwhile, serves as a strong inductive bias
for non-conservative, reversible systems. To inject such inductive bias, in this pa-
per, we propose a simple-yet-effective self-supervised regularization term as a soft
constraint that aligns the forward and backward trajectories predicted by a contin-
uous graph neural network-based ordinary differential equation (GraphODE). It
effectively imposes time-reversal symmetry to enable more accurate model pre-
dictions across a wider range of dynamical systems under classical mechanics. In
addition, we further provide theoretical analysis to show that our regularization
essentially minimizes higher-order Taylor expansion terms during the ODE inte-
gration steps, which enables our model to be more noise-tolerant and even applica-
ble to irreversible systems. Experimental results on a variety of physical systems
demonstrate the effectiveness of our proposed method. Particularly, it achieves an
MSE improvement of 11.5 % on a challenging chaotic triple-pendulum systems1.

1 INTRODUCTION

Multi-agent dynamical systems, spanning applications from physical simulations (Battaglia et al.,
2016; Kipf et al., 2018; Wang et al., 2020) to robotic control (Li et al., 2022; Gu et al., 2017), are
challenging to model due to intricate and dynamic inter-agent interactions. Traditional simulators
can be very time-consuming and require domain knowledge of the underlying dynamics, which
are often unknown (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021). Therefore, directly learning
a neural simulator from the observational data becomes an attractive alternative. A popular line
of research involves using GraphODEs (Huang et al., 2020; Luo et al., 2023; Zang & Wang, 2020),
where Graph Neural Networks (GNNs) serve to learn the time integration of the ordinary differential
equations(ODEs), for continuous pairwise interactions among agents. Compared with discrete GNN
methods (Kipf et al., 2018; Sanchez-Gonzalez et al., 2020), GraphODEs show superior performance
in long-range predictions and can handle irregular and partial observations (Jiang et al., 2023).

However, the intricate nature of multi-agent systems often necessitates vast amounts of training data.
Vanilla data-driven neural simulators trained on limited datasets tend to be less generalizable, and
can violate physical properties of a system such as energy conservation. As depicted in Figure 1
(a.1), the learned energy curve of a baseline model (LG-ODE) (Huang et al., 2020) is prone to ex-
plosion, even though the ground-truth energy remains constant. One promising strategy to mitigate
this data dependency is to incorporate physical inductive biases (Raissi et al., 2019; Cranmer et al.,
2020). Existing works like Hamiltonian- Neural Nets and ODE (Greydanus et al., 2019; Sanchez-
Gonzalez et al., 2019) strictly enforce the energy conservation law, leading to more accurate pre-

1Code implementation can be found at here.
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Figure 1: (a) Three n-body spring systems characterized by their energy conservation and time
reversal properties. p, q,m denote momentum, position and mass, respectively. Proof of energy
conservation and time reversal for these systems can be found in Appendix B (b) Classification of
classical mechanical systems based on (Tolman, 1938; Lamb & Roberts, 1998)

dictions for some systems under classical mechanics, especially in data-scarce situations. However,
not all real-world systems adhere to strict energy conservation, especially those that have interac-
tion with external environments, i.e. non-isolated systems, such as n-body spring systems with
periodic external forces or frictions shown in Figure 1 (a.2) and (a.3). For these systems, applying
strict energy conservation constraint proposed by Greydanus et al. (2019); Sanchez-Gonzalez et al.
(2019) could lead to inferior performance. As shown in Figure 1(b.1), for classical and determinis-
tic mechanics such as Newtonian mechanics, energy-conservative systems also obey time-reversal
symmetry (Tolman, 1938). On the other hand, we note that the time-reversible systems also include
non-conservative systems such as Stokes flow (Pozrikidis, 2001), which also has vital applications
in the real world (Kim & Karrila, 2013). Therefore, by ensuring that the system’s dynamics is ap-
proximately invariant under time reversal, we can enforce neural simulators to generate dynamical
systems that are more realistic, paving the way for more efficient and physically coherent dynami-
cal system modeling. In light of these observations, we pivot towards a broader physical principle:
Time-Reversal Symmetry, which posits that a system’s dynamics should remain invariant when time
is reversed (Lamb & Roberts, 1998).

To incorporate such time-reversal inductive bias, we propose a simple-yet-effective self-supervised
regularization term as a soft constraint that aligns forward and backward trajectories predicted by our
model, which has GraphODE as its backbone. We name our model TANGO: Time-Reversal Latent
Graph ODE, which learns the system dynamics in the latent space. This time-reversal loss effec-
tively imposes time-reversal symmetry to enable more accurate model predictions across a wider
range of systems under classical mechanics. Besides its physical implication on benefiting learning
reversible systems, we also empirically observe that the time-reversal loss in general helps to learn
irreversible systems. Through theoretical analysis, we prove that from the numerical aspect, the
time-reversal loss actually minimizes higher-order Taylor expansion terms during the ODE integra-
tion steps, which enables our model to be more noise-tolerable and even applicable to irreversible
systems. Therefore, TANGO has the flexibility to be applied to a wide range of dynamical systems
without requiring the systems to be strictly energy-conservative or time-reversible. We conducted
systematic experiments over four simulated datasets. Experimental results verify the effectiveness
of TANGO in learning system dynamics more accurately with less observational data.

The primary contributions of this paper can be summarized as follows:

• We propose TANGO, a GraphODE model that incorporates time-reversal symmetry as a
soft constraint and adeptly handles both energy-conservative and non-conservative systems.

• We theoretically explain why the proposed time-reversal symmetry loss could in general
help learn more fine-grained and long-context system dynamics from the numerical aspect.
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• Our method achieves state-of-the-art results in multi-agent physical simulations. Particu-
larly, it achieves an MSE improvement of 11.5 % on trajectory predictions on a challenging
chaotic triple-pendulum system.

2 PRELIMINARIES AND RELATED WORKS

We represent a multi-agent dynamical system as a graph G = (V, E), where V denotes the node set of
N agents2 and E denotes the set of edges representing their physical interactions, which for simplic-
ity we assumed to be static over time. We denote X(t) ∈ RN×d as the feature matrix at timestamp
t for all agents, with d as the dimension of features. Model input consists of trajectories of such
feature matrices over K timestamps X(t1:K) = {X(t1),X(t2), . . . ,X(tK)} and the graph struc-
ture input G = (V, E). Note that the timestamps t1, t2 · · · tK can have non-uniform intervals and be
of any continuous values. Our goal is to learn a neural simulator fθ(·) : X(t1:K) → Y (tK+1:T ),
which predicts node dynamics Y (t) in the future based on observations. We use yi(t) to denote
the targeted dynamic vector of agent i at time t. In some cases when we are only predicting system
feature trajectories, Y (·) ≡ X(·).

2.1 GRAPHODE FOR MULTI-AGENT DYNAMICAL SYSTEMS

Graph Neural Networks (GNNs) have been widely used to model multi-agent dynamical systems
which approximate pair-wise node (agent) interaction through message passing to impose strong
inductive bias. The majority of them are discrete models, which learn a fixed-step state transition
function such as to predict trajectories from timestamp t to timestamp t + 1. However, discrete
models (Battaglia et al., 2016; Kipf et al., 2018; Sanchez-Gonzalez et al., 2020) have two main
limitations: (1) they are not able to adequately model systems that are continuous in nature such as
n-body spring systems. (2) they cannot deal with irregular-observed systems, where the observations
for different agents are not temporally aligned and can happen at arbitrary time intervals.

Recently, researchers propose GraphODE models (Poli et al., 2019; Huang et al., 2020; Zang &
Wang, 2020; Luo et al., 2023; Wen et al., 2022) which describe multi-agent dynamical systems
by a series of ODEs in a continuous manner. Specifically, they employ GNN as the ODE func-
tion and learn it in a data-driven way, making GraphODEs flexible to model a wide range of real-
worldsystems (Chen et al., 2018; Rubanova et al., 2019; Huang et al., 2023). The state evolution
can be described as: żi(t) := dzi(t)

dt = g (z1(t), z2(t) · · · zN (t)), where zi(t) ∈ Rd denotes the
latent state variable for agent i at timestamp t and g denotes the message passing function that
drives the system to move forward. GraphODEs have been shown to achieve superior performance,
especially in long-range predictions and can handle data irregularity issues. They usually follow
an encoder-processor-decoder architecture, where an encoder first computes the latent initial states
z1(0), · · · zN (0) for all agents simultaneously based on their historical observations as in Eqn 1.

z1(0), z2(0), ..., zN (0) = fENC
(
X(t1:K),G) (1)

Then the GNN-based ODE predicts the latent trajectories starting from the learned initial states.
Given the initial states z1(0), · · · zN (0) for all agents and the ODE, we can compute the latent state
zi(T ) at any desired time using a numerical ODE solver such as Runge-Kuttais (Schober et al.,
2019) as shown in Eqn 2.

zi(T ) = ODE-Solver
(
g, [z1(0), z2(0)...zN (0)], t = T )

)
= zi(0)+

∫ T

t=0

g (z1(t), z2(t) · · · zN (t)) dt

(2)

Finally, a decoder extracts the predicted dynamics ŷi(1), ŷi(2), ..., ŷi(T ) based on the trajectory of
latent states zi(1), zi(2), ..., zi(T ).

ŷi(t) = fDEC(zi(t)) (3)

However, vanilla GraphODEs can violate physical properties of a system such as energy conserva-
tion, resulting in unrealistic predictions. We therefore propose to inject physical inductive bias to
make more accurate predictions.

2Following (Kipf et al., 2018), we use “agents” to denote “objects” in dynamical systems, which is different
from “intelligent agent” in AI.
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2.2 TIME-REVERSAL SYMMETRY

A system is said to have Time-Reversal Symmetry if its dynamics remain the same when the flow of
time is reversed (Noether, 1971). Formally, let’s consider a multi-agent dynamical system described
in the matrix form dZ(t)

dt = F (Z(t)), where Z(t) ∈ RN×d is the time-varying state matrix of all
agents. The system is said to follow the Time-Reversal Symmetry if it satisfies

dR(Z(t))

dt
= −F (R(Z(t)), (4)

where R(·) is a reversing operator3.

Time-Reversal Symmetry indicates that after the reversing operation R(·), the gradient of any point
of the trajectory Z(t) will be reversed (in the opposite direction). For example, considering the
reversed trajectory of a flying ball, the velocity (i.e., the derivative of position with respect to time)
at each position is the opposite.

Now we introduce a time evolution operator ϕτ : Z(t) 7→ ϕτ (Z(t)) = Z(t + τ) for arbitrary
t, τ ∈ R, which satisfies ϕτ1 ◦ ϕτ2 = ϕτ1+τ2 for all τ1, τ2 ∈ R4. The time evolution operator helps
us to move forward or backward through time, thus forming a trajectory. Based on Lamb & Roberts
(1998), we can integrate Eqn. 4 and have:

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R, (5)

which means that moving forward t steps and then turning backward is equivalent to firstly turning
backward and then moving to the other direction t steps. Eqn. 5 has been widely used to describe
time-reversal systems in existing literature (Huh et al., 2020; Valperga et al., 2022; Roberts & Quis-
pel, 1992). Nevertheless, we propose the following lemma, which is more intuitive to understand
and more straightforward to guide the design of our time-reversal regularizer.
Lemma 1. Eqn 5 is equivalent to R ◦ ϕt ◦R ◦ ϕt = I , where I denotes identity mapping.

Lemma 1 means if we move t steps forward and then turn backward and move for t more steps, it
shall restore back to the same state. The proof of the lemma is in Appendix A.1. It can be understood
as rewinding a video to the very beginning.

Time-Reversal Symmetry is one of the fundamental symmetry properties in many physical systems,
especially in classical mechanics (Lamb & Roberts, 1998; Huh et al., 2020). However, some systems
may not strictly obey the time-reversal properties due to situations such as time-varying external
forces, internal friction, and underlying stochastic dynamics. Therefore, a desired model shall be
able to flexibly inject time-reversal symmetry as a soft constraint, so as to cover a wider range of
real-world dynamical systems such as the three spring systems depicted in Figure 1 (a).

One prior work TRS-ODE (Huh et al., 2020) also injects time-reversal symmetry into neural net-
works as a soft constraint based on Eqn 5. However, they cannot model multi-agent interactions and
work only for fully observable systems (with initial states as model input), while our method based
on GraphODE is well suited for modeling multi-agent and irregularly observed systems. We also
illustrate our implementation to achieve time-reversal symmetry can have a lower maximum error
compared to their implementation in Appendix A.3, supported by empirical experiments in Sec. 4.2.

Note that there are some literature discussing reversible neural networks Chang et al. (2018); Liu
et al. (2019). However, they do not resolve the time-reversal symmetry problem that we’re studying.
We highlight the detailed discussions in Appendix F.

3 METHOD

To incorporate Time-Reversal Symmetry in modeling multi-agent dynamical systems, we propose
TANGO, a novel GraphODE framework with a flexible regularization based on Lemma 1. Accord-
ing to Lemma 1, we align the forward trajectory zfwd(t) and backward reversed trajectory zrev(T−t)

3Taking a Hamiltonian system (q,p, t) as an example, where q,p denote position and momentum, the
reversing operator R : (q,p, t) 7→ (q,−p,−t) makes the momentum reverse and traverse back over time.
(Lamb & Roberts, 1998).

4◦ denotes composition
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Figure 2: Overall framework of TANGO

predicted by our model, where the backward trajectory starts from the ending state of the forward
one, traversed back over time. Here t denotes the relative time index of the trajectory’s starting point
and T denotes the total trajectory length. In our design, we use GraphODE to predict the above
forward and reversed trajectories. The difference of the two trajectories at time t and T − t should
be small, and thus is used as a regularizer. The weight of the regularization is also adjustable to
adapt different systems. The overall framework is depicted in Figure 2.

3.1 TIME-REVERSAL SYMMETRY LOSS AND OVERALL TRAINING

Forward Trajectory Prediction and Reconstruction Loss. We utilize the GraphODE framework
described in Sec.2.1 to model multi-agent dynamical systems, which follows the encoder-processor-
decoder architecture. Specifically, we first utilize a Transformer-based spatial-temporal GNN de-
scribed in Huang et al. (2020) as our encoder fENC(·) to compute the initial states from observed
trajectories. The implementation details of the encoder can be found in Appendix D.1. We then
utilize the GNN operator described in Kipf et al. (2018) as our ODE function g(·), which drives the
system to move forward and output the forward trajectories for latent states zfwd

i (t) at each contin-
uous time t and each agent i. Finally, we employ a Multilayer Perceptron (MLP) as a decoder to
predict output dynamics based on the latent states. We summarize the whole procedure as:

żfwd
i (t) :=

dzfwd
i (t)

dt
= g(zfwd

1 (t), zfwd
2 (t), · · · zfwd

N (t)),

where zfwd
0 (t) = fENC(X(t1:K),G), ŷfwd

i (t) = fDEC(z
fwd
i (t))

(6)

To train such a GraphODE from data, we can use the reconstruction loss that minimizes the L2
distance between predicted forward trajectories ŷfwd

i (t) and the ground truth trajectories yi(t).

Lpred =

N∑
i=1

T∑
t=0

∥∥∥yi(t)− ŷfwd
i (t)

∥∥∥2
2

(7)

Reversed Trajectory Prediction and Regularization Loss. We now design a novel time-reversal
symmetry loss as a soft constraint to flexibly regulate systems’ total energy to prevent it from chang-
ing sharply. Specifically, based on the definition of time-reversal symmetry in Lemma 1, we first
compute the backward trajectories zrev starting from the ending state of the forward one, traversed
back over time:

żrev
i (t) :=

dzrev
i (t)

dt
= −g(zrev

1 (t), zrev
2 (t), · · · zrev

N (t)),

where zrev
i (0) = zfwd

i (T ), ŷrev
i (t) = fDEC(z

rev
i (t)).

(8)

Next, based on Lemma 1, if the system follows Time-Reversal Symmetry, the forward and backward
trajectories shall be exactly overlap. We thus design the reversal loss by minimizing the L2 distances
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between model forward and backward trajectories:

Lreverse =

N∑
i=1

T∑
t=0

∥∥∥ŷfwd
i (t)− ŷrev

i (T − t)
∥∥∥2
2

(9)

Finally, we jointly train TANGO as a weighted combination of the two losses:

L = Lpred+αLreverse =

N∑
i=1

T∑
t=0

∥∥∥yi(t)− ŷfwd
i (t)

∥∥∥2
2
+α

N∑
i=1

T∑
t=0

∥∥∥ŷfwd
i (t)− ŷrev

i (T − t)
∥∥∥2
2
, (10)

where α is a positive coefficient to balance the two losses based on different targeted systems.

3.2 THEORETICAL ANALYSIS OF TIME-REVERSAL SYMMETRY LOSS

We next theoretically show that the time-reversal loss also numerically helps to reduce the prediction
loss in general, which can be applicable to various systems under classical mechanics regardless of
their physical properties. Specifically, we show that it minimizes higher-order Taylor expansion
terms during the ODE integration steps.
Theorem 1. Let ∆t denote the integration step size in an ODE solver and T be the prediction
length. The reconstruction loss Lpred defined in Eq 7 is O(T 3∆t2). The time-reversal loss Lreverse

defined in Eqn 9 is O(T 5∆t4).

We prove Theorem 1 in Appendix A.2. From Theorem 1, we can see two nice properties of our
proposed time-reversal loss: 1) Regarding the relationship to ∆t, Lreverse is optimizing a high-
order term ∆t4, which forces the model to predict fine-grained physical properties such as jerk (the
derivatives of accelerations). In comparison, the reconstruction loss optimizes ∆t2, which mainly
guides the model to predict the locations/velocities accurately. Therefore, the combined loss enables
our model to be more noise-tolerable; 2) Regarding the relationship to T , Lreverse is more sensitive
to total sequence length (T 5), thus it provides more regularization for long-context prediction, a key
challenge for dynamic modeling.

Besides the numerical advantage of TANGO, there are two additional remarks of our method.

Remark 1. We define the reversal loss Lreverse as the distance between model forward trajectories
and backward trajectories. There are other implementation choices. The first is to minimize the dis-
tances between model backward trajectories and ground truth trajectories. When both forward and
backward trajectories are close to ground-truth, they are implicitly symmetric. The major drawback
is that at the early stage of learning when the forward is far away from ground truth, such implicit
regularization does not force time-reversal symmetry, but introduce more noise. Another implemen-
tation in TRS-ODE (Huh et al., 2020) follows Eqn 5, where a reverse ODE solves from the starting
point, but with opposite velocity. We show that our implementation can have a lower maximum
error compared to theirs in A.3. We show the empirical comparison of them in Sec. 4.2.

Remark 2. The computational time of the reversal loss Lreverse is of the same scale as the forward
reconstruction loss Lpred. As the computation process of the reversal loss is to first use the ODE
solver to generate the reverse trajectories, which has the same computational overhead as computing
the forward trajectories, and then compute the L2 distances. The space complexity is only O(1) as
we are using the adjoint methods (Chen et al., 2018) to compute the reverse trajectories.

4 EXPERIMENTS

Dynamical Systems and Datasets. We conduct systematic evaluations over three different spring
systems (Kipf et al., 2018) and a complex chaotic pendulum system. For spring systems, we consider
three system settings: 1) conservative, i.e. no interactions with the environments, we call it Simple
Spring; 2) non-conservative with frictions, we call it Damped Spring; 3) non-conservative with
periodic external forces, we call it Forced Spring.

In addition to spring systems, we also consider a chaotic triple Pendulum system, which contains
three connected sticks in a 2D plane. This Pendulum is very sensitive towards initial states, such

6



Under review as a conference paper at ICLR 2024

Table 1: Evaluation results on MSE (10−2). Best results are in bold numbers and second-best results
are in underline numbers.

Dataset Simple Spring Forced Spring Damped Spring Pendulum

LatentODE 5.2622 5.0277 3.3419 2.6894
HODEN 3.0039 4.0668 8.7950 741.2296
TRS-ODEN 3.6785 4.4465 1.7595 741.4988
TRS-ODENGNN 1.4115 2.1102 0.5951 596.0319
LGODE 1.7429 1.8929 0.9718 1.4156
TANGO 1.1178 1.4525 0.5944 1.2527

(—-Ablation of our method with different implementation of Lreverse—-)
TANGOLrev=gt-rev 1.1313 1.5254 0.6171 1.6158
TANGOLrev=rev2 1.6786 1.9786 0.9692 1.5631

that a slight disturbance on the initial states can result in very different trajectories (Shinbrot et al.,
1992; Stachowiak & Okada, 2006; Awrejcewicz et al., 2008). Its chaotic nature also results in highly
nonlinear and complex trajectories.

Towards physical properties, Simple Spring and Pendulum are conservative and reversible; Force
Spring is reversible but non-conservative; Damped Spring is irreversible and non-conservative. De-
tails of the datasets and generation pipeline can be found in Appendix C.

Task Setup. We evaluate model performance by splitting the trajectories into two halves: [t1, tK ],
[tK+1, tT ] where timestamps can be irregular. We condition the first half of observations to make
predictions for the second half as in Rubanova et al. (2019). We generate irregular-sampled trajec-
tories for all datasets and set the number of training samples to be 20,000 and testing samples to
be 5,000 respectively. 10% of training samples are used as validation sets in our experiments. The
maximum trajectory prediction length is 60.

Baselines. We compare TANGO against three baseline types: 1) pure data-driven approaches in-
cluding LG-ODE (Huang et al., 2020) and LatentODE (Rubanova et al., 2019), where the first one
is a multi-agent approach considering the interaction graph, and the second one is a single-agent ap-
proach that predicts each trajectory independently; 2) energy-preserving HODEN (Greydanus et al.,
2019); and 3) time-reversal TRS-ODEN (Huh et al., 2020).

The latter two are single-agent approaches and require initial states as given input. To handle missing
initial states in our dataset, we approximate the initial states for the two methods via linear spline
interpolation (Endre Süli, 2003). In addition, we substitute the ODE network in TRS-ODEN with
a GNN (Kipf et al., 2018) as TRS-ODENGNN, which serves as a new multi-agent approach, for
fair comparison. HODEN cannot be easily extended to the multi-agent setting as replacing the
ODE function with a GNN can violate the energy conservation property of the original HODEN.
Implementation details of all models can be found in Appendix D.2.

Finally, we conduct two ablation by changing the implementation of Lreverse: 1) TANGOLrev=gt-rev
, which computes the reversal loss as the L2 distance between ground truth trajectories to model
backward trajectories as discussed in Remark 1 of Sec. 3.2; 2) TANGOLrev=rev2, which implements
the reversal loss based on Eqn 5, similar as TRS-ODEN but calculate over latent z.All implementa-
tion details is elaborated in Appendix D.2.

4.1 MAIN RESULTS

Table 1 presents prediction performance across models measured by mean squared error (MSE).
TANGO consistently surpasses other models across datasets, highlighting its generalizability and
the efficacy of its reversal loss. Specifically, it reports an improvement in MSE ranging from 11.5%
to 34.6% over the second-best baseline. We observe that multi-agent approaches (LG-ODE, TRS-
ODENGNN, TANGO) consistently outperform single-agent baselines (LatentODE, HODEN, TRS-
ODEN), showing the importance of capturing inter-agent interactions via the message passing of
Graph Neural Networks (GNN) encoding and ODE operations.
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Table 2: Results of varying observation ratios on MSE (10−2).
Dataset Simple Spring Forced Spring Damped Spring Pendulum
Observation Ratios 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4

LG-ODE 1.7054 1.6889 1.7554 2.0370 0.9305 1.0217 1.4314 1.7469
TANGO 1.1176 1.1429 1.3611 1.5109 0.6920 0.6964 1.2309 1.2110

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

Figure 3: Varying α values across datasets.

When examining individual datasets, HODEN excels among single-agent models on Simple Spring,
indicating the benefit of incorporating appropriate physical bias. However, its performance is no-
tably lower on Force Spring and Damped Spring. This suggests that wrongly applied inductive biases
can degrade performance. Consequently, while HODEN is suited for strictly energy-conservative
systems, TANGO offers versatility across diverse classical dynamics. Note that HODEN naively
forces each agent to be energy-conservative, instead of the whole system. Therefore, it still per-
forms worse than multi-agent baselines on energy-conservative systems.

The chaotic nature of the Pendulum system, with its sensitivity to initial states 5, poses challenges
for dynamic modeling. This lead to pretty unstable predictions for models like HODEN and TRS-
ODEN, as these methods rely on linear spline interpolation (Endre Süli, 2003) to approximate miss-
ing initial states of agents, which can cause dramatic prediction errors. In contrast, latent models
like LatentODE, LG-ODE, and TANGO that utilize advanced encoders derive latent states from ob-
served data, yielding superior accuracy. TANGO maintains the most accurate predictions on such
complex Pendulum system, further showing its robust generalization capabilities. Finally, we con-
duct experiments on a real-world motion capture dataset in Appendix E.1.

4.2 ABLATION AND SENSITIVITY ANALYSIS

Ablation on implementation of Lreverse. From the last block of Table 1, we can clearly see
that our implementation of reversal loss Lreverse achieves the best performance compared with
gt-rev and TRS-ODEN’s implementation (rev2). We also analytically show that our reversal loss
implementation is expected to achieve a smaller error than the one in TRS-ODEN in Appendix A.3.

Evaluation across prediction lengths. We vary the maximum prediction lengths from 20 to 60
across models as shown in Figure 4. As the number of prediction step increases, TANGO keeps the
best prediction performance, while other baselines have significant error accumulations. Notably
for the chaotic pendulum dataset, which is highly nonlinear and has much more complex inter-agent
interactions, single-agent baselines (HODEN, TRS-ODEN) perform poorly even on short prediction
lengths. The performance gap between TANGO and baselines increases when making long-range
predictions, showing the superior ability of TANGO.

Evaluation across observation ratios. For LG-ODE and TANGO, the encoder computes the initial
states from observed trajectories. We randomly masked out 40% and 80% observations to study
models’ sensitivity towards data sparsity. As shown in Table 2, when changing the ratios from 80%
to 40%, we observe that TANGO has a smaller performance drop compared with LG-ODE, espe-
cially on the more complex Pendulum dataset (LG-ODE decreases 22.04% while TANGO decreases
1.62%). This indicates that TANGO is less sensitive toward data sparsity.

Evaluation across different α. We then vary the values of α defined in Eqn 10, which balances the
prediction loss and the reversal loss. While prediction loss aims to match true trajectories, reversal

5Visualization to show Pendulum is highly sensitive to different initial states can be found here
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(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

Figure 4: Varying prediction lengths across datasets (Pendulum MSE is in log values.).
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Figure 5: Trajectory and energy visualization (trajectory starts from light colors to dark colors.)

loss ensures time-reversal property with better numerical accuracy Figure 3 demonstrates optimal
α values being neither too high nor too low. When the weight α is too small, the model tends to
neglect the physical bias, reducing test performance; Conversely, very high weights can emphasize
reversibility at the cost of accuracy Nonetheless, across various α values, TANGO consistently
surpasses LG-ODE, showcasing its flexibility in modeling diverse dynamical systems.

4.3 VISUALIZATIONS

Trajectory Visualizations. Model predictions and ground truth are visualized in Figure 5. As
HODEN is a single-agent baseline that individually forces every agent’s energy to be constant over
time which is not valid, the predicted trajectories is having the largest errors and systems’ total
energy is not conserved for all datasets. The purely data-driven LG-ODE exhibits unrealistic energy
patterns, as seen in the energy spikes in Simple Spring and Force Spring. In contrast, TANGO,
incorporating reversal loss, generates realistic energy trends, and consistently produces trajectories
closest to the ground truth, showing its superior performance. We also visualize the reversal loss
over training epochs in Appendix E.3.

5 CONCLUSIONS

We propose TANGO, a time-reversible latent GraphODE for modeling multi-agent dynamical sys-
tems. TANGO follows the GraphODE framework, with a novel regularization term to softly enforce
time-reversal symmetry in the learned systems. Notably, TANGO does not necessitate systems to
strictly adhere to energy conservation or reversibility. We unveiled the theoretical reason of this flex-
ibility from a numerical aspect, revealing that the time-reversal loss intrinsically minimizes higher-
order terms in the Taylor expansion during the ODE integration. This reduces susceptibility to
noise and improves the model’s robustness. Empirical evaluations on simulated datasets illustrate
TANGO’s superior efficacy in capturing real-world system dynamics.

9
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Ethics Statement. TANGO is trained upon physical simulation data (e.g., , spring and pendulum)
and implemented by public libraries in PyTorch. During the modeling, we neither introduces any
social/ethical bias nor amplify any bias in the data. We do not foresee any direct social consequences
or ethical issues.

Reproducibility. To reproduce our model’s results, we provide our code implementation link here.
Dataset details can be found in Appendix C and we also provide simulator codes for public use. We
also show the implemenmtation details of TANGO and baselines in Apendix D.2.

Limitations and Future Work. Currently TANGO only incorporates inductive bias from the tem-
poral aspect, while there are still many important properties in the spatial aspect such as translation
and rotation equivariance Satorras et al. (2021). Future endeavors that combine biases from both
temporal and spatial dimensions could unveil a new frontier in dynamical systems modeling.
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A THEORETICAL ANALYSIS

A.1 PROOF OF LEMMA 1

Proof. The definition of time-reversal symmetry is given by:

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R (11)

Here, R is an involution operator, which means R ◦R = id.

First, we apply the time evolution operator ϕt to both sides of Eqn. equation 11:

ϕt ◦R ◦ ϕt = ϕt ◦ ϕ−1
t ◦R (12)

Simplifying, we obtain:
ϕt ◦R ◦ ϕt = R (13)

Next, we apply the involution operator R to both sides of the equation:

R ◦ ϕt ◦R ◦ ϕt = R ◦R (14)

Since R ◦R = I, we finally arrive at:

R ◦ ϕt ◦R ◦ ϕt = I (15)

which means the trajectories can overlap when evolving backward from the final state.

A.2 PROOF OF THEOREM 1

Let ∆t denote the integration step size in an ODE solver and T be the prediction length. The time
stamps of the ODE solver are {tj}Tj=0, where tj+1 − tj = ∆t for j = 0, · · · , T (T > 1). Next
suppose during the forward evolution, the updates go through states zfwd(tj) = (qfwd(tj),p

fwd(tj))
for j = 0, · · · , T , where qfwd(tj) is position, pfwd(tj) is momentum, while during the reverse
evolution they go through states zrev(tj) = (qrev(tj),p

rev(tj)) for j = 0, · · · , T , in reverse order.
The ground truth trajectory is zgt(tj) = (qgt(tj),p

gt(tj)) for j = 0, · · · , T .

For the sake of brevity in the ensuing proof, we denote zgt(tj) by zgt
j , zfwd(tj) by zfwd

j and zrev(tj)
by zrev

j , and we will use Mathematical Induction to prove the theorem.

A.2.1 RECONSTRUCTION LOSS (Lpred) ANALYSIS.

First, we bound the forward loss
∑T

j=0 ‖zfwd
j −zgt

j ‖22. Since our method models the momentum and
position of the system, we can write the following Taylor expansion of the forward process, where
for any 0 ≤ j < T :

qfwd
j+1 = qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2 +O(∆t3), (16a)

pfwd
j+1 = pfwd

j + ṗfwd
j ∆t+O(∆t2), (16b)

ṗfwd
j+1 = ṗfwd

j +O(∆t), (16c)

and for the ground truth process, we also have from Taylor expansion that
qgt
j+1 = qgt

j + (pgt
j /m)∆t+ (ṗgt

j /2m)∆t2 +O(∆t3), (17a)

pgt
j+1 = pgt

j + ṗgt
j ∆t+O(∆t2), (17b)

ṗgt
j+1 = ṗgt

j +O(∆t). (17c)

With these, we aim to prove that for any k = 0, 1, · · · , T , the following hold :{
‖qfwd

k − qgt
k ‖2 ≤ C fwd

2 k2∆t2, (18a)

‖pfwd
k − pgt

k ‖2 ≤ C fwd
1 k∆t, (18b)

where C fwd
1 and C fwd

2 are constants.
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Base Case k = 0: Based on the initialization rules, it is obvious that
∥∥qfwd

0 − qgt
0

∥∥
2
= 0 and∥∥pfwd

0 − pgt
0

∥∥
2
= 0, thus (18a) and (18b) both hold for k = 0.

Inductive Hypothesis: Assume (18a) and (18b) hold for k = j, which means:{
‖qfwd

j − qgt
j ‖2 ≤ C fwd

2 j2∆t2, (19a)

‖pfwd
j − pgt

j ‖2 ≤ C fwd
1 j∆t, (19b)

Inductive Proof: We need to prove (18a) and (18b) hold for k = j + 1.

First, using (16c) and (17c), we have∥∥ṗfwd
j+1 − ṗgt

j+1

∥∥
2
=
∥∥ṗfwd

j − ṗgt
j

∥∥
2
+O(∆t) =

∥∥ṗfwd
0 − ṗgt

0

∥∥
2
+O

(
(j + 1)∆t

)
= O(1), (20)

where we iterate through j, j − 1, · · · , 0 in the second equality. Then using (17b) and (16b), we get
for j + 1 that ∥∥pfwd

j+1 − pgt
j+1

∥∥
2
=
∥∥(pfwd

j + ṗfwd
j ∆t

)
−
(
pgt
j + ṗgt

j ∆t
)
+O(∆t2)‖2

≤
∥∥pfwd

j − pgt
j

∥∥
2
+
∥∥ṗfwd

j − ṗgt
j

∥∥
2
∆t+O(∆t2)

≤
[
C fwd

1 j +O(1)
]
∆t,

where the first inequality uses the triangle inequality, and in the second inequality we use (19b) as
well as (20). We can see there exists C fwd

1 such that the final expression above is upper bounded by
C fwd

1 (j + 1)∆t, with which the claim holds for j + 1.

Next for (18a), using (17a) and (16a), we get for any j that∥∥qfwd
j+1 − qgt

j+1

∥∥
2
=
∥∥(qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2)

−
(
qgt
j + (pgt

j /m)∆t+ (ṗgt
j /2m)∆t2

)
+O(∆t3)‖2

≤
∥∥qfwd

j − qgt
j

∥∥
2
+

1

m

∥∥pfwd
j − pgt

j

∥∥
2
∆t+

1

2m

∥∥ṗfwd
j − ṗgt

j

∥∥
2
∆t2 +O(∆t3)

≤
[
C fwd

2 j2 +
C fwd

1

m
j +O(1)

]
∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (19a) and
(19b) as well as (20). Thus with an appropriate C fwd

2 , we have the final expression above is upper
bounded by C fwd

2 (j + 1)2∆t2, and so the claim holds for j + 1.

Since both the base case and the inductive step have been proven, by the principle of mathematical
induction, (18a) and (18b) holds for all k = 0, 1, · · · , T .

With this, we finish the forward proof by plugging (18a) and (18b) into the loss function:
T∑

j=0

‖zfwd
j − zgt

j ‖
2
2 =

T∑
j=0

‖pfwd
j − pgt

j ‖
2
2 +

T∑
j=0

‖qfwd
j − qgt

j ‖
2
2

≤
(
C fwd

1

)2 T∑
j=0

j2∆t2 +
(
C fwd

2

)2 T∑
j=0

j4∆t4

= O(T 3∆t2).

A.2.2 REVERSAL LOSS (Lreverse) ANALYSIS.

Next we analyze the reversal loss
∑T

j=0 ‖R(zrev
j ) − zfwd

j ‖22. For this, we need to refine the Taylor
expansion residual terms for a more in-depth analysis.

First reconsider the forward process. Since the process is generated from the learned network, we
may assume that for some constants c1, c2, and c3, the states satisfy the following for any 0 ≤ j < T :

qfwd
j = qfwd

j+1 − (pfwd
j+1/m)∆t+ (ṗfwd

j+1/2m)∆t2 + remfwd,3
j , (21a)

pfwd
j = pfwd

j+1 − ṗfwd
j+1∆t+ remfwd,2

j , (21b)

ṗfwd
j = ṗfwd

j+1 + remfwd,1
j , (21c)
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where the remaining terms
∥∥remfwd,i

j

∥∥
2
≤ ci∆ti for i = 1, 2, 3. Similarly, we have approximate

Taylor expansions for the reverse process:
qrev
j = qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + remrev,3
j , (22a)

prev
j = prev

j+1 + ṗrev
j+1∆t+ remrev,2

j , (22b)

ṗrev
j = ṗrev

j+1 + remrev,1
j , (22c)

where
∥∥remrev,i

j

∥∥
2
≤ ci∆ti for i = 1, 2, 3.

We will prove via induction that for k = T, T − 1, · · · , 0,
‖R(qrev

k )− qfwd
k ‖2 ≤ C rev

3 (T − k)3∆t3, (23a)

‖R(prev
k )− pfwd

k ‖2 ≤ C rev
2 (T − k)2∆t2, (23b)

‖R(ṗrev
k )− ṗfwd

k ‖2 ≤ C rev
1 (T − k)∆t, (23c)

where C rev
1 , C rev

2 and C rev
3 are constants.

The entire proof process is analogous to the previous analysis of Reconstruction Loss.

Base Case k = T : Since the reverse process is initialized by the forward process variables at k = T ,
it is obvious that

∥∥qfwd
T − qev

T

∥∥
2
=
∥∥pfwd

T − prev
T

∥∥
2
=
∥∥ṗfwd

T − ṗrev
T

∥∥
2
= 0. Thus (23a), (23b) and

(23c) all hold for k = 0.

Inductive Hypothesis: Assume the inequalities (23b), (23a) and (23c) hold for k = j + 1, which
means: 

‖R(qrev
j+1)− qfwd

j+1‖2 ≤ C rev
3 (T − (j + 1))3∆t3, (24a)

‖R(prev
j+1)− pfwd

j+1‖2 ≤ C rev
2 (T − (j + 1))2∆t2, (24b)

‖R(ṗrev
j+1)− ṗfwd

j+1‖2 ≤ C rev
1 (T − (j + 1))∆t, (24c)

Inductive Proof: We need to prove (23b) (23a) and (23c) holds for k = j.

First, for (23c), using (21c) and (22c), we get for any j that∥∥R(ṗrev
j )− ṗfwd

j

∥∥
2
=
∥∥(ṗrev

j+1 + remrev,1
j )− (ṗfwd

j+1 + remfwd,1
j )

∥∥
2

≤
∥∥R(ṗrev

j+1)− ṗfwd
j+1

∥∥
2
+ ‖remrev,1

j ‖2 + ‖remfwd,1
j ‖2

≤ C rev
1 (T − j − 1)∆t+ 2c1∆t,

where the first inequality uses the triangle inequality, and the second inequality plugs in (24c). Thus
taking C rev

1 = 2c1, the above is upped bounded by C rev
1 (T − j)∆t, and (23b) holds for j.

Second, for (24b), using (21b) and (22b), we get∥∥R(prev
j )− pfwd

j

∥∥
2
=
∥∥− (prev

j+1 + ṗrev
j+1∆t+ remrev,2

j

)
−
(
pfwd
j+1 − ṗfwd

j+1∆t+ remfwd,2
j

)
‖2

≤
∥∥R(prev

j+1)− pfwd
j+1

∥∥
2
+
∥∥R(ṗrev

j+1)− ṗfwd
j+1

∥∥
2
∆t

+ ‖remrev,2
j ‖2 + ‖remfwd,2

j ‖2
≤
[
C rev

2 (T − j − 1)2 + C rev
1 (T − j − 1) + 2c2

]
∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (24a) and
(24b). Thus taking C rev

2 = max{C rev
1 /2, 2c2}, we have the final expression above is upper bounded

by C rev
2 (T − j)2∆t2, and so the claim holds for j.

Finally, for (24a), we use (21a) and (22a) to get∥∥R(qrev
j )− qfwd

j

∥∥
2
=
∥∥(qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + remrev,3
j

)
−
(
qfwd
j+1 − (pfwd

j+1/m)∆t+ (ṗfwd
j+1/2m)∆t2 + remfwd,3

j

)
‖2

≤
∥∥R(qrev

j+1)− qfwd
j+1

∥∥
2
+

1

m

∥∥R(prev
j+1)− pfwd

j+1

∥∥
2
∆t

+
1

2m

∥∥R(ṗrev
j+1)− ṗfwd

j+1

∥∥
2
∆t2 + ‖remrev,3

j ‖2 + ‖remfwd,3
j ‖2

≤
[
C rev

3 (T − j − 1)3 +
C rev

2

m
(T − j − 1)2 +

C rev
1

2m
(T − j − 1) + 2c3

]
∆t3,
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where the first inequality uses the triangle inequality, and in the second inequality we use (24a),
(24b) and (24c). Thus taking C rev

3 = max{C rev
2 /3m,C rev

1 /6m, 2c3}, we have the final expression
above is upper bounded by C rev

3 (T − j)3∆t3, and so the claim holds for j.

Since both the base case and the inductive step have been proven, by the principle of mathematical
induction, (23b), (23a) and (23c) hold for all k = T, T − 1, · · · , 0.

With this we finish the proof by plugging (23b) and (23a) into the loss function:
T∑

j=0

‖R(zrev
j )− zfwd

j ‖22 =

T∑
j=0

‖R(prev
j )− pfwd

j ‖22 +
T∑

j=0

‖R(qrev
j )− qfwd

j ‖22

≤
(
C rev

2

)2 T∑
j=0

(T − j)4∆t4 +
(
C rev

3

)2 T∑
j=0

(T − j)6∆t6

= O(T 5∆t4).

A.3 ANALYSIS ON IMPLEMENTATIONS OF REVERSAL LOSS

Our time-reversal loss implementation builts upon Lemma1 where the backward trajectory origi-
nates from the last state of the forward trajectory. One could also implement the reversal loss based
on Eqn 5 which is adopted in TRS-ODEN (Huh et al., 2020). We illustrated the comparison between
the two implementation in Figure 6.

Remark 3. Comparing TANGO against the implementation following Eqn.(5), when the recon-
struction loss defined in Eqn.(7) and the time-reversal loss defined in Eqn. (9) of both methods are
equal, the maximum error between the reversal and ground truth trajectory, i.e. MaxErrorgt_rev =
maxj∈[T ] ‖y(j)− ŷrev(T − j)‖2 made by TANGO is smaller than that of following Eqn.(5).

Figure 6: Comparison between two reversal loss implementation

This remark suggests that our implementation of time-reversal symmetry is numerically better than
the implementation used in (Huh et al., 2020). We give an illustration of the remark below.

We expect an ideal model to align both the predicted forward and reverse trajectories with the ground
truth. As shown in Figure 6, we integrate one step from the initial state ŷfwd(0) (which is the same
as y(0)) and reach the state ŷfwd(1).

The first reverse loss implementation (ours) follows lemma (1) as R◦Φt ◦R◦Φt = id, which means
when we evolve forward and reach the state ŷfwd(1) we reverse it into ŷrev1(−1) = R(ŷfwd(1)) and
go back to reach ŷrev1(0), then reverse it to get R(ŷrev1(0)), which ideally should be the same as
ŷfwd(0).

The second reverse loss implementation follows Eqn.(5) as R ◦ Φt = Φ−t ◦ R, which means we
first reverse the initial state as ŷrev2(0) = R(y(0)), then evolve the reverse trajectory in the opposite
direction to reach ŷrev2(−1), and then perform a symmetric operation to reach ŷrev2(1), aligning it
with the forward trajectory.
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We assume the two reconstruction losses Lpred = ‖ŷfwd(1) − y(1)‖22 := a are the same. For the
time-reversal losses, we also assume they have reached the same value b:

Lreverse1 = ‖R(ŷrev1(0))− ŷfwd(0)‖22 + ‖R(ŷrev1(−1))− ŷfwd(1)‖22 = ‖R(ŷrev1(0))− ŷfwd(0)‖22 := b,

Lreverse2 = ‖ŷrev2(0)− ŷfwd(0)‖22 + ‖ŷrev2(1)− ŷfwd(1)‖22 = ‖ŷrev2(1)− ŷfwd(1)‖22 := b,

As shown in Figure.6 where we illustrate the worst case scenario MaxErrorgt_rev =
maxj∈[T ] ‖y(j)−ŷrev(T−j)‖2 of the two loss, we can see that in our implementation the worst error
is the maximum of two loss, while the TRS-ODEN’s implementation has the risk of accumulating
the error together, making the worst error being the sum of both:

MaxErrorgt_rev1 = max
{∥∥R(ŷrev1(0))− y(0)

∥∥
2
,
∥∥R(ŷrev1(−1))− y(1)

∥∥
2

}
= max

{
a, b
}
,

MaxErrorgt_rev2 = max
{∥∥ŷrev2(0)− y(0)

∥∥
2
,
∥∥ŷrev2(1)− y(1)

∥∥
2

}
= max

{
0,
∥∥R(ŷrev1(−1))− y(1)

∥∥
2

}
=
∥∥ŷrev2(1)− ŷfwd(1)

∥∥
2
+
∥∥ŷfwd(1)− y(1)

∥∥
2
= a+ b,

So it is obvious that MaxErrorgt_rev2 > MaxErrorgt_rev1, which means our model achieves a
smaller error of the maximum distance between the reversal and ground truth trajectory.

B EXAMPLE OF VARYING DYNAMICAL SYSTEMS

We illustrate the energy conservation and time reversal of the three n-body spring systems in Fig-
ure 1(a). We use the Hamiltonian formalism of systems under classical mechanics to describe their
dynamics and verify their energy conservation and time-reversibility characteristics.

The scalar function that describes a systems motion is called the Hamiltonian, H, and is typically
equal to the total energy of the system, that is, the potential energy plus the kinetic energy (North,
2021). It describes the phase space equations of motion by following two first-order ODEs called
Hamilton’s equations:

dq

dt
=

∂H(q,p)

∂p
,
dp

dt
= −∂H(q,p)

∂q
, (25)

where q ∈ Rn,p ∈ Rn, and H : R2n 7→ R are positions, momenta, and Hamiltonian of the system.

Under this formalism, energy conservative is defined by dH/dt = 0, and the time-reversal symmetry
is defined by H(q, p, t) = H(q,−p,−t) (Lamb & Roberts, 1998).

B.1 CONSERVATIVE AND REVERSIBLE SYSTEMS.

A simple example is the isolated n-body spring system, which can be described by :

dqi

dt
=

pi

m
dpi

dt
=
∑
j∈Ni

−k(qi − qj),
(26)

where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a set of
momenta of each object, mi is mass of each object, k is spring constant.

The Hamilton’s equations are:

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj),
(27)

Hence, we can obtain the Hamiltonian through the integration of the above equation.

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
, (28)
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Verify the systems’ energy conservation

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
= 0, (29)

So it is conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→
(q,−p,−t).

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
,

(30)

It is obvious H(q,p) = H(q,−p), so it is reversible

B.2 NON-CONSERVATIVE AND REVERSIBLE SYSTEMS.

A simple example is a n-body spring system with periodical external force, which can be described
by:

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)− k1 cosωt,
(31)

The Hamilton’s equations are:
∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj) + k1 cosωt,
(32)

Hence, we can obtain the Hamiltonian through the integration of the above equation:

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosωt, (33)

Verify the systems’ energy conservation

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

( N∑
i=1

qi ∗ k1 cosωt
)

=0 +
1

dt

( N∑
i=1

qik1 cosωt
)

=
( N∑
i=1

−ωqik1 sinωt
)
6= 0

(34)

So it is non-conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→
(q,−p,−t).

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosωt,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosω(−t),

(35)

It is obvious H(q,p, t) = H(q,−p, t), so it is reversible
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B.3 NON-CONSERVATIVE AND IRREVERSIBLE SYSTEMS.

A simple example is an n-body spring system with frictions proportional to its velocity,γ is the
coefficient of friction, which can be described by:

dqi

dt
=

pi

m
dpi

dt
= −k0qi − γ

pi

m

(36)

The Hamilton’s equations are:

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj) + γ
pi

m

(37)

Hence, we can obtain the Hamiltonian through the integration of the above equation:

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ t

0

pi
2

m
dt, (38)

Verify the systems’ energy conservation

dH
(
q,p)

dt

=
1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

( N∑
i=1

γ

m

∫ t

0

pi
2

m
dt)

=0 +
1

dt

( N∑
i=1

γ

m

∫ t

0

pi
2

m
dt)

=
( N∑
i=1

γ

m

pi
2

m
) 6= 0

(39)

So it is non-conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→
(q,−p,−t).

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ t

0

pi
2

m
dt,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ (−t)

0

pi
2

m
d(−t),

(40)

It is obvious H(q,p, t) 6= H(q,−p, t), so it is irreversible

C DATASET

In our experiments, all datasets are synthesized from ground-truth physical law via sumulation.
We generate four simulated datasets: three n-body spring systems under damping, periodic, or no
external force, and one chaotic tripe pendulum dataset with three sequentially connected stiff sticks
that form. We name the first three as Sipmle Spring, Forced Spring, and Damped Spring respectively.
All n-body spring systems contain 5 interacting balls, with varying connectivities. Each Pendulum
system contains 3 connected stiff sticks.

For the n-body spring system, we randomly sample whether a pair of objects are connected, and
model their interaction via forces defined by Hookes law. In the Damped spring, the objects have
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an additional friction force that is opposite to their moving direction and whose magnitude is pro-
portional to their speed. In the Forced spring, all objects have the same external force that changes
direction periodically. We show in Figure 1(a), the energy variation in both of the Damped spring
and Forced spring is significant.

For the chaotic triple Pendulum , the equations governing the motion are inherently nonlinear. Al-
though this system is deterministic, it is also highly sensitive to the initial condition and numerical
errors (Shinbrot et al., 1992; Awrejcewicz et al., 2008; Stachowiak & Okada, 2006). This prop-
erty is often referred to as the "butterfly effect", as depicted in Fig 7. Unlike for n-body spring
systems, where the forces and equations of motion can be easily articulated, for the Pendulum, the
explicit forces cannot be directly defined, and the motion of objects can only be described through
Lagrangian formulations North (2021), making the modeling highly complex and raising challenges
for accurate learning.
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Figure 7: Illustration to show the pendulum is highly-sensitive to initial states

We simulate the trajectories by using Euler’s method for n-body spring systems and using the 4th
order Runge-Kutta (RK4) method for the Pendulum. We integrate with a fixed step size and sub-
sample every 100 steps. For training, we use a total of 6000 forward steps. To generate irregularly
sampled partial observations, we follow Huang et al. (2020) and sample the number of observations
n from a uniform distribution U(40, 52) and draw the n observations uniformly for each object.
For testing, we additionally sample 40 observations following the same procedure from PDE steps
[6000, 12000], besides generating observations from steps [1, 6000]. The above sampling proce-
dure is conducted independently for each object. We generate 20k training samples and 5k testing
samples for each dataset. The features (position/velocity) are normalized to the maximum absolute
value of 1 across training and testing datasets.

In the following subsections, we show the dynamical equations of each dataset in detail.

C.1 SPRING

C.1.1 SIMPLE SPRING

The dynamical equations of simple spring are as follows:
dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)
(41)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a
set of momenta of each object. We set the mass of each object m = 1, the spring constantk = 0.1.
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C.1.2 DAMPED SPRING

The dynamical equations of damped spring are as follows:

dqi

dt
=

pi

m
dpi

dt
=
∑
j∈Ni

−k(qi − qj)− γ
pi

m

(42)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object, p = (p1,p2, · · · ,pN) is a
set of momenta of each object, We set the mass of each object m = 1, the spring constantk = 0.1,
the coefficient of friction γ = 10.

C.1.3 FORCED SPRING

The dynamical equations of forced spring system are as follows:

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)− k1 cosωt,
(43)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a
set of momenta of each object. We set the mass of each object m = 1 , the spring constantk = 0.1,
the external strength k1 = 10 and the frequency of variation ω = 1

We simulate the positions and momentums of three spring systems by using Euler methods as fol-
lows:

qi(t+ 1) = qi(t) +
dqi

dt
∆t

pi(t+ 1) = pi(t) +
dpi

dt
∆t

(44)

where dqi

dt and dpi

dt were defined as above for each datasets, and ∆t = 0.001 is the integration steps.

C.2 CHAOTIC PENDULUM

In this section, we demonstrate how to derive the dynamics equations for a chaotic triple pendulum
using the Lagrangian formalism.

The moment of inertia of each stick about the centroid is

I =
1

12
ml2 (45)

The position of the center of gravity of each stick is as follows:

x1 =
l

2
sin θ1, y1 = − l

2
cos θ1

x2 = l(sin θ1 +
1

2
sin θ2), y2 = −l(cos θ1 +

1

2
cos θ2)

x3 = l(sin θ1 + sin θ2 +
1

2
sin θ3), y3 = −l(cos θ1 + cos θ2 +

1

2
cos θ3)

(46)

The change in the center of gravity of each stick is:

ẋ1 =
l

2
cos θ1 · θ̇1, ẏ1 =

l

2
sin θ1 · θ̇1

ẋ2 = l(cos θ1 · θ̇1 +
1

2
cos θ2 · θ̇2), ẏ2 = l(sin θ1 · θ̇1 +

1

2
sin θ2 · θ̇2)

ẋ3 = l(cos θ1 · θ̇1 + cos θ2 · θ̇2 +
1

2
cos θ3 · θ̇3), ẏ3 = l(sin θ1 · θ̇1 + sin θ2 · θ̇2 +

1

2
sin θ3 · θ̇3)

(47)
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The Lagrangian L of this triple pendulum system is:

L =T − V

=
1

2
m(ẋ1

2 + ẋ2
2 + ẋ3

2 + ẏ1
2 + ẏ2

2 + ẏ3
2) +

1

2
I(θ̇1

2
+ θ̇2

2
+ θ̇3

2
)−mg(y1 + y2 + y3)

=
1

6
ml(9θ̇2θ̇1l cos(θ1 − θ2) + 3θ̇3θ̇1l cos (θ1 − θ3) + 3θ̇2θ̇3l cos (θ2 − θ3) + 7θ̇21l + 4θ̇22l + θ̇23l

+ 15g cos (θ1) + 9g cos (θ2) + 3g cos (θ3))

(48)

The Lagrangian equation is defined as follows:

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0 (49)

and we also have:
∂L
∂θ̇

=
∂T

∂θ̇
= p

ṗ =
d

dt

∂L
∂θ̇

=
∂L
∂θ

(50)

where p is the Angular Momentum.
We can list the equations for each of the three sticks separately:

p1 =
∂L
∂θ̇1

ṗ1 =
∂L
∂θ1

p2 =
∂L
∂θ̇2

ṗ2 =
∂L
∂θ2

p3 =
∂L
∂θ̇3

ṗ3 =
∂L
∂θ3

(51)

Finally, we have :

θ̇1 = 6(9p1 cos(2(θ2−θ3))+27p2 cos(θ1−θ2)−9p2 cos(θ1+θ2−2θ3)+21p3 cos(θ1−θ3)−27p3 cos(θ1−2θ2+θ3)−23p1)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇2 = 6(27p1 cos(θ1−θ2)−9p1 cos(θ1+θ2−2θ3)+9p2 cos(2(θ1−θ3))−27p3 cos(2θ1−θ2−θ3)+57p3 cos(θ2−θ3)−47p2)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇3 = 6(21p1 cos(θ1−θ3)−27p1 cos(θ1−2θ2+θ3)−27p2 cos(2θ1−θ2−θ3)+57p2 cos(θ2−θ3)+81p3 cos(2(θ1−θ2))−143p3)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

ṗ1 = − 1
2ml

(
3θ̇2θ̇1l sin (θ1 − θ2) + θ̇1θ̇3l sin (θ1 − θ3) + 5g sin (θ1)

)
ṗ1 = − 1

2ml
(
−3θ̇1θ̇2l sin (θ1 − θ2) + θ̇2θ̇3l sin (θ2 − θ3) + 3g sin (θ2)

)
ṗ1 = − 1

2ml
(
θ̇1θ̇3l sin (θ1 − θ3) + θ̇2θ̇3l sin (θ2 − θ3)− g sin (θ3)

)
(52)

We simulate the angular of the three sticks by using the Runge-Kutta 4th Order Method as follows:

∆θ1(t) = θ̇(t,θ(t)) ·∆t

∆θ2(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ1(t)

2
) ·∆t

∆θ3(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ2(t)

2
) ·∆t

∆θ4(t) = θ̇(t+∆t,θ(t) + ∆θ3(t)) ·∆t

∆θ(t) =
1

6
(∆θ1(t) + ∆θ2(t) + ∆θ3(t) + ∆θ4(t))

θ(t+ 1) = θ(t) + ∆θ(t)

(53)

where θ̇ was defined as above , and ∆t = 0.0001 is the integration steps.

D MODEL DETAILS

In the following we introduce in details how we implement our model and each baseline.
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D.1 INITIAL STATE ENCODER

The initial state encoder computes the latent node initial states zi(t) for all agents simultaneously
considering their mutual interaction. Specifically, it first fuses all observations into a temporal
graph and conducts dynamic node representation through a spatial-temporal GNN as in Huang et al.
(2020):

hl+1
j(t) = hl

j(t) + σ

 ∑
i(t′)∈Nj(t)

αl
i(t′)→j(t) ×Wvĥ

l−1
i(t′)


αl
i(t′)→j(t) =

(
Wkĥ

l−1
i(t′)

)T (
Wqh

l−1
j(t)

)
· 1√

d
, ĥl−1
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where || denotes concatenation; σ(·) is a non-linear activation function; d is the dimension of node
embeddings. The node representation is computed as a weighted summation over its neighbors
plus residual connection where the attention score is a transformer-based Vaswani et al. (2017) dot-
product of node representations by the use of value, key, query projection matrices Wv,Wk,Wq .
Here hl

j(t) is the representation of agent j at time t in the l-th layer. i(t′) is the general index for
neighbors connected by temporal edges (where t′ 6= t) and spatial edges (where t = t′ and i 6= j).
The temporal encoding Hu et al. (2020) is added to a neighborhood node representation in order
to distinguish its message delivered via spatial and temporal edges. Then, we stack L layers to get
the final representation for each observation node: ht

i = hL
i(t). Finally, we employ a self-attention

mechanism to generate the sequence representation ui for each agent as their latent initial states:

ui =
1

K

∑
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σ
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i ĥ

t
iĥ

t
i

)
, ai = tanh

((
1

K

∑
t

ĥt
i

)
Wa

)
, (55)

where ai is the average of observation representations with a nonlinear transformation Wa and
ĥt
i = ht

i + TE(t). K is the number of observations for each trajectory. Compared with recurrent
models such as RNN, LSTM Sepp & Jürgen (1997), it offers better parallelization for accelerating
training speed and in the meanwhile alleviates the vanishing/exploding gradient problem brought by
long sequences.

Given the latent initial states, the dynamics of the whole system are determined by the ODE function
g which we parametrize as a GNN as in Huang et al. (2020) to capture the continuous interaction
among agents. We then employ Multilayer Perceptron (MLP) as a decoder to predict the trajectories
ŷi(t) from the latent states zi(t).

zi(t), zi(1), zi(2) · · · zi(T ) = ODEsolver(g, [z1(0), z2(0) · · · zN (0)], (t0, t1 · · · tT ))
ŷi(t) = fdec(zi(t))

(56)

D.2 IMPLEMENTATION DETAILS

TANGO

Our implementation of TANGO follows GraphODE pipeline. We implement the initial state en-
coder using a 2-layer GNN with a hidden dimension of 64 across all datasets. We use ReLU for
nonlinear activation. For the sequence self-attention module, we set the output dimension to 128.
The encoder’s output dimension is set to 16, and we add 64 additional dimensions initialized with
all zeros to the latent states zi(t) to stabilize the training processes as in Huang et al. (2021). The
GNN ODE function is implemented with a single-layer GNN from Kipf et al. (2018) with hidden
dimension 128. To compute trajectories, we use the Runge-Kutta method from torchdiffeq python
package s(Chen et al., 2021) as the ODE solver and a one-layer MLP as the decoder.

We implement our model in pytorch. Encoder, generative model, and the decoder parameters are
jointly optimized with AdamW optimizer (Loshchilov & Hutter, 2019) using a learning rate of
0.0001 for spring datasets and 0.00001 for Pendulum. The batch size for all datasets is set to 512.
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TANGOLrev=gt-rev and TANGOLrev=rev2 share the same architecture and hyparameters as TANGO,
with different implementations of the loss function. In TANGOLrev=gt-rev, instead of comparing
forward and reverse trajectories, we look at the L2 distance between the ground truth and reverse
trajectories when computing the reversal loss.

For TANGOLrev=rev2, we implement the reversal loss following Huh et al. (2020) with one differ-
ence: we do not apply the reverse operation to the momentum portion of the initial state to the ODE
function. This is because the initial hidden state is an output of the encoder that mixes position and
momentum information. Note that we also remove the additional dimensions to the latent state that
TANGO has.

LatentODE

We implement the Latent ODE sequence to sequence model as specified in Rubanova et al. (2019).
We use a 4-layer ODE function in the recognition ODE, and a 2-layer ODE function in the generative
ODE. The recognition and generative ODEs use Euler and Dopri5 as solvers (Chen et al., 2021),
respectively. The number of units per layer is 1000 in the ODE functions and 50 in GRU update
networks. The dimension of the recognition model is set to 100. The model is trained with a learning
rate of 0.001 with an exponential decay rate of 0.999 across different experiments. Note that since
latentODE is a single-agent model, we compute the trajectory of each object independently when
applying it to multi-agent systems.

HODEN

To adapt HODEN, which requires full initial states of all objects, to systems with partial observa-
tions, we compute each objects initial state via linear spline interpolation if it is missing. Following
the setup in Huh et al. (2020), we have two 2-layer linear networks with Tanh activation in between
as ODE functions, in order to model both positions and momenta. Each network has a 1000-unit
layer followed by a single-unit layer. The model is trained with a learning rate of 0.00001 using a
cosine scheduler.

TRS-ODEN

Similar to HODEN, we compute each objects initial state via linear spline interpolation if it is
missing. As in Huh et al. (2020), we use a 2-layer linear network with Tanh activation in between
as the ODE functions, and the Leapfrog method for solving ODEs. The network has 1000 hidden
units and is trained with a learning rate of 0.00001 using a cosine scheduler.

TRS-ODENGNN

For TRSODENGNN, we substitute the ODE function in TRS-ODEN with a GraphODE network.
The GraphODE generative model is implemented with a single-layer GNN with hidden dimension
128. As in HODEN and TRS-ODEN, we compute each objects missing initial state via linear spline
interpolation and the Leapfrog method for solving ODE. For all datasets, we use 0.5 as the coefficient
for the reversal loss in Huh et al. (2020), and 0.0002 as the learning rate under cosine scheduling.

LGODE

Our implementation follows Huang et al. (2020) except we remove the Variational Autoencoder
(VAE) from the initial state encoder. Instead of using the output from the encoder GNN as the
mean and std of the VAE, we directly use it as the latent initial state. That is, the initial states
are deterministic instead of being sampled from a distribution. We use the same architecture as in
TANGO and train the model using an AdamW optimizer with a learning rate of 0.0001 across all
datasets.

E ADDITIONAL EXPERIMENTS

E.1 RESULTS ON MUJOCO DATASET.

In addition to assessing our model’s performance on simulated datasets, we also conduct experi-
ments using a real-world motion capture datasetCMU (2003). In particular, we focus on the walking
sequences of subject 35. Each sample in this dataset is represented by 31 trajectories, each corre-
sponding to the movement of a single joint. For each joint, we first randomly sample the number
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Table 3: Evaluation results on MSE ( 10−2) on MoJoCo Dataset
LatentODE HODEN TRS-ODENGNN LGODE TANGO

MSE 2.9061 1.9855 0.2609 0.7610 0.2192

Table 4: Evaluation results on MSE (10−2) over different solvers.
Dataset Simple Spring Forced Spring Damped Spring Pendulum
Solvers Euler RK4 Euler RK4 Euler RK4 Euler RK4

LGODE 1.8443 1.7429 2.0462 1.8929 1.1686 0.9718 1.4634 1.4156
TANGO 1.4864 1.1178 1.6058 1.4525 0.8070 0.5944 1.3093 1.2527
% Improvement 19.4057 35.8655 21.5228 23.2659 30.9430 38.8352 10.5303 11.5075

of observations from a uniform distribution U(30, 42) and then sample uniformly from the first 50
frames for training and validation trajectories. For testing, we additionally sampled 40 observations
from frames [51, 99]. As shown in Table 3, TANGO consistently outperforms existing baselines.

E.2 COMPARISON OF DIFFERENT SOLVERS

We next show our model’s sensitivity regarding solvers with different precisions. Specifically, we
compare against Euler and Runge-Kutta (RK4) where the latter is a higher-precision solver. We
show the comparison against LGODE and TANGO in Table 4.

We can firstly observe that TANGO consistently outperforms LGODE, which is our strongest base-
line across different solvers and datasets, indicating the effectiveness of the proposed time-reversal
symmetry loss. Secondly, we compute the improvement ratio as LGODE−TANGO

LGODE . We can see
that the improvement ratios get larger when using RK4 over Euler. This can be understood as our
reversal loss is minimizing higher-order Tayler expansion terms (Theoreom 1) thus compensating
numerical errors brought by ODE solvers.

E.3 REVERSAL LOSS VISUALIZATIONS

To further illustrate the issue of energy explosion from LG-ODE that is purely data-driven, we
visualize the reversal loss over training epochs from LG-ODE6 and TANGO in Figure 8. As results
suggest, LG-ODE is having increased reversal loss over training epochs, meaning it is violating
the time-reversal symmetry sharply, as contrast to TANGO which has decreased reversal loss over
epochs.

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

×1𝑒!"# ×1𝑒!"# ×1𝑒!"# ×1𝑒!"$

Figure 8: Time-Reversal symmetry loss visualization across datasets.

F DISCUSSION ABOUT REVERSIBLE NEURAL NETWORKS

In literature, there is another line of research about building reversible neural networks (NNs). For
example, Chang et al. (2018) formulates three architectures for reversible neural networks to address
the stability issue and achieve arbitrary deep lengths, motivated by dynamical system modeling. Liu
et al. (2019) employs normalizing flow to create a generative model of graph structures. They all
propose novel architectures to construct reversible NN where intermediate states across layer depths
do not need to be stored, thus improving memory efficiency.

6There is no reversal loss backpropagation in LG-ODE, we just compute its value along training.
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However, we’d like to clarify that reversible NNs (RevNet) do not resolve the time-reversal sym-
metry problem that we’re studying. The core of RevNet is that input can be recovered from output
via a reversible operation (which is another operator), similar as any linear operator W (·) have a
reversed projector W−1(·). In the contrary, what we want to study is that the same operator can
be used for both forward and backward prediction over time, and keep the trajectory the same. That
being said, to generate the forward and backward trajectories, we are using the same g(·), instead of
g(·), g−1(·) respectively.

In summary, though both reversible NN and time-reversal symmetry share similar insights and in-
tuition, they’re talking about different things: reversible NNs make every operator g(·) having a
g−1(·), while time-reversible assume the trajectory get from ẑfwd = g(z) and ẑbwd = −g(z) to be
closer. Making g to be reversible cannot make the system to be time-reversible.
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