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Abstract

Granger causal discovery aims to infer the underlying Granger causal relationships
between pairs of variables in a multivariate time series system. Recent work has
proposed using Neural Relational Inference (NRI) Kipf et al. [2018] – a latent
graph inference model – for Granger causal discovery. However, the conditions
under which NRI succeeds in recovering the true Granger causal graph remain
unknown. In this work we show how the mean field approximation inherent in NRI
has significant implications for its ability to recover the Granger causal structure in
multivariate time series. We illustrate this point theoretically and experimentally
using a linear vector autoregressive model – an important benchmark in economic
and financial studies.

1 Introduction

Granger causal discovery is a widely studied problem with real world applications in a number of
fields such as neuroscience [Sporns, 2016], genetics [Fujita et al., 2010] and finance [Campbell et al.,
1998]. Given an observed multivariate time series dataset, Granger causal discovery aims to infer the
underlying Granger causal relationships between pairs of time series. In recent years, deep learning
methods [Tank et al., 2021] have been proposed for Granger causal discovery which aim to provide
more flexibility over traditional approaches [Granger, 1969] to Granger causal discovery. In this
work, we examine the novel approach of Löwe et al. [2022] on a simple benchmark dataset.

Löwe et al. [2022] propose a method named Amortized Causal Discovery (ACD) which infers
Granger causal relationships using Neural Relational Inference (NRI) [Kipf et al., 2018]. The Granger
causal structure of a multivariate time series system can be viewed as a directed graph in which nodes
represent time series and edges represent Granger causal relations. NRI is a graph-based variational
autoencoder which infers latent edge relations. This model is an exciting proposal for Granger causal
discovery as it fully inductive, which means that is able to be applied across a number of multivariate
time series samples, and achieves competitive performance on several benchmark datasets.

However, the conditions under which NRI succeeds in recovering the Granger causal graph underlying
a multivariate time series system are not known. This creates a hurdle to its use on real world data as
there are no theoretical guarantees or strong experimental results to suggest that it can recover the
true causal structure in any given application.

In this work, we examine NRI in the context of a vector autoregressive (VAR) data generating process
with graph structure. VAR is a synthetic benchmark that is commonly used in financial and economic
domains. Since Granger causal discovery is a widely studied question and certain problems can be
modeled using graph-based approaches [Knight et al., 2020], NRI is a potentially attractive method
for the domains of economics and finance. Therefore, it is of interest to understand the performance
of NRI on a simple VAR benchmark prior to applying it to real world data.
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In the rest of the paper, we start by briefly describing the task of Granger causal discovery and the
NRI approach that will be the object of study. Then, we introduce the graph-based VAR benchmark.
By comparing the true posterior distribution of the edge relations with the form of the GNN encoder
used in NRI, we then argue that the mean-field approximation inherent in NRI poses a fundamental
limitation on the model for Granger causality discovery. We construct an indicator that theoretically
predicts the specific graph structures that NRI will struggle to infer in this simple VAR setting. This
indicator is then validated using synthetic data experiments. We conclude by recapitulating the key
limitation of NRI in its application to Granger causality discovery. We hope that our work will guide
future causal ML research in a productive direction.

Our primary contributions can be summarized as follows:

1. We provide the first study to understand the conditions under which NRI can successfully
recover the Granger causal structure of a multivariate time series system.

2. We propose an indicator that predicts when NRI will fail to recover the Granger causal
structure on a linear graph autoregressive process.

3. We empirically validate our indicator using synthetic data experiments1.

Background on Granger causality

Let Xi
t ∈ R denote the value of time series i = 1, . . . , N at time t. Then time series Xi Granger

causes time series Xj if, for some t,

P[Xj
t+1 ∈ S|I(t)] ̸= P[Xj

t+1 ∈ S|I−Xi(t)],∀i, j = 1, · · · , N (1)

where S is an arbitrary non-empty set [Eichler, 2012]. The sets I(t) and I−Xi(t) respectively denote
all information available as of time t and all information available as of time t excluding time series
Xi. Granger causal discovery aims to infer the Granger causal relation between each pair of time
series in a multivariate time series dataset. While an inferred Granger causal relation is not necessarily
indicative of a true causal relation Maziarz [2015], it remains a popular framework for understanding
temporal relations in multivariate dynamical systems.

In the case of linear VAR modeling, the Granger causal relationship between two random variables
can be tested through the hypothesis that the coefficients relating the lagged values of time series i to
the current value of time series j are jointly significantly different to 0. Granger causal discovery can
be accomplished when N is small through an exhaustive hypothesis test search on the coefficients in
the VAR model.

Background on Neural Relational Inference for Granger causal discovery

Löwe et al. [2022] propose to use NRI Kipf et al. [2018], an encoder-decoder latent variable model, to
infer Granger causal relations. The NRI encoder – which takes the form of a Graph Neural Network
(GNN) learns to approximate the posterior distribution over latent graph relations; it accomplishes
this by propagating information across a fully connected graph in which each node corresponds to a
variable in the multivariate system and a node feature embeds its respective variable’s time series.
The NRI encoder models the posterior probability for zij the type (category) of edge i→ j with

ψij = fenc(X)ij , q(zij |X) = Softmax(ψij/τ) (2)
where fenc is a GNN encoder and τ is a temperature parameter for the Softmax activation function.
The variable ψij is K-dimensional, where K is the number of edge categories chosen by the user.
We write X to denote the dataset

(
Xi

t

)i=1,...,N

t=1,...,T
.

The NRI decoder – another GNN – models the multivariate time series conditional on the graph and
latent edge relations returned by the encoder. Each edge relation type coincides to a unique message
passing function in the decoder. ACD uses the same neural architecture as NRI with the addition of a
single “zero” edge type: this edge type has its decoder message passing function hard-coded to return
zero. An inferred zero-edge implies no Granger causation between two variables. Inferred edges that
are not of a zero-type imply a Granger causal relationship between two variables.

1Code used in experiments can be found here https://github.com/stefanosbennett/nri_granger_
causality_cml4impact22
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Figure 1: In ACD [Löwe et al., 2022], NRI is proposed as a Granger Causal Discovery method. NRI
aims to infer the Granger causal graph (right) that corresponds to an observed multivariate time series
(left).

In contrast to existing methods, ACD has an fully inductive encoder for the Granger causal graph.
This means that a trained model can be applied to a out-of-sample multivariate time series dataset
with a different Granger causal structure but the same shared dynamics conditional on the Granger
causal graph. The inductive nature of the model means that it can leverage the information that is
shared across multivariate time series samples. Its potential ability to learn across multivariate time
series samples and competitive performance on three synthetic datasets considered by Löwe et al.
[2022] makes ACD an exciting model for Granger causal discovery.

2 Theoretical limitations of NRI for Granger causal discovery

Consider the following generative process for a multivariate time series of size T with N variables:

Xt = cATXt−1 + ϵt (3)

where Xt :=
(
X1

t , . . . , X
N
t

)T
, ϵt ∈ RN , Xi

0 := 0 and ϵit ∼ N(0, 1) independently for t =

1, . . . , T , i = 1, . . . , N . The matrix A ∈ RN×N is the adjacency matrix corresponding to the
Granger causal graph and c is a constant which determines the signal-to-noise ratio of the problem.
The adjacency matrix is prespecified for each experiment. If Aij = 1 then time series i Granger
causes time series j, otherwise if Aij = 0, there is no causal relation. We set the diagonal elements
of A to 1 so that there is an autoregressive dependence for each time series. This model is similar to
the Generalized Network Autoregressive Process of Knight et al. [2020].

Under a Bayesian model in which the entries of A are distributed independently at random with
uniform probability p of being 1 under the prior, the log-posterior distribution of entryAij conditional
on the observed dataset and the other entries of A is given by, up to a constant in Aij ,

(4)

logP
(
Aij |X, (Akl)(k,l)̸=(i,j)

)
=

c

2
Aij

2(LXi) ·Xj−c(LXj) ·(LXi)−c(LXi) ·(LXi)−c
∑
k ̸=i,j

Akj(LXi) ·(LXk)

+
[Aij log p+ (1−Aij) log(1− p)]

where Xi := (Xi
1, . . . , X

i
T )

T ∈ RT , LXi := (Xi
0, X

i
1, . . . , X

i
T−1) ∈ RT for all i = 1, . . . , N and ·

denotes the vector dot product.

Under the NRI model, the posterior is approximated using a mean-field approximation where the
marginal posterior probability for Aij is given by the result of the GNN encoder, q(zij |x) in equation
2. The two-dimensional variable zij corresponds toAij in this case as the ground truth data generating
process has K = 2 edge types (either present or absent). Note that by definition, under the mean-field
posterior approximation, Aij is independent of the other edges. However, in the true posterior, Aij
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Figure 2: The three Granger causal graph structures used in experiments.

is potentially dependent on edges Akj , k ∈ {1, . . . , N} \ {i, j}. Indeed, there will be significant
negative posterior correlation between Aij and Akj whenever (LXi) · (LXk) is large. Intuitively, if
variables i and k are correlated, then the true posterior distribution will place negative correlation
on the edges originating from either node and having a common target node (if variable k predicts
j, then it less likely that i also predicts j). However, the GNN encoder is unable to capture such
posterior dependence between edges.

As a result, we expect NRI to incorrectly classify the edge i → j whenever Xk and Xi have
significant correlation and k → j but there is no edge i→ j in the true underlying graph. Since the
encoder is unable to capture the negative correlation of Aij and Akj , it will tend to overestimate the
probability of Aij = 1 and therefore misclassify edge i → j. In order to validate this hypothesis
concerning the limitations of NRI to estimate the Granger relations in certain graph structures, we
construct a “difficulty indicator” Dij for each edge:

Dij =
|Cij |

|Cij |+|Mij |
(1−Aij) (5)

where

Cij = c
∑

k∈{1,...,N}\{i,j}

A∗
kj(LXi) · (LXk) (6)

Mij = 2(LXi) ·Xj − c(LXj) · (LXi)− c(LXi) · (LXi) (7)

Here, A∗ denotes the ground truth adjacency matrix. The difficulty indicator gives the size |Cij | of
the true posterior dependence of Aij on other edges Akj relative to the size |Mij | of the component
of the posterior edge probability in equation 4 which does not depend on other edges. Note that we
ignore the prior term Aij log p+ (1−Aij) log(1− p) in equation 4 as this will become insignificant
as T increases. Based on the argument given in the previous paragraph, we expect that edges in
graphs with large difficulty indicators will be misclassified by NRI. We investigate this hypothesis
empirically in the following experimental section.

3 Experiments

3.1 Synthetic data generation

We generate multivariate time series datasets of size T = 1000, N = 3 using equation 3. We consider
three causal graph structures. These are illustrated in Figure 2.

We note that using a suite of t-tests on the estimated coefficients of an ordinary least squares fit of a
VAR model with 1 lag to datasets of this size results in 100% classification accuracy for the entries in
the VAR autoregressive matrix. This illustrates that the task of causal graph discovery is solvable on
these three graph structures.

The learning paradigm of ACD trains NRI using samples of multivariate time series datasets [Löwe
et al., 2022]. We match this learning paradigm and generate 1000 different training, validation and
test multivariate time series for each graph structure. The specifics of model training are chosen to
match those of Löwe et al. [2022] and are found in the Appendix.

The performance of ACD in recovering the Granger causal structure is evaluated using the classifica-
tion accuracy of the encoder on the off-diagonal entries of the adjacency matrix on test multivariate
time series data. In addition, we also record the predictive performance of each method using mean
squared error (MSE) averaged across each time series variable. This is expressed relative to the
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performance of the Bayes rule predictor in each experimental setting (RelMSE). The Bayes rule
predictor will have an MSE error of 1 (since the residual error has variance of 1 for each variable) or
RelMSE of 0%.

3.2 NRI model variants

The following encoders will be used in experiments:

• RefMLP: the encoder used in ACD [Löwe et al., 2022]. This is the standard MLP encoder
used in Kipf et al. [2018].

• Unshared: this is a transductive encoder that has a unique parameter vector for each edge
which gives the log-probabilities of that edge being in either category (present or absent).
Since it is a transductive rather than inductive encoder, it is not a “true” NRI model variant,
however, we train it using the same variational inference procedure as NRI.

The following decoder will be used in experiments:

• Linear: this decoder consists of a single round of linear message passing. The message
passing function applies a linear map (with no additive constant term) to each of the sender
node features (the current time series value). Since this is the correctly specified decoder
functional form for the VAR data generating process 3, any potential shortcomings of the
NRI model on the experimental benchmarks cannot be due to the decoder misspecification.

• GNN: In results not shown, we have also validated our hypothesis using the GNN decoder
used in ACD [Löwe et al., 2022].

The value of the autoregressive constant c in equation 3 is chosen so that, for each graph used, the
largest eigenvalue of the re-scaled adjacency matrix cA is equal to 0.9. This ensures that the time
series process is stationary while having a high signal-to-noise ratio. Details of the model and training
hyperparameters which were used are given in the Appendix.

3.3 Results

We report the performance of the NRI model variants on each of three causal graph structures in table
1.

Graph Encoder RelMSE (%) Edge Acc (%) 0-Edge Acc (%) 1-Edge Acc (%)
A RefMLP 11 50 0 100

Unshared 0.1 100 100 100
B RefMLP 0.1 99.7 99.6 99.7

Unshared 0.1 100 100 100
C RefMLP 11.6 66.7 0 100

Unshared 0.2 100 100 100
Table 1: NRI prediction loss and graph recovery classification accuracy on test samples. The NRI
model is implemented with the Linear decoder. The prediction loss is expressed in RelMSE. “Edge
Acc”, “0-Edge Acc” and “1-Edge Acc” respectively give the encoder’s classification accuracy on the
all of the test edges, accuracy on the test edges with ground truth 0 type (edge absent) and accuracy
on the test edges with ground truth 1 type (edge present).

We see that the performance of NRI using the RefMLP encoder varies across the three graph structures.
In particular, it achieves perfect edge recovery on Graph B and achieves poor edge recovery on
Graphs A and C. On the contrary, the Unshared encoder achieves perfect edge recovery on all three
graphs. This shows that more a typical transductive encoding approach which infers the Granger
causal structure using variable selection learned through variational inference can work well on the
problems considered. Further, the strong performance of the Unshared encoder suggests that the poor
performance of the NRI RefMLP encoder is not due to latent variable non-identifiability [Wang et al.,
2021].

The inconsistent performance of the NRI model across the three different graph types can be explained
by examining the misclassified edges in further detail. We display the misclassification rates in the
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Granger causal recovery problem for each edge alongside their difficulty indicators in Figure 3.
From Figure 3, we observe that the misclassified edges align with those predicted by the difficulty

Graph A:(
0 0 0.42
0 0 0

0.43 0.43 0

)(
0 0 100
0 0 0

100 100 0

)
Graph B:(

0 0 0
0 0 0
0 0 0

)(
0 0 0
0 0 0
0 0 0

)
Graph C:(

0 0 0
0 0 0.45
0 0.45 0

)(
0 0 0
0 0 100
0 100 0

)

Figure 3: For each Granger causal graph used in the experiments, we display the difficulty indicators
for its edges (left column) alongside the test-time misclassification rates of the NRI RefMLP encoder
on each of its edges (expressed as in percentage terms in the right hand side column). Entry i,j in
each matrix refers to the directed edge from node i to node j.

indicator. Since the difficulty indicator is constructed to identify edges with high relative posterior
edge dependence effects, this validates our hypothesis that the NRI model is unable to capture specific
Granger causal relations due to its mean-field approximation.

While we illustrate our theoretical argument with 3 graphs, we have experimentally tested our
hypothesis on all directed graphs on 3 vertices. These further experiments agree with the illustrative
cases. Results on these additional Granger causal structures are not shown due to space limitations.
The theoretical argument presented in section 2 applies to linear VAR data generating processes in the
general case with N variables. While we have performed experiments on three variables, we expect
that these theoretical limitations of NRI will manifest empirically in experiments with a larger number
of variables. Indeed, from equation 4, we see that posterior dependence effects between edges will
exist so long as there are pairwise correlation effects between triplets of variables in the multivariate
time series system. On more complex real-world datasets and models for which the posterior is not
analytically tractable, we do not know whether there exists significant posterior dependence between
variables without numerically simulating the posterior – this would be computationally costly and
negate the purpose of using a variational approximation such as NRI. As a result, the arguments of
this paper imply that it should be used on real-world Granger causal discovery problems with caution.
In order to improve the performance of the NRI model for Granger causal discovery, its mean field
variational approximation ought to be relaxed. Auto-regressive latent models that have been used for
causal induction provide a more flexible posterior approximation Ke et al. [2022].

4 Conclusion

By theoretical and experimental arguments, we have shown that the mean-field posterior approxi-
mation inherent in NRI poses a challenge for its application to Granger causal discovery. Our work
is limited to the analysis of a single graph-based data generating process. On more complex data
generating processes, the performance of ACD may be inhibited by some aspect other than failure
to capture posterior edge dependence. For instance, in cases with low posterior edge dependence,
the NRI encoder architecture’s ability to approximate the marginal edge posterior distribution may
be its limiting factor in Granger causal discovery. Understanding other cases in which ACD fails to
recover the ground truth graph is an interesting direction of further work. Nevertheless, our work
draws attention to a fundamental limitation of ACD in Granger causal discovery; this limitation is
apparent when even applying NRI on a very simple benchmark data generating process. We hope
that our work will encourage future research in adapting NRI to meet the challenge of Granger causal
discovery.
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A Appendix

A.1 Derivation of the posterior for the linear autoregressive model with graph structure

In the derivation below, we use Di=1,...,4 to denote variables that are constant in (Aij)i,j∈{1,...,N}.

Under the prior distribution, the graph edges are modelled using independent Bernoulli random
variables,

P
(
(Aij)i,j∈{1,...,N},i̸=j

)
=

∏
i,j∈{1,...,N},i̸=j

pAij (1− p)1−Aij (8)

Using an autoregressive factorisation, the likelihood is given by

P
(
X|(Aij)i,j∈{1,...,N},i̸=j , c

)
=

T∏
t=1

N∏
i=1

P
(
Xi

t |
(
Xj

t−1

)j=1,...,N

, (Aij)i,j∈{1,...,N},i̸=j , c

)
(9)

where Xi
0 := 0, i = 1, . . . , N .

The logarithm of the posterior distribution over edges is therefore given by

(10)

logP
(
(Aij)i,j∈{1,...,N},i̸=j |X

)
=

T∑
t=1

N∑
i=1

logP
(
Xi

t |
(
Xj

t−1

)j=1,...,N

, (Aij)i,j∈{1,...,N},i̸=j , c

)
+

N∑
i=1

∑
j ̸=i

[Aij log p+ (1−Aij) log(1− p)] .

Using the data generating process given by equation 3 and the Gaussian probability density function
for the residual errors, we find that by expanding the square,

(11)

logP
(
Xi

t |
(
Xj

t−1

)j=1,...,N

, (Aij)i,j∈{1,...,N},i̸=j , c

)

= −1

2

Xi
t − cXi

t−1 − c
∑
j ̸=i

AjiX
j
t−1

2

+D1

=
c

2

∑
j ̸=i

Aji

(2Xi
t − cXi

t−1)X
j
t−1− c(X

j
t−1)

2− c
∑

k∈{1,...,N}\{i,j}

AkiX
j
t−1X

k
t−1


+D2.

Using this expression in equation 10 gives
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(12)

logP
(
(Aij)i,j∈{1,...,N},i̸=j |X

)
=

c

2

N∑
i=1

∑
j ̸=i

Aij

2(LXi) ·Xj − c(LXj) · (LXi)

− c(LXi) · (LXi)− c
∑
k ̸=i,j

Akj(LXi) · (LXk)

+

N∑
i=1

∑
j ̸=i

[Aij log p+ (1−Aij) log(1− p)] +D3

where Xi := (Xi
1, . . . , X

i
T )

T ∈ RT , LXi := (Xi
0, X

i
1, . . . , X

i
T−1) ∈ RT for all i = 1, . . . , N and ·

denotes the vector dot product. Therefore, by Bayes’ rule

(13)

logP
(
Aij |X, {Akl}(k,l)̸=(i,j)

)
=

c

2
Aij

2(LXi)·Xj−c(LXj)·(LXi)−c(LXi)·(LXi)−c
∑
k ̸=i,j

Akj(LXi)·(LXk)

+
[Aij log p+ (1−Aij) log(1− p)] +D4

which is the conditional posterior for Aij given in equation 4.

A.2 NRI implementation

The implementation of the RefMLP encoder follows that of Löwe et al. [2022] and Kipf et al. [2018].
The specifics of our implementation are:

• We use the last 200 values of each time series as input into the first layer of the encoder.
• We use 32 hidden units in each 2-layer MLP.

Under the prior distribution, each edge is sampled uniformly at random from a Bernoulli distribution;
the probability of class “no edge” is set to 0.95. This ensures that under the null hypothesis of no
Granger causal relations, the type I error rate for each edge is 0.05.

We monitor loss curves to verify that convergence occurs during training. Typically, we use 20 epochs
of training with a batch size of 10 samples and learning rate of 5.e-2 (when using UnsharedEncoder)
and 5.e-3 (when using RefMLPEncoder). The ELBO performance on the validation set is used for
model selection.
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