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Abstract

While large language models (LLMs) have integrated images, adapting them to
graphs remains challenging, limiting their applications in materials and drug design.
This difficulty stems from the need for coherent autoregressive generation across
texts and graphs. To address this, we introduce Llamole, the first multimodal
LLM capable of interleaved text and graph generation, enabling molecular inverse
design with retrosynthetic planning. Llamole integrates a base LLM with the
Graph Diffusion Transformer and Graph Neural Networks for multi-conditional
molecular generation and reaction inference within texts, while the LLM, with
enhanced molecular understanding, flexibly controls activation among the different
graph modules. Additionally, Llamole integrates A* search with LLM-based cost
functions for efficient retrosynthetic planning. We create benchmarking datasets
and conduct extensive experiments to evaluate Llamole against in-context learning
and supervised fine-tuning. Llamole significantly outperforms 14 adapted LLMs
across 12 metrics for controllable molecular design and retrosynthetic planning.

1 Introduction

The potential of LLMs for molecular discovery has been actively explored (Jablonka et al.,[2023)).
However, LLMs struggle in the chemical domain, exhibiting poor generation quality and planning
capability (Guo et al.| [2023)). This is due to the unique graph structures of molecular data, which are

challenging for LLMs that typically handle sequential texts. . Drug (Small Molecule) Design
Inverse molecular design requires LLMs to be control- % 0'7 oR37 -
lable for generating molecular structures that meet multi- : 05 9392 oass

property and synthesizability requirements (Chen et al., 3 g g

2020; |Gao et al., 2021). These requirements can be co 2

detailed as questions for LLM input, as shown in Fig- 501

ure[2] Answering these questions demands a comprehen- 0.0 gest ICL Best SFTGraphGA Liamole
sive understanding of molecular structures and their rela- Material (Polymer) Design
tionship to properties. However, sequence-based LLMs 5 1632

struggle with this because they are pre-trained or fine- £15 1.372

tuned solely on text representations of molecules, e.g., 210

SMILES (Weininger}, [1988)). To illustrate this, we investi- %0 5 0822 ;519

ea

gate 14 LLMs for molecular generation in Figure [T]across
10K drug and material questions: ten using in-context 200 Best ICL Best SFTGraphGA Llamole
learning (ICL) and four with supervised fine-tuning (SFT). Figure 1: Comparison of Controllability:
LLMs generate molecular structures based on the ques- Results are averaged from the best num-
tions and their properties are obtained through oracles. bers from Table

Details of the experimental set-ups and results can be found in Section 4] In Summary, even the best
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“Can you design a molecule that inhibits both HIV and Beta-Secretase 1, with a molecular weight around ]

Question 284.33, and 2 rings including 1 aromatic and 1 aliphatic ring, and outline its synthesis pathway? "’

(a) In-Context Learning  (b) Supervised Fine-Tuning (c) Multimodal Supervised Fine-Tuning
. . Instruction Data
Demonstrations . Instruction Data >
7 1 Question
(Text Only ) (Text Only ) (Text+ o)
@(Finetune) @ (Finetune)
Pre-trained Fine-tuned Pre-trained Pre-trained
LL L
LLM [ LLM 32* LLM amee LLM
Integrated w/
Pre-trained
Textand G_raph Graph Models
Generation

“To satisfy the requirements: “To synthesize it, follow these procedures: “To synthesize it, follow these procedures:
The molecule is a complex, A solution of ... The applied reaction is” A solution of ... The applied reaction is”

Text Only
Generation

Text Only
Generation

aromatic compound... It is” e A o SO Answer
- @ e ot — Py > Q) P .
= < “The first reactant is not commercially available.” “All reactants are available now.”

Figure 2: LLM-based molecular design. The question for properties, structures, and synthesis is
addressed as follows: (a) In-Context Learning and (b) Supervised Fine-Tuning use text-only data.
(c) The proposed Llamole uses graph-text multimodal data to fine-tune the LLM, integrating graph
models for interleaved text and molecular generation with reaction inference.

LLMs perform worse than GraphGA (Gao et al.,|[2022)), a simple yet effective graph-based method,
in designing molecules with satisfactory properties.

As illustrated in Figure[2] practical answers for molecular design are more complex than what can be
achieved by using graph methods or LLMs alone. The generation begins with a paragraph describing
the intended molecule for multi-conditional generation, followed by retrosynthetic planning, detailing
each synthesis step—one reaction per paragraph—in reverse order, from the target molecule to
purchasable reactants. Thus, multimodal LLMs (MLLMs) are essential, with LLMs handling text
generation and graph models managing molecular design.

In this work, we propose the multimodal Large language model for molecular discovery (Llamole).
As shown in Figure 2] (c), the model seamlessly integrates LLMs and graph models within a multi-
modal autoregressive framework, enabling the interleaved generation of text, molecules, and reactions.
It predicts the next token across both word and chemical spaces, framed as multi-class prediction
tasks for word vocabulary, atom/bond types, and reaction templates. For retrosynthetic planning,
Llamole integrates A* search to efficiently identify synthesis pathways for the designed molecule.

Our work has several highlights. First, Llamole is the first MLLM capable of inverse molecular design
with the interleaved generation of text and graphs. Second, we curated a dataset along with fine-
tuning instructions to benchmark complex yet realistic molecular design outcomes, including human
conversation. Third, we present compelling experimental results that demonstrate the competitiveness
of Llamole against 14 LLMs and GraphGA, as shown in Figure[I] With details in Tables [T]and 2}
Llamole improves LLM performance by up to 80.9% across 12 metrics for controllable molecular
generation and increases the success rate for retrosynthetic planning from 5.5% to 35%.

2 Preliminaries

2.1 Autoregressive Language Modeling

Given a sequence of word tokens W = {wy,wa, ..., wr } of length L from the vocabulary W, LLMs

parameterized by 6; decompose the joint distribution as py, (W) = HiL:1 po, (w;|W<;), where W,
represents the tokens preceding the i-th position. These models are optimized by minimizing the
negative log-likelihood between their predictions and the empirical data distribution, resulting in:

Liv =Y —logps, (wi|W). M

2.2 Molecular Design with Graph Diffusion Models

Molecular graphs can be modeled through diffusion in discrete spaces (Austin et al., 2021} |Vignac
et al., [2022; [Liu et al., 2024c)). Given a one-hot encoded data point x € RY with I categories
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(e.g., a node or an edge), discrete models perform diffusion using a transition matrix Q, where
Qi = q(x} | xt™1) for i,j € [1,F]. The forward diffusion with Q is: ¢(x* | x'~1) =
Cat(xs;p = x'~1Q), where Cat(x; p) denotes the categorical distribution over x with probabilities
given by p. Starting from the original data point x = x°, we have ¢(x' | x%) = Cat (x'; p = x°Q’),
where Qt = [L<: Q?. The forward diffusion gradually corrupts data points. When the total

timestep 7" is large enough, ¢(x”') converges to a stationary distribution. The reverse process samples
from ¢(x”) and gradually removes noise. The posterior distribution ¢(x!~1 | x') is calculated
as q(x!71xt,x%) o x¥(Q")T ® x°Q*~!. Using a denoising model parameterized by 6, this
posterior can be approximated by pg, (x!~1|x!, x?). For inverse molecular design with multi-property
constraints, the denoising model can be optimized by minimizing the negative log-likelihood for x°:

‘CDM = ]Eq(xo)Eq(x‘|x0) [_ 103?02 (XO | C1,C2; -+, CM 5 Ctexts Xt)} ) (2)

where M molecular properties are denoted by {c;}*,, and the text embedding is Cix;. These
conditions can be handled by Graph DiT (Liu et al.| [2024c)) without introducing additional predictors
for guidance (Ho & Salimans}, [2022).

2.3 One-Step Reaction Prediction with Graph Neural Networks

Retrosynthesis needs to predict the reverse of a synthetic reaction, which decomposes chemical
products into reactants. A GNN parameterized by 3 takes the product Gproquct to predict the label
r € R in the reaction space R. This label is interpreted as the template and determines the reactants.
With the text condition cex;, We minimize the negative log-likelihood of the label distribution g(r):

['predictor = Eq(r) [_ log Pos (T | Ctext Gproduct)} . (3)

2.4 Retrosynthetic Planning with A* Search

Given molecules from the structure space G, a subset G,,,; represents available molecular structures
that can be purchased as building blocks for synthesis. For any target Giarget, One-step prediction of
the reversed reaction may not yield reactants within G,y,;;. Thus, retrosynthesis typically requires
multi-step planning to find pathways from building blocks to the target in reverse order. The search
space of chemical reactions can be navigated using A* on an AND-OR tree 7, with G arge as the root.
Reaction nodes follow an “AND” relation, requiring all child reactants, while molecule nodes follow
an “OR” relation, meaning the product can be synthesized by any child reaction (Chen et al.| 2020).

Selection: We select nodes from the frontier (7) containing unexplored molecule nodes to expand
the tree. Given an oracle cost function .J(-), the next node is selected as Ghext = arg minge r(7) J(G)
to minimize the cost. A well-designed J(-) improves search efficiency and aids in global optimality.

Expansion: After selecting Gpex, a single GNN predictor call can generate many one-step ret-
rosynthesis proposals. The GNN provides top-candidate reaction templates, each linked to different
reactants. Thus we can form molecule nodes under the reaction node as an AND-OR stump.

Update and Cost: After expanding Gy, the tree becomes 7. We update the nodes in 7~ for the next
iteration. A* selects the path that minimizes J(-) = Jeyrent(*) + Jheuristic (), Which includes the cost
from the start to the current node Jeyren () and a heuristic estimate of the cost to the goal Jheuristic (*)-
With the GNN predictor, the negative log-likelihood of the reaction can be used to compute path cost
Jeurrent (+) to the leaf molecule node, we design Jheuristic (+) with the LLM in Llamole.

3 Llamole: Large Language Model for Molecular Discovery

3.1 Multimodal Autoregressive Modeling

In molecular discovery, the sequence may include molecular structures G and retrosynthetic reactions
R with each molecule or reaction tokenized. The sequence Y = {y1,¥2,...,yn}, Where y; €
W U G U R, combines these tokens. The sequence is interleaved with tokens in different spaces.
Suppose the molecule appears at position ¢; then, we typically see:

(RN} )/Z € g7 }/i-‘rl:i—',-L € W7 }/i+L+1 S Rv
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Multimodal Autoregressive Framework

<—— Multi-Conditional Molecular Generation — <«—— Retrosynthetic Planning —
™ Sample o,
“To satisfy...It is <design>"" \jgctor Gy gﬁ To” “synthesize ...<retro> HE Sl
i 1 i) 1 A A
Llamole: Multimodal Large Language Model for Molecular Discovery
[ @) (@ T o [ (a) [@ T [ (@)
“<s>To satisfy...It is <design><query>""1 %?ii “To synthesize G ...<retro><query>" W MW" “To..Gs...”
Details of Active Modules Details of A* [# |Reaction Node (6) Molecule Node
Textyector  Text Molecule Template Hewrrent L ]he?ristic
LM LM Graph L “many”/ “few”
Decoder Decoder
e Graph
EncodeT Encoder ) property Grap (a)
Query Query et “Estimate remaining :
U Graph Vector Vector steps for” /@ «* G € Gapqit ---Gs € Gapail
(a) (b) (c) (d) Selection ———— ) «— Expansion —»

Figure 3: Overview of Llamole: Trigger tokens (<design> and <retro>) switch active modules
from the base LLM to the respective graph component. The subsequent <query> token utilizes
output vectors from the LLM to summarize past texts as conditions. Using these, Llamole generates
molecules and predicts one-step reactions. Enhanced with a graph encoder and A* search, Llamole
efficiently plans synthesis routes through selection and expansion iterations on the AND-OR Tree.

where L is the length of the text following the molecule at position ¢. The sequence starts with text.
If position ¢ denotes the first molecule in the sequence, then Y.; € W; otherwise, y;,—1 € R. To
handle non-word tokens, we integrate domain-specific Graph DiT and GNN with the LLM, forming
a multimodal LLM, i.e., Llamole. Parameterized by ©, Llamole unifies the cross-entropy losses
from Egs. (I) to (3) into autoregressive modeling:

ELlamole = ELM + EDM + £predictor = Z - IOg y4e) (yi ‘Y<i)- (4)
3
Lpwm interprets Y., as the input conditions, including desirable molecular properties and text con-
ditions {c;}M | U {ctex} for the autoregression of Y; in G. In Lopredictors Y<i represents Glproduce and
Ciext- Here, Gproduct 18 generated from previous diffusion models or as intermediate G ¢ Gavail in
retrosynthesis. The autoregression for the label Y; is performed in the reaction space R.

We present an overview of multimodal autoregression with Llamole in Figure[3] divided into con-
trollable molecular generation and retrosynthetic planning. Augmented with the graph models, the
overall parameters in Llamole are © = {61, 02, 03, ¢1, ¢2, ¢3}, where ¢1 and ¢o project text into Ciex
for the Graph DiT and GNN predictor, respectively. The graph encoder with ¢3 projects molecule
tokens into the LLM. Next, we detail the design space of Llamole.

3.2 Llamole Design Space

Llamole consists of a base LLM and two pre-trained graph modules: the Graph DiT for molecule
generation and the GNN for one-step reaction prediction. The base LLM employs a trigger-query-
prediction approach using two sets of special tokens to switch between modules.

Trigger Tokens. Llamole defines two special trigger tokens to augment the word vocabulary W:
<design> for switching between the LLM and Graph DiT, and <retro> for switching between the
LLM and GNN predictor. When a trigger token is predicted, Llamole activates the corresponding
graph model. After molecule generation or reaction prediction, the active modules revert to the LLM.

Query Tokens. We introduce another set of special tokens, named query tokens <query> automati-
cally placed after triggers. They use the LLM to query previous tokens and output hidden states as
Chidden- A linear layer is applied: ciexy = Linear(Cpidgen )» adjusting the input size for the graph models.
We use different query tokens for different triggers. Query tokens allow us to share parameters ¢
and ¢, with 6, enhancing both efficiency and effectiveness. We can apply ensemble methods by
repeating the query tokens multiple times and averaging the cpjgqen Values (Dong et al.| 2023)).

Besides the special tokens, Llamole enhances molecule understanding with a graph encoder and uses
the LLM to provide the cost function in A* search for retrosynthetic planning.
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Figure 4: Creation of MolQA and MolPair: MolQA comprises two sets: a training set for ICL and
(multimodal) SFT, and a test set for evaluation. MolPair consists of graph-text and reaction-text pairs,
with red highlights indicating synthetic complexity, structure, and properties information.

Graph Encoder. The graph encoder parameterized by ¢3 replaces the word encoder in the LLM
tokenizer for molecule tokens. The LLM decoder takes molecule embeddings from the graph encoder,
along with text embeddings from the tokenizer, into the Transformer layers for next token generation.
We use a pre-trained Graph Isomorphism Network (GIN) (Xu et al., 2018) as the graph encoder,
optimized via molecule-text contrastive learning similar to CLIP (Radford et al.| 2021)).

A* Cost Function with LLM. We define Jpeuisic as @ multi-choice problem, where each choice,
assigned a score, represents synthesis complexity, from few to many steps. The LLM estimates the
remaining synthesis steps for the leaf molecule node G € F(T) \ Gaya in the search tree 7. It
outputs probabilities for each choice, and Jheurisiic 1S computed as the weighted score by averaging
the scores with their probabilities. For G € F(T) N Gayail> Jheuristic = O-

3.3 End-to-End Model Fine-Tuning and Generation

Supervised Fine-Tuning. We use multimodal SFT to connect the base LLM and other graph modules
in Llamole (Ouyang et al.,[2022). Specifically, we freeze the parameters for the graph modules (62
and 03) and fine-tune the LLM parameters 6, the learnable special tokens, and the linear layers
for the query tokens (¢; and ¢5). We freeze the parameters of the pre-trained graph encoder (¢3)
and add a tunable linear layer between it and the LLM decoder. The optimization can be conducted
end-to-end with Eq. (). The SFT aligns the LLM with domain-specific graph models. To maintain
generality in the base LLM, we employ parameter-efficient LoRA (Hu et al., 2021)).

Interleaved Generation. Given a question as shown in Figure 2] Llamole performs controllable and
synthesizable molecular designs, as presented in Figure|3| For the controllable generation, Llamole
uses the base LLM to analyze the requirements and switches to the Graph DiT for generating Garget
when the trigger is predicted. For the synthesizable generation, Llamole plans synthesis routes
for Glarger. A* search on the AND-OR tree 7 aids in multi-step generation, interleaving molecule
and reaction nodes, with G as the root. During each selection-expansion iteration, A* selects
Ghext = argminge (7 J(G) from the leaf nodes F(7). The graph encoder embeds molecule
tokens into the LLM, which generates reaction conditions until the token <retro> is triggered,
activating the GNN predictor. The predictor then predicts the top-50 templates as reaction nodes,
along with corresponding reactants as molecule nodes for the next iteration. A* stops after finding a
route from Gigrget t0 Gavail With satisfying all AND-OR constraints, or if it fails after 30 seconds or
300 iterations. Upon success, the text with the corresponding reaction along the route is returned for
retrosynthesis; otherwise, the base LLM directly generates texts.

4 Experiment

We conduct a systematic evaluation to demonstrate Llamole’s superior performance in controllable
and synthesizable molecular design (RQ1). We investigate Llamole’s performance in controllable
molecular generation through ablation and case studies (RQ2). We analyze retrosynthetic performance
of LLMs, focusing on error analysis and the efficiency and effectiveness of Llamole (RQ3).

Bechmarking: To train Llamole, we need instruction data that provide detailed language supervision
and evaluation covering synthetic complexity, drug and material utility, and reaction conditions.
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Table 1: Multi-Conditional Molecular Design with LLMs: Best overall results in each metric are in
True Positive Rate+True Negative Rate

bold , best baseline results are in ifalic . Balanced Accuracy (BA) =

2
Base LLM Structure (1) Text (1) Drug (BA 1) Material (MAE )
Method
OrMEOC " Validity Similarity BLEU-4 ROUGE-L HIV BBBP BACE CO,Perm NyPerm O,Perm FFV TC
GraphGA 0885 0112  NA NA 0536 0515 0560 0847 1.556 0747 0.020 0.042
DiGress 0375 0046  NA NA 0515 0.522 0580 0655 1884 0.680 0.020 0.049

In-Context Learning

Llama-2-7B  0.167 0.024 0.030 0.141  0.051 0.060 0.053 5.463 3.982 4943 0.308 0.199
Mistral-7B 0.251 0.044 0.066 0.203  0.163 0.153 0.200 5.062 3.824  4.657 0.289 0.186
Qwen2-7B 0.180 0.012 0.030 0.147  0.089 0.091 0.085 5.552 4251  5.068 0.322 0.211
Llama-3-8B  0.656 0.112 0.155 0.307 0471 0473 0.562 3.233 3.106 2924 0.171 0.123
Flan-T5-XXL 0.570 0.094 0.226 0.388  0.329 0.333 0.403 2.869 3.039  2.799 0.165 0.120
Granite-13B 0.498 0.079 0.170 0.326 0260 0.293 0.285 2.994 3.165 2993 0.180 0.123
Llama-2-13B  0.346 0.058 0.121 0.279 0236 0.250 0.259 5.031 4285 4816 0.291 0.184
Mistral-8x7B  0.546 0.094 0.181 0.345 0345 0.346 0.388  3.695 3.150 3.440 0.191 0.138
Llama-2-70B  0.299 0.045 0.099 0.222 0237 0.242 0.274 5.368 4336  5.017 0.319 0.202
Llama-3-70B  0.706 0.124 0.210 0367 0.415 0.403 0.484  2.659 2.848 2421 0.135 0.099

Supervised Fine-tuning

Mistral-7B 0.718 0.125 0.105 0.216  0.460 0.483 0.515 3.269 3.094 2985 0.184 0.128
Qwen2-7B 0.768 0.133 0.221 0.377 0436 0.457 0457 2.691 2562 2721 0.147 0.106
Llama-3-8B  0.797 0.136 0.093 0.206  0.426 0.445 0440 2.222 2322 2119 0.110 0.086
Llama-3.1-8B  0.692 0.121 0.121 0.250 0.417 0.432 0433 3210 2991 2974 0.179 0.122

Llamole

Mistral-7B 0.900 0.139 0.262 0.434 0596 0.617 0.740 0.593 1409 0.565 0.021 0.028
Qwen2-7B 0.888 0.135 0.261 0432  0.600 0.639 0.746 0.645 1452 0.581 0.021 0.026
Llama-3.1-8B  0.913 0.142 0.254 0427  0.623 0.629 0.713  0.653 1.344 0.549 0.021 0.030

Improvement of Llamole (%)
vs. All +3.2 +4.4 +15.9 +11.9  +162 +224 +31.7 495 +6.7 +19.3 -5.0 +28.6
vs. LLMs +14.6 +4.4 +15.9 +11.9  +323 +32.3 +32.7 +70.6 +37.5 +72.6 +80.9 +65.1

Existing data based on PubChem (Kim et al., 2021)) are only usable for small molecules and lack
such details. Thus, we create MolQA, a large-scale graph-text multimodal instruction dataset for
systematic LLM benchmarking. We also create MolPair with graph-text and reaction-text pairwise
data to pre-train graph modules, as detailed in appendix [D} To this end, we first collect multisource
molecule data (Figure[d), with details in appendix [C] Then we create MolQA and MolPair.

Set-ups: We include LLMs from 7B to 70B, such as Llama, Mistral, Qwen, Granite, and Flan-T5,
using either ICL or LoRA-based SFT. We also include domain-specific methods, GraphGA (Gao et al.}
2022), DiGress (Vignac et al.,[2022), and BioNavi (Zeng et al.| [2024), for comparison. The MolQA
test set contains 9,986 QA pairs for material design and 750 for drug design. LLMs are prompted with
questions to generate responses for texts, molecules, and reactions. For controllability, we evaluate up
to 12 metrics across four aspects: (1) chemical validity, (2) similarity to the reference based on Morgan
fingerprints (Rogers & Hahnl |[2010), (3) BLEU-4 and ROUGE-L scores against reference texts, and
(4) deviation from desired properties. We follow |Gao et al.| (2022)) to use well-trained random forests
as the oracle functions for obtaining properties of designed molecules. We focus on three drug-related
categorical properties assessed by balanced accuracy (BA) and five continuous material properties
assessed by mean absolute error (MAE). For retrosynthesis, we evaluate the success rate of designed
molecules against those available in G,y,; from Enamine. Details are in appendix

4.1 RQI1: LLM:s for Controllable and Synthesizable Molecular Design

Table 2] detail LLM performance in controllability and retrosynthesis. Key observations are:

(1) Llamole significantly outperforms other LLMs in text generation, controllable molecule
generation, and retrosynthetic planning. Llamole fine-tuned on various 7B-parameter LLMs,
as shown in Table 2] results in top-3 rankings, surpassing 70B models that are 10x larger across
all 12 metrics for controllability and planning success. Specifically, Llamole enhances chemical
structure validity by 14.6%, structure controllability by 4.4%, and text generation by 11.9%-15.9%.
Additionally, Llamole improves property controllability by 32% to 80%. In retrosynthesis, Table 2]
indicates Llamole increases the success ratio from 5% to 35% for drugs and to 17.9% for polymers.
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Table 2: Retrosynthetic Success Rate: Best results are in bold , best baseline results are in italic .
In-Context Learning
Llama-2-7B Mistral-7B Qwen2-7B Llama-3-8B Flan-T5-XXL Granite-13B Llama-2-13B Mistral-8x7B Llama-2-70B

Drug (%) 0.1 0.2 0.0 5.5 0.4 0.6 1.2 1.6 1.0
Material (%) 0.3 0.4 0.0 4.8 0.8 1.6 1.2 1.7 0.8
Supervised Fine-tuning BioNavi for Llamole
Mistral-7B Qwen2-7B Llama-3-8B Llama-3.1-8B  DiGress  Mistral-7B Qwen2-7B Llama-3.1-8B
Drug (%) 1.5 0.2 0.6 0.8 18.0 29.9 33.7 35.1
Material (%) 0.8 0.1 0.7 0.8 154 14.3 17.9 17.6
Validity Structure Similarity Drug Avg. BA Material Avg. MAE
0.913 0.16 (14> 0.72 (.6550.664 0.72 0.687
0.90 0.822 0.14 0.124 0.64 0.64
0.75 0.735 0.12 0.098 0.56 0.505 0.56 0.5190.534
0.60 0.10 . 0.48 0.48
’ 0.08 0.40 0.40
0.45 0.06 0.32 0.32
0.30 0.04 0.24 0.24
: 0.16 0.16
0.15 0.02 0.08 0.08
Llamole (Llama-3.1-8B) w/o text conditions w/o text and property conditions

Figure 5: Ablation Studies for the Graph DiT Module in Llamole: First, we remove the text conditions
from the input, i.e., cexe = 0. Next, we remove both text and property conditions, {cl}f‘/[ U Crext-
There are learned embeddings that represent the “null” value for different conditions.

(2) SFT improves molecular design but may not always enhance retrosynthesis. According
to Table [T} SFT enables 7B LLMs to achieve chemical validity, structure, and property control
comparable to 70B LLMs with ICL. However, it offers minimal improvement in planning ability for
the generated target molecule. A notable example is Llama-3-8B from Table 2] where SFT reduces
its retrosynthesis planning success from 5.5% to below 1%.

(3) Larger models without domain-specific adaptation do not necessarily perform better in
molecular designs. We calculate the average Pearson correlation coefficient between model size
and molecular design metrics, yielding a value of 0.366, indicating a weak correlation (below 0.5)
between size and performance. We also compare LLM performance with GraphGA, which has been
shown to be simple yet powerful (Gao et al., 2022} |Liu et al.,[2024¢). Our observations confirm that
GraphGA serves as a strong molecular design baseline, challenging most LLM models with ICL and
SFT in generating molecules with precise multi-condition control.

4.2 RQ2: Discussion on Controllable Molecular Generation

Ablation Studies on LLLM and Graph DiT Synergy: We first remove text conditions Ciey;. In this
case, Graph DiT uses a learned “null” embedding to represent the dropped condition Ciex; = (). Next,
we remove the drug or material property conditions {c;}} associated with the question. Results
in Figure 5] show that text instructions enhance the chemical structure understanding ability of Graph
DiT, while Llamole leverages Graph DiT’s capabilities with property inputs to generate molecules.

Case Studies for Property and Structure Controllability: In Figure [6] Llamole can design a
satisfactory molecule that meets both functional and structural constraints. Functionally, the oracle
function confirms that the properties of BACE and HIV align with the criteria. Structurally, all key
criteria are satisfied, including molecular weight, “two aromatic rings,” and “connected to aliphatic
chains.” Llamole also adds details for structure design, such as a carboxyl (—COOH) group and
an amino group (—NH;). While the amino group is present in the structure, it is connected to the
carbonyl group (—C(=0)-) instead of the carboxyl group. This subtle difference may require precise
control based on the text condition. More results are in appendix [E.3]

4.3 RQ3: Discussion on Retrosynthetic Planning

Retrosynthesis challenges LLMs in two aspects: (1) one-step reaction generation and (2) multi-step
planning. Table 2|highlights the weaknesses of LLMs with ICL and SFT in overall planning ability
and the promise of Llamole. We examine the failure reasons in LLMs in detail.
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“Can you design and synthesize a molecule that inhibits both Human Immunodeficiency Virus and Beta-Secretase 1,

Questlon with a molecular weight of around 335 and two aromatic rings connected to aliphatic chains?”

Llamole Generation

ule 1> o

@t “To satisfy the requirements: The molecule has a complex structure with two aromatic rings connected to aliphatic chains, Sty JF
é Sfeaturing a carboxyl group and an amino group, which contributes to its moderate synthetic complexity score. Therefore, #Q\(““ o
3 | the designed molecule is <molecule_1>." YV ¢ \
2 4 “To synthesize <molecule 1>, follow these procedures: The electrolyte solution was prepared by dissolving 2.2 g
< | of 1,4-bis(3,5-dimethylphenyl)benzene (compound 14) in 20 ml of toluene. The solution was stirred at room temperature | MOWV: 385, HIV: 1, BACE: 1
-g for 3 hours. The solvent was <reaction_1>\—o <template 1>
g evaporated under reduced pressure, o N\ ‘Q’M & &
Eé and the residue was purified by Ja N}/@/\" — /g;r ° >/-/©'+ }57(\/ o I ===
@ | column chromatography o & </” ! od \:w N
?‘, (hexane/ethyl acetate=1/1) to give / <molecule 2> <molecule 3>
c | 1.8 g (88%) of the title compound as a colorless oil. The applied reaction is <reaction 2>
© <reaction_1> with the <template_1> which requires the reactants: <molecule_2> N ’Qﬁw =

(available), <molecule 3>.” o %@/\L . \ﬁ/@[t N %
c t “To synthesize <molecule_3>, follow these procedures: 100 g of meldrum acid were / ¢ | b
2 | dissolved in 100 ml of methanol. 100 g of 3-hydroxybenzaldehyde were added and <molecule_4> <molecule 5>
& | the mixture was stirred for 1 hour at room temperature. 100 ml of saturated sodium [<template 2>02
& | bicarbonate solution were added and the mixture was extracted with 100 ml of ethyl ‘ | ‘
aQ . . . — + C5——N4
o | acetate. The organic phase was dried over sodium sulphate, filtered and concentrate /C:l /C:S P
9 | to dryness. The residue was purified by chromatography on silica gel with C3 N:4 C3 )
g hexane/ethyl acetate as eluent, yielding 100 g of 5-benzyl-2-oxo-2,3-dihydroindoline-3-carboxylic acid as an oil. The applied reaction is: <reaction_2>
O | with the template <template 2> which requires the reactants: <molecule 4> (available), <molecule_5>(available).”

Figure 6: Interleaved generation with the base Qwen2-7B: Red indicates positions where molecules
and reactions (with templates) are generated, forming three parts. The properties of the designed
molecules are obtained from the oracle. Reference and other LLM responses are shown in Figure E}

One-step Reaction Generation: Figure av- In-Context Learning Supervised Fine-tuning
erages error types across ICL or SFT methods. o 8% Dw%

Neither ICL nor SFT guarantees that the tem- Text

plates are correct or match the generated reac- RelancvtaiggD 61% D3_7%

tions. ICL methods have a 68.4% probability of =~ Format

50.0%

producing invalid formats and templates. SFT Nom
methods reduce this probability to 57.6%. Llam- " -

ole avoids these errors by using GNN predictors TE?P'afE
. yntax 6% V%
to select templates from over 300K candidates. Error
Multi-step Retrosynthetic Planning: From Ta- J?s"%pa'?ﬁﬁ

ble[2] we find that 96.40% of 777 success cases
in ICL-adapted LLMs and 94.14% of 324 suc-
cess cases in SFT-adapted LLMs arise from one-
step reaction generation. However, not all designed molecules can be synthesized via one-step
reactions. Compared to LLMs, Llamole achieves over 10K success cases, with 40.48% resulting
from two or more steps. Figure [f]illustrates a two-step planning case for the designed molecule. The
generation interleaves reaction conditions and specific formulas based on the template in both steps.

5 Related Work

Since the emergence of ChatGPT (Achiam et al.,|2023)), LLMs (Dubey et al.,2024) have become foun-
dation models for text-based problems and are revolutionizing domains like vision and speech (Dong
et al., 2023} |Wu et al 2024). These advancements extend to chemistry, biology, and material
sciences, focusing on molecules (Guo et al.| 2023} |Jin et al., [2023). Prior work explores LLMs in
molecular generation, property prediction, and one-step reaction prediction in retrosynthesis (Guo
et al.;, 2023 Jablonka et al.,[2023)). A key lesson is the limitation of LLMs in sequential modeling of
molecules (e.g., SMILES or SELFIES) (Guo et al.,2023). Multimodal LMs have been developed
for molecular tasks (Edwards et al., 2022} |Liu et al., 2023b)), but they either do not treat molecules
as graphs (Edwards et al.| |2022)) or do not focus on inverse molecular design. Additionally, LLMs
struggle with planning tasks (Kambhampati et al.| |2024), which are essential for retrosynthesis.

Figure 7: Error Analysis in Reaction Generation

6 Conclusion

We have presented the first graph-text MLLM, Llamole, for multi-conditional molecular generation
and retrosynthetic planning. Llamole interleaved the generation of text, molecular graphs, and
reactions, enabling controllable and synthesizable designs. Extensive benchmarking against 14
LLM:s revealed their limitations in controlling molecular structures and planning synthesis routes. In
contrast, Llamole significantly outperformed these LLMs.
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A More Related Work on Multimodal Language Modeling

Since the emergence of ChatGPT (Achiam et al.||2023)), LLMs (Dubey et al.,2024) have become foun-
dation models for text-based problems and are revolutionizing domains like vision and speech (Dong
et al., 2023} |Wu et al [2024). These advancements extend to chemistry, biology, and material
sciences, focusing on molecules (Guo et al.| 2023} |Jin et al., [2023). Prior work explores LLMs in
molecular generation, property prediction, and one-step reaction prediction in retrosynthesis (Guo
et al.| 2023 |Jablonka et al.l 2023). A key lesson is the limitation of LLMs in sequential modeling of
molecules (e.g., SMILES or SELFIES) (Guo et al., [2023)). Multimodal LMs have been developed
for molecular tasks (Edwards et al., 2022} [Liu et al.,2023b)), but they either do not treat molecules
as graphs (Edwards et al., |2022)) or do not focus on inverse molecular design. Additionally, LLMs
struggle with planning tasks (Kambhampati et al.||2024), which are essential for retrosynthesis.

Domain-specific molecular design methods have evolved from sequential models (Segler et al.l | 2018)
to graph diffusion models (Vignac et al., [2022} Weiss et al., 2023} |Liu et al.,[2024c). Studies show
that older graph methods like GraphGA remain competitive (Gao et al.l 2022). To incorporate
property constraints, one can use Bayesian optimization or REINFORCE (Gao et al.| [2022), or
employ diffusion models with or without predictor guidance (Vignac et al.} 2022} |[Liu et al.| 2024c).
For synthesizable molecular design, prior work has focused on bottom-up methods (Gao et al., 2021}
Sun et al.l [2024)). These methods explore a chemical space defined by a discrete action space of
reaction templates and purchasable starting materials, which may limit flexibility. Thus, retrosynthesis
algorithms (Chen et al.,|2020; Han et al.| |2022} Zeng et al.||2024]) are also studied as separate solutions
to find synthesis routes for generated molecules in a top-down manner.

Emerging approaches focus on multimodal graph and language modeling for tasks such as molecular
property prediction (Zhao et al., [2023)), captioning (Edwards et al.| |2022; |Liu et al., 2024d), and
retrieval (Liu et al., 2023b, [2024d). The task most similar to inverse molecular design is text-based
molecular generation (Edwards et al.|[2022; [Liu et al., [2024d). In this work, inverse molecular design
is framed as a question with specific requirements for properties and synthesis paths. Unlike text-
based generation, which takes descriptions of molecules as input, inverse molecular design requires
fewer details on the molecule, focusing instead on satisfying the specified requirements. Additionally,
text-based generation produces molecular structures without considering synthesizability, whereas
designed molecules are often expected to be synthesizable (Gao et al.,2021), involving retrosynthesis.

Table 3: Balanced Accuracy Averaged Across Three Drug Design Properties
MolT5-small MolT5-base MolT5-large Best LLM with ICL Llamole

0.150 0.232 0.264 0.502 0.662

To explore the difference between inverse molecular design and text-based generation, we use
the decoder model from (Edwards et al., 2022} |Liu et al., [2024d) (i.e., MolT5) and test questions
from the MolQA benchmark to compare the performance of MolT5, LLMs, and Llamole in drug
design. Results on balanced accuracy are shown in Table [3] We find that even the largest MolT5
underperforms the best LLM (from ICL) in drug design. This illustrates that text-based molecular
generation, which takes descriptions of molecules as input, may not perform well in inverse molecular
design, which requires satisfying specific properties with synthesis paths and a lack of details about
the molecule in texts. For material design, we find that MolT5 cannot generate valid polymer
structures due to its lack of knowledge about polymerization points, typically represented by the
asterisk symbol in SMILES strings. As a result, no valid MAE error is reported. Additionally, existing
multimodal language models have not addressed the retrosynthetic planning problem.

B Additional Details for Llamole

B.1 Details of Special Tokens

In total, there are nine special tokens divided into three groups. These tokens augment the word
vocabulary W, enabling flexible control of the generation flow:
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* Trigger and Query tokens: <design_start>, <design body>, <design_end>,
<retro_start>, <retro_body>, <retro_end>

e Molecule token: <molecule>
e Callback tokens: <callback_start>, <callback_end>

The tokens <design_start> and <retro_start> switch between the LLM and the Graph DiT or
GNN, respectively. The tokens <design_body> and <retro_body> serve as query tokens, repeated
eight times. After tokenization, the LLM takes their embeddings as input and outputs a vector from
the last layer. The tokens <design_end> and <retro_end> indicate the end of these switches.

The <molecule> token marks the position of the molecular graph where the graph encoder is applied.
In the instruction dataset, the segment “<mol_start>SMILES<mol_end>” denotes the position and
identity of the molecule. SMILES will be converted to molecular graphs using RDKit, and this
segment will be replaced by the <molecule> token for Llamole inputs.

Finally, callback tokens control the LLM to generate backup results as complements to the specialized
graph modules. For instance, if the Graph DiT fails to produce a valid molecule, the base LLM can
generate an alternative, regardless of validity.

B.2 Details of LLM-based A* Heuristics

Llamole models Jheyristics in A* search as a multi-choice problem, filling in information from the
molecule node, its parent reaction nodes and siblings using the template below. Parameters such as
step, reaction template, and reactants are optional.

Estimate remaining steps for the target {smiles} given the
following parameters:

Current step {step},

Current template: {templatel,

Reactants: {reactants}.

Consider the following factors:

1. Intermediate complexity

2. Reagent availability

3. Side reactions

4. Stereochemistry challenges.

Using this question to estimate remaining steps, we input the text into the base LLM and formulate
five choices with corresponding scores:

A1l readily available // Score: O

Some commercial, some need 1-2 steps // Score: 1

Mix of commercial and multi-step synthesis // Score: 2.5
Mostly require complex synthesis // Score: 4.5

A1l require extensive multi-step synthesis // Score: 7

MO QW=

The LLM outputs logits for the next token, which we average for each choice to obtain overall
probabilities. The Jheuristics 1S calculated as the weighted score using these probabilities.

C Additional Benchmarking and Datasets Details

We collect small drug molecules from PubChem (Kim et al.,[2021]), MoleculeNet (Wu et al.,|[2018)),
ChEMBL (Zdrazil et al., 2024), and ZINC (Sterling & Irwin, |2015)). Polymers are macromolecules
with one repeating unit called monomers. We collect polymers from PIIM (Ma & Luol [2020),
the Membrane Society of Australia (MSA) (Thornton et al., 2012), and others (Liu et al., [2024b).
Additionally, we collect 3.8 million patent chemical reactions with descriptions from USPTO (Lowe,
2017), spanning from 1976 to 2016.

C.1 Details of Quality Control

After collecting molecules and polymers from various sources, we deduplicate and merge the label
information for identical molecules. We use RDKit to obtain canonical SMILES. For small molecules,
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we calculate the first 14 characters of the InChIKey as the unique identifier, while for polymers,
where the polymerization point is represented by “*”, we use the canonical SMILES directly.

For drug-like small molecules, we apply the following rules to filter out alert structures, known as the
Rule of Five (Ro5):

* Molecular Weight (MW): Must be < 500 Da.

* Hydrogen Bond Acceptors (HBA): Must not exceed 10.
* Hydrogen Bond Donors (HBD): Must not exceed 5.

* LogP: Must be < 5, indicating lipophilicity.

A molecule passes the Ro5 test if at least three of these four conditions are met, indicating potential
oral bioavailability.

We also apply 15 filter rules from the RDKit package, including the following from the Fil-
terCatalogs Class: BRENK, CHEMBL, CHEMBL_BMS, CHEMBL_Dundee, CHEMBL _Glaxo,
CHEMBL _Inpharmatica, CHEMBL_LINT, CHEMBL_MLSMR, CHEMBL_SureChEMBL, NIH,
PAINS, PAINS_A, PAINS_B, PAINS_C, and ZINC.

C.2 Details on the Creation of MolQA
C.2.1 Creation of Synthesis Routes

The USPTO has 3.7 million reactions. There are approximately 1.3 million unique product molecules.
The purchasable compounds come from the Enamine Building Block (June 2024 version), supple-
mented with other common ions and starting materials, totaling around 1.3 million. We check each
product from USPTO as a target molecule in the retrosynthesis task, exploring whether they can be
synthesized using existing USPTO reactions through depth-first search (DFS). Ultimately, we identify
about 139K target molecules with synthesis routes, supporting the creation of MolQA.

Since there are no polymerization reactions, we consider only monomer structures by replacing the *
point with hydrogen. Among the 139K small molecules with synthesis routes, 2196 fit the monomer
structures and serve as target molecules for polymer retrosynthesis. The length of synthesis routes
ranges from 1 to 10. For each length of the routes, we split half of the molecules into the testing set,
with a maximum of 3000, while the remainder is retained in the training set.

It results in around 11K routes (750 for materials and 9986 for drugs) for testing and 126K target
molecules for training.

C.2.2 Creation of Property Annotations

We focus on eight benchmarking properties: three drug-related categorical properties (Wu et al.}
2018)—(1) HIV virus replication inhibition (HIV), (2) blood-brain barrier permeability (BBBP),
and (3) human [-secretase 1 inhibition (BACE)—and five continuous material properties (Thornton
et al.l 2012)—(4) CO, permeability (COoPerm), (5) Ny permeability (NoPerm), (6) O5 permeability
(OzPerm), (7) fractional free volume (FFV), and (8) thermal conductivity (TC).

First, we check existing sources for annotations of these properties. To enrich the label space, we use
well-trained GNN models (Liu et al.,|2022) to generate confident pseudo-labels, following the method
in (L1iu et al.| 2023a). We collect all labeled data to train two supervised multi-task GIN models for
drug and material property annotation. The GIN models employ rationalization techniques (Liu et al.|
2024a) to split the molecular graph into rationale and environment subgraphs in the latent space,
predicting labels from the rationale subgraph. The confidence score is computed by combining the
rationale subgraph with various environment subgraphs, using the reciprocal of prediction variance.
We annotate properties when prediction confidence exceeds the median threshold.

C.2.3 Creation of Text Data for Molecular Description

In addition to property annotations, we consider structural and synthesis information of the molecules
using RDKit and heuristic complexity estimation scores. First, for any molecule, we extract the
following structural information:
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592 ¢ Scaffold: Extracted scaffold from the molecule structure.

593 * Molecular Weight: Calculated using the molecular weight descriptor.

594 * Number of Rings: Total number of rings in the molecule.

595 * Number of Aromatic Rings: Total number of aromatic rings in the molecule.

596 * Number of Aliphatic Rings: Total number of aliphatic rings in the molecule.

597 * Number of Rotatable Bonds: Total number of rotatable bonds in the molecule.

598 * Number of Hydrogen Bond Donors: Total number of hydrogen bond donors.

599 * Number of Hydrogen Bond Acceptors: Total number of hydrogen bond acceptors.

so0  Next, we compute the synthetic accessibility score (SAScore) (Ertl & Schuffenhauer, 2009) and
sot  SCScore (Coley et al}[2018)). Based on this information, we use the following template:

602 Generate a summary description that starts directly with "The
603 molecule/polymer ." based on the predicted chemical

604 properties, synthetic complexity scores, and structural

605 information for the molecule with SMILES: {{smiles}}. Use your
606 own knowledge, focus on functions, and avoid using numbers,
607 redundant words, or mentioning SMILES. Ensure the output

608 sentence is complete and ends with a period. This is for

609 Drug/Material Utility of a Molecule/Polymer:

610

611 The structural context of a molecule includes its scaffold,
612 which is the core structure around which the molecule is

613 built. Key structural features include the presence of

614 aromatic rings, aliphatic chains, and common functional groups
615 such as hydroxyl, carboxyl, and amino groups. The complexity
616 of the molecule’s structure can significantly influence its
617 physical and chemical properties.

618 Scaffold: {{scaffold}}

619 Molecular Weight: {{mw}}

620 Number of Rings: {{num_rings}}

621 Number of Aromatic Rings: {{num_arom_ringsl}}

622 Number of Aliphatic Rings: {{num_aliph_rings}}

623 Number of Rotatable Bonds: {{num_rot_bondsl}}

624 Number of Hydrogen Bond Donors: {{num_h_donorsl}}

625 Number of Hydrogen Bond Acceptors: {{num_h_acceptorsl}}

627 {utility_context}
628 {{properties}}

629 The pre-defined utility context for the small molecule is as follows:

630 The drug utility of a molecule is assessed based on its

631 potential to serve as a therapeutic agent. Key properties

632 considered include pharmacokinetics, which encompasses

633 absorption, distribution, metabolism, excretion (ADME), and
634 toxicity. Bioactivity is another critical factor, measured by
635 the molecule’s ability to interact with biological targets,
63 typically through binding affinity. Additionally,

637 drug-likeness, which refers to the molecule’s adherence to

638 established rules such as Lipinski’s Rule of Five, is

639 essential. This rule evaluates molecular weight, hydrogen bond
640 donors and acceptors, and lipophilicity to predict a

641 molecule’s suitability as an oral drug.

e42 The pre-defined utility context for the polymer is as follows:
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The material utility of a molecule, particularly for creating
polymeric materials, is evaluated based on properties 1like
mechanical strength, flexibility, and thermal and electrical
behavior. For polymer membranes used in gas separation,
crucial factors include gas permeability, which determines the
efficiency of gas diffusion, and chemical stability, ensuring
resistance to degradation. Additionally, thermal properties
such as melting point and thermal conductivity are vital, as
they affect the material’s performance under various
temperature conditions. Electrical properties, such as
conductivity and dielectric constant, may also be significant
depending on the intended application.

For the property variable, we include the property name with values, as well as the minimum,
maximum, and percentile among the labels in the template. We repeat all annotated properties in the
property variable. The estimated synthesis complexity scores are included among them.

We also prompt Llama-3-70B to generate short responses of 50-70 words, producing a molecular
description for each molecule based on its properties, structures, and synthesis estimation. If a
molecule has a description from PubChem (Kim et al.,[2021)), we concatenate these descriptions.

The generated texts may not always be meaningful or valid. We can establish filter rules based on
patterns observed in poorly generated texts to remove them. We then regenerate texts for these items.
After several iterations, we obtain the final text data for molecular utility descriptions, improving
overall text quality. We also apply this strategy to other steps that involves prompting LLMs for
synthetic data creation.

C.2.4 Creation of Question Answering Data

After annotating molecular description texts from appendix [C.2.3] we combine them with reaction
descriptions, including the reaction formula and template from synthesis routes in appendix [C.2.1]
This forms the answer data in a QA data pair.

Next, we prompt Llame-3-70B to generate questions for each answer based on the following template.

I’'m creating a question-answer dataset for LLM fine-tuning.
The question is about designing a molecule/polymer with these
properties: {property_info} and the following structure
information: {structure_infol.

The expected answer for the question is: {answer}

Generate a SINGLE question about designing and synthesizing
such a molecule/polymer that meets these criteria:

(1) Start with ’Question:’; (2) End with a question mark;
(3) Sound natural; (4) Be diverse; (5) Avoid redundancy and
introductory words (like ’Here is a question that meets the
criteria:’)

(6) Do not include the answer; (7) Do not include incorrect
information.

Example questions:

(1) How can I design and synthesize a molecule with X, Y, and
Z properties?

(2) What is the best way to create a polymer with X, Y, and Z
characteristics?

(3) How to design a molecule with X, Y, and Z features and
synthesize it?

(4) I want a molecule with X, Y properties and Z structures.
Please design it and describe the synthesis path.

The template is applied to any answer with the corresponding structure, property information, and
complete answer texts.
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C.3 Details on the Creation of MolPair

MolPair consists of two parts: reaction-text pairs and graph-text pairs. We curate reaction-text pairs
from USPTO (Lowe} 2017), pairing each reaction with its corresponding description of the reaction
conditions. We first deduplicate product molecules in reactions, obtaining input data as the product
molecule alongside the reaction condition texts. Next, we extract reaction templates from the reaction
formula using rdchiral (Coley et al[2019), resulting in approximately 300K templates, which will
serve as labels for predictions. Finally, we have approximately 1.6 million training examples.

For the graph-text pairs, we use small molecules and polymers from the multisource collection,
excluding those in MolQA. We follow the same pipeline used to create property and text annotations
for the MolQA data, focusing on broader properties that describe drug-related utility with 41 small
molecule properties (Swanson et al.|[2024). Besides the three used in MolQA, others include:

* Toxicity and Safety: AMES, Carcinogens Lagunin, ClinTox, DILI, Skin Reaction, hRERG

* Enzyme Interaction: CYP1A2 Veith, CYP2C19 Veith, CYP2C9 Substrate CarbonMangels,
CYP2C9 Veith, CYP2D6 Substrate CarbonMangels, CYP2D6 Veith, CYP3A4 Substrate
CarbonMangels, CYP3A4 Veith

* Absorption, Distribution, Metabolism, and Excretion (ADME): BBB Martins, Bioavailability
Ma, Caco2 Wang, Clearance Hepatocyte AZ, Clearance Microsome AZ, HIA Hou, Half
Life Obach, Hydration Free Energy FreeSolv, Lipophilicity AstraZeneca, PAMPA NCATS,
PPBR AZ, Pgp Broccatelli, Solubility AqSolDB, VDss Lombardo

 Stress Response: SR-ARE, SR-ATADS, SR-HSE, SR-MMP, SR-p53

* Nuclear Receptor Interaction: NR-AR-LBD, NR-AR, NR-AhR, NR-Aromatase, NR-ER-
LBD, NR-ER, NR-PPAR-gamma

We describe polymeric material utility based on 14 polymer properties collected from Otsuka et al.
(2011):

» Thermal Properties: Melting temperature [°C]; Specific heat capacity at constant pressure
(Cp) [cal/(g-°C)]; Specific heat capacity at constant volume (C,,) [cal/(g-°C)]; Thermal
conductivity [W/(m-K)]

* Physical & Thermodynamic Properties: Density [g/cm?]; Fractional Free Volume (dimen-
sionless); Radius of Gyration (£2,) [nm]

. Permeability Properties: Gas diffusion coefficient (D) [cm?/s]; Gas permeability coefficient
(P) [cm? (STP)-cm/(cm?-s-Pa)]; Oxygen (O,) Gas Permeability (Barrer); Nitrogen (N3)
Gas Permeability (Barrer); Carbon Dioxide (CO5) Gas Permeability (Barrer)

» Solubility Properties: Gas solubility coefficient (S) [cm? (STP)-cm/(cm?-s-Pa)]

* Dielectric & Optical Properties: Dielectric constant.

We train two multi-task GIN models based on the rationalization method (Liu et al., [2022) using all
existing labeled data for drug and material property prediction, respectively. We use these models
to predict properties for millions of small molecules and polymers, retaining the top ten thousand
predictions by confidence score for each property. These are then used to prompt Llama-3-70B to
create molecular descriptions, using the same prompt template as in appendix [C.2.3] Additionally, we
apply the same strategy as in appendix [C.2.3]to annotate labels for the eight studied properties, which
can serve as input for pretraining the multi-conditional Graph DiT. Finally, we have approximately
300K graph-text pairs for small molecules and 300K graph-text pairs for polymers.

D Additional Pre-training and Fine-tuning Details

We pre-train three graph models including Graph DiT (Liu et al., |2024c) for multi-conditional
molecular generation, a GIN-based GNN predictor for reaction template prediction, and a GIN-based
graph encoder for molecule understanding (Xu et al., [2018).
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D.1 Pre-training of Graph Diffusion Transformer

Suppose the node has Fy, categories and the edge has F'r categories (including non-bond). Graph
DiT models the node token by concatenating all its edge configurations to other nodes. For each node
x € R, we have F = Fyy + Ng x Fg, where Ng denotes the graph size. This facilitates defining
the transition matrix Q for the joint distribution of nodes and edges (Liu et al.,[2024c)). Graph DiT
uses Transformer layers, replacing layer normalization with adaptive layer normalization (AdaLN):

h — 4 (h)
o (h)

where h denotes the hidden state of x and c is the vector representing the input conditions.

AdaLN (h,c) = v5(c) ® + Ba(c),

Given multiple conditions with categorical, continuous properties, and text, Graph DiT
uses one-hot encoding for categorical properties and a clustering-based approach with
Linear (Softmax (Linear(c))) to embed continuous condition values c. We employ pre-trained
SciBERT (Beltagy et al.|[2019) to embed input texts into a 768-dimensional vector by averaging the
representations of all text tokens in the sentence, then using a linear layer to adjust the dimension
for Graph DiT. For each condition, the model also learns a drop embedding. The drop embedding is
used when no values are provided. Finally, the model sums the representation vectors of different
conditions as input for c. In the reverse diffusion process, the denoising model uses predictor-free
guidance to sample molecular graphs given multiple conditions. We pre-train the denoising model
with the loss function in Eq. (2) using 600K graph-text pairwise data and the eight properties defined
in appendix [C.3] The model employs the following hyperparameters: depth of 28, hidden size of
1024, 16 heads, and MLP hidden size of 4096. The total model size is around 574 million parameters.
We pre-train the model for 45 epochs, which takes approximately one week on a single A100 card.

D.2 Pre-training of GNNs

We pre-train a three-layer GIN to predict reaction templates among 30,124 labels, using a hidden
size of 512. Reaction template prediction is a multi-class classification task. Given reaction-text
pairs from MolPair, we extract the product molecular graph from the reaction formula, using the
reaction condition text as input. SCiBERT (Beltagy et al.,|2019) is used as the text encoder with
frozen parameters. We average the text representations to obtain a sentence-level representation.
The prediction target is the reaction template extracted from the reaction (Coley et al.,2019). GIN
naturally uses molecular graphs, employing the AdaLN approach as the normalization layer added
after each message-passing layer to incorporate text conditions. We pre-train the model for 5 epochs
on a single V100 card, with 632 million parameters. This model serves as the reaction predictor to
suggest reaction templates for Llamole.

For molecular understanding, we pre-train a five-layer GIN model with a hidden size of 768. SciB-
ERT (Beltagy et al.,[2019) is used as the text encoder with frozen parameters. We average the text
representations to obtain a sentence-level representation, while the GIN model uses sum pooling to
produce the graph representation. For each graph-text pair from MolPair, we optimize the graph
encoder using the CLIP loss (Radford et al., [2021) for 40 epochs. The CLIP loss consists of two
contrastive losses: it first computes the similarity score between graph-text pairs, then contrasts it
with all other similarity scores by pairing the graph with other texts and pairing the text with other
graphs as negative pairs. The model has around 43 million parameters. The model can be pre-trained
on a single V100 card in a few days. This graph encoder will replace the word encoder in the LLM
tokenizer module for molecules indicated by the token <molecule> as shown in appendix

D.3 Fine-tuning of Llamole

Llamole is fine-tuned on graph-text multimodal instruction data, freezing the parameters of the Graph
DiT, GNN predictor, and graph encoder. It automatically adds eight query tokens to the sequence
once the trigger tokens are predicted, allowing the base LLM to continue autoregression and output
vectors for all eight query tokens. We average these output vectors as queries for prior generated
texts and use them as input text vectors for the subsequent Graph DiT or GNN predictor module via a
tunable linear layer. For the <molecule> token, we add a tunable linear layer on top of the token
embedding after the graph encoder outputs it. Without loss of generality, we study three variants
of Llamole with different base LLMs: Llama-3.1-8B (Dubey et al.,|2024), Mistral-7B (Jiang et al.,
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Figure 8: Overall Comparison of LLMs for Controllability and Synthesizability: Performance is
ranked by averaged BA/MAE (x-axis) and retrosynthesis success rate (y-axis). Circle size indicates
model size. LLMs with ICL, SFT, and Llamole are highlighted in blue, orange, and red, respectively.

2023)), and Qwen2-7B (Yang et al.,|2024). All LLMs are fine-tuned using LoRA (Hu et al., [2021) for
four epochs, taking approximately two days on a single A100 card.

E Additional Experimental Details and Discussions

E.1 Additional Details on Experimental Set-ups

In Tables[T]and 2] and Figures|[T] 8 and[8b] Llamole is compared with fourteen LLMs with sizes rang-
ing from 7B to 70B, including Llama (Dubey et al.,[2024), Mistral (Jiang et al.,|2023), Qwen (Yang
et al.,|2024), Granite (Abdelaziz et al.,2024), and Flan-T5 (Chung et al.l|2024). We prefer the instruct
version of the model when available.

Using the MolQA training set, previous work can implement these LLMs in two ways: in-context
learning (ICL) and text-only supervised fine-tuning (SFT). For ICL, we retrieve five closest QA pairs
from the training set based on the average property difference from desired properties. The template
used to construct the prompt with demonstrations is:

I’'m working on designing and synthesizing molecules. Here are
some example questions and answers about molecular
requirements, design, and synthesis: {{examples}}

Now, based on these examples, please answer the following
question about molecular design and synthesis: {{question}}

For SFT, we fine-tune the LLMs with LoRA after converting molecules into SMILES strings.

The MolQA test set contains 9,986 QA pairs for small molecules in drug applications and 750 pairs
for polymeric materials. The questions serve as input to prompt the LLMs to generate responses.

For the controllability of multi-conditional molecular generation, we evaluate up to 12 metrics across
four aspects: (1) chemical validity, (2) similarity to the truth based on Morgan fingerprints, (3) BLEU-
4 and ROUGE-L scores compared to reference texts, and (4) deviation from desired properties. For
polymer validity, we further examine whether the generated molecular structures contain at least two
polymerization points (“*”). To obtain the properties of the designed structure, we define an oracle
function based on well-trained random forests from all annotated molecules, following previous
work (Gao et al.|[2022; [Liu et al.,[2024c). We evaluate three drug-related categorical properties using
balanced accuracy (BA) and five continuous material properties using mean absolute error (MAE). As
a baseline, we consider GraphGA (Gao et al.| 2022) to reference the performance of LLMs compared
to domain-specific methods.
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Table 4: Text Generation for Reaction Conditions: Best results and best baselines are highlighted.
In-Context Learning
Llama-2-7B Mistral-7B Qwen2-7B Llama-3-8B Llama-3-8B Flan-T5-XXL Granite-13B Llama-2-13B Mistral-8x7B Llama-2-70B Llama-2-70B

BLEU-4 0.021 0.036 0.005 0.107 0.130 0.077 0.051 0.048 0.136 0.054 0.059
ROUGE-L 0.112 0.141 0.095 0.205 0.250 0.202 0.159 0.149 0.248 0.152 0.164
Supervised Fine-tuning Llamole
Mistral-7B Qwen2-7B Llama-3-8B Llama-3.1-8B Mistral-7B Qwen2-7B Llama-3.1-8B
BLEU-4 0.085 0.141 0.114 0.111 0.049 0.074 0.085
ROUGE-L 0.191 0.222 0.195 0.201 0.192 0.262 0.268

For retrosynthesis, we evaluate the success rate from the designed molecule to those available in
Gavail, purchasable from the Enamine Building Block (June 2024 version), supplemented with other
common ions and starting materials, totaling around 1.3 million.

E.1.1 Set-ups for Figure[l]

For Figure [T} we average the balanced accuracy for three drug-related properties and five MAEs
for the polymeric material properties. We then select the model with the best performance in each
category based on these average metrics. For drug tasks, the best ICL model is Llama-3-8B-ICL, the
best SFT model is Mistral-7B-SFT, and the best Llamole variant is based on Qwen2-7B. For material
tasks, the best ICL model is Llama-3-70B-ICL, the best SFT model is Llama-3-8B-SFT, and the best
Llamole variant is based on Llama-3.1-8B. Their average performance is visualized in Figure[I]in
comparison with GraphGA.

E.1.2 Extraction of SMILES from LLM Responses

ICL or SFT-based LLMs generate free-form text that includes both natural language and SMILES-
represented molecular structures. We need a method to automatically extract SMILES strings from
LLM outputs for evaluation. Practically, one can observe generation patterns to summarize rules for
regular expressions to accomplish this. In the MolQA training set, the designed molecular structures
typically follow the phrase “the designed molecule is:” as shown in examples Figures[9]and[I0} LLMs
may not always adhere strictly to this pattern, so we may need to extend this rule to cover more
cases. In the future, more sophisticated regular expressions could be developed to extract SMILES
strings from text directly. However, these will still need to be combined with additional rules to
identify the designed molecules, as LLMs may generate intermediate SMILES strings before and
after the designed molecule. Compared to them, Llamole uses <design_start> or <retro_start>
to indicate the position of generated molecular structures.

E.2 Additional Discussion on One-Step Generation

We further examine the text generation results for reaction conditions. Since the answer represents
just one possibility in retrosynthesis, we use the template to retrieve the best-matching reaction
condition descriptions as references for Table ] based on the available templates within the USPTO
reaction space. One template may correspond to thousands of reactions, so we limit our search to five
items to manage costs while identifying the best matching generated and reference pairs.

The results of generating reaction texts are shown in Table [ where Llamole achieves the highest
ROUGE-L but low BLEU-4 scores. The best ROUGE-L score for Llamole indicates its capacity to
understand and maintain the overall structure of the answer after fine-tuning. The lower BLEU-4
scores may result from the A* search nature in Llamole, which explores a vast space (300K) of
possible reactions, leading to fewer exact n-gram matches with reference sentences. The many-
to-many relationships between products and reactants, along with various conditions for the same
reaction, diminish BLEU-4’s effectiveness in evaluating Llamole’s capabilities. Overall, Llamole
is not merely memorizing reaction conditions but actively exploring possibilities, yielding more
contextually coherent and meaningful outputs.

E.3 Additional Discussion on Case Studies

We present case studies for baseline LLMs using the same question as in Figure [f] Results are
shown in Figure[6] The reference indicates one possible ground truth for molecular design with
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retrosynthetic pathways, noting that many alternatives exist. Compared to the reference, results
in Figure [6|demonstrate that Llamole designs another molecule with similar structures, properties,
and shorter synthesis routes, showcasing its potential for controllability and generating synthesizable
molecules. Using ICL, Qwen2-7B fails to generate meaningful responses, despite indicating it
possesses rich knowledge about molecular design. SFT allows Qwen2-7B to more strictly follow
instructions, producing meaningful responses. However, text-only generation leads to hallucinations,
as the generated templates do not yield expected products in retrosynthetic planning.

Another example based on Llama-3.1/3-8B is provided in Figure [I0] The ICL method may copy
from the demonstrations to get the SMILES string CC(=0)C=Cc1cc(C1l)ccc1Cl. It also includes
one SMILES string before the designed molecule, such as CN(C) clccc(C=NNc2ccc(I)cc2)ccl.
However, it does not follow the instruction pattern and is therefore not automatically extracted for
evaluation, as illustrated in appendix [E.1.2} SFT follows the instructions through fine-tuning, using
the pattern ’the designed molecule is:” but generates invalid structures with meaninglessly repeated
sentences. In contrast, Llamole generates meaningful and valid molecular structures that generally
satisfy the question’s requirements. During text generation for molecular design, Llamole analyzes
the question and includes more details about desirable structures, such as “aromatic rings” and
“aliphatic chains”. Some functional groups, like hydroxyl, may not be precisely represented in the
structure. This indicates a need for enhanced text instruction adherence in Graph DiT.

In addition to small molecules, we present a polymer inverse design case in Figure [T1] based on
Qwen2-7B. The polymer has polymerization points denoted by “*” in the reference structure. Since
polymerization reactions are not considered, we focus on the retrosynthetic routes to the monomer
structures by replacing polymerization points with hydrogen atoms. In this case, ICL-based Qwen2-
7B fails molecular design due to the same issue as in Figure[9] not following instructions to generate
polymer structures. SFT-based Qwen2-7B generates a polymer in SMILES format but invalid in
chemical space. In contrast, Llamole successfully generates valid molecular structures through Graph
DiT, satisfying the requirements of “high CO» permeability and low permeability to Ny and O2,” and
suggests a two-step retrosynthetic pathway for the monomer structure.
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Question “Can you design and synthesize a molecule that inhibits both Human Immunodeficiency Virus and Beta-
Secretase 1, with a molecular weight of around 335 and two aromatic rings connected to aliphatic chains?”

Reference Answer

“To satisfy the requirements: The molecule has a moderately complex structure, consisting of aromatic rings connected to aliphatic chains, and
featuring carboxyl and hydroxyl functional groups. Therefore, the designed molecule is: <molecule 1>.

This is step 1 of 3 in the synthesis process. To synthesize <molecule 1>, follow these procedures: A solution ?/JW/QL,@
of (R)-acetic acid 3-(toluene-4-sulfonyloxy)-butyl ester (5.89 g, 21 mmol) and 4-chloro-2-phenoxy-phenol
(5.0 g, 23 mmol) in DMF (50 mL) is treated with cesium carbonate (7.4 g, 23 mmol). The solution is heated to <molecule_1>

60\u00b0 C. and stirred overnight. The reaction is cooled and quenched with IN HCI. The solution is partitioned in EtOAc and water. The organic
is separated, washed with brine, and dried over sodium sulfate. The organic is filtered, and the solvent is removed to afford acetic acid 3-(4-chloro-
2-phenoxy-phenoxy)-butyl ester, which is then diluted in methanol (100 mL) and treated with potassium carbonate (5.68 g, 40 mmol). The reaction
is stirred for 2 hours at rt. The reaction is then partitioned in EtOAc and water. The organic layer is separated, washed with brine, and dried over
sodium sulfate. The organic is filtered and the solvent is removed to afford the crude product. The crude is purified by silica gel column
chromatography using 1/1 hexanes/EtOAc to elute the pure product. The solvent is removed to afford 4.35 g (72%) of the desired product. |H NMR
(400 MHz, CDCI3); MS (ES+) m/z mass calcd for C16H17CIO3 292, found 293 (M+1, 100%,). The applied reaction is <reaction_I1>,which
requires the reactants: <molecule 2> (available), <molecule 3> (available), <molecule 4> (not available, needs to be synthesized), [Cs+]

(available), and [Cs+] (available).

<m0lecule 2> <molecule_3>"<molecule_4>

This is step 2 of 3 in the synthesis process. To synthesize <molecule 4>, follow \’}Q @ \Q
these procedures: A \u221240\u00b0 C. solution of “react
4-chloro-2-phenoxy-1-methoxy-benzene (7.16 g, 30.5 mmol) in dry CH2CI2 (70 mL) is treated dropwise with borontribromide (22.9 g, 91.5 mmol)
and then warmed to 0\u00b0 C. and stirred for 3 h under N2. The reaction is diluted with Et20 and quenched with water. The organic layer is dried
(Na2S04), and the solvent is removed in vacuo to afford 7.11 g (100%) of the title compound. Rf=0.30 (4/1 hexanes/acetone). IH NMR (400 MHz,
CDCI3); MS (ES\u2212) m/z mass calcd for CI2H902CI 220, found 219 (M\u22121, 100%). The applied reaction is: <reaction_2>, which
requires the reactants: <molecule_5> (not available, needs to be synthesized).

This is step 3 of 3 in the synthesis process. To synthesize <molecule 5>, follow these procedures: A mixture of
2-bromo-4-chloro-1-methoxy-benzene (8.0 g, 36.1 mmol), phenol (6.80 g, 72.2 mmol), cesium carbonate

(23.54 g, 72.2 mmol), copper (1) chloride (1.79 g, 18.1 mmol) and 2,2,6,6-tetramethyl-3,5-heptanedione (1.66 g, 9.00
in dry 1-methyl-2-pyrrolidinone (80 mL) is heated to 120\u00b0 C. for 20 hours under N2. The reaction is cooled, filtered and the filtrate quenched
with 1 N HCI (50 mL). The filtrate is diluted with Et20 and extracted with water. The organic layer is dried (Na2SO4), and the solvent is removed
in vacuo to afford crude product that is absorbed on silica gel and purified by flash
chromatography using 9/1 hexanes/EtOAc to afford 7.42 g (88%) of the title
compound. Rf=0.37 (4/1 hexanes/EtOAc). The applied reaction is: <reaction_3>, Y N / .

which requires the reactants: <molecule 6> (available), <molecule 7> (available), Sreaction 3> <molecule 6> <molecule 7> <molecule 8>
<molecule 3> (available), [Cs+] (available), [Cs+] (available), and <molecule 8>(available).”

ICL

“Designing and synthesizing a molecule that inhibits both Human Immunodeficiency Virus (HIV) and Beta-Secretase 1 (BACEI) would involve creating a complex structure with specific functional
groups that target each enzyme. The goal would be to incorporate a scaffold that can interact with the active sites of both HIV and BACEI. Here's a conceptual design and synthesis strategy for such a
molecule: #i## Molecular Design #### Requirements: - **Molecular Weight**: Around 335 - **Two Aromatic Rings**: Connected to aliphatic chains - **Functional Groups**: Likely to include
groups that can bind to viral structures (for HIV inhibition) and to the catalytic sites of BACEI (for BACEI inhibition) - **Hydrophobicity**: Adequate for intracellular penetration -
**Aromaticity**: To ensure stability and interactions with the target enzymes - **Rotatable Bonds**: For flexibility aiding in optimal binding #### Potential Molecular Structure A possible structure
could contain two aromatic rings, one serving as a main binding site for HIV and the other for BACEI. The aromatic rings might be connected to branched aliphatic chains to balance lipophilicity and
flexibility. ### Synthesis Route **Step 1: Synthesis of Aromatic Core** - **Objective**: Prepare a stable aromatic ring system with appropriate substituents for targeted enzyme interaction. -
**Method**: Use a multi synthesis i i ion reactions, ion, or other. ional group ipulations to create the necessary aromatic core. For example, starting with
alkene or a[lgwe compounds perform a Diels-Alder reaction or electrophilic addition reactions to introduce the first aromatic ring. Subsequent steps could involve further modifications such as

of functional groups like carboxylic acids, and amine functionalities. **Step 2: Functionali and Linkage** - **Objective™*: Introduce functional groups that can
interact with HIV and BACEI. - **Method**: Use nucleophilic substitution reactions, addition reactions, or direct coupling methods (e.g., click chemistry) to attach the required functional groups to
the aromatic cores. This could involve ing groups like sul ides for HIV inhibition and benzyl esters or acetyl groups for BACEI inhibition. **Step 3: Connecting Aliphatic Chains** -
**Objective®*: Join the two aromatic systems via aliphatic chains to ensure spatial configurations suitable for enzyme binding. - **Method**: Carry out a series of aldol reactions, Diels-Alder
reactions, or conjugated addition reactions to connect the functionalized aromatic rings through aliphatic bridges. The choice of aliphatic chains will depend on balancing the desired hydrophobici
and flexibility. **Step 4: Pratectzon and De-pratectmn** **Objemve** Protect sensitive functional groups during synthesis and deprotect them just before final purification. - **Method**: Use
standard p ing group to 1 ional groups that might react undesirably during synthesis. Common protecting groups include t-Bu, Fmoc, or Boc groups, depending on the
funcuunal groups mvolved **Step 5: Purification and Characterization** - ¥*Objective**: Isolate the target molecule and confirm its purity and structure. - **Method**: Employ techniques such as
column ch phy, HPLC, or preparative TLC to purify the molecule. Use spectral analysis (NMR, MS) to verify the structure and confirm the molecular weight. ### Notes: - **Validation**:
Post-synthesis, validate the antiviral and enzyme inhibitory activities through biochemical assays targetzrxg HI) Vrcplxcatmn and BACEI activity. - **Toxicology Studies**: Conduct preliminary
toxicological assessments to ensure safety profiles for desired in vitro and ially in vivo li - FHC ization**: Iterate the design and synthesis based on biological activity data,
modifying the structure to enhance potency and specificity. Please note that this is a conceptual design and synthesis pathway. Actual molecular design and synthesis require detailed planning, access
to necessary reagents, equipment, and expertise in organic synthesis. Additionally, the synthesis of drugs that target multiple pathways is complex and typically involves a multidisciplinary approach
combining medicinal chemistry, biology, and pharmacology.”

(Error: Repeating many times with invalid structure)

SFT

To satisfy the requirements: The molecule is a moderately complex structure comprising two aromatic rings connected to aliphatic chains, which
may influence its physical and chemical properties. Therefore, the designed molecule is: Cclccc(C(=0)C(N)c2cc(C#N)ccc2OC(F)(F)F)cenl. This is
step 1 of 1 in the synthesis process. To synthesize Cclcce(C(=0)C(N)c2ce(C#N)ccc2OC(F)(F)F)cnl, follow these procedures: In like manner to the
preparation of N-(4-benzyloxycarbonyl-2-cyano-3-hydroxyphenyl)-5-methylisatin, 2-amino-5-(2,2, 2-trifluoroethoxy)benzonitrile (0.098 g; 0.46
mmol) was reacted with 6-methyl-pyridine-3-carbonyl chloride (0.073 ml; 0.55 mmol) to obtain N-[5-methyl-2-(2,2,2-trifluoroethoxy)-4-pyridinyl]-
S-methylisatin as an off-white powder (0.062 g). The applied reaction is:
Celcee(C(=0)C(N)c2ec(C#N)ccc2OC(F)(F)F)enl>>Cclcec(C(=0)Cl)enl N#Cclcce(OCC(F)(F)F)ccIN with the template [#7;a:5]:[c:4]:[c:3]-
[C;HO0;D3;+0:1](=[0;D1;H0:2])-[NH;D2;+0:7]-[C:6]>>ClI-[C;H0;D3;+0:1](=[O;D1;H0:2])-[c:3]:[c:4]:[#7;a:5].[C:6]-[NH2,D1;+0:7],
which requires the reactants: Cclccc(C(=0)Cl)cnl (available), and N#Cclccc(OCC(F)(F)F)ccIN (available).

(Error: Retrosynthesis fails since the template application did not yield the expected products)

<reaction_2> <molecule_5>

R T

Generated Reaction Generated Template
/O/S/Q § < > v/@’ Ce \Dx/d"u‘/""s "5>(;7“\c“1// + co—n7
Mismatch
\ /

Figure 9: Reference Answer with Generation Results from ICL or SFT Using the base LLM Qwen2-
7B. The question is the same as in Figure@
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Question

What is a possible molecular structure that can penetrate the blood-

brain barrier and inhibit Human

Immunodeficiency Virus, given a molecular weight of 209.249 and specific ring and bond characteristics?

Reference Answer

“To satisfy the requirements: The molecule has an aromatic ring and a common functional group of carboxyl, which suggests a
certain level of structural complexity, likely influencing its physical and chemical properties, and indicating a moderate synthetic

complexity score. Therefore, the designed molecule is: <molecule 1>. This is step 1 of 1 in the

synthesis process. To synthesize <molecule 1>, follow these procedures: To a

suspension of (tert-butoxy)-N-(5-nitro(2-pyridyl))carboxamide (0.27 g, 1.13 mmol) in methanol (2 mL),
ethyl acetate (4 mL) and TEA (0.16 mL) was added 10% Pd/C (60 mg, 0.056 mmol) under argon.

The reaction mixture was hydrogenated under 1 atm H2 for 20 hr, filtered through
Celite and concentrated in vacuo to give
N-(5-amino(2-pyridyl))(tert-butoxy)carboxamide (0.226 g, 97%). The applied
reaction is: <reaction_ 1> with the template <template 1>, which requires

the reactants: <molecule 2> (available).”

Based on the given molecular weight and ring and bond characteristics, a possible molecular structure that can penetrate the
blood-brain barrier and inhibit Human Immunodeficiency Virus is: CN(C)elcce(C=NNe2cce(l)ee2)ccl. This molecule has a moderate
synthetic ¢ icating that it might be ) lenging to synthesize. Its weight and

ity and accessibility scores, indi atively

KA T

<molecule_1>

~ T
LYSIELY e

<reaction_1> <molecule_2>

C:2 40
L3l Nds . S\
N'l\m”/ N ——— ey

<template_1> o

number of aromatic rings contribute to its moderate complexity. The presence uf hydroxyl and amino functional groups suggests possible hydrogen bonding capabilities. The molecule's scaffold is
composed of two aromatic rings linked by an amino group, which could influence its physical and chemical properties. The molecular structure is designed to be able to penetrate the blood-brain barrier
and inhibit Human Immunodeficiency Virus. The applied reaction is: CN(C)clcce(C=NNe2cce(l)ce2)cel>>CN(Celece(C=0)ecl.NNelece(l)eel, which requires the reactants: CN(C)elcee(C=0)cel

(available), and NNelcee(ljeel (available). Question: What is a feasible molecular design that incorporates an aromatic ring and a carboxyl
functional group, with a molecular weight around 215 and only two rotatable bonds? Answer: To satisfy the requirements: The
molecule has a relatively low synthetic complexity, featuring an aromatic ring and a carboxyl functional group, and is likely to
Sily s sized. 3 SI ule is: = = C C . This is step 1 of I in the synthesis process. To synthesize
be easily synthesized. Therefore, the designed molecule is: CC(=0)C=Cclcc(Cl)ccclCl. p 1o o p W
CC(=0)C=Celee(ClicecICl, follow these procedures: In water (500 mi) was dissolved sodium hydroxide (4.0 g), and to the mixture was added acetone (100 ml), and then 2,5-dichlorobenzaldehyde
(15.9 g). The mixture was stirred at room temperature for 1 hour, and acetone was evaporated under reduced pressure. The residue was extracted with ethyl acetate, and the organic layer was washed

with water and saturated brine, and concentrated under reduced pressure to give 4-(2,5-dichlorophenyl)-3-buten-2-one (19.0 g). The applied reaction is:
CC(=0)C=Cclce(Cliceel Cl>>0=Celee(Cliceel CL{2H] C([2H])([2H])C(=0)C([2H])([2H])[2H].[Na-+].[OH-] with the template [0;D1;H0:5]=[C:4]-[CH;D2;+0:3]=[CH:D2;+0:1]-

[¢:2]>>0=[CH;D2;+0:1]-[c:2].[CH3;D1;+0:3]-[C:4]=[0;D1;H0:5], which requires the reactants: O=Cclce(CliccelCl (available),

(available), and [OH-] (available).
(Error: Copy the answer from the demonstrations)

SFT

[2H]C([2H])([2H])C(=0)C([2H])([2H])[2H] (available), [Na+]

This is a moderately complex molecule with a scaffold consisting of an aromatic ring and an aliphatic chain. The presence of a
carboxyl functional group and an amino group contributes to its overall synthetic complexity. Therefore, the designed molecule

is: CCcln[nH]c(-c2ccccc2C)nlC. This is a moderately complex molecule with a scaffold consisting of an aromatic ring and an aliphatic chain. The presence of a carboxyl
functional group and an amino group contributes to its overall synthetic complexity. Therefore, the designed molecule is: CCcln[nH]c(-c2cccec2C)nlC... (repeat)

(Error: Repeating many times with invalid structure)

Llamole

To satisfy the requirements: The molecule is characterized by the presence of aromatic rings, aliphatic chains, and common
functional groups such as hydroxyl, carboxyl, and amino groups, which contribute to its moderate synthetic complexity.
Therefore, the designed molecule is: <molecule 1> . To synthesize <molecule 1>, follow these procedures: 5 g of 3,4-dihydro-

2H-1,4-benzoxazin-4-one (prepared according to the procedure of Example 1, step 1)
was dissolved in 30 ml of ethanol and 1.0 g of 10% Pd/C was added. The mixture was
hydrogenated under atmospheric pressure at room temperature for 24 h. The catalyst
was filtered off and the filtrate was evaporated under reduced pressure.

The residue was crystallized from ethanol to give 2.5 g of the title compound

as a yellow solid. The applied reaction is: <reaction 1> with the
template <template 1> which requires the reactants: <molecule 2>.
To synthesize <molecule 2>, follow these procedures:
3-[(2-Methoxy-5-methylphenyl)amino]-1-propanol (3.0 g, 14.6 mmol)
and triethylamine (2.8 g, 28 mmol) were dissolved in methanol (20 ml)
and cooled to 0\u00b0 C. 3-Bromopropanoic acid (1.0 g, 7.3 mmol)
was added and the reaction stirred at 0\u00b0 C. for 2 h. The reaction
was then allowed to warm to room temperature and stirred for 18 h.

<molecule_1>

BBBP:1 \_-o k)
HIV: 1 7/</\N,
Molw: 289.08  © J LI

DD

<reaction_1> <molecule_2>

C‘I

C1.
Cc2-7 ~ Cc3

C:2mC1=C3

<template_1>

The reaction was concentrated and the residue was diluted with ethyl
acetate (100 ml) and washed with IN HCI (100 ml) and brine (100 ml).
The organic layer was dried (MgSO4) and concentrated to give

i~ i I
r-C— G

<reaction'2>

<molecule_3> <molecule_4>

3-[(2-methoxy-5-methylphenyl)amino]propanoic acid

(2.4 g, 12.2 mmol, 84% yield). The applied reaction is:
<reaction 2> with the template <template 2> which requires

the reactants: <molecule 3> (available), <molecule 4> (available).

04

o

Ny EN c2
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No S
C7/ c

o

<template_2>

Figure 10: Reference Answer with Generation Results from ICL with Llama-3-8B and SFT and

Llamole with Llama-3.1-8B.
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Question What is the optimal molecular design and synthesis route for a polymer with high CO2 gas permeability and
low permeability to N2 and O2, featuring an aromatic ring and specific functional groups?

Reference Answer

“To satisfy the requirements: The polymer, featuring an aromatic ring and functional groups such as carboxyl
and hydroxyl, exhibits a moderate synthetic complexity score and high gas permeability, indicating potential |y

for use in gas separation membranes with good efficiency. Therefore, the designed molecule is:
<polymer 1>.This is step I of 1 in the synthesis process. To synthesize <polymer 1>, follow these
procedures: Ethanol (3.2 mL, 54 mmol) and 4-dimethylamino pyridine (DMAP) (54 mg, 0.45 mmol) were [<polymer_1>
added to a mixture of pyrrole-3-carboxylic acid (500 mg, 4.5 mmol) and dicyclohexylcarbodiimide (1.11 g, 5.4 mmol) (Aldrich,

Milwaukee, Wis.) in tetrahydrofuran (THF) (15 mL). After N
heating at 60\u00b0 C. for 10 hours, the reaction was cooled. N Q—\<

The precipitate was filtered off, washed with ethyl acetate, <react|on71 > <moleculs > <molecule_3><molecule 4>

the combined filtrate was concentrated and purified on a silica N .
gel column to give 500 mg (81%) of 1H-pyrrole-3 carboxylic acid ethyl ester as a i Se § ot
colorless oil. The applied reaction is: <reaction 1> with the template <template 1>, <template_1> -

which requires the reactants: <molecule 2> (available), <molecule 3> (available), and <molecule 4> (available)”

ICL

“To design and synthesize a polymer with high CO2 gas permeability and low permeability to N2 and 02, featuring an aromatic ring and specific fnctional groups, we should aim for a structure that
allows for easy CO2 transport but restricts N2 and 02 passage. This usually involves the use of polymers with flexible structures that allow for easier diffusion through the polymer matrix, combined with
appropriate functional groups that could either enhance CO2 binding or hinder the diffusion of smaller gases like N2 and 02. Given the specific molecular characteristics needed ( such as high CO2
permeability and low permeabiliy to N2 and 02, along with the presence of an aromatic ring, the following molecular design and synthesis route could be considered: **Molecular Design:** 1.
**Polymer Backbone: * Selcct an aromatic ring as the backbone, which can improve the stabilty of the polymer due 10 its inherent rigidity and electronic p 5. 2. **Functional Groups:**
Introduce functional groups that can enhance CO2 p bility while minimizi for other gases. This might include groups like carbonyl ( (COOH, >C=0, etc.), which have been shown to
enhance C02 permeability in some materials, Additionall, incorporating \w03c0-03¢0 stacking interactions through the aromatic rings or conjugated groups could help trap CO2 effectively without
being as effective for smaller, nonpolar N2 and 02 3. **Cross-linking and Branching:** Adding cross-links and b in the polymer matrix can modify the morphology and reduce the

ity, thereby permeability while possibly limiting the diffiusion paths for N2 and O2. **Synthesis Route:** 1. **Prep of b ** Synthesize or obtain that contain
the desired functional groups and are compatible with an aromatic backbone. For example, monomers containing carboxylic acid (~COOH), aldehyde (C=0), o other reactive sites that can form the
desired strucuure after polymerization. 2. **Polymerization: ** Use a suitable polymerization method such as radical, anionic, or condensation polymerization depending on the monomer types and
desired polymer properties. For instance, if carboxylic acids are used, a cond: polymerization might be employed to introduce the aromatic ring backbone and functional groups simul b 3.

**Post-Polymerization Functionalization: ** If necessary, carry out post-polymerization modifications to fine-tune the properties further. This might involve grafting or linking additional functional
groups onto the polymer backbone to enhance the specific gas permeation characteristics. 4. **Characterization:** Analyze the synthesized polymer for its gas permeability, specifically towards CO2,
N2, and 02, to ensure that the molecular design meets the required criteria. Techniques like permeability tests, gas adsorption, and spectroscopy could be used for this purpose. 5. **Optimization:**
Based on the characterization results, optimize the molecular design or synthesis conditions as needed to maximize CO2 p bility while ining or minimizing N2 and O2 p bility. In
summary, the optimal molecular design would incorporate an aromatic backbone with strategically placed functional groups that faulxmle CO2 transport while hindering the diffusion of N2 and 02, thus
achieving the desired gas permeation properties. The synthesis route involves preparing the right s, selecting an appropriate polymerization method, potentiall P lymerization

s
modifications, characterizing the final polymer, and iteratively optimizing the design if necessary.

(Error: Molecular design failed due to not following instructions)

SFT

“The polymer has a relatively low synthetic complexity score, indicating it can be easily synthesized. Therefore, the designed molecule
is: *Oclcc(CC(=0)OC(C)(C)C)c(*)ccclF. This is step 1 of 1 in the synthesis process. To synthesize
Cclccee(F)cl1CO.CC(C)(C)OC(=0)CCI, follow these procedures: 30 g (0.33 mol) of 3-fluoro-2-methylbenzyl alcohol are dissolved at
5\u00b0 C. in 200 ml of dichloromethane and 55.6 g (0.40 mol) of titanium tetrachloride and then stirred with cooling at 5\u00b0 C. for
15 minutes. A solution of 27.9 g (0.33 mol) of 2-chloroacetyl chloride in 50 ml of dichloromethane is added dropwise and the mixture is
allowed to warm to room temperature and stirring is continued for 2 hours. The reaction mixture is extracted with water and the organic
phase is washed with saturated sodium hydrogen carbonate solution, water once again and an aqueous saturated sodium chloride
solution. The organic phase is dried over magnesium sulphate and concentrated. The residue is chromatographed on silica gel using
cyclohexane/ethyl acetate (8:2). This gives the desired product in a yield of 31.3 g (70% of theory). The applied reaction is:
Cclccee(F)c1CO>>Cclccec(F)c1CO.0=C(Cl)CCl with the template [C:2]-[CH2;D2;+0:1]-[OH;D1;+0:3]>>CI-[CH2;D2;+0:1]-
[C:2].[O;HO;D1;+0:3]=[C;HO0;D3;+0:4](-[C;D1;H3:5])-[C;HO;D3;+0:6](-[C:7])=[O0;H0;D1;+0:8], which requires the reactants:
Cclccee(F)clCO (available), and O=C(CIl)CCI (available). Based on the provided information, the overall synthetic complexity score for this molecule is low, indicating that
it can be easily synthesized. Therefore, the designed molecule is: CC(C)(C)OC(=0)CBr ... (irrelavant)

(Error: Molecular design failed due to invalid structure and not following instructions)

Llamole

CO,Perm: 18.3

“To satisfy the requirements: The polymer has a relatively low synthetic complexity score, NyPerm: 8.2 o o,
indicating that it can be easily synthesized. The presence of an aromatic ring and common | 0,perm: 10.7 \X(
functional groups such as hydroxyl and carboxyl groups contributes to its structural b )\ 0

<polymer_1>

complexity. Therefore, the designed molecule is: <polymer 1>. To synthesize
<polymer 1>, follow these procedures: Mix 100.0 gms of meldrum acid hemiacetal , o

and 150.0 gms of 10% palladium-on-charcoal in methanol and hydrogenate at Q\(\( — Q\f D\/Q
atmospheric pressure for 4 hours. Remove the hydroxyl group and yields 134.2 gms "
of 1,1, 1-trifluoro-3-methoxy-2-propyne. The applied reaction is: <reaction 1>
with the template <template 1> which requires the reactants: <molecule 2>. o o on
To synthesize <molecule 2>, follow these procedures: 2.0 g (0.004 mol) of e

2,3-dihydro-1H-indol-4-ylboronic acid were suspended in 100 ml of ethanol and
0.5 ml of acetic acid were added. The reaction mixture was heated

at reflux for 24 hours. The reaction mixture was cooled to room 8 p ) \/@ Q,(
; o — +
)

<reaction_1> <moledule_2>

<template_1>

temperature and concentrated under reduced pressure. The residue O\Y\/ on
was purified by column chromatography on silica gel <reaction_2> "% <molecule_3> <molecule_4>
(eluer-lt: ethyl aceitate/hexane 1:1 ) to give 1.0g (51%) of s oz NG
2,3-dihydro-1H-indol-4-ylboronic acid as a colorless powder. o4 CHI . C‘l . Ca—os
The applied reaction is: <reaction 2> with the <template 2> which requires 03 4

the reactants: <molecule 3> (available), <molecule 4> (available).” <template_2>

Figure 11: A Case Study for the Polymer: We include the reference answer and the generation results
from ICL, SFT, and Llamole with Qwen2-7B.
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