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Abstract

While large language models (LLMs) have integrated images, adapting them to1

graphs remains challenging, limiting their applications in materials and drug design.2

This difficulty stems from the need for coherent autoregressive generation across3

texts and graphs. To address this, we introduce Llamole, the first multimodal4

LLM capable of interleaved text and graph generation, enabling molecular inverse5

design with retrosynthetic planning. Llamole integrates a base LLM with the6

Graph Diffusion Transformer and Graph Neural Networks for multi-conditional7

molecular generation and reaction inference within texts, while the LLM, with8

enhanced molecular understanding, flexibly controls activation among the different9

graph modules. Additionally, Llamole integrates A* search with LLM-based cost10

functions for efficient retrosynthetic planning. We create benchmarking datasets11

and conduct extensive experiments to evaluate Llamole against in-context learning12

and supervised fine-tuning. Llamole significantly outperforms 14 adapted LLMs13

across 12 metrics for controllable molecular design and retrosynthetic planning.14

1 Introduction15

The potential of LLMs for molecular discovery has been actively explored (Jablonka et al., 2023).16

However, LLMs struggle in the chemical domain, exhibiting poor generation quality and planning17

capability (Guo et al., 2023). This is due to the unique graph structures of molecular data, which are18

challenging for LLMs that typically handle sequential texts.19
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Figure 1: Comparison of Controllability:
Results are averaged from the best num-
bers from Table 1.

Inverse molecular design requires LLMs to be control-20

lable for generating molecular structures that meet multi-21

property and synthesizability requirements (Chen et al.,22

2020; Gao et al., 2021). These requirements can be23

detailed as questions for LLM input, as shown in Fig-24

ure 2. Answering these questions demands a comprehen-25

sive understanding of molecular structures and their rela-26

tionship to properties. However, sequence-based LLMs27

struggle with this because they are pre-trained or fine-28

tuned solely on text representations of molecules, e.g.,29

SMILES (Weininger, 1988). To illustrate this, we investi-30

gate 14 LLMs for molecular generation in Figure 1 across31

10K drug and material questions: ten using in-context32

learning (ICL) and four with supervised fine-tuning (SFT).33

LLMs generate molecular structures based on the ques-34

tions and their properties are obtained through oracles.35

Details of the experimental set-ups and results can be found in Section 4. In summary, even the best36
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“Can you design a molecule that inhibits both HIV and Beta-Secretase 1, with a molecular weight around 
284.33, and 2 rings including 1 aromatic and 1 aliphatic ring, and outline its synthesis pathway?”Question
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Figure 2: LLM-based molecular design. The question for properties, structures, and synthesis is
addressed as follows: (a) In-Context Learning and (b) Supervised Fine-Tuning use text-only data.
(c) The proposed Llamole uses graph-text multimodal data to fine-tune the LLM, integrating graph
models for interleaved text and molecular generation with reaction inference.
LLMs perform worse than GraphGA (Gao et al., 2022), a simple yet effective graph-based method,37

in designing molecules with satisfactory properties.38

As illustrated in Figure 2, practical answers for molecular design are more complex than what can be39

achieved by using graph methods or LLMs alone. The generation begins with a paragraph describing40

the intended molecule for multi-conditional generation, followed by retrosynthetic planning, detailing41

each synthesis step—one reaction per paragraph—in reverse order, from the target molecule to42

purchasable reactants. Thus, multimodal LLMs (MLLMs) are essential, with LLMs handling text43

generation and graph models managing molecular design.44

In this work, we propose the multimodal Large language model for molecular discovery (Llamole).45

As shown in Figure 2 (c), the model seamlessly integrates LLMs and graph models within a multi-46

modal autoregressive framework, enabling the interleaved generation of text, molecules, and reactions.47

It predicts the next token across both word and chemical spaces, framed as multi-class prediction48

tasks for word vocabulary, atom/bond types, and reaction templates. For retrosynthetic planning,49

Llamole integrates A* search to efficiently identify synthesis pathways for the designed molecule.50

Our work has several highlights. First, Llamole is the first MLLM capable of inverse molecular design51

with the interleaved generation of text and graphs. Second, we curated a dataset along with fine-52

tuning instructions to benchmark complex yet realistic molecular design outcomes, including human53

conversation. Third, we present compelling experimental results that demonstrate the competitiveness54

of Llamole against 14 LLMs and GraphGA, as shown in Figure 1. With details in Tables 1 and 2,55

Llamole improves LLM performance by up to 80.9% across 12 metrics for controllable molecular56

generation and increases the success rate for retrosynthetic planning from 5.5% to 35%.57

2 Preliminaries58

2.1 Autoregressive Language Modeling59

Given a sequence of word tokens W = {w1, w2, . . . , wL} of length L from the vocabulary W , LLMs60

parameterized by θ1 decompose the joint distribution as pθ1(W ) =
∏L

i=1 pθ1(wi|W<i), where W<i61

represents the tokens preceding the i-th position. These models are optimized by minimizing the62

negative log-likelihood between their predictions and the empirical data distribution, resulting in:63

LLM =
∑
i

− log pθ1(wi|W<i). (1)

2.2 Molecular Design with Graph Diffusion Models64

Molecular graphs can be modeled through diffusion in discrete spaces (Austin et al., 2021; Vignac65

et al., 2022; Liu et al., 2024c). Given a one-hot encoded data point x ∈ RF with F categories66
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(e.g., a node or an edge), discrete models perform diffusion using a transition matrix Q, where67

[Qt]ij = q(xt
j | xt−1

i ) for i, j ∈ [1, F ]. The forward diffusion with Q is: q(xt | xt−1) =68

Cat(xt;p = xt−1Qt), where Cat(x;p) denotes the categorical distribution over x with probabilities69

given by p. Starting from the original data point x = x0, we have q(xt | x0) = Cat
(
xt;p = x0Q̄t

)
,70

where Q̄t =
∏

i≤t Q
i. The forward diffusion gradually corrupts data points. When the total71

timestep T is large enough, q(xT ) converges to a stationary distribution. The reverse process samples72

from q(xT ) and gradually removes noise. The posterior distribution q(xt−1 | xt) is calculated73

as q(xt−1|xt,x0) ∝ xt(Qt)⊤ ⊙ x0Q̄t−1. Using a denoising model parameterized by θ2, this74

posterior can be approximated by pθ2(x
t−1|xt,x0). For inverse molecular design with multi-property75

constraints, the denoising model can be optimized by minimizing the negative log-likelihood for x0:76

LDM = Eq(x0)Eq(xt|x0)

[
− log pθ2

(
x0 | c1, c2, . . . , cM , ctext,x

t
)]

, (2)

where M molecular properties are denoted by {ci}Mi=1, and the text embedding is ctext. These77

conditions can be handled by Graph DiT (Liu et al., 2024c) without introducing additional predictors78

for guidance (Ho & Salimans, 2022).79

2.3 One-Step Reaction Prediction with Graph Neural Networks80

Retrosynthesis needs to predict the reverse of a synthetic reaction, which decomposes chemical81

products into reactants. A GNN parameterized by θ3 takes the product Gproduct to predict the label82

r ∈ R in the reaction space R. This label is interpreted as the template and determines the reactants.83

With the text condition ctext, we minimize the negative log-likelihood of the label distribution q(r):84

Lpredictor = Eq(r) [− log pθ3(r | ctext, Gproduct)] . (3)

2.4 Retrosynthetic Planning with A* Search85

Given molecules from the structure space G, a subset Gavail represents available molecular structures86

that can be purchased as building blocks for synthesis. For any target Gtarget, one-step prediction of87

the reversed reaction may not yield reactants within Gavail. Thus, retrosynthesis typically requires88

multi-step planning to find pathways from building blocks to the target in reverse order. The search89

space of chemical reactions can be navigated using A* on an AND-OR tree T , with Gtarget as the root.90

Reaction nodes follow an “AND” relation, requiring all child reactants, while molecule nodes follow91

an “OR” relation, meaning the product can be synthesized by any child reaction (Chen et al., 2020).92

Selection: We select nodes from the frontier F(T ) containing unexplored molecule nodes to expand93

the tree. Given an oracle cost function J(·), the next node is selected as Gnext = argminG∈F(T ) J(G)94

to minimize the cost. A well-designed J(·) improves search efficiency and aids in global optimality.95

Expansion: After selecting Gnext, a single GNN predictor call can generate many one-step ret-96

rosynthesis proposals. The GNN provides top-candidate reaction templates, each linked to different97

reactants. Thus we can form molecule nodes under the reaction node as an AND-OR stump.98

Update and Cost: After expanding Gnext, the tree becomes T ′. We update the nodes in T ′ for the next99

iteration. A* selects the path that minimizes J(·) = Jcurrent(·) + Jheuristic(·), which includes the cost100

from the start to the current node Jcurrent(·) and a heuristic estimate of the cost to the goal Jheuristic(·).101

With the GNN predictor, the negative log-likelihood of the reaction can be used to compute path cost102

Jcurrent(·) to the leaf molecule node, we design Jheuristic(·) with the LLM in Llamole.103

3 Llamole: Large Language Model for Molecular Discovery104

3.1 Multimodal Autoregressive Modeling105

In molecular discovery, the sequence may include molecular structures G and retrosynthetic reactions
R with each molecule or reaction tokenized. The sequence Y = {y1, y2, . . . , yN}, where yi ∈
W ∪ G ∪ R, combines these tokens. The sequence is interleaved with tokens in different spaces.
Suppose the molecule appears at position i; then, we typically see:

. . . , Yi ∈ G, Yi+1:i+L ∈ W, Yi+L+1 ∈ R, . . .

3
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Figure 3: Overview of Llamole: Trigger tokens (<design> and <retro>) switch active modules
from the base LLM to the respective graph component. The subsequent <query> token utilizes
output vectors from the LLM to summarize past texts as conditions. Using these, Llamole generates
molecules and predicts one-step reactions. Enhanced with a graph encoder and A* search, Llamole
efficiently plans synthesis routes through selection and expansion iterations on the AND-OR Tree.

where L is the length of the text following the molecule at position i. The sequence starts with text.106

If position i denotes the first molecule in the sequence, then Y<i ∈ W; otherwise, yi−1 ∈ R. To107

handle non-word tokens, we integrate domain-specific Graph DiT and GNN with the LLM, forming108

a multimodal LLM, i.e., Llamole. Parameterized by Θ, Llamole unifies the cross-entropy losses109

from Eqs. (1) to (3) into autoregressive modeling:110

LLlamole = LLM + LDM + Lpredictor =
∑
i

− log pΘ(yi|Y<i). (4)

LDM interprets Y<i as the input conditions, including desirable molecular properties and text con-111

ditions {ci}Mi=1 ∪ {ctext} for the autoregression of Yi in G. In Lpredictor, Y<i represents Gproduct and112

ctext. Here, Gproduct is generated from previous diffusion models or as intermediate G /∈ Gavail in113

retrosynthesis. The autoregression for the label Yi is performed in the reaction space R.114

We present an overview of multimodal autoregression with Llamole in Figure 3, divided into con-115

trollable molecular generation and retrosynthetic planning. Augmented with the graph models, the116

overall parameters in Llamole are Θ = {θ1, θ2, θ3, ϕ1, ϕ2, ϕ3}, where ϕ1 and ϕ2 project text into ctext117

for the Graph DiT and GNN predictor, respectively. The graph encoder with ϕ3 projects molecule118

tokens into the LLM. Next, we detail the design space of Llamole.119

3.2 Llamole Design Space120

Llamole consists of a base LLM and two pre-trained graph modules: the Graph DiT for molecule121

generation and the GNN for one-step reaction prediction. The base LLM employs a trigger-query-122

prediction approach using two sets of special tokens to switch between modules.123

Trigger Tokens. Llamole defines two special trigger tokens to augment the word vocabulary W:124

<design> for switching between the LLM and Graph DiT, and <retro> for switching between the125

LLM and GNN predictor. When a trigger token is predicted, Llamole activates the corresponding126

graph model. After molecule generation or reaction prediction, the active modules revert to the LLM.127

Query Tokens. We introduce another set of special tokens, named query tokens <query> automati-128

cally placed after triggers. They use the LLM to query previous tokens and output hidden states as129

chidden. A linear layer is applied: ctext = Linear(chidden), adjusting the input size for the graph models.130

We use different query tokens for different triggers. Query tokens allow us to share parameters ϕ1131

and ϕ2 with θ1, enhancing both efficiency and effectiveness. We can apply ensemble methods by132

repeating the query tokens multiple times and averaging the chidden values (Dong et al., 2023).133

Besides the special tokens, Llamole enhances molecule understanding with a graph encoder and uses134

the LLM to provide the cost function in A* search for retrosynthetic planning.135
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“3-methyl-5-nitro-isoquinoline-2-
oxide (12 g) was added to phosphorus 
oxychloride (60 ml) and the mixture 
was refluxed with stirring for 1 hour, 
…This product was then 
recrystallized twice from acetone to 
yield 1-chloro-3-methyl-5-nitro-
isoquinoline melting at 112°C.”
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Figure 4: Creation of MolQA and MolPair: MolQA comprises two sets: a training set for ICL and
(multimodal) SFT, and a test set for evaluation. MolPair consists of graph-text and reaction-text pairs,
with red highlights indicating synthetic complexity, structure, and properties information.
Graph Encoder. The graph encoder parameterized by ϕ3 replaces the word encoder in the LLM136

tokenizer for molecule tokens. The LLM decoder takes molecule embeddings from the graph encoder,137

along with text embeddings from the tokenizer, into the Transformer layers for next token generation.138

We use a pre-trained Graph Isomorphism Network (GIN) (Xu et al., 2018) as the graph encoder,139

optimized via molecule-text contrastive learning similar to CLIP (Radford et al., 2021).140

A* Cost Function with LLM. We define Jheuristic as a multi-choice problem, where each choice,141

assigned a score, represents synthesis complexity, from few to many steps. The LLM estimates the142

remaining synthesis steps for the leaf molecule node G ∈ F(T ) \ Gavail in the search tree T . It143

outputs probabilities for each choice, and Jheuristic is computed as the weighted score by averaging144

the scores with their probabilities. For G ∈ F(T ) ∩ Gavail, Jheuristic = 0.145

3.3 End-to-End Model Fine-Tuning and Generation146

Supervised Fine-Tuning. We use multimodal SFT to connect the base LLM and other graph modules147

in Llamole (Ouyang et al., 2022). Specifically, we freeze the parameters for the graph modules (θ2148

and θ3) and fine-tune the LLM parameters θ1, the learnable special tokens, and the linear layers149

for the query tokens (ϕ1 and ϕ2). We freeze the parameters of the pre-trained graph encoder (ϕ3)150

and add a tunable linear layer between it and the LLM decoder. The optimization can be conducted151

end-to-end with Eq. (4). The SFT aligns the LLM with domain-specific graph models. To maintain152

generality in the base LLM, we employ parameter-efficient LoRA (Hu et al., 2021).153

Interleaved Generation. Given a question as shown in Figure 2, Llamole performs controllable and154

synthesizable molecular designs, as presented in Figure 3. For the controllable generation, Llamole155

uses the base LLM to analyze the requirements and switches to the Graph DiT for generating Gtarget156

when the trigger is predicted. For the synthesizable generation, Llamole plans synthesis routes157

for Gtarget. A* search on the AND-OR tree T aids in multi-step generation, interleaving molecule158

and reaction nodes, with Gtarget as the root. During each selection-expansion iteration, A* selects159

Gnext = argminG∈F(T ) J(G) from the leaf nodes F(T ). The graph encoder embeds molecule160

tokens into the LLM, which generates reaction conditions until the token <retro> is triggered,161

activating the GNN predictor. The predictor then predicts the top-50 templates as reaction nodes,162

along with corresponding reactants as molecule nodes for the next iteration. A* stops after finding a163

route from Gtarget to Gavail with satisfying all AND-OR constraints, or if it fails after 30 seconds or164

300 iterations. Upon success, the text with the corresponding reaction along the route is returned for165

retrosynthesis; otherwise, the base LLM directly generates texts.166

4 Experiment167

We conduct a systematic evaluation to demonstrate Llamole’s superior performance in controllable168

and synthesizable molecular design (RQ1). We investigate Llamole’s performance in controllable169

molecular generation through ablation and case studies (RQ2). We analyze retrosynthetic performance170

of LLMs, focusing on error analysis and the efficiency and effectiveness of Llamole (RQ3).171

Bechmarking: To train Llamole, we need instruction data that provide detailed language supervision172

and evaluation covering synthetic complexity, drug and material utility, and reaction conditions.173
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Table 1: Multi-Conditional Molecular Design with LLMs: Best overall results in each metric are in
bold , best baseline results are in italic . Balanced Accuracy (BA) = True Positive Rate+True Negative Rate

2 .

Base LLM
or Method

Structure (↑) Text (↑) Drug (BA ↑) Material (MAE ↓)

Validity Similarity BLEU-4 ROUGE-L HIV BBBP BACE CO2Perm N2Perm O2Perm FFV TC

GraphGA 0.885 0.112 NA NA 0.536 0.515 0.560 0.847 1.556 0.747 0.020 0.042
DiGress 0.375 0.046 NA NA 0.515 0.522 0.580 0.655 1.884 0.680 0.020 0.049

In-Context Learning
Llama-2-7B 0.167 0.024 0.030 0.141 0.051 0.060 0.053 5.463 3.982 4.943 0.308 0.199
Mistral-7B 0.251 0.044 0.066 0.203 0.163 0.153 0.200 5.062 3.824 4.657 0.289 0.186
Qwen2-7B 0.180 0.012 0.030 0.147 0.089 0.091 0.085 5.552 4.251 5.068 0.322 0.211
Llama-3-8B 0.656 0.112 0.155 0.307 0.471 0.473 0.562 3.233 3.106 2.924 0.171 0.123
Flan-T5-XXL 0.570 0.094 0.226 0.388 0.329 0.333 0.403 2.869 3.039 2.799 0.165 0.120
Granite-13B 0.498 0.079 0.170 0.326 0.260 0.293 0.285 2.994 3.165 2.993 0.180 0.123
Llama-2-13B 0.346 0.058 0.121 0.279 0.236 0.250 0.259 5.031 4.285 4.816 0.291 0.184
Mistral-8x7B 0.546 0.094 0.181 0.345 0.345 0.346 0.388 3.695 3.150 3.440 0.191 0.138
Llama-2-70B 0.299 0.045 0.099 0.222 0.237 0.242 0.274 5.368 4.336 5.017 0.319 0.202
Llama-3-70B 0.706 0.124 0.210 0.367 0.415 0.403 0.484 2.659 2.848 2.421 0.135 0.099

Supervised Fine-tuning
Mistral-7B 0.718 0.125 0.105 0.216 0.460 0.483 0.515 3.269 3.094 2.985 0.184 0.128
Qwen2-7B 0.768 0.133 0.221 0.377 0.436 0.457 0.457 2.691 2.562 2.721 0.147 0.106
Llama-3-8B 0.797 0.136 0.093 0.206 0.426 0.445 0.440 2.222 2.322 2.119 0.110 0.086
Llama-3.1-8B 0.692 0.121 0.121 0.250 0.417 0.432 0.433 3.210 2.991 2.974 0.179 0.122

Llamole
Mistral-7B 0.900 0.139 0.262 0.434 0.596 0.617 0.740 0.593 1.409 0.565 0.021 0.028
Qwen2-7B 0.888 0.135 0.261 0.432 0.600 0.639 0.746 0.645 1.452 0.581 0.021 0.026
Llama-3.1-8B 0.913 0.142 0.254 0.427 0.623 0.629 0.713 0.653 1.344 0.549 0.021 0.030

Improvement of Llamole (%)
vs. All +3.2 +4.4 +15.9 +11.9 +16.2 +22.4 +31.7 +9.5 +6.7 +19.3 -5.0 +28.6
vs. LLMs +14.6 +4.4 +15.9 +11.9 +32.3 +32.3 +32.7 +70.6 +37.5 +72.6 +80.9 +65.1

Existing data based on PubChem (Kim et al., 2021) are only usable for small molecules and lack174

such details. Thus, we create MolQA, a large-scale graph-text multimodal instruction dataset for175

systematic LLM benchmarking. We also create MolPair with graph-text and reaction-text pairwise176

data to pre-train graph modules, as detailed in appendix D. To this end, we first collect multisource177

molecule data (Figure 4), with details in appendix C. Then we create MolQA and MolPair.178

Set-ups: We include LLMs from 7B to 70B, such as Llama, Mistral, Qwen, Granite, and Flan-T5,179

using either ICL or LoRA-based SFT. We also include domain-specific methods, GraphGA (Gao et al.,180

2022), DiGress (Vignac et al., 2022), and BioNavi (Zeng et al., 2024), for comparison. The MolQA181

test set contains 9,986 QA pairs for material design and 750 for drug design. LLMs are prompted with182

questions to generate responses for texts, molecules, and reactions. For controllability, we evaluate up183

to 12 metrics across four aspects: (1) chemical validity, (2) similarity to the reference based on Morgan184

fingerprints (Rogers & Hahn, 2010), (3) BLEU-4 and ROUGE-L scores against reference texts, and185

(4) deviation from desired properties. We follow Gao et al. (2022) to use well-trained random forests186

as the oracle functions for obtaining properties of designed molecules. We focus on three drug-related187

categorical properties assessed by balanced accuracy (BA) and five continuous material properties188

assessed by mean absolute error (MAE). For retrosynthesis, we evaluate the success rate of designed189

molecules against those available in Gavail from Enamine. Details are in appendix E.1.190

4.1 RQ1: LLMs for Controllable and Synthesizable Molecular Design191

Table 2 detail LLM performance in controllability and retrosynthesis. Key observations are:192

(1) Llamole significantly outperforms other LLMs in text generation, controllable molecule193

generation, and retrosynthetic planning. Llamole fine-tuned on various 7B-parameter LLMs,194

as shown in Table 2, results in top-3 rankings, surpassing 70B models that are 10× larger across195

all 12 metrics for controllability and planning success. Specifically, Llamole enhances chemical196

structure validity by 14.6%, structure controllability by 4.4%, and text generation by 11.9%-15.9%.197

Additionally, Llamole improves property controllability by 32% to 80%. In retrosynthesis, Table 2198

indicates Llamole increases the success ratio from 5% to 35% for drugs and to 17.9% for polymers.199
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Table 2: Retrosynthetic Success Rate: Best results are in bold , best baseline results are in italic .
In-Context Learning

Llama-2-7B Mistral-7B Qwen2-7B Llama-3-8B Flan-T5-XXL Granite-13B Llama-2-13B Mistral-8x7B Llama-2-70B

Drug (%) 0.1 0.2 0.0 5.5 0.4 0.6 1.2 1.6 1.0
Material (%) 0.3 0.4 0.0 4.8 0.8 1.6 1.2 1.7 0.8

Supervised Fine-tuning BioNavi for Llamole
Mistral-7B Qwen2-7B Llama-3-8B Llama-3.1-8B DiGress Mistral-7B Qwen2-7B Llama-3.1-8B

Drug (%) 1.5 0.2 0.6 0.8 18.0 29.9 33.7 35.1
Material (%) 0.8 0.1 0.7 0.8 15.4 14.3 17.9 17.6

0.15
0.30
0.45
0.60
0.75
0.90 0.913

0.822
0.735

Validity

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16 0.142

0.124
0.098

Structure Similarity

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72 0.6550.664

0.505

Drug Avg. BA

0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72

0.5190.534

0.687
Material Avg. MAE

Llamole (Llama-3.1-8B) w/o text conditions w/o text and property conditions

Figure 5: Ablation Studies for the Graph DiT Module in Llamole: First, we remove the text conditions
from the input, i.e., ctext = ∅. Next, we remove both text and property conditions, {ci}Mi ∪ ctext.
There are learned embeddings that represent the “null” value for different conditions.

(2) SFT improves molecular design but may not always enhance retrosynthesis. According200

to Table 1, SFT enables 7B LLMs to achieve chemical validity, structure, and property control201

comparable to 70B LLMs with ICL. However, it offers minimal improvement in planning ability for202

the generated target molecule. A notable example is Llama-3-8B from Table 2, where SFT reduces203

its retrosynthesis planning success from 5.5% to below 1%.204

(3) Larger models without domain-specific adaptation do not necessarily perform better in205

molecular designs. We calculate the average Pearson correlation coefficient between model size206

and molecular design metrics, yielding a value of 0.366, indicating a weak correlation (below 0.5)207

between size and performance. We also compare LLM performance with GraphGA, which has been208

shown to be simple yet powerful (Gao et al., 2022; Liu et al., 2024c). Our observations confirm that209

GraphGA serves as a strong molecular design baseline, challenging most LLM models with ICL and210

SFT in generating molecules with precise multi-condition control.211

4.2 RQ2: Discussion on Controllable Molecular Generation212

Ablation Studies on LLM and Graph DiT Synergy: We first remove text conditions ctext. In this213

case, Graph DiT uses a learned “null” embedding to represent the dropped condition ctext = ∅. Next,214

we remove the drug or material property conditions {ci}Mi associated with the question. Results215

in Figure 5 show that text instructions enhance the chemical structure understanding ability of Graph216

DiT, while Llamole leverages Graph DiT’s capabilities with property inputs to generate molecules.217

Case Studies for Property and Structure Controllability: In Figure 6, Llamole can design a218

satisfactory molecule that meets both functional and structural constraints. Functionally, the oracle219

function confirms that the properties of BACE and HIV align with the criteria. Structurally, all key220

criteria are satisfied, including molecular weight, “two aromatic rings,” and “connected to aliphatic221

chains.” Llamole also adds details for structure design, such as a carboxyl ( – COOH) group and222

an amino group ( – NH2). While the amino group is present in the structure, it is connected to the223

carbonyl group ( – C( –– O) – ) instead of the carboxyl group. This subtle difference may require precise224

control based on the text condition. More results are in appendix E.3.225

4.3 RQ3: Discussion on Retrosynthetic Planning226

Retrosynthesis challenges LLMs in two aspects: (1) one-step reaction generation and (2) multi-step227

planning. Table 2 highlights the weaknesses of LLMs with ICL and SFT in overall planning ability228

and the promise of Llamole. We examine the failure reasons in LLMs in detail.229

7



“To satisfy the requirements: The molecule has a complex structure with two aromatic rings connected to aliphatic chains, 
featuring a carboxyl group and an amino group, which contributes to its moderate synthetic complexity score. Therefore, 
the designed molecule is <molecule_1>.” 
“To synthesize <molecule_1>, follow these  procedures: The electrolyte solution was prepared by dissolving 2.2 g 
of 1,4-bis(3,5-dimethylphenyl)benzene (compound 14) in 20 ml of toluene. The solution was stirred at room temperature 
for 3 hours. The solvent was 
evaporated under reduced pressure, 
and the residue was purified by 
column chromatography 
(hexane/ethyl acetate=1/1) to give 
1.8 g (88%) of the title compound as a colorless oil. The applied  reaction is 
<reaction_1> with the <template_1> which requires the reactants: <molecule_2> 
(available), <molecule_3>.” 
“To synthesize <molecule_3>, follow these procedures: 100 g of meldrum acid were 
dissolved in 100 ml of methanol. 100 g of 3-hydroxybenzaldehyde were added and 
the mixture was stirred for 1 hour at room temperature. 100 ml of saturated sodium 
bicarbonate solution were added and the mixture was extracted with 100 ml of ethyl 
acetate. The organic phase was dried over sodium sulphate, filtered and concentrated 
to dryness. The residue was purified by chromatography on silica gel with 
hexane/ethyl acetate as eluent, yielding 100 g of 5-benzyl-2-oxo-2,3-dihydroindoline-3-carboxylic acid as an oil. The applied reaction is: <reaction_2> 
with the template <template_2> which requires the reactants: <molecule_4> (available), <molecule_5>(available).”

<reaction_1>

<molecule_2> <molecule_3>

“Can you design and synthesize a molecule that inhibits both Human Immunodeficiency Virus and Beta-Secretase 1, 
with a molecular weight of around 335 and two aromatic rings connected to aliphatic chains?”Question

<template_1>

<reaction_2>

<molecule_4> <molecule_5>

<molecule_1>

MolW: 385, HIV: 1, BACE: 1

M
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ec
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<template_2>

Figure 6: Interleaved generation with the base Qwen2-7B: Red indicates positions where molecules
and reactions (with templates) are generated, forming three parts. The properties of the designed
molecules are obtained from the oracle. Reference and other LLM responses are shown in Figure 9.

Template
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Syntax
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Reaction
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Text
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11.8%

23.9%

6.1%

38.4%
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25.5%

17.0%

50.0%

3.7%

3.9%

Supervised Fine-tuning

Figure 7: Error Analysis in Reaction Generation

One-step Reaction Generation: Figure 7 av-230

erages error types across ICL or SFT methods.231

Neither ICL nor SFT guarantees that the tem-232

plates are correct or match the generated reac-233

tions. ICL methods have a 68.4% probability of234

producing invalid formats and templates. SFT235

methods reduce this probability to 57.6%. Llam-236

ole avoids these errors by using GNN predictors237

to select templates from over 300K candidates.238

Multi-step Retrosynthetic Planning: From Ta-239

ble 2, we find that 96.40% of 777 success cases240

in ICL-adapted LLMs and 94.14% of 324 suc-241

cess cases in SFT-adapted LLMs arise from one-242

step reaction generation. However, not all designed molecules can be synthesized via one-step243

reactions. Compared to LLMs, Llamole achieves over 10K success cases, with 40.48% resulting244

from two or more steps. Figure 6 illustrates a two-step planning case for the designed molecule. The245

generation interleaves reaction conditions and specific formulas based on the template in both steps.246

5 Related Work247

Since the emergence of ChatGPT (Achiam et al., 2023), LLMs (Dubey et al., 2024) have become foun-248

dation models for text-based problems and are revolutionizing domains like vision and speech (Dong249

et al., 2023; Wu et al., 2024). These advancements extend to chemistry, biology, and material250

sciences, focusing on molecules (Guo et al., 2023; Jin et al., 2023). Prior work explores LLMs in251

molecular generation, property prediction, and one-step reaction prediction in retrosynthesis (Guo252

et al., 2023; Jablonka et al., 2023). A key lesson is the limitation of LLMs in sequential modeling of253

molecules (e.g., SMILES or SELFIES) (Guo et al., 2023). Multimodal LMs have been developed254

for molecular tasks (Edwards et al., 2022; Liu et al., 2023b), but they either do not treat molecules255

as graphs (Edwards et al., 2022) or do not focus on inverse molecular design. Additionally, LLMs256

struggle with planning tasks (Kambhampati et al., 2024), which are essential for retrosynthesis.257

6 Conclusion258

We have presented the first graph-text MLLM, Llamole, for multi-conditional molecular generation259

and retrosynthetic planning. Llamole interleaved the generation of text, molecular graphs, and260

reactions, enabling controllable and synthesizable designs. Extensive benchmarking against 14261

LLMs revealed their limitations in controlling molecular structures and planning synthesis routes. In262

contrast, Llamole significantly outperformed these LLMs.263
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A More Related Work on Multimodal Language Modeling451

Since the emergence of ChatGPT (Achiam et al., 2023), LLMs (Dubey et al., 2024) have become foun-452

dation models for text-based problems and are revolutionizing domains like vision and speech (Dong453

et al., 2023; Wu et al., 2024). These advancements extend to chemistry, biology, and material454

sciences, focusing on molecules (Guo et al., 2023; Jin et al., 2023). Prior work explores LLMs in455

molecular generation, property prediction, and one-step reaction prediction in retrosynthesis (Guo456

et al., 2023; Jablonka et al., 2023). A key lesson is the limitation of LLMs in sequential modeling of457

molecules (e.g., SMILES or SELFIES) (Guo et al., 2023). Multimodal LMs have been developed458

for molecular tasks (Edwards et al., 2022; Liu et al., 2023b), but they either do not treat molecules459

as graphs (Edwards et al., 2022) or do not focus on inverse molecular design. Additionally, LLMs460

struggle with planning tasks (Kambhampati et al., 2024), which are essential for retrosynthesis.461

Domain-specific molecular design methods have evolved from sequential models (Segler et al., 2018)462

to graph diffusion models (Vignac et al., 2022; Weiss et al., 2023; Liu et al., 2024c). Studies show463

that older graph methods like GraphGA remain competitive (Gao et al., 2022). To incorporate464

property constraints, one can use Bayesian optimization or REINFORCE (Gao et al., 2022), or465

employ diffusion models with or without predictor guidance (Vignac et al., 2022; Liu et al., 2024c).466

For synthesizable molecular design, prior work has focused on bottom-up methods (Gao et al., 2021;467

Sun et al., 2024). These methods explore a chemical space defined by a discrete action space of468

reaction templates and purchasable starting materials, which may limit flexibility. Thus, retrosynthesis469

algorithms (Chen et al., 2020; Han et al., 2022; Zeng et al., 2024) are also studied as separate solutions470

to find synthesis routes for generated molecules in a top-down manner.471

Emerging approaches focus on multimodal graph and language modeling for tasks such as molecular472

property prediction (Zhao et al., 2023), captioning (Edwards et al., 2022; Liu et al., 2024d), and473

retrieval (Liu et al., 2023b, 2024d). The task most similar to inverse molecular design is text-based474

molecular generation (Edwards et al., 2022; Liu et al., 2024d). In this work, inverse molecular design475

is framed as a question with specific requirements for properties and synthesis paths. Unlike text-476

based generation, which takes descriptions of molecules as input, inverse molecular design requires477

fewer details on the molecule, focusing instead on satisfying the specified requirements. Additionally,478

text-based generation produces molecular structures without considering synthesizability, whereas479

designed molecules are often expected to be synthesizable (Gao et al., 2021), involving retrosynthesis.480

Table 3: Balanced Accuracy Averaged Across Three Drug Design Properties
MolT5-small MolT5-base MolT5-large Best LLM with ICL Llamole

0.150 0.232 0.264 0.502 0.662

481

To explore the difference between inverse molecular design and text-based generation, we use482

the decoder model from (Edwards et al., 2022; Liu et al., 2024d) (i.e., MolT5) and test questions483

from the MolQA benchmark to compare the performance of MolT5, LLMs, and Llamole in drug484

design. Results on balanced accuracy are shown in Table 3. We find that even the largest MolT5485

underperforms the best LLM (from ICL) in drug design. This illustrates that text-based molecular486

generation, which takes descriptions of molecules as input, may not perform well in inverse molecular487

design, which requires satisfying specific properties with synthesis paths and a lack of details about488

the molecule in texts. For material design, we find that MolT5 cannot generate valid polymer489

structures due to its lack of knowledge about polymerization points, typically represented by the490

asterisk symbol in SMILES strings. As a result, no valid MAE error is reported. Additionally, existing491

multimodal language models have not addressed the retrosynthetic planning problem.492

B Additional Details for Llamole493

B.1 Details of Special Tokens494

In total, there are nine special tokens divided into three groups. These tokens augment the word495

vocabulary W , enabling flexible control of the generation flow:496
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• Trigger and Query tokens: <design start>, <design body>, <design end>,497

<retro start>, <retro body>, <retro end>498

• Molecule token: <molecule>499

• Callback tokens: <callback start>, <callback end>500

The tokens <design start> and <retro start> switch between the LLM and the Graph DiT or501

GNN, respectively. The tokens <design body> and <retro body> serve as query tokens, repeated502

eight times. After tokenization, the LLM takes their embeddings as input and outputs a vector from503

the last layer. The tokens <design end> and <retro end> indicate the end of these switches.504

The <molecule> token marks the position of the molecular graph where the graph encoder is applied.505

In the instruction dataset, the segment “<mol start>SMILES<mol end>” denotes the position and506

identity of the molecule. SMILES will be converted to molecular graphs using RDKit, and this507

segment will be replaced by the <molecule> token for Llamole inputs.508

Finally, callback tokens control the LLM to generate backup results as complements to the specialized509

graph modules. For instance, if the Graph DiT fails to produce a valid molecule, the base LLM can510

generate an alternative, regardless of validity.511

B.2 Details of LLM-based A* Heuristics512

Llamole models Jheuristics in A* search as a multi-choice problem, filling in information from the513

molecule node, its parent reaction nodes and siblings using the template below. Parameters such as514

step, reaction template, and reactants are optional.515

Estimate remaining steps for the target {smiles} given the516

following parameters:517

Current step {step},518

Current template: {template},519

Reactants: {reactants }.520

Consider the following factors:521

1. Intermediate complexity522

2. Reagent availability523

3. Side reactions524

4. Stereochemistry challenges.525

Using this question to estimate remaining steps, we input the text into the base LLM and formulate526

five choices with corresponding scores:527

A. All readily available // Score: 0528

B. Some commercial , some need 1-2 steps // Score: 1529

C. Mix of commercial and multi -step synthesis // Score: 2.5530

D. Mostly require complex synthesis // Score: 4.5531

E. All require extensive multi -step synthesis // Score: 7532

The LLM outputs logits for the next token, which we average for each choice to obtain overall533

probabilities. The Jheuristics is calculated as the weighted score using these probabilities.534

C Additional Benchmarking and Datasets Details535

We collect small drug molecules from PubChem (Kim et al., 2021), MoleculeNet (Wu et al., 2018),536

ChEMBL (Zdrazil et al., 2024), and ZINC (Sterling & Irwin, 2015). Polymers are macromolecules537

with one repeating unit called monomers. We collect polymers from PI1M (Ma & Luo, 2020),538

the Membrane Society of Australia (MSA) (Thornton et al., 2012), and others (Liu et al., 2024b).539

Additionally, we collect 3.8 million patent chemical reactions with descriptions from USPTO (Lowe,540

2017), spanning from 1976 to 2016.541

C.1 Details of Quality Control542

After collecting molecules and polymers from various sources, we deduplicate and merge the label543

information for identical molecules. We use RDKit to obtain canonical SMILES. For small molecules,544
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we calculate the first 14 characters of the InChIKey as the unique identifier, while for polymers,545

where the polymerization point is represented by “*”, we use the canonical SMILES directly.546

For drug-like small molecules, we apply the following rules to filter out alert structures, known as the547

Rule of Five (Ro5):548

• Molecular Weight (MW): Must be ≤ 500 Da.549

• Hydrogen Bond Acceptors (HBA): Must not exceed 10.550

• Hydrogen Bond Donors (HBD): Must not exceed 5.551

• LogP: Must be ≤ 5, indicating lipophilicity.552

A molecule passes the Ro5 test if at least three of these four conditions are met, indicating potential553

oral bioavailability.554

We also apply 15 filter rules from the RDKit package, including the following from the Fil-555

terCatalogs Class: BRENK, CHEMBL, CHEMBL BMS, CHEMBL Dundee, CHEMBL Glaxo,556

CHEMBL Inpharmatica, CHEMBL LINT, CHEMBL MLSMR, CHEMBL SureChEMBL, NIH,557

PAINS, PAINS A, PAINS B, PAINS C, and ZINC.558

C.2 Details on the Creation of MolQA559

C.2.1 Creation of Synthesis Routes560

The USPTO has 3.7 million reactions. There are approximately 1.3 million unique product molecules.561

The purchasable compounds come from the Enamine Building Block (June 2024 version), supple-562

mented with other common ions and starting materials, totaling around 1.3 million. We check each563

product from USPTO as a target molecule in the retrosynthesis task, exploring whether they can be564

synthesized using existing USPTO reactions through depth-first search (DFS). Ultimately, we identify565

about 139K target molecules with synthesis routes, supporting the creation of MolQA.566

Since there are no polymerization reactions, we consider only monomer structures by replacing the *567

point with hydrogen. Among the 139K small molecules with synthesis routes, 2196 fit the monomer568

structures and serve as target molecules for polymer retrosynthesis. The length of synthesis routes569

ranges from 1 to 10. For each length of the routes, we split half of the molecules into the testing set,570

with a maximum of 3000, while the remainder is retained in the training set.571

It results in around 11K routes (750 for materials and 9986 for drugs) for testing and 126K target572

molecules for training.573

C.2.2 Creation of Property Annotations574

We focus on eight benchmarking properties: three drug-related categorical properties (Wu et al.,575

2018)—(1) HIV virus replication inhibition (HIV), (2) blood-brain barrier permeability (BBBP),576

and (3) human β-secretase 1 inhibition (BACE)—and five continuous material properties (Thornton577

et al., 2012)—(4) CO2 permeability (CO2Perm), (5) N2 permeability (N2Perm), (6) O2 permeability578

(O2Perm), (7) fractional free volume (FFV), and (8) thermal conductivity (TC).579

First, we check existing sources for annotations of these properties. To enrich the label space, we use580

well-trained GNN models (Liu et al., 2022) to generate confident pseudo-labels, following the method581

in (Liu et al., 2023a). We collect all labeled data to train two supervised multi-task GIN models for582

drug and material property annotation. The GIN models employ rationalization techniques (Liu et al.,583

2024a) to split the molecular graph into rationale and environment subgraphs in the latent space,584

predicting labels from the rationale subgraph. The confidence score is computed by combining the585

rationale subgraph with various environment subgraphs, using the reciprocal of prediction variance.586

We annotate properties when prediction confidence exceeds the median threshold.587

C.2.3 Creation of Text Data for Molecular Description588

In addition to property annotations, we consider structural and synthesis information of the molecules589

using RDKit and heuristic complexity estimation scores. First, for any molecule, we extract the590

following structural information:591
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• Scaffold: Extracted scaffold from the molecule structure.592

• Molecular Weight: Calculated using the molecular weight descriptor.593

• Number of Rings: Total number of rings in the molecule.594

• Number of Aromatic Rings: Total number of aromatic rings in the molecule.595

• Number of Aliphatic Rings: Total number of aliphatic rings in the molecule.596

• Number of Rotatable Bonds: Total number of rotatable bonds in the molecule.597

• Number of Hydrogen Bond Donors: Total number of hydrogen bond donors.598

• Number of Hydrogen Bond Acceptors: Total number of hydrogen bond acceptors.599

Next, we compute the synthetic accessibility score (SAScore) (Ertl & Schuffenhauer, 2009) and600

SCScore (Coley et al., 2018). Based on this information, we use the following template:601

Generate a summary description that starts directly with "The602

molecule/polymer ..." based on the predicted chemical603

properties , synthetic complexity scores , and structural604

information for the molecule with SMILES: {{ smiles }}. Use your605

own knowledge , focus on functions , and avoid using numbers ,606

redundant words , or mentioning SMILES. Ensure the output607

sentence is complete and ends with a period. This is for608

Drug/Material Utility of a Molecule/Polymer:609

610

The structural context of a molecule includes its scaffold ,611

which is the core structure around which the molecule is612

built. Key structural features include the presence of613

aromatic rings , aliphatic chains , and common functional groups614

such as hydroxyl , carboxyl , and amino groups. The complexity615

of the molecule ’s structure can significantly influence its616

physical and chemical properties.617

Scaffold: {{ scaffold }}618

Molecular Weight: {{mw}}619

Number of Rings: {{ num_rings }}620

Number of Aromatic Rings: {{ num_arom_rings }}621

Number of Aliphatic Rings: {{ num_aliph_rings }}622

Number of Rotatable Bonds: {{ num_rot_bonds }}623

Number of Hydrogen Bond Donors: {{ num_h_donors }}624

Number of Hydrogen Bond Acceptors: {{ num_h_acceptors }}625

626

{utility_context}627

{{ properties }}628

The pre-defined utility context for the small molecule is as follows:629

The drug utility of a molecule is assessed based on its630

potential to serve as a therapeutic agent. Key properties631

considered include pharmacokinetics , which encompasses632

absorption , distribution , metabolism , excretion (ADME), and633

toxicity. Bioactivity is another critical factor , measured by634

the molecule ’s ability to interact with biological targets ,635

typically through binding affinity. Additionally ,636

drug -likeness , which refers to the molecule ’s adherence to637

established rules such as Lipinski ’s Rule of Five , is638

essential. This rule evaluates molecular weight , hydrogen bond639

donors and acceptors , and lipophilicity to predict a640

molecule ’s suitability as an oral drug.641

The pre-defined utility context for the polymer is as follows:642
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The material utility of a molecule , particularly for creating643

polymeric materials , is evaluated based on properties like644

mechanical strength , flexibility , and thermal and electrical645

behavior. For polymer membranes used in gas separation ,646

crucial factors include gas permeability , which determines the647

efficiency of gas diffusion , and chemical stability , ensuring648

resistance to degradation. Additionally , thermal properties649

such as melting point and thermal conductivity are vital , as650

they affect the material ’s performance under various651

temperature conditions. Electrical properties , such as652

conductivity and dielectric constant , may also be significant653

depending on the intended application.654

For the property variable, we include the property name with values, as well as the minimum,655

maximum, and percentile among the labels in the template. We repeat all annotated properties in the656

property variable. The estimated synthesis complexity scores are included among them.657

We also prompt Llama-3-70B to generate short responses of 50-70 words, producing a molecular658

description for each molecule based on its properties, structures, and synthesis estimation. If a659

molecule has a description from PubChem (Kim et al., 2021), we concatenate these descriptions.660

The generated texts may not always be meaningful or valid. We can establish filter rules based on661

patterns observed in poorly generated texts to remove them. We then regenerate texts for these items.662

After several iterations, we obtain the final text data for molecular utility descriptions, improving663

overall text quality. We also apply this strategy to other steps that involves prompting LLMs for664

synthetic data creation.665

C.2.4 Creation of Question Answering Data666

After annotating molecular description texts from appendix C.2.3, we combine them with reaction667

descriptions, including the reaction formula and template from synthesis routes in appendix C.2.1.668

This forms the answer data in a QA data pair.669

Next, we prompt Llame-3-70B to generate questions for each answer based on the following template.670

I’m creating a question -answer dataset for LLM fine -tuning.671

The question is about designing a molecule/polymer with these672

properties: {property_info} and the following structure673

information: {structure_info }.674

The expected answer for the question is: {answer}675

Generate a SINGLE question about designing and synthesizing676

such a molecule/polymer that meets these criteria:677

(1) Start with ’Question:’; (2) End with a question mark;678

(3) Sound natural; (4) Be diverse; (5) Avoid redundancy and679

introductory words (like ’Here is a question that meets the680

criteria:’)681

(6) Do not include the answer; (7) Do not include incorrect682

information.683

684

Example questions:685

(1) How can I design and synthesize a molecule with X, Y, and686

Z properties?687

(2) What is the best way to create a polymer with X, Y, and Z688

characteristics?689

(3) How to design a molecule with X, Y, and Z features and690

synthesize it?691

(4) I want a molecule with X, Y properties and Z structures.692

Please design it and describe the synthesis path.693

The template is applied to any answer with the corresponding structure, property information, and694

complete answer texts.695
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C.3 Details on the Creation of MolPair696

MolPair consists of two parts: reaction-text pairs and graph-text pairs. We curate reaction-text pairs697

from USPTO (Lowe, 2017), pairing each reaction with its corresponding description of the reaction698

conditions. We first deduplicate product molecules in reactions, obtaining input data as the product699

molecule alongside the reaction condition texts. Next, we extract reaction templates from the reaction700

formula using rdchiral (Coley et al., 2019), resulting in approximately 300K templates, which will701

serve as labels for predictions. Finally, we have approximately 1.6 million training examples.702

For the graph-text pairs, we use small molecules and polymers from the multisource collection,703

excluding those in MolQA. We follow the same pipeline used to create property and text annotations704

for the MolQA data, focusing on broader properties that describe drug-related utility with 41 small705

molecule properties (Swanson et al., 2024). Besides the three used in MolQA, others include:706

• Toxicity and Safety: AMES, Carcinogens Lagunin, ClinTox, DILI, Skin Reaction, hERG707

• Enzyme Interaction: CYP1A2 Veith, CYP2C19 Veith, CYP2C9 Substrate CarbonMangels,708

CYP2C9 Veith, CYP2D6 Substrate CarbonMangels, CYP2D6 Veith, CYP3A4 Substrate709

CarbonMangels, CYP3A4 Veith710

• Absorption, Distribution, Metabolism, and Excretion (ADME): BBB Martins, Bioavailability711

Ma, Caco2 Wang, Clearance Hepatocyte AZ, Clearance Microsome AZ, HIA Hou, Half712

Life Obach, Hydration Free Energy FreeSolv, Lipophilicity AstraZeneca, PAMPA NCATS,713

PPBR AZ, Pgp Broccatelli, Solubility AqSolDB, VDss Lombardo714

• Stress Response: SR-ARE, SR-ATAD5, SR-HSE, SR-MMP, SR-p53715

• Nuclear Receptor Interaction: NR-AR-LBD, NR-AR, NR-AhR, NR-Aromatase, NR-ER-716

LBD, NR-ER, NR-PPAR-gamma717

We describe polymeric material utility based on 14 polymer properties collected from Otsuka et al.718

(2011):719

• Thermal Properties: Melting temperature [°C]; Specific heat capacity at constant pressure720

(Cp) [cal/(g·°C)]; Specific heat capacity at constant volume (Cv) [cal/(g·°C)]; Thermal721

conductivity [W/(m·K)]722

• Physical & Thermodynamic Properties: Density [g/cm3]; Fractional Free Volume (dimen-723

sionless); Radius of Gyration (Rg) [nm]724

• Permeability Properties: Gas diffusion coefficient (D) [cm2/s]; Gas permeability coefficient725

(P ) [cm3 (STP)·cm/(cm2·s·Pa)]; Oxygen (O2) Gas Permeability (Barrer); Nitrogen (N2)726

Gas Permeability (Barrer); Carbon Dioxide (CO2) Gas Permeability (Barrer)727

• Solubility Properties: Gas solubility coefficient (S) [cm3 (STP)·cm/(cm2·s·Pa)]728

• Dielectric & Optical Properties: Dielectric constant.729

We train two multi-task GIN models based on the rationalization method (Liu et al., 2022) using all730

existing labeled data for drug and material property prediction, respectively. We use these models731

to predict properties for millions of small molecules and polymers, retaining the top ten thousand732

predictions by confidence score for each property. These are then used to prompt Llama-3-70B to733

create molecular descriptions, using the same prompt template as in appendix C.2.3. Additionally, we734

apply the same strategy as in appendix C.2.3 to annotate labels for the eight studied properties, which735

can serve as input for pretraining the multi-conditional Graph DiT. Finally, we have approximately736

300K graph-text pairs for small molecules and 300K graph-text pairs for polymers.737

D Additional Pre-training and Fine-tuning Details738

We pre-train three graph models including Graph DiT (Liu et al., 2024c) for multi-conditional739

molecular generation, a GIN-based GNN predictor for reaction template prediction, and a GIN-based740

graph encoder for molecule understanding (Xu et al., 2018).741
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D.1 Pre-training of Graph Diffusion Transformer742

Suppose the node has FV categories and the edge has FE categories (including non-bond). Graph743

DiT models the node token by concatenating all its edge configurations to other nodes. For each node744

x ∈ RF , we have F = FV +NG × FE , where NG denotes the graph size. This facilitates defining745

the transition matrix Q for the joint distribution of nodes and edges (Liu et al., 2024c). Graph DiT746

uses Transformer layers, replacing layer normalization with adaptive layer normalization (AdaLN):747

AdaLN (h, c) = γθ(c)⊙
h− µ (h)

σ (h)
+ βθ(c),

where h denotes the hidden state of x and c is the vector representing the input conditions.748

Given multiple conditions with categorical, continuous properties, and text, Graph DiT749

uses one-hot encoding for categorical properties and a clustering-based approach with750

Linear (Softmax (Linear(c))) to embed continuous condition values c. We employ pre-trained751

SciBERT (Beltagy et al., 2019) to embed input texts into a 768-dimensional vector by averaging the752

representations of all text tokens in the sentence, then using a linear layer to adjust the dimension753

for Graph DiT. For each condition, the model also learns a drop embedding. The drop embedding is754

used when no values are provided. Finally, the model sums the representation vectors of different755

conditions as input for c. In the reverse diffusion process, the denoising model uses predictor-free756

guidance to sample molecular graphs given multiple conditions. We pre-train the denoising model757

with the loss function in Eq. (2) using 600K graph-text pairwise data and the eight properties defined758

in appendix C.3. The model employs the following hyperparameters: depth of 28, hidden size of759

1024, 16 heads, and MLP hidden size of 4096. The total model size is around 574 million parameters.760

We pre-train the model for 45 epochs, which takes approximately one week on a single A100 card.761

D.2 Pre-training of GNNs762

We pre-train a three-layer GIN to predict reaction templates among 30,124 labels, using a hidden763

size of 512. Reaction template prediction is a multi-class classification task. Given reaction-text764

pairs from MolPair, we extract the product molecular graph from the reaction formula, using the765

reaction condition text as input. SciBERT (Beltagy et al., 2019) is used as the text encoder with766

frozen parameters. We average the text representations to obtain a sentence-level representation.767

The prediction target is the reaction template extracted from the reaction (Coley et al., 2019). GIN768

naturally uses molecular graphs, employing the AdaLN approach as the normalization layer added769

after each message-passing layer to incorporate text conditions. We pre-train the model for 5 epochs770

on a single V100 card, with 632 million parameters. This model serves as the reaction predictor to771

suggest reaction templates for Llamole.772

For molecular understanding, we pre-train a five-layer GIN model with a hidden size of 768. SciB-773

ERT (Beltagy et al., 2019) is used as the text encoder with frozen parameters. We average the text774

representations to obtain a sentence-level representation, while the GIN model uses sum pooling to775

produce the graph representation. For each graph-text pair from MolPair, we optimize the graph776

encoder using the CLIP loss (Radford et al., 2021) for 40 epochs. The CLIP loss consists of two777

contrastive losses: it first computes the similarity score between graph-text pairs, then contrasts it778

with all other similarity scores by pairing the graph with other texts and pairing the text with other779

graphs as negative pairs. The model has around 43 million parameters. The model can be pre-trained780

on a single V100 card in a few days. This graph encoder will replace the word encoder in the LLM781

tokenizer module for molecules indicated by the token <molecule> as shown in appendix B.782

D.3 Fine-tuning of Llamole783

Llamole is fine-tuned on graph-text multimodal instruction data, freezing the parameters of the Graph784

DiT, GNN predictor, and graph encoder. It automatically adds eight query tokens to the sequence785

once the trigger tokens are predicted, allowing the base LLM to continue autoregression and output786

vectors for all eight query tokens. We average these output vectors as queries for prior generated787

texts and use them as input text vectors for the subsequent Graph DiT or GNN predictor module via a788

tunable linear layer. For the <molecule> token, we add a tunable linear layer on top of the token789

embedding after the graph encoder outputs it. Without loss of generality, we study three variants790

of Llamole with different base LLMs: Llama-3.1-8B (Dubey et al., 2024), Mistral-7B (Jiang et al.,791
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Figure 8: Overall Comparison of LLMs for Controllability and Synthesizability: Performance is
ranked by averaged BA/MAE (x-axis) and retrosynthesis success rate (y-axis). Circle size indicates
model size. LLMs with ICL, SFT, and Llamole are highlighted in blue, orange, and red, respectively.

2023), and Qwen2-7B (Yang et al., 2024). All LLMs are fine-tuned using LoRA (Hu et al., 2021) for792

four epochs, taking approximately two days on a single A100 card.793

E Additional Experimental Details and Discussions794

E.1 Additional Details on Experimental Set-ups795

In Tables 1 and 2 and Figures 1, 8a and 8b, Llamole is compared with fourteen LLMs with sizes rang-796

ing from 7B to 70B, including Llama (Dubey et al., 2024), Mistral (Jiang et al., 2023), Qwen (Yang797

et al., 2024), Granite (Abdelaziz et al., 2024), and Flan-T5 (Chung et al., 2024). We prefer the instruct798

version of the model when available.799

Using the MolQA training set, previous work can implement these LLMs in two ways: in-context800

learning (ICL) and text-only supervised fine-tuning (SFT). For ICL, we retrieve five closest QA pairs801

from the training set based on the average property difference from desired properties. The template802

used to construct the prompt with demonstrations is:803

I’m working on designing and synthesizing molecules. Here are804

some example questions and answers about molecular805

requirements , design , and synthesis: {{ examples }}806

Now , based on these examples , please answer the following807

question about molecular design and synthesis: {{ question }}808

For SFT, we fine-tune the LLMs with LoRA after converting molecules into SMILES strings.809

The MolQA test set contains 9,986 QA pairs for small molecules in drug applications and 750 pairs810

for polymeric materials. The questions serve as input to prompt the LLMs to generate responses.811

For the controllability of multi-conditional molecular generation, we evaluate up to 12 metrics across812

four aspects: (1) chemical validity, (2) similarity to the truth based on Morgan fingerprints, (3) BLEU-813

4 and ROUGE-L scores compared to reference texts, and (4) deviation from desired properties. For814

polymer validity, we further examine whether the generated molecular structures contain at least two815

polymerization points (“*”). To obtain the properties of the designed structure, we define an oracle816

function based on well-trained random forests from all annotated molecules, following previous817

work (Gao et al., 2022; Liu et al., 2024c). We evaluate three drug-related categorical properties using818

balanced accuracy (BA) and five continuous material properties using mean absolute error (MAE). As819

a baseline, we consider GraphGA (Gao et al., 2022) to reference the performance of LLMs compared820

to domain-specific methods.821
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Table 4: Text Generation for Reaction Conditions: Best results and best baselines are highlighted.
In-Context Learning

Llama-2-7B Mistral-7B Qwen2-7B Llama-3-8B Llama-3-8B Flan-T5-XXL Granite-13B Llama-2-13B Mistral-8x7B Llama-2-70B Llama-2-70B

BLEU-4 0.021 0.036 0.005 0.107 0.130 0.077 0.051 0.048 0.136 0.054 0.059
ROUGE-L 0.112 0.141 0.095 0.205 0.250 0.202 0.159 0.149 0.248 0.152 0.164

Supervised Fine-tuning Llamole
Mistral-7B Qwen2-7B Llama-3-8B Llama-3.1-8B Mistral-7B Qwen2-7B Llama-3.1-8B

BLEU-4 0.085 0.141 0.114 0.111 0.049 0.074 0.085
ROUGE-L 0.191 0.222 0.195 0.201 0.192 0.262 0.268

For retrosynthesis, we evaluate the success rate from the designed molecule to those available in822

Gavail, purchasable from the Enamine Building Block (June 2024 version), supplemented with other823

common ions and starting materials, totaling around 1.3 million.824

E.1.1 Set-ups for Figure 1825

For Figure 1, we average the balanced accuracy for three drug-related properties and five MAEs826

for the polymeric material properties. We then select the model with the best performance in each827

category based on these average metrics. For drug tasks, the best ICL model is Llama-3-8B-ICL, the828

best SFT model is Mistral-7B-SFT, and the best Llamole variant is based on Qwen2-7B. For material829

tasks, the best ICL model is Llama-3-70B-ICL, the best SFT model is Llama-3-8B-SFT, and the best830

Llamole variant is based on Llama-3.1-8B. Their average performance is visualized in Figure 1 in831

comparison with GraphGA.832

E.1.2 Extraction of SMILES from LLM Responses833

ICL or SFT-based LLMs generate free-form text that includes both natural language and SMILES-834

represented molecular structures. We need a method to automatically extract SMILES strings from835

LLM outputs for evaluation. Practically, one can observe generation patterns to summarize rules for836

regular expressions to accomplish this. In the MolQA training set, the designed molecular structures837

typically follow the phrase ”the designed molecule is:” as shown in examples Figures 9 and 10. LLMs838

may not always adhere strictly to this pattern, so we may need to extend this rule to cover more839

cases. In the future, more sophisticated regular expressions could be developed to extract SMILES840

strings from text directly. However, these will still need to be combined with additional rules to841

identify the designed molecules, as LLMs may generate intermediate SMILES strings before and842

after the designed molecule. Compared to them, Llamole uses <design start> or <retro start>843

to indicate the position of generated molecular structures.844

E.2 Additional Discussion on One-Step Generation845

We further examine the text generation results for reaction conditions. Since the answer represents846

just one possibility in retrosynthesis, we use the template to retrieve the best-matching reaction847

condition descriptions as references for Table 4, based on the available templates within the USPTO848

reaction space. One template may correspond to thousands of reactions, so we limit our search to five849

items to manage costs while identifying the best matching generated and reference pairs.850

The results of generating reaction texts are shown in Table 4, where Llamole achieves the highest851

ROUGE-L but low BLEU-4 scores. The best ROUGE-L score for Llamole indicates its capacity to852

understand and maintain the overall structure of the answer after fine-tuning. The lower BLEU-4853

scores may result from the A* search nature in Llamole, which explores a vast space (300K) of854

possible reactions, leading to fewer exact n-gram matches with reference sentences. The many-855

to-many relationships between products and reactants, along with various conditions for the same856

reaction, diminish BLEU-4’s effectiveness in evaluating Llamole’s capabilities. Overall, Llamole857

is not merely memorizing reaction conditions but actively exploring possibilities, yielding more858

contextually coherent and meaningful outputs.859

E.3 Additional Discussion on Case Studies860

We present case studies for baseline LLMs using the same question as in Figure 6. Results are861

shown in Figure 6. The reference indicates one possible ground truth for molecular design with862
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retrosynthetic pathways, noting that many alternatives exist. Compared to the reference, results863

in Figure 6 demonstrate that Llamole designs another molecule with similar structures, properties,864

and shorter synthesis routes, showcasing its potential for controllability and generating synthesizable865

molecules. Using ICL, Qwen2-7B fails to generate meaningful responses, despite indicating it866

possesses rich knowledge about molecular design. SFT allows Qwen2-7B to more strictly follow867

instructions, producing meaningful responses. However, text-only generation leads to hallucinations,868

as the generated templates do not yield expected products in retrosynthetic planning.869

Another example based on Llama-3.1/3-8B is provided in Figure 10. The ICL method may copy870

from the demonstrations to get the SMILES string CC(=O)C=Cc1cc(Cl)ccc1Cl. It also includes871

one SMILES string before the designed molecule, such as CN(C)c1ccc(C=NNc2ccc(I)cc2)cc1.872

However, it does not follow the instruction pattern and is therefore not automatically extracted for873

evaluation, as illustrated in appendix E.1.2. SFT follows the instructions through fine-tuning, using874

the pattern ”the designed molecule is:” but generates invalid structures with meaninglessly repeated875

sentences. In contrast, Llamole generates meaningful and valid molecular structures that generally876

satisfy the question’s requirements. During text generation for molecular design, Llamole analyzes877

the question and includes more details about desirable structures, such as “aromatic rings” and878

“aliphatic chains”. Some functional groups, like hydroxyl, may not be precisely represented in the879

structure. This indicates a need for enhanced text instruction adherence in Graph DiT.880

In addition to small molecules, we present a polymer inverse design case in Figure 11 based on881

Qwen2-7B. The polymer has polymerization points denoted by “*” in the reference structure. Since882

polymerization reactions are not considered, we focus on the retrosynthetic routes to the monomer883

structures by replacing polymerization points with hydrogen atoms. In this case, ICL-based Qwen2-884

7B fails molecular design due to the same issue as in Figure 9, not following instructions to generate885

polymer structures. SFT-based Qwen2-7B generates a polymer in SMILES format but invalid in886

chemical space. In contrast, Llamole successfully generates valid molecular structures through Graph887

DiT, satisfying the requirements of ”high CO2 permeability and low permeability to N2 and O2,” and888

suggests a two-step retrosynthetic pathway for the monomer structure.889
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“Can you design and synthesize a molecule that inhibits both Human Immunodeficiency Virus and Beta-
Secretase 1, with a molecular weight of around 335 and two aromatic rings connected to aliphatic chains?”

Question

ICL
“Designing and synthesizing a molecule that inhibits both Human Immunodeficiency Virus (HIV) and Beta-Secretase 1 (BACE1) would involve creating a complex structure with specific functional 
groups that target each enzyme. The goal would be to incorporate a scaffold that can interact with the active sites of both HIV and BACE1. Here's a conceptual design and synthesis strategy for such a 
molecule:  ### Molecular Design  #### Requirements: - **Molecular Weight**: Around 335 - **Two Aromatic Rings**: Connected to aliphatic chains - **Functional Groups**: Likely to include 
groups that can bind to viral structures (for HIV inhibition) and to the catalytic sites of BACE1 (for BACE1 inhibition) - **Hydrophobicity**: Adequate for intracellular penetration -
**Aromaticity**: To ensure stability and interactions with the target enzymes - **Rotatable Bonds**: For flexibility aiding in optimal binding  #### Potential Molecular Structure A possible structure 
could contain two aromatic rings, one serving as a main binding site for HIV and the other for BACE1. The aromatic rings might be connected to branched aliphatic chains to balance lipophilicity and 
flexibility.  ### Synthesis Route  **Step 1: Synthesis of Aromatic Core** - **Objective**: Prepare a stable aromatic ring system with appropriate substituents for targeted enzyme interaction. -
**Method**: Use a multi-step synthesis involving condensation reactions, halogenation, or other functional group manipulations to create the necessary aromatic core. For example, starting with 
alkene or alkyne compounds, perform a Diels-Alder reaction or electrophilic addition reactions to introduce the first aromatic ring. Subsequent steps could involve further modifications such as 
halogenation, introduction of functional groups like carboxylic acids, and amine functionalities.  **Step 2: Functionalization and Linkage** - **Objective**: Introduce functional groups that can 
interact with HIV and BACE1. - **Method**: Use nucleophilic substitution reactions, addition reactions, or direct coupling methods (e.g., click chemistry) to attach the required functional groups to 
the aromatic cores. This could involve attaching groups like sulfonamides for HIV inhibition and benzyl esters or acetyl groups for BACE1 inhibition.  **Step 3: Connecting Aliphatic Chains** -
**Objective**: Join the two aromatic systems via aliphatic chains to ensure spatial configurations suitable for enzyme binding. - **Method**: Carry out a series of aldol reactions, Diels-Alder 
reactions, or conjugated addition reactions to connect the functionalized aromatic rings through aliphatic bridges. The choice of aliphatic chains will depend on balancing the desired hydrophobicity 
and flexibility.  **Step 4: Protection and De-protection** - **Objective**: Protect sensitive functional groups during synthesis and deprotect them just before final purification. - **Method**: Use 
standard protecting group strategies to safeguard functional groups that might react undesirably during synthesis. Common protecting groups include t-Bu, Fmoc, or Boc groups, depending on the 
functional groups involved.  **Step 5: Purification and Characterization** - **Objective**: Isolate the target molecule and confirm its purity and structure. - **Method**: Employ techniques such as 
column chromatography, HPLC, or preparative TLC to purify the molecule. Use spectral analysis (NMR, MS) to verify the structure and confirm the molecular weight.  ### Notes:  - **Validation**: 
Post-synthesis, validate the antiviral and enzyme inhibitory activities through biochemical assays targeting HIV replication and BACE1 activity. - **Toxicology Studies**: Conduct preliminary 
toxicological assessments to ensure safety profiles for desired in vitro and potentially in vivo applications. - **Optimization**: Iterate the design and synthesis based on biological activity data, 
modifying the structure to enhance potency and specificity.  Please note that this is a conceptual design and synthesis pathway. Actual molecular design and synthesis require detailed planning, access 
to necessary reagents, equipment, and expertise in organic synthesis. Additionally, the synthesis of drugs that target multiple pathways is complex and typically involves a multidisciplinary approach 
combining medicinal chemistry, biology, and pharmacology.”

(Error: Repeating many times with invalid structure)

Reference Answer
“To satisfy the requirements: The molecule has a moderately complex structure, consisting of aromatic rings connected to aliphatic chains, and 
featuring carboxyl and hydroxyl functional groups. Therefore, the designed molecule is: <molecule_1>. 

This is step 1 of 3 in the synthesis process. To synthesize <molecule_1>, follow these procedures: A solution 
of (R)-acetic acid 3-(toluene-4-sulfonyloxy)-butyl ester (5.89 g, 21 mmol) and 4-chloro-2-phenoxy-phenol 
(5.0 g, 23 mmol) in DMF (50 mL) is treated with cesium carbonate (7.4 g, 23 mmol). The solution is heated to 
60\u00b0 C. and stirred overnight. The reaction is cooled and quenched with 1N HCl. The solution is partitioned in EtOAc and water. The organic 
is separated, washed with brine, and dried over sodium sulfate. The organic is filtered, and the solvent is removed to afford acetic acid 3-(4-chloro-
2-phenoxy-phenoxy)-butyl ester, which is then diluted in methanol (100 mL) and treated with potassium carbonate (5.68 g, 40 mmol). The reaction 
is stirred for 2 hours at rt. The reaction is then partitioned in EtOAc and water. The organic layer is separated, washed with brine, and dried over 
sodium sulfate. The organic is filtered and the solvent is removed to afford the crude product. The crude is purified by silica gel column 
chromatography using 1/1 hexanes/EtOAc to elute the pure product. The solvent is removed to afford 4.35 g (72%) of the desired product. 1H NMR 
(400 MHz, CDCl3); MS (ES+) m/z mass calcd for C16H17ClO3 292, found 293 (M+1, 100%). The applied reaction is <reaction_1>,which 
requires the reactants: <molecule_2> (available), <molecule_3> (available), <molecule_4> (not available, needs to be synthesized), [Cs+] 
(available), and [Cs+] (available).

This is step 2 of 3 in the synthesis process. To synthesize <molecule_4>, follow 
these procedures: A \u221240\u00b0 C. solution of 
4-chloro-2-phenoxy-1-methoxy-benzene (7.16 g, 30.5 mmol) in dry CH2Cl2 (70 mL) is treated dropwise with borontribromide (22.9 g, 91.5 mmol) 
and then warmed to 0\u00b0 C. and stirred for 3 h under N2. The reaction is diluted with Et2O and quenched with water. The organic layer is dried 
(Na2SO4), and the solvent is removed in vacuo to afford 7.11 g (100%) of the title compound. Rf=0.30 (4/1 hexanes/acetone). 1H NMR (400 MHz, 
CDCl3); MS (ES\u2212) m/z mass calcd for C12H9O2Cl 220, found 219 (M\u22121, 100%). The applied reaction is: <reaction_2>, which 
requires the reactants: <molecule_5> (not available, needs to be synthesized). 

This is step 3 of 3 in the synthesis process. To synthesize <molecule_5>, follow these procedures: A mixture of 
2-bromo-4-chloro-1-methoxy-benzene (8.0 g, 36.1 mmol), phenol (6.80 g, 72.2 mmol), cesium carbonate 
(23.54 g, 72.2 mmol), copper (I) chloride (1.79 g, 18.1 mmol) and 2,2,6,6-tetramethyl-3,5-heptanedione (1.66 g, 9.00 mmol) 
in dry 1-methyl-2-pyrrolidinone (80 mL) is heated to 120\u00b0 C. for 20 hours under N2. The reaction is cooled, filtered and the filtrate quenched 
with 1 N HCl (50 mL). The filtrate is diluted with Et2O and extracted with water. The organic layer is dried (Na2SO4), and the solvent is removed 
in vacuo to afford crude product that is absorbed on silica gel and purified by flash 
chromatography using 9/1 hexanes/EtOAc to afford 7.42 g (88%) of the title 
compound. Rf=0.37 (4/1 hexanes/EtOAc). The applied reaction is: <reaction_3>, 
which requires the reactants: <molecule_6> (available), <molecule_7> (available), 
<molecule_3> (available), [Cs+] (available), [Cs+] (available), and <molecule_8>(available).”

<molecule_1>

<reaction_2> <molecule_5>

<molecule_2> <molecule_3> <molecule_4><reaction_1>

<reaction_3> <molecule_6> <molecule_7> <molecule_8>

SFT 
To satisfy the requirements: The molecule is a moderately complex structure comprising two aromatic rings connected to aliphatic chains, which 
may influence its physical and chemical properties. Therefore, the designed molecule is: Cc1ccc(C(=O)C(N)c2cc(C#N)ccc2OC(F)(F)F)cn1. This is 
step 1 of 1 in the synthesis process. To synthesize Cc1ccc(C(=O)C(N)c2cc(C#N)ccc2OC(F)(F)F)cn1, follow these procedures: In like manner to the 
preparation of N-(4-benzyloxycarbonyl-2-cyano-3-hydroxyphenyl)-5-methylisatin, 2-amino-5-(2,2,2-trifluoroethoxy)benzonitrile (0.098 g; 0.46 
mmol) was reacted with 6-methyl-pyridine-3-carbonyl chloride (0.073 ml; 0.55 mmol) to obtain N-[5-methyl-2-(2,2,2-trifluoroethoxy)-4-pyridinyl]-
5-methylisatin as an off-white powder (0.062 g). The applied reaction is: 
Cc1ccc(C(=O)C(N)c2cc(C#N)ccc2OC(F)(F)F)cn1>>Cc1ccc(C(=O)Cl)cn1.N#Cc1ccc(OCC(F)(F)F)cc1N with the template [#7;a:5]:[c:4]:[c:3]-
[C;H0;D3;+0:1](=[O;D1;H0:2])-[NH;D2;+0:7]-[C:6]>>Cl-[C;H0;D3;+0:1](=[O;D1;H0:2])-[c:3]:[c:4]:[#7;a:5].[C:6]-[NH2;D1;+0:7], 
which requires the reactants: Cc1ccc(C(=O)Cl)cn1 (available), and N#Cc1ccc(OCC(F)(F)F)cc1N (available). 
(Error: Retrosynthesis fails since the template application did not yield the expected products)

Generated Reaction Generated Template

Mismatch

Figure 9: Reference Answer with Generation Results from ICL or SFT Using the base LLM Qwen2-
7B. The question is the same as in Figure 6.
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What is a possible molecular structure that can penetrate the blood-brain barrier and inhibit Human 
Immunodeficiency Virus, given a molecular weight of 209.249 and specific ring and bond characteristics?

Question

ICL
Based on the given molecular weight and ring and bond characteristics, a possible molecular structure that can penetrate the 
blood-brain barrier and inhibit Human Immunodeficiency Virus is: CN(C)c1ccc(C=NNc2ccc(I)cc2)cc1. This molecule has a moderate 
synthetic complexity and accessibility scores, indicating that it might be relatively challenging to synthesize. Its molecular weight and 
number of aromatic rings contribute to its moderate complexity. The presence of hydroxyl and amino functional groups suggests possible hydrogen bonding capabilities. The molecule's scaffold is 
composed of two aromatic rings linked by an amino group, which could influence its physical and chemical properties. The molecular structure is designed to be able to penetrate the blood-brain barrier 
and inhibit Human Immunodeficiency Virus. The applied reaction is: CN(C)c1ccc(C=NNc2ccc(I)cc2)cc1>>CN(C)c1ccc(C=O)cc1.NNc1ccc(I)cc1, which requires the reactants: CN(C)c1ccc(C=O)cc1 

(available), and NNc1ccc(I)cc1 (available). Question: What is a feasible molecular design that incorporates an aromatic ring and a carboxyl 
functional group, with a molecular weight around 215 and only two rotatable bonds? Answer: To satisfy the requirements: The 
molecule has a relatively low synthetic complexity, featuring an aromatic ring and a carboxyl functional group, and is likely to
be easily synthesized. Therefore, the designed molecule is: CC(=O)C=Cc1cc(Cl)ccc1Cl. This is step 1 of 1 in the synthesis process. To synthesize 
CC(=O)C=Cc1cc(Cl)ccc1Cl, follow these procedures: In water (500 ml) was dissolved sodium hydroxide (4.0 g), and to the mixture was added acetone (100 ml), and then 2,5-dichlorobenzaldehyde 
(15.9 g). The mixture was stirred at room temperature for 1 hour, and acetone was evaporated under reduced pressure. The residue was extracted with ethyl acetate, and the organic layer was washed 
with water and saturated brine, and concentrated under reduced pressure to give 4-(2,5-dichlorophenyl)-3-buten-2-one (19.0 g). The applied reaction is: 
CC(=O)C=Cc1cc(Cl)ccc1Cl>>O=Cc1cc(Cl)ccc1Cl.[2H]C([2H])([2H])C(=O)C([2H])([2H])[2H].[Na+].[OH-] with the template [O;D1;H0:5]=[C:4]-[CH;D2;+0:3]=[CH;D2;+0:1]-
[c:2]>>O=[CH;D2;+0:1]-[c:2].[CH3;D1;+0:3]-[C:4]=[O;D1;H0:5], which requires the reactants: O=Cc1cc(Cl)ccc1Cl (available), [2H]C([2H])([2H])C(=O)C([2H])([2H])[2H] (available), [Na+] 
(available), and [OH-] (available).

(Error: Copy the answer from the demonstrations)

Reference Answer
“To satisfy the requirements: The molecule has an aromatic ring and a common functional group of carboxyl, which suggests a 
certain level of structural complexity, likely influencing its physical and chemical properties, and indicating a moderate synthetic 
complexity score. Therefore, the designed molecule is: <molecule_1>. This is step 1 of 1 in the 
synthesis process. To synthesize <molecule_1>, follow these procedures: To a 
suspension of (tert-butoxy)-N-(5-nitro(2-pyridyl))carboxamide (0.27 g, 1.13 mmol) in methanol (2 mL), 
ethyl acetate (4 mL) and TEA (0.16 mL) was added 10% Pd/C (60 mg, 0.056 mmol) under argon. 
The reaction mixture was hydrogenated under 1 atm H2 for 20 hr, filtered through 
Celite and concentrated in vacuo to give 
N-(5-amino(2-pyridyl))(tert-butoxy)carboxamide (0.226 g, 97%). The applied 
reaction is: <reaction_1> with the template <template_1>, which requires
the reactants: <molecule_2> (available).”

SFT 
This is a moderately complex molecule with a scaffold consisting of an aromatic ring and an aliphatic chain. The presence of a 
carboxyl functional group and an amino group contributes to its overall synthetic complexity. Therefore, the designed molecule 
is: CCc1n[nH]c(-c2ccccc2C)n1C. This is a moderately complex molecule with a scaffold consisting of an aromatic ring and an aliphatic chain. The presence of a carboxyl 
functional group and an amino group contributes to its overall synthetic complexity. Therefore, the designed molecule is: CCc1n[nH]c(-c2ccccc2C)n1C... (repeat)

(Error: Repeating many times with invalid structure)

<molecule_1>

<reaction_1> <molecule_2>

<template_1>

Llamole
To satisfy the requirements: The molecule is characterized by the presence of aromatic rings, aliphatic chains, and common 
functional groups such as hydroxyl, carboxyl, and amino groups, which contribute to its moderate synthetic complexity. 
Therefore, the designed molecule is: <molecule_1> . To synthesize <molecule_1>, follow these procedures: 5 g of 3,4-dihydro-
2H-1,4-benzoxazin-4-one (prepared according to the procedure of Example 1, step 1) 
was dissolved in 30 ml of ethanol and 1.0 g of 10% Pd/C was added. The mixture was 
hydrogenated under atmospheric pressure at room temperature for 24 h. The catalyst 
was filtered off and the filtrate was evaporated under reduced pressure. 
The residue was crystallized from ethanol to give 2.5 g of the title compound 
as a yellow solid.  The applied reaction is: <reaction_1> with the 
template <template_1> which requires the reactants: <molecule_2>.  
To synthesize <molecule_2>, follow these procedures: 
3-[(2-Methoxy-5-methylphenyl)amino]-1-propanol (3.0 g, 14.6 mmol) 
and triethylamine (2.8 g, 28 mmol) were dissolved in methanol (20 ml) 
and cooled to 0\u00b0 C. 3-Bromopropanoic acid (1.0 g, 7.3 mmol) 
was added and the reaction stirred at 0\u00b0 C. for 2 h. The reaction 
was then allowed to warm to room temperature and stirred for 18 h. 
The reaction was concentrated and the residue was diluted with ethyl 
acetate (100 ml) and washed with 1N HCl (100 ml) and brine (100 ml). 
The organic layer was dried (MgSO4) and concentrated to give 
3-[(2-methoxy-5-methylphenyl)amino]propanoic acid 
(2.4 g, 12.2 mmol, 84% yield). The applied reaction is: 
<reaction_2> with the template <template_2> which requires 
the reactants: <molecule_3> (available), <molecule_4> (available).

<molecule_1>

<reaction_1> <molecule_2>

<template_1>

<template_2>

<reaction_2> <molecule_3> <molecule_4>

MolW: 289.08
HIV: 1
BBBP: 1

Figure 10: Reference Answer with Generation Results from ICL with Llama-3-8B and SFT and
Llamole with Llama-3.1-8B.
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What is the optimal molecular design and synthesis route for a polymer with high CO2 gas permeability and 
low permeability to N2 and O2, featuring an aromatic ring and specific functional groups?

Question

ICL
“To design and synthesize a polymer with high CO2 gas permeability and low permeability to N2 and O2, featuring an aromatic ring and specific functional groups, we should aim for a structure that 
allows for easy CO2 transport but restricts N2 and O2 passage. This usually involves the use of polymers with flexible structures that allow for easier diffusion through the polymer matrix, combined with 
appropriate functional groups that could either enhance CO2 binding or hinder the diffusion of smaller gases like N2 and O2. Given the specific molecular characteristics needed ( such as high CO2 
permeability and low permeability to N2 and O2, along with the presence of an aromatic ring, the following molecular design and synthesis route could be considered:  **Molecular Design:** 1. 
**Polymer Backbone:** Select an aromatic ring as the backbone, which can improve the stability of the polymer due to its inherent rigidity and electronic properties.  2. **Functional Groups:** 
Introduce functional groups that can enhance CO2 permeability while minimizing permeability for other gases. This might include groups like carbonyl ( (COOH, >C=O, etc.), which have been shown to 
enhance CO2 permeability in some materials. Additionally, incorporating \u03c0-\u03c0 stacking interactions through the aromatic rings or conjugated groups could help trap CO2 effectively without 
being as effective for smaller, nonpolar N2 and O2 molecules. 3. **Cross-linking and Branching:** Adding cross-links and branching in the polymer matrix can modify the morphology and reduce the 
tortuosity, thereby enhancing permeability while possibly limiting the diffusion paths for N2 and O2.  **Synthesis Route:** 1. **Preparation of Monomers:** Synthesize or obtain monomers that contain 
the desired functional groups and are compatible with an aromatic backbone. For example, monomers containing carboxylic acid (-COOH), aldehyde (>C=O), or other reactive sites that can form the 
desired structure after polymerization. 2. **Polymerization:** Use a suitable polymerization method such as radical, anionic, or condensation polymerization depending on the monomer types and 
desired polymer properties. For instance, if carboxylic acids are used, a condensation polymerization might be employed to introduce the aromatic ring backbone and functional groups simultaneously. 3. 
**Post-Polymerization Functionalization:** If necessary, carry out post-polymerization modifications to fine-tune the properties further. This might involve grafting or linking additional functional 
groups onto the polymer backbone to enhance the specific gas permeation characteristics. 4. **Characterization:** Analyze the synthesized polymer for its gas permeability, specifically towards CO2, 
N2, and O2, to ensure that the molecular design meets the required criteria. Techniques like permeability tests, gas adsorption, and spectroscopy could be used for this purpose. 5. **Optimization:** 
Based on the characterization results, optimize the molecular design or synthesis conditions as needed to maximize CO2 permeability while maintaining or minimizing N2 and O2 permeability.  In 
summary, the optimal molecular design would incorporate an aromatic backbone with strategically placed functional groups that facilitate CO2 transport while hindering the diffusion of N2 and O2, thus 
achieving the desired gas permeation properties. The synthesis route involves preparing the right monomers, selecting an appropriate polymerization method, potentially conducting post-polymerization 

modifications, characterizing the final polymer, and iteratively optimizing the design if necessary.”
(Error: Molecular design failed due to not following instructions)

Reference Answer
“To satisfy the requirements: The polymer, featuring an aromatic ring and functional groups such as carboxyl 
and hydroxyl, exhibits a moderate synthetic complexity score and high gas permeability, indicating potential 
for use in gas separation membranes with good efficiency. Therefore, the designed molecule is: 
<polymer_1>.This is step 1 of 1 in the synthesis process. To synthesize <polymer_1>, follow these 
procedures: Ethanol (3.2 mL, 54 mmol) and 4-dimethylamino pyridine (DMAP) (54 mg, 0.45 mmol) were 
added to a mixture of pyrrole-3-carboxylic acid (500 mg, 4.5 mmol) and dicyclohexylcarbodiimide (1.11 g, 5.4 mmol) (Aldrich, 
Milwaukee, Wis.) in tetrahydrofuran (THF) (15 mL). After 
heating at 60\u00b0 C. for 10 hours, the reaction was cooled. 
The precipitate was filtered off, washed with ethyl acetate, 
the combined filtrate was concentrated and purified on a silica 
gel column to give 500 mg (81%) of 1H-pyrrole-3 carboxylic acid ethyl ester as a 
colorless oil. The applied reaction is: <reaction_1> with the template <template_1>,
which requires the reactants: <molecule_2> (available), <molecule_3> (available), and <molecule_4> (available)”

SFT 
“The polymer has a relatively low synthetic complexity score, indicating it can be easily synthesized. Therefore, the designed molecule 
is: *Oc1cc(CC(=O)OC(C)(C)C)c(*)ccc1F. This is step 1 of 1 in the synthesis process. To synthesize 
Cc1cccc(F)c1CO.CC(C)(C)OC(=O)CCl, follow these procedures: 30 g (0.33 mol) of 3-fluoro-2-methylbenzyl alcohol are dissolved at 
5\u00b0 C. in 200 ml of dichloromethane and 55.6 g (0.40 mol) of titanium tetrachloride and then stirred with cooling at 5\u00b0 C. for 
15 minutes. A solution of 27.9 g (0.33 mol) of 2-chloroacetyl chloride in 50 ml of dichloromethane is added dropwise and the mixture is 
allowed to warm to room temperature and stirring is continued for 2 hours. The reaction mixture is extracted with water and the organic 
phase is washed with saturated sodium hydrogen carbonate solution, water once again and an aqueous saturated sodium chloride 
solution. The organic phase is dried over magnesium sulphate and concentrated. The residue is chromatographed on silica gel using 
cyclohexane/ethyl acetate (8:2). This gives the desired product in a yield of 31.3 g (70% of theory). The applied reaction is: 
Cc1cccc(F)c1CO>>Cc1cccc(F)c1CO.O=C(Cl)CCl with the template [C:2]-[CH2;D2;+0:1]-[OH;D1;+0:3]>>Cl-[CH2;D2;+0:1]-
[C:2].[O;H0;D1;+0:3]=[C;H0;D3;+0:4](-[C;D1;H3:5])-[C;H0;D3;+0:6](-[C:7])=[O;H0;D1;+0:8], which requires the reactants: 
Cc1cccc(F)c1CO (available), and O=C(Cl)CCl (available). Based on the provided information, the overall synthetic complexity score for this molecule is low, indicating that 

it can be easily synthesized. Therefore, the designed molecule is: CC(C)(C)OC(=O)CBr… (irrelavant)”
(Error: Molecular design failed due to invalid structure and not following instructions)

<polymer_1>

<template_1>

Llamole
“To satisfy the requirements: The polymer has a relatively low synthetic complexity score, 
indicating that it can be easily synthesized. The presence of an aromatic ring and common 
functional groups such as hydroxyl and carboxyl groups contributes to its structural 
complexity. Therefore, the designed molecule is: <polymer_1>. To synthesize 
<polymer_1>, follow these procedures: Mix 100.0 gms of meldrum acid hemiacetal 
and 150.0 gms of 10% palladium-on-charcoal in methanol and hydrogenate at 
atmospheric pressure for 4 hours. Remove the hydroxyl group and yields 134.2 gms
of 1,1,1-trifluoro-3-methoxy-2-propyne. The applied reaction is: <reaction_1>
with the template <template_1> which requires the reactants: <molecule_2>. 
To synthesize <molecule_2>, follow these procedures: 2.0 g (0.004 mol) of 
2,3-dihydro-1H-indol-4-ylboronic acid were suspended in 100 ml of ethanol and 
0.5 ml of acetic acid were added. The reaction mixture was heated 
at reflux for 24 hours. The reaction mixture was cooled to room 
temperature and concentrated under reduced pressure. The residue 
was purified by column chromatography on silica gel 
(eluent: ethyl acetate/hexane 1:1) to give 1.0 g (51%) of 
2,3-dihydro-1H-indol-4-ylboronic acid as a colorless powder. 
The applied reaction is: <reaction_2> with the  <template_2> which requires 
the reactants: <molecule_3> (available),  <molecule_4> (available).”

<reaction_1> <molecule_2>

<template_1>

<template_2>

<reaction_2> <molecule_3> <molecule_4>

<reaction_1> <molecule_2> <molecule_3><molecule_4>

<polymer_1>

CO2Perm:  18.3
N2Perm:  8.2
O2Perm: 10.7

Figure 11: A Case Study for the Polymer: We include the reference answer and the generation results
from ICL, SFT, and Llamole with Qwen2-7B.
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