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Abstract

Time series forecasting plays a vital role in various real-world applications and
has attracted significant attention in recent decades. While recent methods have
achieved remarkable accuracy by incorporating advanced inductive biases and
training strategies, we observe that instance-level variations remain a significant
challenge. These variations—stemming from distribution shifts, missing data, and
long-tail patterns—often lead to suboptimal forecasts for specific instances, even
when overall performance appears strong. To address this issue, we propose a
model-agnostic framework, PIR, designed to enhance forecasting performance
through Post-forecasting Identification and Revision. Specifically, PIR first iden-
tifies biased forecasting instances by estimating their accuracy. Based on this,
the framework revises the forecasts using contextual information, including co-
variates and historical time series, from both local and global perspectives in a
post-processing fashion. Extensive experiments on real-world datasets with main-
stream forecasting models demonstrate that PIR effectively mitigates instance-level
errors and significantly improves forecasting reliability. Our code is available2

1 Introduction

Time series forecasting is a fundamental task in time series analysis, attracting considerable attention
in recent years [40, 49]. Various applications have been facilitated by the advancement of forecasting,
including traffic planning [17], stock market prediction [23], healthcare analytics [19], and weather
forecasting [3, 59]. Recent years have witnessed significant efforts dedicated to this area, with deep
learning-based approaches achieving remarkable success due to their powerful ability to capture both
temporal [62, 63] and cross-channel dependencies [60, 30]. Furthermore, advanced inductive biases
and training strategies have been introduced to address the non-stationary nature of time series data
[20, 33] and to construct foundation models for time series forecasting [9, 32, 52].

Despite their satisfactory performance in overall evaluations, we emphasize that existing forecasting
approaches often overlook inherent instance-level variations, which can arise from the long-tail
distribution of numerical patterns in time series data and ultimately lead to forecasting failures in
specific cases. Specifically, time series typically represent the numerical reflections of complex and
dynamic real-world systems and are therefore prone to noise, sensor failures, and other anomalies
during data collection. These issues can result in potential distribution shifts [26], missing values
[42], or unforeseen anomalies [4]. Therefore, while most instances exhibit similar numerical patterns,
a subset may present rare behaviors, and mainstream forecasting methods often struggle to effectively
model these exceptional instances, leading to inaccurate or even unreliable forecasting outcomes.

∗Enhong Chen is the corresponding author.
2https://github.com/icantnamemyself/PIR
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(a) Per-instance MSE Curve (b) MSE Distribution

Figure 1: Per-instance MSE evaluation of PatchTST on the ETTh1 dataset and its corresponding
error distribution. The error varies among instances and exhibits a long-tail distribution due to the
instance-level variations.

To better illustrate this phenomenon, we present the per-instance Mean Squared Error (MSE) eval-
uation curve of PatchTST [37] on the ETTh1 dataset [62], along with the corresponding error
distribution visualized through both a histogram and a kernel density estimate in Figure 1. As shown
in the figure, while the MSE remains consistently low for the majority of instances, there exist specific
cases where PatchTST yields unsatisfactory forecasting results, as indicated by multiple spikes in
the error curve. Moreover, the error distribution clearly exhibits a long-tail pattern, reinforcing our
motivation and underscoring the challenges posed by the instance-level variations.

To this end, we propose the PIR framework, designed to enhance forecasting results via Post-
forecasting Identification and Revision, addressing the challenge from a novel post-processing
perspective. The framework comprises two key components. The first is the failure identification
mechanism, which identifies the potential biased forecasting instances where the model’s predictions
are less reliable, through estimating the forecasting performance on a per-instance level. The
second is a post-revision module, which refines the forecasts by leveraging contextual information
from both local and global perspectives. For the local revision, inspired by exogenous variable
modeling approaches [38, 50], we utilize immediate forecasts of covariates along with available
exogenous information such as timestamps [45] and textual descriptions [27] as side information to
implicitly mitigate the impact of instance-level variations within a local window. This approach is
grounded in the assumption that dependencies between covariates like lead-lag effects can provide
valuable insights into future trends [61], and exogenous information can serve as additional prior
conditions guiding the revision. For the global revision, the framework addresses rare or atypical
numerical patterns by explicitly retrieving similar instances from the global historical data [28].
This retrieval-based strategy enables the model to better capture long-tail patterns that may be
overlooked by conventional forecasting models. Finally, PIR integrates the original forecasts with its
revision outputs via a weighted sum, making it model-agnostic and broadly compatible with existing
forecasting architectures. The primary contributions of our work are summarized as follows:

• We are the first to highlight the existence of instance-level variations that can lead to
forecasting failures on certain cases, evident by the unsatisfactory performance of existing
forecasting methods at the per-instance level.

• We introduce PIR, a model-agnostic framework designed to address this challenge. The
framework estimates the forecasting performance to identify the potential failures and
utilizes contextual information to revise them from both local and global perspectives.

• We conduct extensive experiments on well-established real-world datasets, covering both
long-term and short-term forecasting settings with mainstream models. The results demon-
strate that the PIR framework consistently enhances forecasting accuracy, leading to more
reliable and robust performance.
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2 Related Work

2.1 Time Series Forecasting

Time series forecasting has been a central area of research for several decades. One of the earliest
landmark contributions was the development of statistical methods, which are celebrated for their
solid theoretical foundation and systematic approach to model design. Representative works in
this domain include ARIMA and Holt-Winters [5, 18], which have laid the groundwork for more
advanced methodologies. More recently, with the advancement of deep learning, numerous neural
forecasting models have been proposed, achieving superior performance. Recurrent Neural Networks
(RNNs) are among the first deep learning architectures applied to forecasting [51, 41], followed by a
variety of other structures, such as convolution-based models [21, 35, 7], attention-based networks
[22, 24, 63], and MLP-based architectures [39, 57, 25]. These models have demonstrated remarkable
capabilities in capturing both temporal and cross-channel dependencies within time series data,
leading to substantial improvements in forecasting accuracy.

Beyond advancements in model architecture, a range of specialized techniques rooted in time series
analysis has also emerged. These include methods for time series decomposition [54, 56], frequency
modeling [55], and approaches for non-stationary forecasting [20, 33], which address the unique
challenges presented by time series data. Besides, self-supervised pretraining has gained significant
attention as a powerful approach, with various training strategies being explored [53, 6, 58]. In
addition, recent efforts aim to construct foundational time series models capable of learning universal
representations and being applied to diverse downstream tasks [34, 9, 32, 52]. Moreover, some
pioneer works explore forecasting enhanced with the reasoning ability of LLMs [46, 36].

2.2 Context Modeling in Time Series Forecasting

In addition to forecasting based solely on multivariate time series data, several pioneering studies
have explored the incorporation of contextual information to enhance forecasting performance [1].
On one hand, some advancements focus on integrating exogenous information within a local window
during the forecasting process. For instance, TFT [24] and TiDE [8] leverage dense encoders to
process timestamp information, which is subsequently used to condition future forecastings. Similarly,
NBEATSx [38] and TimeXer [50] improves the forecasting accuracy of target variables by explicitly
modeling the influence of exogenous variables. On the other hand, some studies investigate the
potential of retrieving relevant time series from the global historical context. RATD [28] utilizes the
retrieved series as references to guide the denoising process of diffusion-based forecasters, and RATSF
[48] introduces the retrieval augmented cross-attention architecture for explicitly modeling similar
historical data. More recently, RAFT [14] achieves satisfactory performance through forecasting
enhanced with multi-period retrieval.

Different from existing methods, our proposed PIR framework tackles a novel research challenge:
mitigating the impact of instance-level variations that can lead to forecasting failures in certain cases.
The framework begins by identifying the potential failure instances through estimating their accuracy,
and then revises the forecasts by leveraging available contextual information from both local and
global perspectives in a post-processing manner. As a result, PIR functions as a model-agnostic plugin,
allowing it to be seamlessly integrated into arbitrary forecasting models for enhanced performance.

3 Methodology

In this section, we will delve into the specifics of the proposed PIR framework, which is illustrated
in Figure 2. We begin with the problem definition, followed by a comprehensive description of the
framework’s key components.

3.1 Problem Definition

We first consider the general multivariate time series forecasting task. Given a set of input series
X = {xi}Mi=1, the objective is to learn a mapping function Y = fθ(X) that accurately forecasts
the future values Y = {yi}Mi=1, where xi ∈ RN×Lin represents the i-th input time series and
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Figure 2: Overview of the proposed PIR framework. The framework first identifies the potential
forecasting failure cases through estimating the performance of the intermediate results generated by
backbone models on a per-instance level. Besides, the framework incorporates Local Revising and
Global Revising components, which utilize contextual information, including available exogenous
variables within the local window and global historical time series, to revise the forecasting results
for enhanced performance.

yi ∈ RN×Lout represents the corresponding target series. Here, N denotes the number of channels
and M is the number of instances, while Lin and Lout denote the lengths of the input and target
series, respectively. For simplicity and brevity, we will omit the indices for the time series instances
in the following sections.

Moreover, the PIR framework focuses on a novel problem to revise the forecasting results for better
performance. Specifically, given the intermediate results Ȳ of arbitrary forecasting models, the
objective is to learn the revising function Y = fϕ(X, Ȳ , C) that corrects the potential forecasting
failures. Here, C represents the available contextual information, such as exogenous variables, that
can aid in the revision process for more accurate and reliable forecasts.

3.2 Failure Identification

The goal of the PIR framework is to post-process forecasting results by identifying and revising
potential forecasting failures caused by instance-level variations. Thus, the identification process
becomes a primary target and challenge. Conceptually, it forms an Uncertainty Estimation task
based on the immediate forecasting results. Though various efforts have been devoted in this area,
it has not been deeply explored for properly estimating the uncertainty of point-wise forecasting
results mainly due to two reasons. Firstly, given the regression nature of the forecasting task, most
existing approaches generate predictions directly from the hidden states. As a result, token-level
distributions before generation are not available, and common uncertainty evaluation methods based
on probabilities are not directly applicable [2, 11]. Secondly, the forecasting failures arise from both
data uncertainty (e.g., missing values) and model uncertainty (e.g., underfitting on long-tail patterns)
[12] while most existing uncertainty quantification methods primarily focus on the latter one.

Although we have identified several potential reasons that may lead to prediction failure, there are
many other potential and interrelated factors, and there is a lack of ground truth and metrics to identify
and disentangle the specific reasons for each forecasting failure instance. Therefore, we do not
explicitly locate these failure patterns. Instead, we innovatively quantify uncertainty using forecasting
error and adopt a data-driven approach as a practical solution for estimating the uncertainty of a
given input-forecast pair (x, ȳ), which is more flexible and can potentially accommodate a broader
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range of failure modes. Specifically, following common practice in modeling complex dynamics
[31, 10], we employ a two-layer fully connected neural network with non-linear activation functions
fue(·) to estimate the forecasting uncertainty. Additionally, we introduce an auxiliary constraint to
support the abovementioned procedure. Since explicit uncertainty is not directly available for the
forecasting results, we treat the forecasting error as a feasible guiding signal. The intuition behind
this is that higher uncertainty will likely result in greater forecasting error. Therefore, the estimated
uncertainty is further constrained to predict the MSE of the forecasting results:

δ = fue(x, ȳ, E),

Lue =
1

N

N∑
1

∥δ − ∥ȳ − y∥22∥1.
(1)

Here δ is the estimated uncertainty, and ∥·∥1 represents the Mean Absolute Error (MAE) loss function,
which ensures that the estimated uncertainty aligns with the actual forecasting error. To provide
additional contextual information, we introduce the channel embedding matrix E = (e1, e2, ..., eN ) ∈
RN×d, which encodes the channel identity information. This matrix enables the model to better
capture variations across different channels and provides crucial context for more accurate uncertainty
estimation. Through this approach, the framework can generate uncertainty estimates specific to each
model and input instance, thereby satisfying both types of uncertainty. Moreover, it forms a coupled
framework, enabling efficient end-to-end optimization jointly with the forecasting task, and offers a
degree of interpretability by using the forecasting error as a measurement for uncertainty.

3.3 Local Revising

After identifying the potential forecasting failures with high uncertainty, the PIR framework revises
these results from both local and global perspectives. For the local revision component, the core
idea is to leverage the contextual information within a local horizon window, which includes the
intermediate forecastings of covariates and available exogenous variables, to enhance forecasting
accuracy. The intuition behind this approach is straightforward. Firstly, the dependencies including
lead-lag effects are widely present in the time series data, where the forecasting results of covariates
can provide valuable insights into future trends [61]. Besides, the exogenous variables, such as the
time-related information and environmental factors known in advance can serve as a prior condition
[24, 45], mitigating the impact of sudden distribution shifts caused by natural rhythms like holiday
effects [15, 43]. Conceptually, this approach is particularly beneficial for models that prioritize
robustness over capacity by adopting a channel-independent strategy [13].

In practice, we project the intermediate forecasting results into hidden states on a per-variate basis
[30], along with the available exogenous variable information, which are concatenated for further
correlation extraction. Let hco, hexo be the representation of covariates and exogenous variables
respectively, and c refer to the available exogenous variable information corresponding to the instance,
the projection process is formulated as:

H0 = [hco, hexo],

hco = CoVariateEmb(ȳ),
hexo = ExoVariateEmb(c).

(2)

Here CoVariateEmb(·) is a trainable linear projector, and ExoVariateEmb(·) is implemented flexibly
based on the characteristic of c, which can be a linear projector for numerical features or language
models for textual descriptions [27]. Through this approach, local context from multiple sources and
domains can be seamlessly embedded in the framework to guide the revising process.

The hidden states are then passed through a traditional Transformer [44] with a linear prediction
head to generate the revised results ylocal. By leveraging the attention mechanism, the local revision
component explicitly captures the correlations between covariates and exogenous variables, thereby
ensuring that the contextual information within the local window is fully utilized to correct forecasting
failures and enhance prediction accuracy.

3.4 Global Revising

In addition, the PIR framework incorporates a global revision component that leverages global
historical information to further refine forecasting results. As illustrated in Figure 1, instance-level
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variances can lead to a long-tail distribution in performance, primarily because traditional models
struggle to capture rare numerical patterns. To address this challenge, we introduce a straightforward
yet effective retrieval module that explicitly retrieves relevant historical time series exhibiting similar
numerical characteristics. These retrieved series serve as reference signals during the revision process,
enabling the model to better handle atypical patterns that are typically underrepresented in training.

Specifically, we first construct the retrieval database using only the training input-target time series
pairs (Xtrain, Ytrain), as we treat historical information as the global context. This design not only
prevents data leakage but also facilitates the extension of the database to incorporate multi-source
datasets, since it depends solely on raw time series data. Based on the retrieval database, the top-K
most relevant time series are selected for a given input series x by computing the similarity between
x and each candidate in the database, as formalized below:

Index, w =TopK Sim(Enc(x), Enc(X)),

Yre = {Ytrain,i|∀i ∈ Index}. (3)

Here, Enc(·) is an encoding function that processes the time series, which is instantiated as an
instance normalization operation [20] in practice for its simplicity and effectiveness of mitigating the
impact of non-stationarity that could lead to unstable similarity estimation. Moreover, powerful pre-
trained forecasting models [9, 32, 52] can be optionally utilized for better representation projection.
Additionally, w represents the top-K similarity scores estimated by the similarity operator Sim(·, ·),
which is instantiated using cosine similarity due to its computational efficiency.

Once the relevant time series are retrieved, they serve as references for revising the forecasting
results. Instead of modifying the architecture of the backbone forecasting models to incorporate these
references, we adopt a practical assumption: similar instances tend to exhibit similar future trends.
Therefore, the retrieved references themselves can serve as effective estimations for the target series.
This design ensures that the framework remains entirely independent of the backbone models, making
it applicable to any forecasting model. In practice, the similarity scores are treated as importance
indicators, and the global revised results yglobal are generated through a weighted sum operation,
formulated as follows:

p = Softmax(w),

yglobal = WeightedSum(p, Yre),
(4)

where the Softmax(·) function ensures that
∑K

i=1 pi = 1, assigning higher weights to retrieved
instances that are more similar to the input series.

3.5 Optimization Target

By combining the components described above, the PIR framework produces the final forecasting
results through post-forecasting identification and revision using a residual approach [16]:

ypred = ȳ + αylocal + βyglobal,

α = σ(Linear(δ)),

β = σ(MLP(δ, w)).

(5)

Here, α and β are learned weights corresponding to the local and global revision components,
respectively, and σ(·) denotes the Sigmoid activation function. A linear transformation is employed
to estimate α, with its weight and bias initialized to vectors of ones and zeros. This design ensures
ensuring a positive correlation that higher uncertainty estimates lead to larger values of α, thus placing
greater emphasis on the local revision. In contrast, β is generated through a multi-layer perceptron
(MLP), which takes both the estimated uncertainty and the retrieval similarities as input. This allows
the model to dynamically adjust the influence of the global revision based on the confidence of the
prediction and the relevance of the retrieved historical series. The overall optimization objective is to
minimize the MSE between the revised forecasts and the ground truth, formulated as:

Lpr =
1

N

N∑
1

∥ypred − y∥22. (6)

Finally, let λ denote the weight hyperparameters for the auxiliary constraint defined in Section 3.2,
the overall optimization objective for the PIR framework is then formulated as a multitask learning
problem:

L = Lpr + λLue. (7)
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4 Experiments

In this section, we conduct extensive experiments on widely used benchmark datasets, comparing
our proposed PIR framework with mainstream forecasting approaches under both long-term and
short-term forecasting settings, to demonstrate its effectiveness.

Table 1: Forecasting performance under long-term and short-term settings. The results are averaged
from all the target series lengths, and the full results are provided in the Appendix. The bold values
indicate better performance.

Methods PatchTST + PIR Imp.(%) SparseTSF + PIR Imp.(%) iTrans. + PIR Imp.(%) TimeMixer + PIR Imp.(%)

ETTh1
MSE 0.466 0.437 6.22 0.444 0.433 2.48 0.451 0.432 4.21 0.445 0.429 3.60
MAE 0.452 0.439 2.88 0.431 0.429 0.46 0.445 0.437 1.80 0.436 0.431 1.15

ETTh2
MSE 0.384 0.375 2.34 0.384 0.373 2.86 0.383 0.377 1.57 0.380 0.378 0.53
MAE 0.405 0.400 1.23 0.403 0.398 1.24 0.406 0.403 0.74 0.405 0.403 0.49

ETTm1
MSE 0.397 0.383 3.53 0.416 0.378 9.13 0.407 0.383 5.90 0.381 0.377 1.05
MAE 0.408 0.397 2.70 0.407 0.390 4.18 0.412 0.397 3.64 0.396 0.393 0.76

ETTm2
MSE 0.281 0.283 -0.71 0.287 0.281 2.09 0.291 0.288 1.03 0.276 0.274 0.72
MAE 0.329 0.330 -0.30 0.329 0.328 0.30 0.334 0.334 0.00 0.322 0.323 -0.31

Electricity
MSE 0.215 0.200 6.98 0.224 0.196 12.50 0.179 0.175 2.23 0.185 0.181 2.16
MAE 0.303 0.279 7.92 0.297 0.275 7.41 0.269 0.265 1.49 0.275 0.270 1.82

Solar
MSE 0.269 0.244 9.29 0.385 0.275 28.57 0.236 0.231 2.12 0.231 0.223 3.46
MAE 0.307 0.287 6.51 0.370 0.296 20.00 0.263 0.260 1.14 0.270 0.267 1.11

Weather
MSE 0.259 0.254 1.93 0.276 0.261 5.43 0.260 0.255 1.92 0.245 0.244 0.41
MAE 0.281 0.277 1.42 0.294 0.282 4.08 0.280 0.277 1.07 0.274 0.274 0.00

Traffic
MSE 0.482 0.459 4.77 0.637 0.477 25.12 0.425 0.420 1.18 0.519 0.492 5.20
MAE 0.308 0.299 2.92 0.379 0.314 17.15 0.283 0.280 1.06 0.307 0.291 5.21

PEMS03
MSE 0.158 0.120 24.05 0.351 0.154 56.13 0.115 0.107 6.96 0.089 0.089 0.00
MAE 0.265 0.231 12.83 0.400 0.261 34.75 0.225 0.216 4.00 0.200 0.200 0.00

PEMS04
MSE 0.206 0.140 32.04 0.370 0.171 53.78 0.108 0.097 10.19 0.083 0.081 2.41
MAE 0.305 0.251 17.70 0.419 0.278 33.65 0.220 0.206 6.36 0.191 0.190 0.52

PEMS07
MSE 0.165 0.115 30.30 0.352 0.149 57.67 0.095 0.089 6.32 0.087 0.083 4.60
MAE 0.268 0.223 16.79 0.404 0.249 38.37 0.198 0.189 4.55 0.191 0.187 2.09

PEMS08
MSE 0.186 0.147 20.97 0.362 0.180 50.28 0.147 0.135 8.16 0.130 0.128 1.54
MAE 0.284 0.251 11.62 0.413 0.279 32.45 0.245 0.237 3.27 0.238 0.232 2.52

4.1 Experimental Setup

Datasets. For the long-term forecasting task, we conduct experiments on a widely recognized bench-
mark dataset that includes eight real-world datasets spanning diverse domains [54, 21]. Additionally,
we incorporate the PEMS dataset, which contains four subsets, for the short-term forecasting task
[29]. The exogenous information used in these datasets are the available timestamps. We also conduct
experiments on datasets with additional textual descriptions in the Appendix. Following standard
experimental protocols, we split each dataset into training, validation, and testing sets in chronological
order. The split ratios are set to 6:2:2 for the ETT dataset and 7:1:2 for the other datasets. Detailed
information about the datasets is available in the Appendix.

Backbone Models. PIR is a model-agnostic plugin that can be seamlessly integrated with any
time series forecasting model. To demonstrate the effectiveness of the framework, we select four
mainstream forecasting models based on diverse architectures, encompassing both channel-dependent
and channel-independent assumptions, as backbones. These models are evaluated under both long-
term and short-term forecasting settings: PatchTST [37], SparseTSF [25], iTransformer [30] and
TimeMixer [47]. We implement these models following their official code.

Experiments Details. We employ the ADAM optimizer as the default optimization algorithm
across all experiments and evaluate performance using two metrics: mean squared error (MSE) and
mean absolute error (MAE). For the PIR framework, the retrieval number K is tuned from the set
{10, 20, 50}, and the weight hyperparameter λ is fixed at 1. All experiments are conducted on a
single NVIDIA RTX 4090 GPU.
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(a) Solar (b) Traffic

Figure 3: Comparison of the groundtruth forecasting error and the estimation of PIR on Solar and
Traffic dataset. The backbone is SparseTSF, and the target length is set to 336.

4.2 Main Results

Following the standard evaluation protocol [62, 56], we set the input series length Lin = 96 across
all datasets. For a unified comparison, the target series length Lout is set to {12, 24, 36, 48} for the
PEMS dataset and {96, 192, 336, 720} for the remaining datasets. The forecasting results for both
long-term and short-term settings, along with the corresponding relative performance improvements,
are summarized in Table 1.

As shown in the table, the proposed PIR framework consistently improves the performance of state-
of-the-art forecasting models across most scenarios in both long-term and short-term forecasting
settings. This improvement is primarily due to PIR’s capability to identify potential forecasting
failures and effectively leverage contextual information for revision. Specifically, across all 48
experimental settings, PIR achieves an average MSE reduction of 8.99% for PatchTST. Similar
trends are observed for other backbone models, with reductions of 25.87% for SparseTSF, 3.47% for
iTransformer, and 2.34% for TimeMixer. These results underscore the generalizability of the PIR
framework, demonstrating its seamless integration with diverse forecasting models, regardless of
their architecture or inductive biases, to deliver enhanced predictive performance.

Additionally, we observe that the relative performance improvements for channel-dependent ap-
proaches are smaller compared to those for channel-independent models. This is likely because
channel-dependent methods already incorporate covariate information, resulting in stronger baseline
performance and leaving less room for improvement. Nevertheless, by leveraging the forecasted
covariates, future exogenous variables, and historical time series as contextual information, the PIR
framework still manages to enhance the performance of these models. Notably, although the local
revision component of PIR shares a structural resemblance with iTransformer, it continues to yield
substantial relative improvements. These findings further support our hypothesis that instance-level
variations contribute to forecasting failures in specific cases. Moreover, the comparison also high-
lights the importance of post-forecasting failure identification and revision in generating more reliable
and robust forecasting results.

4.3 Qualitative Analysis

To better illustrate how the PIR framework works to help enhance the forecasting performance, we
provide a qualitative analysis of the identification and revision process in this section.

We begin by evaluating the reliability of the failure identification component through a comparison
between the actual forecasting error of the backbone models and PIR’s estimated error, δ, as defined
in Equation 1. Specifically, we visualize both metrics over a segment of the test set from the Solar and
Traffic datasets, using SparseTSF as the backbone model, in Figure 3. The results demonstrate that the
PIR framework accurately estimates the forecasting error of the backbone’s intermediate predictions.

8



(a) PatchTST (b) SparseTSF (c) iTransformer (d) TimeMixer
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Figure 4: Illustration of the per-instance MSE distribution differences for four mainstream forecasting
approaches, both with and without the enhancement of PIR. The MSE values corresponding to the
peak density are also highlighted. The comparisons are performed on the ETTh1 and PEMS07
datasets, with the target length set to 96 and 48.

Notably, the estimated and actual error curves exhibit consistent patterns in terms of peaks and
troughs, which validates PIR’s capability to assess the quality of individual forecasting results. This
strong alignment underscores the effectiveness of PIR’s uncertainty estimation mechanism and its
ability to reliably identify potential forecasting failures, laying a solid foundation for the subsequent
revision stage.

For the revision component, although the quantitative results reported in Table 1 already demonstrate
its effectiveness in improving overall forecasting performance, we further investigate how the PIR
framework mitigates the effects of instance-level variance. Specifically, we evaluate the per-instance
MSE of the baseline backbone models on the ETTh1 and PEMS07 datasets. As illustrated in Figure
4, we compare the MSE distribution with and without PIR enhancement, measured using kernel
density estimation, and highlight the MSE corresponding to the peak density for each case. The
figure reveals that models enhanced by PIR yield more reliable forecasting results, as their error
distributions exhibit higher density at lower MSE values. Additionally, the MSE corresponding to
the peak density is significantly reduced. Additionally, PIR framework also effectively addresses
forecasting failures, substantially reducing errors for instances poorly modeled by the backbone
models. This improvement is particularly evident in the PEMS07 dataset, where the tail of the
error distribution curve shifts significantly toward smaller MSE values. For example, the maximum
prediction error of SparseTSF on ETTh1 decreases from 2.85 to 0.81 when enhanced with PIR.

In summary, the qualitative analysis strongly aligns with our expectations. The PIR framework can
effectively identify forecasting failures and enhance overall performance by revising the intermediate
results in a model-agnostic manner.

4.4 Complexity Analysis

In this section, we analyze the computational overhead of the proposed PIR framework from both
theoretical and empirical perspectives. Theoretically, the series-wise cosine similarity function
used in the retrieval stage has a time complexity of O(NMLin), where N denotes the number
of channels, M is the total number of historical series per channel, and Lin represents the input
sequence length. The subsequent local revision process involves channel-wise attention operations,
resulting in a complexity of O(N2). To further evaluate the practical efficiency of PIR, we report
the average inference time on both a small-scale dataset (ETTh1) and a large-scale dataset (Traffic).
We compare two retrieval strategies: brute-force cosine similarity and approximate retrieval using
Locality-Sensitive Hashing (LSH). The results are summarized in Table 2.
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Table 2: Inference time comparison under different settings.

ETTh1(Cos) ETTh1(LSH) Traffic(Cos) Traffic(LSH)

Backone(s) 0.164 0.164 0.424 0.424
∆retrieval(s) 0.024 0.415 0.079 87.957
∆revision(s) 0.096 0.096 0.275 0.275

MSE Improvement 0.014 0.009 0.025 0.025

The results indicate that the retrieval stage introduces negligible additional latency on both datasets,
thanks to the GPU-parallelizable nature of cosine similarity. For even larger datasets, the total
computational cost can be further reduced by applying sampling strategies (e.g., stride sampling) or
dimensionality reduction techniques to limit the search space. In contrast, the LSH-based retrieval
implemented with the faiss library yields significantly higher inference time without performance
gains, indicating that brute-force cosine similarity is both more efficient and effective in our current
implementation.

5 Conclusion

In this paper, we first investigated the challenge of instance-level variance in time series forecasting,
which often results in unreliable predictions for certain cases. To address this, we proposed the
PIR framework, a model-agnostic solution that enhances the accuracy through post-forecasting
identification and revision of potentially biased predictions. The framework identifies the forecasting
failures by estimating their error on a per-instance basis, and leverages contextual information to revise
forecasts from both local and global perspectives. Extensive experiments across various benchmarks
and forecasting models demonstrated that PIR consistently improves performance, highlighting its
effectiveness and versatility as a plug-in component for a wide range of forecasting architectures. We
wish our work could raise new research directions for the forecasting task.
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The code and data we used are publicly available, and we cite the original
papers properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release our code for the proposed method.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: We don’t involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We don’t involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLMs to modify the grammar and refine the text.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset Descriptions

In this paper, we leverage a diverse set of forecasting datasets covering various domains to evaluate
the effectiveness of the proposed PIR framework under both long-term and short-term forecasting
settings. We also include datasets with additional textual information [27] to validate the framework’s
generalizability. The brief descriptions and characteristics are presented as follows:

• ETT3: The dataset records oil temperature and load metrics from electricity transformers,
tracked between July 2016 and July 2018. It is subdivided into four mini-datasets, with data
sampled either hourly or every 15 minutes.

• Electricity4: The dataset captures the hourly electricity consumption in kWh of 321 clients,
monitored from July 2016 to July 2019.

• Solar5: The dataset records the solar power production in the year of 2006, which is sampled
every 10 minutes from 137 PV plants in Alabama State.

• Weather6: The dataset records the 21 weather indicators, including air temperature and
humidity every 10 minutes from the Weather Station of the Max Planck Biogeochemistry
Institute in 2020.

• Traffic7: The dataset provides the hourly traffic volume data describing the road occupancy
rates of San Francisco freeways, recorded by 862 sensors.

• PEMS8: The dataset is a series of traffic flow dataset with four subsets, including PEMS03,
PEMS04, PEMS07, and PEMS08. The traffic information is recorded at a rate of every 5
minutes by multiple sensors.

• Energy and Health9: These two datasets are subsets of Time-MMD [27], a multimodal
time series dataset that ensures fine-grained alignment between textual and numerical
modalities. The datasets are collected weekly, spanning from 1996 and 1997 up to May
2024, respectively.

Table 3: The overview of each dataset used in the experiments.

Dataset Variables Frequency Length Scope

ETTh1&ETTh2 7 1 Hour 17420 Energy
ETTm1&ETTm2 7 15 Minutes 69680 Energy

Electricity 321 1 Hour 26304 Energy
Solar 137 10 Minutes 52560 Nature

Weather 21 10 Minutes 52696 Nature
Traffic 862 1 Hour 17544 Transportation

PEMS03 358 5 Minutes 26208 Transportation
PEMS04 307 5 Minutes 16992 Transportation
PEMS07 883 5 Minutes 28224 Transportation
PEMS08 170 5 Minutes 17856 Transportation

Energy 9 1 Week 1479 Energy
Health 11 1 Week 1389 Health

B Full Experimental Results

In this section, we present the complete long-term and short-term forecasting results in Table 4.
These results demonstrate that the proposed PIR framework functions as a model-agnostic plugin,

3https://github.com/zhouhaoyi/ETDataset
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5http://www.nrel.gov/grid/solar-power-data.html
6https://www.bgc-jena.mpg.de/wetter/
7http://pems.dot.ca.gov
8https://github.com/guoshnBJTU/ASTGNN/tree/main/data
9https://github.com/AdityaLab/MM-TSFlib
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Table 4: Full experimental results of long-term and short-term forecasting. The target length Lout is
chosen as {12,24,36,48} for the PEMS dataset and {96,192,336,720} for the others. The bold values
indicate better performance.

Methods PatchTST + PIR SparseTSF + PIR iTransformer + PIR TimeMixer + PIR
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.410 0.416 0.375 0.400 0.399 0.401 0.375 0.392 0.385 0.403 0.376 0.402 0.384 0.399 0.370 0.397
192 0.458 0.443 0.422 0.427 0.438 0.423 0.420 0.416 0.440 0.434 0.424 0.429 0.432 0.425 0.422 0.421
336 0.498 0.464 0.467 0.451 0.478 0.443 0.465 0.440 0.486 0.457 0.465 0.450 0.486 0.449 0.460 0.442
720 0.498 0.486 0.484 0.477 0.461 0.457 0.473 0.466 0.494 0.485 0.461 0.466 0.476 0.470 0.464 0.462

E
T

T
h2

96 0.299 0.347 0.291 0.340 0.304 0.347 0.289 0.338 0.302 0.350 0.298 0.346 0.295 0.343 0.291 0.343
192 0.384 0.398 0.371 0.391 0.386 0.396 0.373 0.392 0.382 0.399 0.374 0.396 0.378 0.398 0.367 0.395
336 0.424 0.432 0.418 0.429 0.424 0.429 0.418 0.426 0.423 0.433 0.415 0.429 0.421 0.436 0.422 0.431
720 0.427 0.444 0.421 0.441 0.421 0.438 0.412 0.435 0.424 0.443 0.420 0.440 0.427 0.441 0.430 0.444

E
T

T
m

1 96 0.336 0.375 0.317 0.354 0.357 0.375 0.311 0.350 0.342 0.377 0.315 0.356 0.316 0.355 0.309 0.351
192 0.376 0.394 0.365 0.383 0.394 0.392 0.355 0.374 0.381 0.395 0.358 0.380 0.364 0.383 0.359 0.381
336 0.409 0.416 0.394 0.404 0.426 0.414 0.389 0.396 0.420 0.420 0.395 0.406 0.389 0.403 0.387 0.402
720 0.465 0.445 0.457 0.445 0.486 0.447 0.457 0.438 0.486 0.456 0.465 0.447 0.455 0.441 0.451 0.440

E
T

T
m

2 96 0.177 0.263 0.175 0.259 0.185 0.267 0.174 0.258 0.184 0.267 0.179 0.263 0.175 0.257 0.170 0.254
192 0.242 0.305 0.241 0.306 0.248 0.306 0.239 0.301 0.254 0.313 0.246 0.307 0.239 0.299 0.239 0.300
336 0.304 0.345 0.304 0.347 0.308 0.343 0.304 0.345 0.312 0.350 0.311 0.351 0.298 0.339 0.296 0.340
720 0.401 0.401 0.410 0.409 0.408 0.398 0.408 0.407 0.412 0.407 0.417 0.415 0.393 0.394 0.389 0.397

E
le

ct
ri

ci
ty 96 0.193 0.284 0.180 0.253 0.210 0.280 0.174 0.250 0.148 0.240 0.145 0.237 0.156 0.248 0.151 0.244

192 0.198 0.289 0.184 0.262 0.206 0.281 0.180 0.259 0.163 0.254 0.161 0.251 0.170 0.261 0.165 0.258
336 0.214 0.304 0.198 0.278 0.219 0.296 0.195 0.276 0.177 0.270 0.175 0.268 0.187 0.277 0.186 0.275
720 0.255 0.336 0.239 0.322 0.260 0.329 0.233 0.314 0.227 0.311 0.219 0.303 0.227 0.312 0.221 0.307

So
la

r

96 0.233 0.287 0.210 0.263 0.336 0.351 0.231 0.270 0.205 0.238 0.196 0.235 0.198 0.261 0.195 0.248
192 0.266 0.307 0.241 0.286 0.376 0.371 0.272 0.292 0.237 0.262 0.235 0.257 0.241 0.274 0.238 0.275
336 0.291 0.317 0.261 0.297 0.415 0.384 0.301 0.313 0.251 0.275 0.248 0.275 0.253 0.274 0.235 0.273
720 0.286 0.316 0.263 0.300 0.413 0.374 0.297 0.310 0.250 0.276 0.246 0.274 0.231 0.271 0.225 0.271

W
ea

th
er

96 0.179 0.220 0.168 0.208 0.201 0.240 0.175 0.218 0.174 0.214 0.170 0.211 0.163 0.210 0.161 0.208
192 0.225 0.259 0.216 0.253 0.242 0.273 0.220 0.256 0.222 0.255 0.217 0.252 0.208 0.252 0.206 0.250
336 0.279 0.298 0.276 0.297 0.294 0.308 0.284 0.302 0.281 0.299 0.277 0.298 0.266 0.291 0.263 0.291
720 0.354 0.347 0.355 0.350 0.366 0.355 0.364 0.353 0.361 0.352 0.356 0.350 0.341 0.343 0.344 0.347

Tr
af

fic

96 0.459 0.298 0.428 0.288 0.664 0.395 0.454 0.306 0.393 0.268 0.390 0.266 0.489 0.296 0.453 0.275
192 0.468 0.301 0.450 0.294 0.611 0.366 0.456 0.302 0.415 0.277 0.415 0.278 0.495 0.299 0.473 0.285
336 0.483 0.307 0.466 0.299 0.619 0.367 0.480 0.313 0.429 0.284 0.426 0.283 0.533 0.311 0.503 0.294
720 0.518 0.326 0.493 0.315 0.655 0.387 0.516 0.333 0.461 0.301 0.447 0.299 0.557 0.322 0.539 0.309

PE
M

S0
3 12 0.085 0.196 0.074 0.183 0.145 0.258 0.081 0.191 0.069 0.174 0.067 0.172 0.063 0.168 0.064 0.170

24 0.135 0.249 0.105 0.217 0.267 0.352 0.126 0.238 0.098 0.209 0.092 0.202 0.084 0.195 0.084 0.196
36 0.180 0.287 0.134 0.246 0.416 0.449 0.178 0.285 0.130 0.243 0.119 0.231 0.099 0.213 0.099 0.212
48 0.231 0.326 0.165 0.276 0.574 0.541 0.229 0.328 0.164 0.275 0.149 0.260 0.110 0.224 0.110 0.223

PE
M

S0
4 12 0.106 0.218 0.089 0.198 0.158 0.274 0.096 0.207 0.081 0.189 0.077 0.182 0.070 0.174 0.069 0.173

24 0.170 0.279 0.122 0.235 0.286 0.374 0.143 0.256 0.099 0.211 0.090 0.199 0.079 0.186 0.078 0.185
36 0.239 0.337 0.156 0.268 0.436 0.468 0.194 0.301 0.119 0.233 0.105 0.216 0.086 0.195 0.085 0.193
48 0.310 0.386 0.191 0.301 0.601 0.561 0.250 0.347 0.134 0.248 0.116 0.227 0.097 0.210 0.094 0.207

PE
M

S0
7 12 0.080 0.190 0.070 0.175 0.131 0.248 0.075 0.180 0.066 0.160 0.065 0.161 0.059 0.157 0.057 0.155

24 0.134 0.246 0.101 0.210 0.262 0.354 0.120 0.228 0.088 0.191 0.083 0.183 0.077 0.181 0.076 0.179
36 0.193 0.295 0.130 0.240 0.423 0.459 0.167 0.272 0.105 0.211 0.097 0.199 0.095 0.201 0.094 0.200
48 0.253 0.339 0.157 0.266 0.593 0.556 0.233 0.314 0.121 0.228 0.110 0.213 0.115 0.224 0.106 0.214

PE
M

S0
8 12 0.097 0.208 0.088 0.194 0.150 0.266 0.094 0.201 0.081 0.185 0.079 0.184 0.079 0.184 0.078 0.182

24 0.153 0.259 0.126 0.233 0.274 0.365 0.148 0.254 0.123 0.227 0.115 0.221 0.113 0.224 0.111 0.218
36 0.217 0.313 0.168 0.272 0.425 0.462 0.205 0.305 0.167 0.264 0.153 0.256 0.142 0.250 0.141 0.246
48 0.278 0.356 0.207 0.304 0.598 0.559 0.272 0.357 0.217 0.305 0.194 0.288 0.184 0.292 0.180 0.283

consistently improving the forecasting performance of various backbone models across diverse
datasets and settings.

C Generalizability Investigation

In this section, we conduct comparative experiments on the Energy and Health datasets, which include
additional aligned textual descriptions as exogenous information. These experiments aim to assess
the generalizability of the proposed PIR framework in handling more complex contextual information.
The results, presented in Table 5, show that PIR consistently improves performance in most cases,
thereby validating its effectiveness in multimodal forecasting scenarios.
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Table 5: Comparison experiments on the Energy and Health datasets. The input series length Lin

is set to 24, and the target length Lout is chosen as {12,24,36,48}. The bold values indicate better
performance.

Methods PatchTST + PIR SparseTSF + PIR iTransformer + PIR TimeMixer + PIR
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
ne

rg
y

12 0.194 0.334 0.130 0.255 0.140 0.273 0.128 0.255 0.122 0.245 0.117 0.242 0.149 0.286 0.135 0.263
24 0.299 0.418 0.248 0.364 0.252 0.375 0.241 0.362 0.242 0.365 0.232 0.355 0.226 0.348 0.222 0.346
36 0.382 0.475 0.337 0.432 0.335 0.436 0.321 0.419 0.327 0.426 0.309 0.414 0.319 0.422 0.314 0.420
48 0.463 0.527 0.425 0.496 0.418 0.493 0.416 0.493 0.420 0.493 0.406 0.485 0.408 0.487 0.393 0.477

H
ea

lth

12 12.493 1.960 9.901 1.612 11.333 1.802 10.315 1.641 8.523 1.469 8.258 1.461 8.947 1.493 8.642 1.489
24 15.252 2.204 13.486 1.924 14.115 2.077 13.837 1.975 12.159 1.801 11.698 1.748 12.010 1.789 11.790 1.765
36 13.804 2.130 12.032 1.893 12.856 2.052 12.876 1.969 11.662 1.854 11.093 1.793 11.385 1.801 11.029 1.792
48 12.515 2.062 12.294 1.965 13.167 2.015 11.784 2.001 10.910 1.817 10.332 1.781 11.227 1.879 10.328 1.784

D Ablation Study

In this section, we investigate the impact of the auxiliary constraint and structural designs on the
overall performance of the PIR framework through ablation studies. The backbone models selected
for this analysis are PatchTST and iTransformer, representing the channel-independent and channel-
dependent categories, respectively.

(a) MSE (b) ℒ𝑢𝑒
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Figure 5: MSE and the uncertainty estimation error, Lue, of PIR-enhanced PatchTST and iTrans-
former on the ETTm1 dataset with different λs.

Table 6: MAE comparison between different variants of the PIR framework. The Bold values indicate
the best performance.

Backbone PatchTST iTransformer

Variants w/o PIR w/o Local w/o Global w/ PIR w/o PIR w/o Local w/o Global w/ PIR

E
le

ct
ri

ci
ty 96 0.284 0.257 0.270 0.253 0.240 0.238 0.241 0.237

192 0.289 0.266 0.277 0.262 0.254 0.253 0.256 0.251
336 0.304 0.282 0.292 0.278 0.270 0.268 0.272 0.268
720 0.336 0.326 0.325 0.322 0.311 0.305 0.304 0.303

PE
M

S0
3 12 0.196 0.201 0.192 0.183 0.174 0.175 0.174 0.172

24 0.249 0.243 0.228 0.217 0.209 0.204 0.207 0.202
36 0.287 0.281 0.262 0.246 0.243 0.234 0.239 0.231
48 0.326 0.314 0.298 0.276 0.275 0.262 0.272 0.260

To evaluate the impact of the auxiliary constraint, we compare forecasting performance across
various values of the weight hyperparameter λ, ranging from 0 to 1. Additionally, we report the
corresponding uncertainty estimation error Lue, as defined in Equation 1, in Figure 5. The results
suggest that the auxiliary constraint enables the PIR framework to more accurately estimate the
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uncertainty of intermediate forecasts by predicting their associated errors, thereby facilitating the
revision weight learning, leading to better accuracy. Furthermore, the R-squared scores between MSE
and Lue are 0.9067 and 0.7500 when PatchTST and iTransformer are used as the backbone models,
respectively. These high correlations strongly support the feasibility of our approach, validating the
use of forecasting error as a proxy for uncertainty in time series forecasting tasks.

On the other hand, we present the MAE comparison between different variants of the PIR framework
on the Electricity and PEMS03 datasets in Table 6, providing an intuitive understanding of how
the local and global revision components contribute to the performance. It can be inferred from
the results that both components contribute to better performance compared to the baseline model
under most cases, and the combination of them consistently leads to the best accuracy, validating our
proposal that utilizing contextual information to revise forecasting results from both local and global
perspectives can well alleviate the impact of the instance-level variance.

To further examine where the performance gains of the PIR framework originate, we conduct an
ablation study comparing PIR with two variants: (1) a deepened iTransformer, which increases model
depth to match the additional layers introduced by PIR’s local revision component, and (2) PIR
trained from scratch, which removes the requirement of a pretrained forecasting backbone. The
results on the Electricity and Weather datasets are presented in Table 7. The results show that PIR
consistently outperforms both variants. Benefiting from both global and local revision components,
PIR effectively utilizes retrieved similar historical series as well as valuable contextual insights from
covariates and exogenous variables. This allows PIR to outperform simply enlarging model capacity.
Furthermore, training PIR from scratch leads to degraded performance, possibly because the randomly
initialized backbone produces unstable forecasts in early training stages, which negatively affects the
optimization of the failure identification module and weakens its ability to estimate forecasting error.

Table 7: Investigation into the sources of performance improvement. The Bold values indicate the
best performance.

Variants iTransformer w/ PIR w/ Deepen w/ PIR scratch
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Electricity

96 0.148 0.240 0.145 0.237 0.147 0.239 0.164 0.256
192 0.163 0.254 0.161 0.251 0.163 0.255 0.178 0.270
336 0.177 0.270 0.175 0.268 0.177 0.271 0.196 0.284
720 0.227 0.311 0.219 0.303 0.217 0.304 0.256 0.334

Weather

96 0.174 0.214 0.170 0.211 0.177 0.218 0.217 0.249
192 0.222 0.255 0.217 0.252 0.224 0.257 0.252 0.270
336 0.281 0.299 0.277 0.298 0.279 0.296 0.300 0.315
720 0.361 0.352 0.356 0.350 0.358 0.350 0.393 0.371

E Forecasting showcases

In this section, we provide intuitive forecasting showcases to illustrate the impact of the revision
process on forecasting performance, and the effect of global revision in cases with and without similar
historical instances.

In Figure 6, we examine the impact of the revision process on forecasting results using PatchTST
as the backbone model across three datasets of varying scales. For the local revision component, it
struggles to capture scale changes using only cross-channel dependencies and exogenous information
on the ETTh1 dataset, but successfully corrects trend deviations to better align with the ground truth
on the Solar dataset. Meanwhile, the global revision component improves future scale predictions by
retrieving similar historical series on the ETTh1 dataset but has minimal impact on the Solar dataset.
Furthermore, both local and global revisions contribute to improved forecasting accuracy on the
PEMS04 dataset, with their combination (i.e., the PIR framework) achieving superior performance.
These findings indicate that local and global revisions each have their strengths and limitations,
underscoring the importance of constructing a unified framework that effectively integrates both
approaches.
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Figure 6: Illustration of forecasting showcases of different variants of PIR using PatchTST as the
backbone model.
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Figure 7: Illustration of forecasting showcases on various forecasting instances with and without
similar historical time series.
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Additionally, we evaluate the performance of global revision with and without similar historical
instances. In Figure 7, we present the retrieval results ( yglobal, as defined in Equation 4 of our paper)
as the forecasting outputs, along with the corresponding average top-k similarities and learned weight
β. The results indicate that retrieval similarities vary significantly across instances. For instances
with highly similar historical series, the retrieval process effectively captures future evolutions,
whereas for those without close historical analogs, the retrieval results only approximate future
trends and may even be inaccurate. This observation aligns with our expectations, as the retrieval
mechanism is designed to leverage similar past series as references for forecasting. Furthermore, the
PIR framework adaptively assigns higher weights to instances with stronger retrieval similarities,
dynamically adjusting the influence of retrieval results on the final forecast.

F Limitations

Though PIR demonstrates promising performance on benchmark datasets, there are still several
limitations within this framework. Firstly, the instance-level variances exist in both input series
and target series, while the framework currently addresses only the former challenge. Identifying
and addressing instance-level variances in the target series caused by data quality issues—such
as noise, outliers, and missing data—holds significant potential for improving both the training
and evaluation processes. Furthermore, relatively simple network architectures are utilized in the
failure identification and local revision components. Exploring ways to integrate advanced inductive
biases into these components to enhance their performance remains an important direction for future
research.
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