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Abstract

This paper introduces mSOP-765k, a large-scale benchmark for the evaluation of multi-
modal Structured Output Prediction (mSOP) pipelines. Besides novel evaluation metrics,
the benchmark provides combined training and test datasets with over 765,000 images taken
from real-world product advertisements. Each of these images contains product visualiza-
tions, textual information like product name or brand, and numerical data such as product
weight, price, and discount. All images are annotated with the corresponding structured
information in form of dictionaries containing key-value pairs.
An initial baseline evaluation, including various LLMs and VLMs, as well as multi-modal
RAG approaches, shows that the proposed benchmark provides a challenging problem which
can not yet be solved completely by state-of-the-art mSOP methods. The benchmark and
dataset are available under a creative-commons license: https://www.msop-765k.org/.

1 Introduction

Large Language Models (LLMs) (Vaswani et al.; Zhao et al.) have become indispensable components in
modern natural language processing, demonstrating remarkable capabilities across a wide range of tasks.
More recently, Vision Language Models (VLMs) (Radford et al.; Zhang et al.) have extended this paradigm
by enabling the processing and understanding of multi-modal inputs, effectively bridging the gap between
visual and textual information. Although both LLMs and VLMs primarily generate responses in human-
readable text, numerous applications require outputs in machine-readable formats. Addressing this need,
recent advances have endowed LLMs and VLMs with the ability to produce Structured Output Predictions
(SOPs) (Liu et al., c), allowing their predictions to be provided as well-defined and easily parseable data rep-
resentations. This emerging capability opens new avenues for leveraging these models in complex workflows
that require precise and unambiguous interpretation of generated content.

mSOP-765k dataset

Multi-Modal Input

1234

mSOP-765k

multi-modal

78.9

including, e.g.,

LLM, ViT, VLM, RAG, ...

Custom Pipeline

         int key1 : 1234

       float key2 : 78.9

      string key3 : mSOP-765k multi-modal

list<string> key4 : sun, moon, star

Structured Output Predictions

Figure 1: Illustration of the multi-modal Structured Output Prediction task performed with the mSOP-765k
dataset. The proposed benchmark measures the ability of a given processing pipeline to predict structured
key-value pairs of textual, numerical, and list data.
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A comprehensive benchmark with clearly defined quality metrics for the systematic evaluation of multi-modal
SOPs is essential to advance the evolving research and the practical application of multi-modal structured
output prediction methods. However, to the best of our knowledge, so far no large-scale benchmark exists
that thoroughly assesses these capabilities across diverse structured prediction tasks on multiple modalities.
In order to fill this gap, we introduce mSOP-765k. Figure 1 illustrates the evaluation of provided multi-modal
structured output prediction pipelines, such as LLMs (Vaswani et al.; Zhao et al.), VLMs Radford et al.;
Zhang et al., Vision Transformers (ViTs) (Dosovitskiy et al.), or Retrieval Augmented Generation (RAG)
(Gao et al.; Lamm & Keuper, b) systems by the proposed benchmark.
An extensive baseline evaluation of current approaches shows, that while many methods are able to predict
single key-value pairs with high accuracy, all tested algorithms essentially fail to predict consistent multi-
value data structures in a more complex scenario.

The following key contributions are presented in this paper:

• We introduce mSOP-765k, the first large scale benchmark for structured output predictions from
multi-modal inputs. mSOP-765k provides over 765 thousand images of product advertisements
containing product visualizations, textual product descriptions and promotions, as well as numerical
data like prices and discounts. Each image has been manually annotated with detailed key-value
pairs provided in a machine readable data-structure. The benchmark and dataset are available
under a creative-commons license.

• The benchmark introduces novel evaluation metrics, allowing to measure the prediction quality of
complex output structures.

• A first baseline evaluation of a wide range of different approaches, including LLMs (Vaswani et al.;
Zhao et al.), VLMs Radford et al.; Zhang et al., ViTs (Dosovitskiy et al.), or RAG (Gao et al.; Lamm
& Keuper, b) systems on mSOP-765k clearly shows the strong limitations of current approaches
towards accurate predictions of complex structured output from multi-modal inputs.

2 Related Work

2.1 Creation of Structured Output Predictions

Most recent LLMs and VLMs are able to create a machine readable output from natural language or visual
inputs (Wang et al.). Their implementations, as far as publicly known, are based on several different ap-
proaches to generate and / or improve SOPs which have been proposed in literature.
Irugalbandara introduces Meaning Typed Prompting (MTP), which integrates the definitions of types, mean-
ings, and abstractions in the prompting process. The authors evaluate the performance of their approach on
the text based LLM Structured Output Benchmark (Leo). The paper also includes a small case study that
analyzes the generation of SOPs from a single input image using GPT-4o-mini (Irugalbandara).
The Generate and Organize (G&O) method has been introduced by Li et al.. This approach improves the
capability of LLMs to produce SOPs in a two step process which separates the content generation and struc-
turing: first, the response is generated in natural language and then a second LLMs call is used to organize
and format the received response into the intended structure. Li et al. focus their evaluation on the tasks of
Named Entity Recognition and Relation Extraction, which exclusively process textual input. Consequently,
the models investigated in this study are limited to LLMs.
Wang et al. present SLOT, an abbreviation for Structured LLM Output Transformer. This approach converts
the unstructured responses of LLM into structured formats by applying a fine-tuned lightweight language
model as a post-processing layer. The evaluation of SLOT in (Wang et al.) also exclusively investigates
text-to-structure tasks.
Lamm & Keuper (b) propose the Visual RAG Pipeline, which generates SOPs given multi-modal inputs
comprising both image and text data. Their evaluation includes the analysis of various commercial models,
specifically GPT-4o, GPT-4o-mini, and Gemini-2.0-flash.
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2.2 Evaluation of Structured Output Predictions

Irugalbandara and Li et al. evaluate their approaches using aggregated single variable measures like (micro-
averaged) precision, recall, and F1 scores. Additionally, Irugalbandara incorporates the Geometric Mean
Score (GMS) and Consistency to provide a further assessment. In the work of Wang et al., Schema Accuracy
and Content Similarity serve as evaluation metrics. The previously discussed Visual RAG Pipeline is assessed
based on the accuracy of predictions and Ground Truth (GT) values (Lamm & Keuper, b).
Chen et al. introduce a framework that pools multiple evaluation metrics for SOPs. The responses are
represented "as objects of certain data types", and the metrics are calculated by "matching of common
substructures, possibly followed by normalization" (Chen et al.). Lu et al. focus on the evaluation of LLMs
output in JSON format. The analysis refers to the performance of "valid JSON outputs against a given
schema" (Lu et al.). The following aspects are examined: "structure understanding, escaping, and natural
language description, to determine how to assess and enable LLMs to generate valid responses" (Lu et al.).
The requirements on the evaluation metrics for the proposed mSOP-765k benchmark has to be flexible in
different ways. First, the occurrence of key items varies depending on the input image, i.e., a value to each
key is not always presented in an image. Furthermore, the evaluation metric has to support the evaluation
of different data types. For keys with numerical data types, a simple equality evaluation can be suitable.
However, evaluation of string keys requires a semantic distance metric. Moreover, we are not only interested
in the sum of the single errors over the different keys of the SOPs. We are also interested in the correctness
of the entire structure of the output predictions. Consequently, we introduce combined evaluation metrics
in Section 4.1.

2.3 Benchmarks in Related Studies

Existing structured output benchmarks differ with respect to the prediction output formats. These include
formats such as JSON schemata and related textual structured representations, as well as visual outputs. Lu
et al. provide the SchemaBench benchmark that consists of about 40k different JSON schemata. Further-
more, the JSONSchemaBench benchmark has been introduced by Geng et al.. This benchmark comprises
about 10k JSON schemata.
Tang et al. introduce the STRUC-BENCH benchmark, which aims to evaluate the generation of structured
tables from textual input. Specifically, the benchmark focuses on producing raw text tables, HTML tables,
and LaTeX tables. The StructEval benchmark is divided into two subsets, StructEval-T and StructEval-V,
designed to generate SOPs for generation and conversion tasks (Yang et al.). StructEval-T targets the gen-
eration of text-based structures. The supported formats within this subset include JSON, XML, YAML, and
Markdown. In contrast, StructEval-V is dedicated to producing executable code as SOPs, enabling visual
rendering of generated structures. Example output formats in StructEval-V encompass HTML, Matplotlib,
Canvas, LaTeX, SVG, and more.

The previously established benchmarks have been exclusively based on textual inputs, typically formatted
as JSON schemata or other text-based representations. Consequently, these benchmarks are not suitable for
evaluating multi-modal inputs that combine both image and text modalities. To address this limitation, we
introduce the novel mSOP-765k benchmark. The characterizations of the proposed benchmark are a large
number of 765k data samples with manually annotated GT structured prediction targets. The structured
output data demonstrates significant variability in multiple dimensions: it encompasses a substantial number
of variables with strong variability different data types which range from simple numerical and string to
complex list data types. The evaluation of numerical variables can be achieved by means of a straightforward
numerical evaluation of the predictions. However, for variables with other data types, a more complex
evaluation is required. Furthermore, the mSOP-765k benchmark combines the SOPs task with the fine-
grained visual object problem due to its large-scale visual dataset. Consequently, the benchmark underscores
the elevated practical relevance that may be applicable to similar real-world problems.
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3 Dataset

(a) Input sample: product visualizations and textual meta-
information are combined in a single image.

Data Target Value

product brand Knorr, Suppenliebe
product category Suppentopf, Suppen, Suppe
GTINs [08710908937095,

08710908937590]
product weight NaN
different types yes

promotion price 0.44
regular price NaN
relative discount 51
absolute discount NaN

(b) Associated structured target data; missing target val-
ues are indicated by NaN. Because the inputs displays more
than one product, the GTINs target variable holds a list
of multiple product ids.

Figure 2: Representative sample from the mSOP-765k
dataset, consisting of a query (input) image (2a) and the
corresponding structured product target (2b).

The objective of this paper is to establish a
benchmark for the evaluation of Structured
Output Predictions from multi-modal input
data. Hence, the key components for the task
are the multi-modality of input data and the
provision of output data in a structured for-
mat. In addition, the data types of the struc-
tured output are expected to vary to represent
the complexity of real-world problems.

In the retail domain, product advertisements
in leaflets exhibit the characterizations de-
scribed previously. The visual product adver-
tisement images contain a wealth of textual in-
formation, whereby the multi-modality is en-
sured. Information about products and pro-
motions is typically advertised with a variety
of descriptive details, including the product
name, the brand, and the sales price. This
output data is suitable for the provision in
a structured format. Furthermore, the data
types of the product and promotion data vary,
from strings, integers, floating-point numbers,
lists, and other data formats. The proposed
large-scale mSOP-765k benchmark measures
the ability of models to map such advertise-
ment images to the according structured prod-
uct information.

Image Dataset: The raw image dataset
is based on the Retail-786k dataset (Lamm
& Keuper, a). This image dataset consists
exclusively of image advertisements that have
been cropped from leaflet pages. It has been
published in context of a fine-grained image
classification benchmark in which potentially
visually similar products are classified by their Global Trade Item Number (GTIN) (AISBL). GTINs are
internationally standardized 14-digit numbers for unique product identification. We extend the Retail-786k
image dataset by adding structured data annotations (as described in the next paragraph) to each adver-
tisement image. Due to data cleaning procedures based on missing structured data, the number of images in
our benchmark is lower than the original 786k. In total, our provided image dataset now contains 765,463
images divided into a train split of 728,892 images and a test split of 36,571 images. The partitioning of the
dataset into training and test split was adopted from (Lamm & Keuper, a). The training/test splits contain
a minimum number of 10/3 images per label, where labels are defined by the semantic grouping of GTINs.
In addition, our image dataset is available in two versions: one with images resized so that the longer edge
measures 512 pixels, and another where the longer edge measures 256 pixels. Moreover, the image dataset ex-
hibits a long-tail distribution with regard to the GTIN classes which is illustrated in Figure 7 in the Appendix.

Structured Data: In our mSOP-765k dataset, structured data refers to product and promotion
data shown in the images. The product data comprises properties about the product(s) advertised. This
data includes the information of brand, product category, GTINs, product weight, and different types. In
contrast, the promotion data comprises the information on the advertised price, regular price, relative
discount, and absolute discount. Most variables can be extracted directly from text in the advertisement
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images, such as price, discount, and brand. However, other targets must be classified from the images, as
GTINs or product category. Therefore, the fine-grained problem of the original dataset still exists. An
example of the remaining fine-grained task is shown in Figure 3. Two images from the mSOP-765k dataset
(3a, 3b) and the corresponding product and promotion targets per image are depicted. The fine-grained
difference is illustrated by the similar visual packaging of the products and the minimal number of targets
that differ in their target values (see GTINs and product weight). Other characteristics of the images in
the dataset are that not all variables always have to appear in the images and that there may be several
products depicted a single image. If multiple product images are displayed, this will result in a list of GTINs
in the output data structure. For each image in the image dataset, the structured product and promotion
have been recorded manually. These data are released in .parquet format for the training and test split,
respectively. Table 1 presents the number of GT values for each product and promotion data in the test
split. The values are reported in absolute numbers (n) and in percentages (%). Furthermore, the currency
of the promotion data price, regular price, and absolute discount is declared in Euro (€). The promotion
data relative discount is specified as a percentage.

(a) (b)

Target Image 3a Image 3b

brand Develey Develey
product category Tomato Ketchup Tomato Ketchup
GTINs [04006824003551] [04006824003612]
product weight 500.0 Milliliter 750.0 Milliliter
different types NaN NaN
price 1.49 1.49
regular price NaN NaN
relative discount NaN NaN
absolute discount NaN NaN

Figure 3: Illustration of the product and promoted data from the images 3a and 3b. The fine-grained data
differences of the two advertisements are underlined.

Table 1: Absolute numbers (n) and percentages (%) of GT values for each target in the test split.

brand GTINs
product
category

different
types

price
product
weight

regular
price

relative
discount

absolute
discount

n 36,571 36,571 36,571 36,571 36,541 35,365 12,854 11,719 667
% 100.0 100.0 100.0 100.0 99.92 96.70 35.15 32.04 1.82

Representative Sample: Figure 2 illustrates a representative sample from the mSOP-765k dataset. The
sample consists of an advertisement image (2a) and the corresponding product and promotion data (2b).
The data types of the product and promotion data vary, encompassing numerical data types (e.g., integers
and floating-point numbers) as well as complex data types like lists. In this example, the product data
GTINs are annotated as a list because the advertisement image displays more than one product and the
hint of various types (ger: diverse Sorten) is legible. From these occurrences, the price validity of the
advertisement for multiple products can be deduced.

Data Access: The image dataset and the structured product and promotion data can be accessed
at the following URL: https://huggingface.co/datasets/retail-product-promotion/mSOP-765k

and are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License (CC BY-NC-ND 4.0) (Creative Commons). As a further addition, the description texts appearing
in the advertisement images are also provided in the repository. The description texts have been extracted
using the PaddleOCR tool (PaddlePaddle; Du et al.).
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4 Evaluation

In this section, we provide a baseline empirical evaluation of current state-of-the-art SOPs methods on the
proposed mSOP-765k benchmark. These experiments include VLM based approaches (Section 4.2) as well
as a visual RAG pipeline (Section 4.3). Moreover, investigations of image and text classification on the
dataset are described in Appendix A.3.

Prompts and Structured Output Schemata: We fix the required system- and user/human-prompts
for all methods to the same input.

The system prompt is specified as: You are an assistant for question-answering tasks. While the
user/human prompt is defined as: Do the user-provided task on the input image. The answer

must be provided in JSON format. The task is: "Extract the features.". If there is no

information of a target, return NaN.

Table 9 in the Appendix shows, for each target, whether a prediction is required and specifies the data type.
Data types vary from string, float, list of strings, and enumeration. It is important to note that the
product attribute product weight is divided into two separate queries: one for the weight number and one
for the weight unit. The data types for the targets weight unit and different types are an enumeration. For
the target weight unit, the valid values are: Gramm, Kilogramm, Milliliter, Liter, Waschladungen, Blatt,
and Stück (engl. gram, kilogram, milliliter, liter, wash loads, sheet, piece). For the target variable different
types, the possible values are: yes and no.

Table 2: Detailed description of the evaluation metrics for individual target variables within the prediction
structure.

Target Description of Evaluation Metric

brand 1. String preprocessing on prediction and GT values: converting all characters to
lowercase; removing accents and other diacritical marks using Unicode normalization; and
removing all apostrophes from the strings.
2. Matching criteria: the Levenshtein (Lcvenshtcin) distance between the prediction
and GT strings is calculated to derive a similarity score. If the similarity exceeds 0.5, the
strings are considered as a match. If not, the algorithm checks whether the two strings
share any common words after splitting by non-word characters. If they do, the strings
are still considered as a match.
3. Accuracy calculation: the accuracy is computed as the proportion of matched results.

product
weight

1. Concatenation: the prediction value is formed by combining the weight number and
weight unit predictions.
2. Matching criteria: if the prediction string is exactly equal to the GT string, it is
considered a match. If not, equivalent representations with different units (e.g., 1000g =
1kg) are treated as matches by converting between grams/kilograms or milliliters/liters
based on their numerical values, followed by string equality checks.
3. Accuracy calculation: the accuracy is computed as the proportion of matched results.

different
types

1. Accuracy calculation: the custom accuracy is measured based on exact string equal-
ity between the predictions and GT values which can either yes or no.

price data1 1. String preprocessing on prediction: any occurrences of the character "-" are re-
moved from the prediction value (if present).
2. Accuracy calculation: the custom accuracy is measured based on the exact string
equality between the adapted prediction and the GT value.

1Includes the targets: price, regular price, relative discount, and absolute discount.
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4.1 Evaluation Metrics

Evaluation metrics for single target variables: For all product and promotion sub-target within the
structured output target, a custom accuracy score is determined. The evaluation metric is defined to ensure
comparability between the predictions and the process by which the GT was generated. The GT values were
specifically defined by human annotators. The metric for promotion data as well as the target product weight
must be strict, as a subsequent comparison of identical products would otherwise not be guaranteed. For
the target brand, an exact match is not necessary because the spellings may vary depending on the retailer’s
leaflets. Based on these considerations, we introduce a custom accuracy metric based on the Levenshtein
distance (Lcvenshtcin), avoiding the use of an exact match calculation. The process used to calculate the
score for each target is described in Table 2. Since not all targets are advertised in every image, an absence
of prediction of the targets can be valid. This applies in particular to the targets regular price, relative
discount, and absolute discount but may also occur for the other targets.

Evaluation metrics for the structured output: In addition to the evaluation for the single target
variables, we propose a novel evaluation metric for the structured output. The measurement criteria is based
on the union of the evaluation metric for single target variables. There are two distinct metrics:

⋃
targets

and
⋃

test. The evaluation metric
⋃

targets only includes samples for which the GT is given and a prediction
has been delivered with regard to the considered targets. Consequently, the size of the reference set varies
depending on how many target variables are considered. The evaluation

⋃
test also considers samples that

receive a prediction but no GT is given, or where a GT is available but no prediction has been generated.
In this case, the reference set is the number of the test dataset, i.e. 36,571 samples.

In general, the following applies to the evaluations in Sections 4.2 and 4.3: the experiments are executed on
the mSOP-765k dataset with an image resolution of 512 pixels and the best result in each evaluation table
is highlighted in bold, while the second-best result is underlined.

4.2 Evaluation of VLM Based Zero-Shot Approaches

We evaluated the performance of both commercial and open-source models in order to capture model di-
versity. All VLMs have been used in a zero-shot setting, i.e. neither training nor fine-tuning of the mod-
els has been performed on the dataset. We evaluated the following models: GPT-4o-mini in the version
dated 07/18/2024 (gpt-4o-mini-2024-07-18) (OpenAI, a), Gemini-2.0-flash (gemini-2.0-flash) (Mallick & Kil-
patrick, a), Gemini-2.5-flash (gemini-2.5-flash) (Mallick & Kilpatrick, b), GPT-5-mini in the version dated
08/07/2025 (gpt-5-mini-2025-08-07) (OpenAI, c;d), LLaVA version 1.6 with 34b parameters (llava-34b) (Liu
et al., a;b), Qwen2.5-VL with 32b parameters (qwen2.5vl-32b) (Bai et al.), Mistral Small 3.1 with 24b
parameters (mistral-small3.1-24b) (MistralAI), and Llama 3.2 Vision with 11b parameters (llama3.2-vision-
11b) (Meta). The models llava-34b, qwen2.5vl-32b, mistral-small3.1-24b, and llama3.2-vision-11b have been
deployed via the Ollama framework (Ollama).

Table 3 reports the percentage of evaluable predictions for the models on the test split of mSOP-765k dataset
introduced in Section 3. The numerical values in the table indicate the percentage of predictions that can
be evaluated. A prediction is considered evaluable only if the corresponding predictions for all targets -
except the targets product category and GTINs - are defined, i.e. no missing entries are allowed. Note
that the prediction values of not advertised product and promotion data are indicated by NaN which is
accepted as a valid value. The highest rate of evaluable responses has been achieved by the VLM gpt-5-mini-
2025-08-07. The VLM gpt-4o-mini-2024-07-18 has returned only eight invalid predictions, corresponding to
99.98% appraisable responses. The VLMs gemini-2.5-flash and gemini-2.0-flash have achieved 99.95% and
99.56% reviewable predictions. The VLMs llava-34b, qwen2.5vl-32b, and mistral-small3.1-24b have provided
a similar magnitude of evaluable predictions whereas the VLM llama3.2-vision-11b has returned 78.95%
assessable predictions.

The prediction of each product and promotion target variable is not feasible using VLMs alone. Specifically,
information about the targets’ product category and GTINs is not presented in the advertisement images.
Consequently, no valid predictions can have been generated for these targets and, therefore, no evaluations
have been conducted in this zero-shot setting.
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Table 3: Correctness of output structures: Numerical values represent the percentage of evaluable predictions,
for the test split and for each VLM. Predictions are considered to be evaluable if the output structures
contain all requested variables with the correct type. Note: positive evaluability of output structures does
not implicate correctness of the prediction.

gpt-4o-mini-
2024-07-18

gemini-
2.0-flash

llava-34b
qwen2.5
vl-32b

mistral-
small3.1-24b

llama3.2-
vision-11b

gemini-
2.5-flash

gpt-5-mini-
2025-08-07

99.98% 99.56% 99.12% 99.54% 96.53% 78.95% 99.95% 100.00%

Table 4: VLM-based – Scores of the evaluation metrics for each single target variable and VLM. Percentages
are calculated based on comparable GT and predicted values.
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brand 95.55% 96.61% 70.79% 93.37% 94.12% 90.77% 96.73% 95.82%
product weight 71.26% 80.97% 8.04% 17.12% 16.71% 15.76% 72.44% 80.49%
different types 85.48% 88.97% 60.23% 75.64% 79.62% 56.03% 89.99% 90.70%

price 97.19% 97.37% 52.53% 94.15% 94.28% 91.57% 97.37% 97.53%

regular price 85.93% 92.47% 19.00% 65.19% 84.14% 51.79% 94.89% 92.84%
relative discount 98.75% 99.02% 48.40% 97.90% 96.19% 92.68% 98.93% 98.83%
absolute discount 82.01% 92.63% 11.41% 72.07% 62.19% 40.11% 91.89% 86.51%

Figure 13 in the Appendix illustrates the difference between the number of predictions and the number of
GT values for all target variables - except product category and GTINs - and VLMs. For the targets brand,
product weight, different types and price, the number of predictions has matched the number of GT values
for all VLMs closely, except for the llama3.2-vision-11b model. Other models have produced slightly more or
fewer predictions. A notable disparity among the VLMs is evident in the number of predictions for the target
regular price. The VLMs qwen2.5vl-32b and llama3.2-vision-11b clearly have generated fewer predictions
than the other investigated models.

Figure 15 in the Appendix presents the prediction error in € for the target variable price and each VLM. The
prediction error is defined as the difference obtained by subtracting the predicted value from the GT value.
The VLMs llava-34b and qwen2.5vl-32b have demonstrated notable outliers, with deviations reaching up to
-35,000€. Evaluations of the other models reveal a narrower distribution; however, outliers of considerable
magnitude, approximately -4,000€, are also present. These findings are illustrated in Figure 14 in the
Appendix. Moreover, the median of each VLM evaluation is 0.00€.

Table 4 summarizes the results of the evaluation metrics for single target variables. The percentages refer
to the subset of comparable GT values and predictions, i.e. only entries with defined values are considered.
The VLMs gemini-2.0-flash, gemini-2.5-flash and gpt-5-mini-2025-08-07 consistently have achieved the best
results. Among all product and promotion data, the VLM gemini-2.5-flash has provided best or second best
accurate predictions. The VLM gemini-2.0-flash has delivered the highest custom accuracy score of 99.02%
for the target variable relative discount.

Table 14 in the Appendix shows the results of the evaluation for structured output when the target variables
are systematically incorporated based on the set of comparable GT values and predictions, i.e. only entries
with defined values are considered. Hence, the evaluation metric

⋃
targets is calculated. Initially, the score

for the target variable brand is shown; subsequently, the score of the union of the target variables brand
and product weight are considered, and so on. Typically, the score decreases as the union of the variables
under consideration expands. This incidence holds for nearly all models. Exceptions have occurred in the
evaluations of the VLMs llava-34b and qwen2.5vl-32b. For example, for the VLM llava-34b, adding the target
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Table 5: VLM-based – Results of the evaluation metric
⋃

test for the structured output. Scores are calculated
based on comparable GT and predictions values relative to the entire test dataset.
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brand 95.53% 96.19% 70.17% 92.94% 90.85% 71.66% 96.68% 95.82%
⋃

test

product weight 66.08% 75.81% 5.54% 15.51% 15.30% 14.14% 68.02% 74.84%
⋃

test

different types 24.33% 30.58% 0.87% 3.04% 4.51% 5.23% 29.53% 32.57%
⋃

test

price 23.50% 29.65% 0.46% 2.88% 4.29% 4.93% 28.65% 31.67%
⋃

test

regular price 6.83% 9.59% 0.04% 0.04% 0.95% 0.01% 9.67% 10.32%
⋃

test

relative discount 3.66% 4.87% 0.01% 0.01% 0.44% 0% 4.92% 5.28%
⋃

test

absolute discount 0% 0% 0% 0% 0% 0% 0% 0%

different types to the previously union of targets, the results have improved due to a substantial reduction
in the number of evaluable GT values and predictions.

Table 5 provides a comprehensive evaluation of the metric for structured output related to the entire test split
of the dataset. Once again, gemini-2.0-flash, gemini-2.5-flash and gpt-5-mini-2025-08-07 have dominated the
top results However, it has not been possible to predict all product and promotion targets for any single
advertisement image in the test dataset. This follows from the score value of 0% for all product and promotion
data; refer to the last row of the table.

Table 15 in the Appendix illustrates the average elapsed time per request in seconds, as well as the total
elapsed time in hours (optionally in days) for the test split of the dataset and for each VLM. The gemini-2.0-
flash model has required the least amount of time, with a total elapsed time of 21.7 hours for all requests,
followed by the VLM qwen2.5vl-32b, which accumulated a total elapsed time of 46.2 hours. Furthermore,
the average total costs per request and the total costs given in USD are presented. The costs for the open-
source VLMs have been estimated based on the assumption of a Linux VM in Microsoft Azure (Microsoft).
The minimal total costs for processing the test split requests using the VLM gemini-2.0-flash has been
approximately USD 7.40, followed by the VLM qwen2.5vl-32b at around USD 8.70.

4.3 Evaluation of a Visual RAG Based Approach

For the evaluation of the SOPs generated by a visual RAG based approach, we focused on the Visual RAG
Pipeline (Lamm & Keuper, b). Figure 4 represents the architecture of the Visual RAG Pipeline. The pipeline
consists of five main steps: Preprocessing, Vector Store, Retrieval / Classification / Relational Query, Prompt
Generation / Completion. The pipeline is based on the RAG approach (Gao et al.) and is distinguished by
an extension of the prompt using historical context. The context comprises historical samples that are similar
to the input image. These historical samples consist of advertisement images along with their corresponding
product and promotion data. In the last step, called Completion, a VLM request is applied. Therefore, we
investigated the following VLMs: gpt-4o-mini-2024-07-18, gemini-2.0-flash, gemini-2.5-flash, qwen2.5vl-32b,
and mistral-small3.1-24b. The commercial VLMs mentioned were selected taking into account both time
constraints and cost efficiency. The VLM qwen2.5vl-32b has needed the lowest elapsed time per request,
as well as the lowest total costs of all requests with regard to the open-source models (Table 15 in the
Appendix). As another open-source model, the VLM mistral-small3.1-24b were examined.
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PROMPT

GENERATION

context

brand : Zott, Zotterella

price : 0.79

product category : Mozzarella

GTINs : 04014500017310,

04014500234816

product weight : 125

different sorts : yes

brand : Zott, Zottarella

price : 0.79

product category :

Mozarella

GTINs : 04014500017310,

04014500234816

product weight : 125

"Extract the features."

RETRIEVAL,

CLASSIFICATION,

RELATIONAL

QUERYPRE-

PROCESSING

Zottarella Kugel

versch. Sorten, 125 g

VECTOR STORE

Zott Zottarella

250-g-Beutel

brand : Zott, Zottarella

price : 1.59

regular price: 2.29

relative discount: 30

product category : Mozzarella

GTINs : 04014500017310,

04014500234816

product weight :125

Manner

Waffeln
COMPLETION

Figure 4: Illustration of the architecture of the Visual RAG Pipeline as presented in (Lamm & Keuper, b).
The pipeline consists of five main steps and is distinguished by an extension of the prompt using historical
context and the RAG approach (Gao et al.).

Table 6 shows the percentage of evaluable predictions. The VLMs gpt-4o-mini-2024-07-18, gemini-2.5-
flash, and mistral-small3.1-24b have achieved a maximal evaluability of 98.14%. The VLM qwen2.5vl-
32b has providedappraisable predictions for 11 promotion images more than the gemini-2.0-flash model.

Table 6: Correctness of output structures: Numerical values rep-
resent the accuracy of evaluable predictions, expressed as per-
centages, for the test split obtained by the Visual RAG Pipeline
for each VLM. Invalidity mainly arises from errors or request
timeouts.

gpt-4o-mini-
2024-07-18

gemini-
2.0-flash

qwen2.5
vl-32b

mistral-
small3.1-24b

gemini-
2.5-flash

98.14% 98.03% 98.06% 98.14% 98.14%

The difference between the number of
predictions and the number of GT val-
ues are presented in Figure 17 in the Ap-
pendix. For all product variables and the
promotion variable price, there have been
minimal fewer predictions than the avail-
able GT values. This results from the
fact that the number of fewer predictions
is the number of requests that have re-
turned non-defined values for all targets variables. For the remaining target variables, all models have
produced a higher number of predictions, the VLMs gpt-4o-mini-2024-07-18 and gemini-2.0-flash have gen-
erated particularly between 20,000 and 25,000 additional predictions.

In Figure 16 in the Appendix, the prediction errors for the target price per VLM in the Visual RAG Pipeline
is analyzed. The VLM gpt-4o-mini-2024-07-18 has exhibited the most pronounced outliers in both positive
and negative directions, exceeding 150.00€ and dropping below -150.00€. The distribution of the VLMs
gemini-2.0-flash, qwen2.5vl-32b, and mistral-small3.1-24b are very similar. Consistently, the median value
for each VLM evaluation have remained 0.00€.

Table 7: Visual RAG-based – Scores of the evaluation metrics for each single target variables and VLM used
in the Visual RAG Pipeline. Percentages are calculated based on comparable GT and predicted values.

gpt-4o-mini-
2024-07-18

gemini-
2.0-flash

qwen2.5
vl-32b

mistral-
small3.1-24b

gemini-
2.5-flash

brand 98.53% 95.21% 90.04% 90.01% 98.81%

product category 83.30% 82.54% 80.26% 78.76% 70.58%
GTINs 70.87% 71.28% 69.26% 71.56% 66.85%
product weight 85.68% 85.96% 80.72% 80.63% 85.75%
different types 91.55% 89.61% 88.41% 79.95% 88.64%
price 96.48% 59.07% 18.57% 18.52% 96.45%
regular price 84.71% 68.90% 26.90% 27.33% 93.76%

relative discount 95.99% 70.39% 17.72% 15.98% 97.98%

absolute discount 77.37% 70.80% 25.24% 20.78% 90.52%
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Table 7 shows the results of the evaluation metric for the single target variables. The VLMs gpt-4o-mini-
2024-07-18 and gemini-2.5-flash have delivered the best and second-best scores for all target variables except
GTINs and product weight. For the variable GTINs, the VLM mistral-small3.1-24b has achieved the highest
score with 71.56% and for the target product weight, the VLM gemini-2.0-flash has attained 85.96%.

The evaluation metric for the structured output in relation to the valid GT and prediction values, i.e.
⋃

targets

is calculated, is presented in Table 20 in the Appendix. The VLMs gpt-4o-mini-2024-07-18 and gemini-2.0-
flash have dominated the results by always achieving the best and the second-best scores, respectively.
Although these models have outperformed the results, the evaluation of the scores in relation to the test
split, i.e.

⋃
test is calculated, shows weakness. Table 8 demonstrates that although the two models continue

to dominate the results, the Visual RAG Pipeline likewise have failed to produce correct predictions for all
product and promotion variables within any single promotion image.

Table 21 in the Appendix shows the evaluation of the elapsed time and the total costs per request and for
all requests using the Visual RAG Pipeline. The shortest duration for the total elapsed time for all requests
has been achieved by the VLM gemini-2.0-flash, with a duration of 42.04 hours. In relation to the total costs
for all requests, the VLMs mistral-small3.1-24b and qwen2.5vl-32b have been significantly cheaper than the
other models. It should be noted that the cost estimates for the open-source VLMs have been based on
running a Linux VM in Microsoft Azure (Microsoft). Among these, the previously named models have stood
out with estimated costs of approximately USD 13.90 and USD 17.10, respectively. Crucially, the costs only
represent the step Completion of the Visual RAG Pipeline. In this evaluation, additional costs from the
other pipeline steps were not considered.

Table 8: Visual RAG-based – Results of the evaluation metric
⋃

test for the structured output. Scores are
calculated based on comparable GT and predictions values relative to the entire test dataset.

gpt-4o-mini-
2024-07-18

gemini-
2.0-flash

qwen2.5
vl-32b

mistral-
small3.1-24b

gemini-
2.5-flash

brand 96.70% 93.33% 88.29% 88.41% 96.98%
⋃

test

product weight 81.92% 81.41% 75.59% 75.50% 82.14%
⋃

test

different types 39.00% 39.00% 35.68% 35.98% 39.73%
⋃

test

price 37.55% 25.74% 8.20% 8.30% 38.01%
⋃

test

regular price 11.17% 8.70% 0.68% 0.94% 12.56%
⋃

test

relative discount 5.97% 4.40% 0.30% 0.40% 6.58%
⋃

test

product category 5.36% 3.92% 0.27% 0.38% 5.03%
⋃

test

GTINs 4.78% 3.49% 0.24% 0.35% 4.49%
⋃

test

absolute discount 0% 0% 0% 0% 0%

4.4 Error Analysis of VLM Based and Visual RAG Based Approaches

Validity of Predictions Analysis. The validity of the predictions has been reduced using the Visual RAG
Pipeline (see: Tables 3 and 6). For instance, the VLM gpt-4o-mini-2024-07-18 has achieved 99.98% valid
predictions by using VLM based approach in contrast to using the Visual RAG Pipeline with 98.14%. The
drop in valid predictions, or rather undefined values, from the requests originates from issues in the previous
steps in the Visual RAG Pipeline. Hence, the number of valid predictions from the pipeline depends on
multiple factors in the different steps, and not only on the VLM used in the step Completion.

Analysis of Evaluation Metrics for Single Variables. Tables 4 and 7 show the scores of the evaluation
metrics for each single target variable. For the variable price, there has been a significant difference between
the evaluation of the two investigated approaches. The VLM based approach using gemini-2.0-flash has
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achieved a score of 97.37% while the visual RAG based approach has only reached 59.07%. This difference
is approximately 40 percentage points. The false predictions using Visual RAG Pipeline have been followed
by the fact that the predictions have been identical to the price information of the historical data provided
in the VLM prompt. The percentage of price predictions identical to historical price information for the
VLM gemini-2.0-flash used in the Visual RAG Pipeline has been 66.75%. The evaluations of the target price
for the VLM gemini-2.5-flash do not demonstrate such behavior. In this instance, a discrepancy of about 1
percentage point has been found between the evaluation of the VLM based and Visual RAG based approach.

Analysis of Evaluation Metrics for Structured Output. The results of the evaluation metric
⋃

targets

are illustrated in Tables 14 and 20 in the Appendix. It can be deduced from these tables (when taking into
account the target variable brand and the VLMs gemini-2.5-flash and gpt-4o-mini-2024-07-18) that the score
using the Visual RAG Pipeline has been about 2 and 3 percentage points higher than using the VLM alone.
All other models have returned worse scores using the Visual RAG Pipeline for the same variable. For the
union of the target variables brand and product weight, it has been generated higher scores from all VLMs
used in the visual RAG based approach. The integration of additional variables has led to a reduction in
scores. Moreover, the table comparison shows that, when using the VLMs alone, only the gemini-2.5-flash
model has produced better results comparable to the Visual RAG based approach. The evaluations of the
right predictions in relation to the entire test dataset are illustrated in Tables 5 and 8. The scores using
Visual RAG Pipeline with the best VLM (gemini-2.5-flash) have been reached in higher percentages than
using the best models (gemini-2.5-flash and gpt-5-mini-2025-08-07) in the VLM based approach in terms of
the union of variables from brand up to relative discount inclusively. It is also important to mention that
product category and GTINs is only predictable by the visual RAG based approach. This characterization
stands out for this method. Consequently, the analysis of the two tables also shows that there has been no
promotion image for which all the predictions of the target variables are valid.

Qualitative Error Analysis. In addition, an analysis of three example promotion images is presented.
Figure 5 displays the promotion images and the corresponding approach combination that has correctly
predicted the target variables (excluded: absolute discount), whereas the other approach has failed. Moreover,
Figure 5c shows a promotion image for which both methods have made incorrect predictions. For the
promotion image in Figure 5a, the VLM gemini-2.0-flash has correctly predicted (all) product and promotion
data. It is important to mention that using the VLM based approach, the product data GTINs and product
category have not been predicted because these information are not printed in the advertisement image.
The predictions for the promotion image shown in Figure 5a are listed in Table 22 in the Appendix. The
false predictions of the Visual RAG based approach Visual RAG Pipeline/gpt-4o-mini-2024-07-18 have been
caused by the information used from historical data. For the advertisement image shown in Figure 5b, the
list of predictions is provided in Table 23 in the Appendix. The prediction using the VLM gemini-2.0-flash
for the target product weight (consists of requests for weight number and weight unit) has differed to the GT
values. In contrast to this, the method Visual RAG Pipeline/gpt-4o-mini-2024-07-18 has predicted all targets

(a) VLM/gemini-2.0-flash (b) Visual RAG Pipeline/gpt-4o-mini-2024-07-18 (c) neither of the two methods

Figure 5: Illustration of promotion images and the approach combination that generates correct SOPs. The
predictions and GT values have been returned from the approaches are shown in Tables 22 to 24 in the
Appendix.
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correctly (exclusively: absolute discount). The prediction listings for the advertisement image, illustrated in
Figure 5c, are shown in Table 24 in the Appendix. The incorrect predictions have likely been caused by the
fact that two products are visible in the advertisement image, along with their product and promotion data.

Figure 6: One of three test im-
ages from a label with only 10
training images.

Error Analysis With Minimal Training Images. As a further quali-
tative analysis, we evaluated the evaluation metric for the structured out-
put for a label containing only the minimal number of training images (10
images) and test images (3 images). One of the promotion test images and
the predictions of the two approaches VLM/gemini-2.0-flash and Visual
RAG Pipeline/gpt-4o-mini-2024-07-18 are shown in Figure 6 and Table 25
in the Appendix. Both approaches have correctly predicted the targets
brand, product weight, and price. However, for the other targets, incor-
rect predictions have been observed. This discrepancy has arisen because
the GT values do not always align with the information displayed in the
images. For instance, some images lack any indication of different types,
although the GT values specify them. Furthermore, both approaches
occasionally have generated predictions for targets that are not visually
present in the images, particularly for regular price, relative discount, and
absolute discount.

5 Discussion, Limitations and Outlook

In this paper, we present the mSOP-765k benchmark that comprises about 765k samples, primarily product
advertisement images alongside the corresponding product and promotion data. These data are characterized
by their structured format with data types varying depending on the specific variable. Moreover, not all
images necessarily feature the same set of variables, as the elements being advertised can differ from one
image to another. Our evaluations of SOPs focus on VLM based approaches as well as a visual RAG based
approach. To evaluate the different methods, self-defined metrics for single variables and structured output
are developed and investigated.
The evaluation of the Visual RAG Pipeline indicated that for certain variables, such as GTINs and product
category - which are not depicted in promotion images - training data like historical data are required.
However, for other targets, this approach can be unsuccessful, as it can lead to erroneous predictions resulting
from the direct adoption of historical data, especially for the promotion data. Figure 18a in the Appendix
shows an advertisement image for which the Visual RAG based approach incorrectly predicts the target
price. The false predictions are enumerated in Figure 18b in the Appendix. Furthermore, the historical data
of the target price is presented that were incorporated into the prompt. The majority of the predictions
coincide with the values found in the historical data, indicating a tendency for the model to replicate these
inputs as its predictions. Similarly, the evaluations of VLMs demonstrate that accurately predicting product
and promotion data through a single unified process remains a significant challenge.
The error analysis of the VLM based approach reveals that VLMs exhibit challenges in accurately interpreting
images containing multiple price specifications. Detailed price prediction results for each VLM, corresponding
to the advertisement image presented in Figure 19a in the Appendix, are provided in Figure 19b in the
Appendix. Moreover, product weight specifications may be represented using different units of measurement.
For instance, the product advertisement illustrated in Figure 20a in the Appendix includes weight information
expressed both in grams and in pieces. The associated product weight predictions are documented in
Figure 20b in the Appendix. Section A.8 in the Appendix shows that the fine-tuning based approach is not
eligible because of its high cost and lengthy training time. Fine-tuned models are static, requiring retraining
whenever the range of product advertisements change. Moreover, the evaluations show that the fine-tuned
models tend to be overfitted. In conclusion, the SOPs task stays unresolved with the mSOP-765k dataset.
Based on these findings, the choice of approach may depend on the promotion and product variable in order
to achieve better results. Moreover, further investigation into reasoning models (Zhong et al.), which offer
additional potential by incorporating a thought process, is warranted. Finally, the proposed mSOP-765k
benchmark provides a solid foundation for future research and can be used as a benchmark in a variety of
tasks.
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