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Abstract

A standard classification rule returns a single-valued prediction for any observation without
a confidence guarantee, which may result in severe consequences in many critical applica-
tions when the uncertainty is high. In contrast, set-valued classification is a new paradigm to
handle the uncertainty in classification by reporting a set of plausible labels to observations
in highly ambiguous regions. In this article, we propose the Deep Generalized Prediction
Set (DeepGPS) method, a network-based set-valued classifier induced by acceptance region
learning. DeepGPS is capable of identifying ambiguous observations and detecting out-of-
distribution (OOD) observations. It is the first set-valued classification of this kind with a
theoretical guarantee and scalable to large datasets. Our nontrivial proof shows that the
risk of DeepGPS, defined as the expected size of the prediction set, attains the optimality
within a neural network hypothesis class while simultaneously achieving the user-prescribed
class-specific accuracy. Additionally, by using a weighted loss, DeepGPS returns tighter
acceptance regions, leading to informative predictions and improved OOD detection perfor-
mance. Empirically, our method outperforms the baselines on several benchmark datasets.

1 Introduction

A standard classification method assigns only a single class label to each test observation, regardless of its
confidence toward this prediction. However, this approach might be problematic in critical domains where
even a single incorrect decision can lead to disastrous consequences, such as in medical imaging-based di-
agnosis, autonomous driving systems, and military operations. Additionally, such a paradigm falls short in
effectively controlling class-specific outcomes, especially in scenarios of imbalanced data. For instance, in
medical diagnosis, it may incorrectly prioritize majority groups that do not need immediate attention while
overlooking minority groups with certain diseases that demand urgent attention. This skewed prioritization
results in delayed treatments, and ultimately, compromised patient outcomes. Lastly, conventional classifi-
cation approaches often assume there is no distribution shift between the training and the test data, which
is not the case in the open world. If a new class emerges, e.g., a new variant of a virus in the pandemic, it is
imperative to detect out-of-distribution points. Therefore, there is a crucial need for novel methods that can
simultaneously address these issues and deliver a reliable and risk-controllable decision in high-stake fields.

To mitigate the risks associated with conventional single-valued predictions, classifiers can first report multi-
ple plausible labels for ambiguous observations in overlapped class regions (see Fig. 1). This approach allows
for human intervention or secondary classification with additional features, ultimately reducing the risk of im-
prudent predictions. This has motivated the development of set-valued classification methods, which can be
implemented in various ways. Classification with Reject Option (CRO) (Herbei & Wegkamp, 2006; Bartlett
& Wegkamp, 2008; Zhang et al., 2018; Charoenphakdee et al., 2021) interprets a rejection of a difficult
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Figure 1: Illustration for MNIST class re-
gions. Ambiguous points inside overlapped
circles, OODs outside all circles.

observation as assigning all class labels to it, and trains the
classifier by incorporating the rejection cost in the objective
function. However, this method does not offer controlled mis-
classification rates for classes of interest, and it pertains to the
closed-world setting.

To secure a trustworthy misclassification rate, Conformal Pre-
diction (CP) (Vovk et al., 2005; Lei et al., 2013; 2015), a popu-
lar model-free framework, is developed in the machine learning
community. With its theoretical guarantee on the prediction
error rate, CP provides a safety solution in critical applications
by generating prediction sets that encompass multiple plausi-
ble labels. Alternatively, Classification with Confidence (Lei,
2014; Sadinle et al., 2019; Wang & Qiao, 2018; 2022; Lin et al.,
2022) further optimizes the prediction set from a different perspective, aiming to yield the smallest prediction
set while controlling the prescribed class-specific error rate. However, all these approaches focusing on the
closed world are limited to generalizing their capability of out-of-distribution detection in the open world,
as they are not tailored to this task.

In practice, data distribution may evolve and observations outside of existing classes in the training data
may appear in the test data. To address this challenge, out-of-distribution (OOD) detection or open-set
recognition (OSR) techniques (Bendale & Boult, 2015; Vaze et al., 2022; Kim et al., 2023) have been developed
to detect the OOD class in addition to classification. Note that their single-valued decision-making rules
still suffer the aforementioned restrictions. To overcome these limitations, researchers have proposed set-
valued classifiers to detect OOD samples with controlled misclassification rates on each existing class, namely,
Cautious Deep Learning (CDL) (Hechtlinger et al., 2018), Balanced and Conformal Optimized Prediction Set
(BCOPS) (Guan & Tibshirani, 2022), and Generalized Prediction Set (GPS) (Wang & Qiao, 2023). However,
all three methods are trained in a decoupled way, which may discard the underlying dependence among the
learned acceptance regions across all classes. Additionally, besides GPS relies on computationally intensive
quadratic programming, all three are shallow methods, making it challenging to scale the above methods to
large datasets. Moreover, as per empirical performances, the GPS results in conservative acceptance regions
due to the use of hinge loss, leading to sub-optimal finite-sample performances on both prediction set size
and OOD detection; the CDL and BCOPS lack optimality on the empirical prediction set size, partially due
to the fact that the prediction set size is not explicitly minimized.

In light of the limitations of current single-valued and set-valued prediction approaches, we propose an
end-to-end Deep Generalized Prediction Set (DeepGPS) classifier jointly learning acceptance regions with
several contributions. First, it generalizes and scales the set-valued classification to OOD detection by using
a hypothesis class induced by neural networks and a kernel. To avoid relying on the expensive memory and
quadratic programming for kernel machines, we add to the neural network a layer that approximates the
kernel by using Random Fourier Features. Second, we provide nontrivial proof that shows the true accuracy
of our classifier is bounded as the prescribed value, and that the expected prediction set size converges to
the minimum within the hypothesis class. Third, we use an adaptive weighted loss to address the issue of
GPS where the surrogate loss potentially produces larger acceptance regions. The weighted loss yields tighter
acceptance regions, improving classification efficiency (defer to Section 2.1) and OOD detection performance.

2 Related Work

In this section, we introduce the notion of acceptance regions and terminologies in set-valued classification,
and briefly discuss some related works. Note that there is a distinction between set-valued classification and
multi-label classification (Zhang & Zhou, 2007). In set-valued classification, an observation has only one
true label, whereas, in multi-label classification, there are multiple ground truths. Throughout the article,
we use the notation [K] to denote 1, . . . ,K.
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2.1 Set-valued Classification

Consider the multicategory classification with input space X = Rp and label space Y = {1, . . . ,K}. Given
a rule, the set of observations classified as class k, Ck ⊂ X , is called the acceptance region for class k; all K
acceptance regions collectively induce a set-valued classifier ϕ : X → 2Y with ϕ(x) := {k ∈ [K] : x ∈ Ck}.
Intuitively, there is a trade-off between the misclassification rate P(Y ̸∈ ϕ(X)), i.e., the probability of a set
not containing the true class label, and the expected size of prediction set |ϕ(X)| :=

∑K
k=1 1{X ∈ Ck}. A

lower misclassification rate may require a larger prediction set. While two set-valued classifiers may have
the same misclassification rate, the one with a smaller prediction size is more efficient/informative (the more
efficient, the better the prediction set). We interchangeably use efficiency (see the definition in Appendix B)
and prediction set size to denote the informativeness of a prediction set.

In the method of Classification with Reject Option (CRO) (Herbei & Wegkamp, 2006; Bartlett & Wegkamp,
2008; Charoenphakdee et al., 2021), the Bayes optimal rule under the 0-d-1 loss (where d ∈ [0, 1 − 1/K]
is the rejection cost and 1 is the misclassification cost) assigns an ambiguous observation x all labels if
maxk P(Y = k | x) ≤ 1−d, but a single label corresponding that with the largest probability score otherwise.
Zhang et al. (2018) extended CRO with an additional refine option, which can output a smaller prediction
set with size 1 < |ϕ(x)| < K for those less difficult observations. CRO controls how many observations are
rejected by changing the rejection cost d (a smaller d leads to more rejections). While this can improve the
accuracy for those observations not rejected, there is no direct control over the classification accuracy.

In contrast, the Conformal Prediction set (Vovk et al., 2005; Lei et al., 2013; 2015) theoretically guarantees
the accuracy P(Y ∈ ϕ(X)). However, Conformal Prediction does not aim to maximize the efficiency of the
classifier, i.e., there is no guidance on how to make the prediction set as small, and hence as informative as
possible. In particular, a classifier with prediction set size |ϕ(x)| ≡ K for all x is useless even though its
accuracy is 100%, while the single-valued prediction (|ϕ(x)| ≡ 1 for all x) might not be accurate albeit its
100% efficiency. To take into account the efficiency and accuracy simultaneously, Lei (2014), Sadinle et al.
(2019), and Wang & Qiao (2018; 2022) minimize the expected prediction set size E[|ϕ(X)|] while controlling
the class-specific misclassification rate P(Y ̸∈ ϕ(X) | Y = k) ≤ γ specified by the user. In duality, Denis &
Hebiri (2017; 2020) proposed to maximize the accuracy subject to a budget of prediction set size.

2.2 Out-of-distribution Detection and Selective Classification

Anomaly detectors aim to identify anomaly points not from the existing/normal class. One-Class Support
Vector Machine (OCSVM) (Schölkopf et al., 2000) and Support Vector Data Description (SVDD) (Tax &
Duin, 2004) are shallow detectors whose detection performance is improved with a kernel. To obtain better
feature representations for large and complex data, Ruff et al. (2018) extended SVDD to Deep Support
Vector Data Description by substituting neural networks for kernels.

Beyond the task of detecting/rejecting anomaly points not belonging to any of the normal classes, Out-
of-distribution (OOD) detection and Open-set recognition (OSR) (Yang et al., 2021; Bendale & Boult,
2015; 2016) additionally conduct standard classification for normal observations. In contrast, Selective
Classification (El-Yaniv et al., 2010; Geifman & El-Yaniv, 2017; Granese et al., 2021) centers on rejecting
difficult normal observations besides single-valued classification. Different from CRO, it does not equate this
type of rejection with assigning all labels to an observation. By allowing rejecting OOD and difficult normal
observations, Xia & Bouganis (2022); Kim et al. (2023); Cen et al. (2023); Zhu et al. (2023) studied Selective
Classification with OOD Detection (SCOD). However, this unified rejection mixes up the OOD and normal
observations, which may obstruct the downstream task since one may impose different strategies on different
types of rejections.

All the aforementioned classification methods with OOD detection still are attributed to the camp of single-
valued classification, and hence suffer some issues highlighted in Section 1. In contrast, CDL, BCOPS, and
GPS are set-valued approaches: they learn acceptance regions that collectively induce a prediction set to
cover the true label with an advertised accuracy for normal points and reject potential OOD points. In
particular, the prediction set ϕ(x) comprises all the classes k ∈ [K] whose acceptance region Ck contains x;
when ϕ(x) is empty, x is marked as an OOD point.
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3 Methodology

In this section, we formulate the optimization problem of DeepGPS. Suppose that a distribution P exclu-
sively consists of K (known) normal classes, while a target distribution Q may contain an (unknown) OOD
component. To facilitate our analysis, we introduce two key assumptions.
Assumption 1. pP(x | Y = k) = pQ(x | Y = k) holds true for all normal classes k ∈ [K].
Assumption 2. We have access to labeled data from P and unlabeled data from Q.

The equal class-conditional density in Assumption 1 is commonly employed to characterize “semantic shift"
in the OOD detection literature (Yang et al., 2021; Garg et al., 2022) due to the emergence of a novel class.
For instance, in the sentiment analysis of product reviews, the established sentiments such as positive or
negative exhibit consistent linguistic patterns between past and current data, including the choice of words
and sentence structures. However, when a review expresses entirely new sentiments, it represents an instance
of OOD data. Assumption 1 is often accompanied by the mild Assumption 2 dealing with the utilization
of unlabeled data (Du Plessis et al., 2015; Guan & Tibshirani, 2022; Garg et al., 2022; Katz-Samuels et al.,
2022).
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Figure 2: Functions with γ = 0.1. The blue bent
solid line denotes loss function ℓ2,γ(·). The dashed
blue curve denotes weight function ωk,j in (3).
The red curve represents the weighted loss in (4).
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Figure 3: Network architecture. Each neuron in the
penultimate layer, i.e., the kernel approximation layer,
outputs a 2-d vector ζ̂j , j ∈ [D]. The weight matrix
WL−1 consists of random samples ξj ∼ N (0, ImL−2).

Remark 1. Several promising strategies are rooted in the existing literature to relax Assumption 1, hence
accommodating tractable differences in class-conditional densities between training and test sets. Specifically,
(1) Tachet des Combes et al. (2020) assumes that the identical class-conditional density is maintained within
a feature space, facilitated by a representation mapping g̃ with pP(g̃(X) | Y = k) = pQ(g̃(X) | Y = k).
This approach, however, necessitates an additional assumption regarding the partitioning within its feature
space. (2) The work of Wu et al. (2019); Kumar et al. (2020) delves into a relaxed label shift scenario,
assuming a small divergence between class-conditional distributions. Nevertheless, determining the extent of
this divergence in practice poses significant challenges, as highlighted by Garg et al. (2023). (3) Investigations
by Zhang et al. (2013); Gong et al. (2016) into the location-scale generalized target shift (LS-GeTarS) assume
the existence of an affine transformation affecting each dimension of X given Y between the source and target
domains. Employing the kernel embedding method (Fukumizu et al., 2007; Sriperumbudur et al., 2011)
enables the alignment of the distribution between labeled data from the source domain and unlabeled data
from the target domain. In the context of location-scale generalized target shift for normal classes, DeepGPS
could be applied to the test data and the transformed training data returned from the LS-GeTarS method.

Regarding the relaxation of Assumption 2 involving additional unlabeled data, DeepGPS still works with the
generated auxiliary data (Hendrycks et al., 2019; Du et al., 2022) even if one cannot access the test data.
On the other hand, without accessing all data points, DeepGPS’s application extends seamlessly to online
learning environments, where the model is updated by optimizing objective function Eq. (1) with stochastic
gradient descent on each batch of data.
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Let (X, Y ) ∈ X × Y come from the distribution Q, where X = Rp and Y = {OOD, 1, 2, . . . ,K}. Let
f(x) = (f1(x), . . . , fK(x))⊤ be a vector of decision functions for normal classes, which induce the acceptance
regions through Ck := {x : fk(x) ≥ 0}, k ∈ [K]. Then the set-valued classifier is defined as ϕ : X → 2Y

with a prediction ϕ(x) := {k ∈ [K] : x ∈ Ck} = {k ∈ [K] : fk(x) ≥ 0} for a query x. The size of a
prediction set ranges from 0 (OOD rejection), to 1 (single-valued prediction), to somewhere in {2, . . . ,K−1}
(ambiguous observations), and ultimately to K (ambiguity rejection). Unlike CRO, which only rejects normal
observations, or SCOD, which mixes rejections of normal and OOD observations, our unified decision rule
not only rejects hard normal observations but also effectively distinguishes them from OOD rejections.

Objective Function. In addition to the task of OOD detection, we aim to minimize the expected size of
prediction set EQ [|ϕ(X)|] =

∑K
k=1 EQ[1{fk(X) ≥ 0}], subject to the class-specific error EQ[1{fk(X) < 0} |

Y = k] ≤ γ, k ∈ [K], where γ is prescribed by users due to the business needs. Denote Gk, k ∈ [K] as the
index set of labeled data from class k (with size mk) and Gu as the index set of unlabeled data (with size
n), we solve a data-driven optimization problem:

min
f∈FL

1
nK

∑
i∈Gu

K∑
k=1

ℓ1(fk(xi)) + C

K∑
k=1

∑
j∈Gk

ωk,j
mk

· ℓ2,γ(fk(xj)) + J(f), (1)

where f(x) := WLζ̂(x) − ρ comes from the neural networks hypothesis class FL with depth L. Here WL is
the weight matrix in the output layer of the network, ζ̂(x) is the embedding learned from the penultimate
layer, and ρ ∈ RK is the offset term. The regularization J(f) :=

∑L
l=1

λl

2 ∥Wl∥2
F +

∑K
k=1 λ

′
k(−ρk) is used to

confine the hypothesis class with parameters λl, l ∈ [L] and λ′
k, k ∈ [K].

Instead of the 0-1 loss 1{u ≥ 0} in
∑K
k=1 EQ[1{fk(X) ≥ 0}], the first term in (1) measures the empirical

prediction set size under a surrogate hinge loss ℓ1(u) = [1 + u]+ = max{0, 1 + u}. The second term in (1)
aims to provide a non-negative upper bound of EQ[1{fk(X) < 0} | Y = k] − γ. To this end, notice that
1{u < 0} − γ ≤ [1 − γ − u]+ (see Fig. 2). By choosing ℓ2,γ(u) = [1 − γ − u]+, minimizing the second term
amounts to minimizing the excess empirical class-specific error beyond γ. When the loss ℓ2,γ(·) in the second
term goes to 0, the empirical error tends to be less than γ. The tuning parameter C balances the risk between
the prediction set size and the misclassification rate. Due to the Assumption 1, we use the labeled data from
P to quantify the empirical misclassification rate in the second term initially measured under distribution
Q. Lastly, similar to OCSVM (Schölkopf et al., 2000), together with the Gaussian kernel, −ρk in the third
term J(f) in (1) penalizes the offset and often allows to exclude most atypical observations from acceptance
regions (see the intuition and discussion in Section 3). To avoid negative values in the optimization stage,
one may use e−ρk instead of −ρk in the third term.

Gaussian Kernel and Its Approximation. OCSVM achieves anomaly detection by using the Gaussian
kernel with offset penalization (like the third term in (1)). Nonetheless, it is difficult to recover the exact
features after the kernel mapping in the context of neural networks as the resultant feature would be infinite-
dimensional. Moreover, the Representer theorem (Kimeldorf & Wahba, 1971) suggests that the decision
function is a linear combination of the kernel function evaluated at all the training data points. This can
also be challenging in real business because each time we update the model, we only use a mini-batch (subset)
of training data to avoid computation and memory burden.

To overcome the above difficulties, in the penultimate layer of the network (see Fig. 3), we use finite Ran-
dom Fourier Features (Rahimi & Recht, 2007; Lu et al., 2016; Nguyen & Vien, 2018) to approximate the
infinite-dimensional Gaussian kernel features. More concretely, we sample D = mL−1/2 many independent
frequencies ξj (j = 1, ..., D) from the Gaussian distribution N (0, ImL−2), where mL−2 and mL−1 are the
widths of the (L− 2)- and (L− 1)-th layers, respectively. Then we let the mapped feature fed to the output
layer be

ζ̂(x) = ζ̂(zx;σ) := D−1/2 (sin(σξ⊤
1 zx), cos(σξ⊤

1 zx), . . . , sin(σξ⊤
Dzx), cos(σξ⊤

Dzx)
)⊤
, (2)

where zx is the embedding of x output from the previous layer and the learnable parameter σ relates
the kernel’s flexibility. Bochner’s theorem (Rudin, 2017) shows that, for any zxi

, zxj
, the inner product

5



Published in Transactions on Machine Learning Research (05/2024)

ζ̂(zxi
;σ)⊤ζ̂(zxj

;σ) is an unbiased estimator to the true Gaussian kernel similarity exp
(
−σ2∥zxi

− zxj
∥2/2

)
,

where σ2 plays a similar role as the bandwidth of Gaussian kernel in OCSVM. With the above kernel
approximation, one can incorporate it into the neural network and use SGD optimization to efficiently
update the model and hence scale the problem.
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Figure 4: Illustration of Gaussian kernel
(approximation) with offset penalization

Insight behind the Gaussian Kernel (Approximation)
with Offset Penalization. The Gaussian kernel and the for-
mulation of the decision function f(x) with the penalization for
−ρk, k ∈ [K] in (1) are commonly used in (shallow) SVM-based
anomaly detection (Schölkopf et al., 2000; Jumutc & Suykens,
2014; Shilton et al., 2020).

The term −ρk in fk(x) = WL,kζ̂(x)−ρk in f(x) typically comes
with the term −ρk in J(f), where WL,k denotes the k-th row of
the matrix WL. Note that the feature mapping/embedding ζ̂(·)
involved with Gaussian kernel approximation maps each input x
to the sphere of a ball because of ζ̂(x)⊤ζ̂(x) = 1. Under this
context, as shown in Fig. 4, penalizing −ρk during the optimiza-
tion contributes to an increased distance (Schölkopf et al., 2000),

ρk

∥WL,k∥2
, between the origin and the hyperplane WL,kζ̂(x) = ρk

in the feature space. This spatial shift effectively pushes the hy-
perplane outwards, resulting in a narrower acceptance region on
the feature space sphere dedicated to the normal class k. It consequently creates more room for other classes
(including the potential OOD class), possibly leading to an informative prediction and an improved OOD de-
tection performance. To see the effectiveness of the approximated Gaussian Kernel with Offset Penalization,
please see its ablation study in Fig. 7.

Adaptive Weighted Loss. The aforementioned loss function ℓ2,γ(u) in (1) aims to provide a convex
relaxation to 1{u < 0} − γ, whose expectation measures the class-specific error rate less a constant γ.
However, there is a gap between 1{u < 0} − γ and ℓ2,γ(u): an observation x from the class k outside of and
far away from the center of the acceptance region Ck may incur a large loss ℓ2,γ(·), far larger than 1 − γ.
Additionally, the loss ℓ2,γ(·) may be non-zero even if a point falls in the correct acceptance region. In these
cases, the loss ℓ2,γ(·) overestimates the true misclassification rate; as a consequence, we tend to get large
acceptance regions Ck, which inflates the prediction set size and degrades the OOD detection performance.
To alleviate this potential issue, we allocate a weight to each observation to correct the overestimation.
Specifically, we use a small weight for the observations with a large loss ℓ2,γ(·), by defining the weight as

ωk,j := 1 − γ

1 − γ − f̌k(xj)
· 1{f̌k(xj) < 0} +

(
1 − f̌k(xj)

)q · 1{0 ≤ f̌k(xj) < 1 − γ}, (3)

where q > 0. If f̌k(xj) in (3) is equal to fk(xj), then the weighted loss in (1) becomes

ωk,j · ℓ2,γ(fk(xj)) =
{

(1 − fk(xj))q · ℓ2,γ(fk(xj)), 0 ≤ fk(xj) < 1 − γ[
1{fk(xj) < 0} − γ

]
+, otherwise . (4)

This is illustrated in Fig. 2. Except for the middle interval, the weighted loss approximates [1{u < 0} − γ]+.
In the middle interval, a large value of the parameter q (we set q = 5) makes the weighted loss closer to 0.
Here we use the classifier f̌k from the last iteration to approximate fk.

4 Learning Theory

In this section, we show the convergence rates of the kernel approximation, the boundness of the true
class-specific error rate, and the excess risk of the classification. We assume that ∥x∥2 ≤ c0.

Let Hl,κl
:= {hl : hl(z) = Sl(Wlz),Wl ∈ Rml×pl , ∥Wl∥F ≤ κl} be the hypothesis class with bounded

Frobenius norm in the l-th layer, where Sl is an (activation) function that is 1-Lipschitz continuous, e.g.,
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ReLU(·), cos(·), sin(·), or the identity function. The input z is returned from the previous layer if l > 1
or equals x if l = 1. Let FL,κ := {f : hL ◦ · · · ◦ h1,ρ ≥ 0,hl ∈ Hl,κl

, l ∈ [L]} be a hypothesis class of
deep dense neural networks (fused with a Gaussian kernel approximation) with depth L (see Fig. 3) and
κ = (κ1, . . . , κL)⊤.

When the hypothesis class FL,κ is composited with certain loss functions, we introduce Fsum,ℓ1
L,κ := {x 7→∑K

k=1 ℓ1(fk(x)) : f = (f1, · · · , fK) ∈ FL,κ} to denote a class, which involves applying the loss function ℓ1(·)
element-wisely to f(x) and then summing the results. Furthermore, we define πk ◦ FL,κ := {x 7→ fk(x) :
f = (f1, · · · , fK) ∈ FL,κ} as another class that extracts the k-th component from f(x).
Theorem 1. For each pair of observations xi,xj, let zxi

and zxj
be their embeddings learned at (L− 2)-th

layer, respectively. Denote kσ(zxi
, zxj

) = exp
(
−σ2∥zxi

− zxj
∥2

2/2
)
. For ζ̂(·;σ) defined in Eq. (2), with

probability at least 1 − δ over Gaussian frequency sampling, we have∣∣∣ζ̂(zxi ;σ)⊤ζ̂(zxj ;σ) − kσ(zxi , zxj )
∣∣∣ ≤

√
4

mL−1
log 2

δ
for fixed zxi and zxj , (5)

and sup
xi,xj

∣∣∣ζ̂(zxi
;σ)⊤ζ̂(zxj

;σ) − kσ(zxi
, zxj

)
∣∣∣ ≤

4
√

2√
mL−2|σ|c0√
mL−1

L−2∏
l=1

κl +

√
4

mL−1
log 2

δ
. (6)

For fixed embeddings zxi and zxj output from (L−2)-th layer, (5) implies that the cosine similarity between
their mapped features in (L − 1)-th layer converges to the true kernel similarity kσ(zxi

, zxj
) at the rate of

O(m−1/2
L−1 ) if σ = O(m−1/2

L−2 ). For any pair of inputs xi,xj ∈ X , (6) shows that besides the error due to
the finite sampling of frequencies, the dissimilarity of two points propagated throughout the course of the
network also contributes to the kernel approximation error. If the input space X is compact, eventually, the
error uniformly vanishes as the width of the penultimate layer goes to infinity.

Let F+
L,κ(γ, ν) := {f ∈ FL,κ : EQ[ℓ2,γ(fk(X)) | Y = k] ≤ ν, k ∈ [K]} be a subspace where the popula-

tion class-specific surrogate loss is bounded, and its empirical counterpart be F̂+
L,κ(γ, ν) := {f ∈ FL,κ :

1
nk

∑
yi=k ℓ2,γ(fk(xi)) ≤ ν, k ∈ [K]}. Without loss of generality, we set the adaptive weight in front of ℓ2,γ

to be 1. Theoretically, this simplification does not hurt our main theorems too much since it only affects the
complexity of the loss function class by its Lipschitz constant. Then, by moving the second and third terms
in Problem (1) to the constraint, we consider the below problem

min
f∈F̂+

L,κ
(γ,ν)

1
nK

n∑
i=1

K∑
k=1

ℓ1(fk(xi)). (7)

The below theorem gives an upper bound to the true class-specific misclassification rate less the advertised
value γ measured under ℓ2,γ loss.

Theorem 2. Let f̂ be a solution to Problem (7) and ϑnk
(δ) := 2Rnk

(πk ◦ FL,κ) + r
√

2
nk

log 2K
δ , where the

Rademacher complexity Rnk
(πk ◦ FL,κ) = O( log(√

nk)√
nk

) and r = c0
∏L
l=1 κl. With probability at least 1 − δ,

simultaneously for all normal class k ∈ [K], we have

EQ

[
ℓ2,γ(f̂k(X)) | Y = k

]
≤ 1
nk

∑
yi=k

ℓ2,γ(f̂k(xi)) + ϑnk
(δ).

Together with the fact 1{u < 0} −γ ≤ ℓ2,γ(u) and f̂ ∈ F̂+
L,κ(γ, ν), the above theorem indicates PQ[f̂k(X) <

0 | Y = k] − γ ≤ ν + ϑnk
(δ), which suggests a way to control true misclassification rate. To bound the true

misclassification rate by γ, one may use a more stringent tolerance, e.g., replace γ in the loss function ℓ2,γ
by γ − θ where θ ≥ ν + ϑnk

(δ). This holds for a large enough dataset and with a large value of C since a
large value of C corresponds to the small value of ν, and ϑnk

(δ) → 0 as nk → ∞.

Theorem 3 shows the classification risk, namely ℓ1-ambiguity, returned by an empirical minimizer converges
to the least in the hypothesis class when the sample size of each normal class increases.
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Theorem 3. Let r, ϑnk
(δ) take the forms as in Theorem 2, and Rℓ1(f̂) :=

∑K
k=1 EQ[ℓ1(f̂k(X))] be the

ℓ1-ambiguity, where f̂ is an empirical minimizer of problem

min
f∈F̂+

L,κ
(γ−ν−ϑ∗,ν)

1
nK

n∑
i=1

K∑
k=1

ℓ1(fk(xi)) (8)

and ϑ∗ = maxk ϑnk
(δ). With probability at least 1 − 3δ, we have

(1) PQ[f̂k(X) < 0 | Y = k] ≤ γ for k ∈ [K]; and
(2) Rℓ1(f̂) − min

ν̃∈[0,γ−2ϑ∗]
min

f∈F+
L,κ

(γ−ν̃,ν̃)
Rℓ1(f) ≤ 12Rn(Fsum,ℓ1

L,κ ) + 12
√
Kr
√

1
2n log 2

δ .

By using a more stringent error tolerance and fine-tuning the parameter C, statement (1) shows the true
misclassification rate of each normal class is below the advertised tolerance γ. Note that the second term
in the L.H.S. of the statement (2) denotes the best performance over all those classifiers with the true
misclassification rate bounded by γ (here the interval for ν̃ holds when ϑ∗ → 0 as nk → ∞). Together with
the fact that the Rademacher complexity Rn(Fsum,ℓ1

L,κ ) = O(n−1/2 log(n)) vanishes as n → ∞, Statement
(2) implies the prediction ϕ̂(x) returned by the DeepGPS approaches to the least ℓ1-ambiguity within the
hypothesis class as nk → ∞, k ∈ [K]. For the explicit expressions of Rnk

(πk ◦ FL,κ) and Rn(Fsum,ℓ1
L,κ ), please

direct to (16) and (21) in Appendix D.

5 Experiments

Baselines. DeepGPS is compared with baselines (GPS, BCOPS, and CDL) tailored to the task of set-valued
classification with OOD detection. Since these baselines are shallow methods, to conduct a fair comparison,
we also use the learned features from DeepGPS as the inputs for the baselines and refer to them as DeepGPS-
based baselines, following the same regime in Ruff et al. (2020). We also compare with two SCOD methods,
namely SIRC (Xia & Bouganis, 2022) and OpenMix (Zhu et al., 2023), which demonstrates the limitation
of single-valued predictions in the current task.

Datasets. We deploy all methods on CIFAR-10, MNIST, and Fashion-MNIST datasets. In CIFAR-10, the
normal classes are {Bird, Cat, Deer, Dog, Frog, Horse} and the OOD class comes from {Airplane, Car, Ship,
Truck}. In MNIST, the normal classes are digits {1, 4, 6, 7, 9} and the OOD class consists of digits {0,
2, 3, 5, 8}. In Fashion-MNIST, the normal classes are {Pullover, Dress, Coat, Sandal, Ankle boot} and the
OOD class is {T-shirt, Trouser, Shirt, Sneaker, Bag} . The values of γ are prescribed as 0.05, 0.01, and
0.01 for CIFAR-10, MNIST, and Fashion-MNIST, respectively (the latter two tasks are relatively easy, hence
a smaller γ). We split each original dataset into three sets: labeled set containing only normal classes to
mimic distribution P, unlabeled set mixing normal and OOD classes to mimic distribution Q, and the test
set. The first two are used to train the model, and the test set is to evaluate the performance.

Network Architectures. For backbone architectures, we use ResNet18 (He et al., 2016) on CIFAR-10,
and LeNet-type CNNs (Ruff et al., 2020) on grayscale images MNIST and Fashion-MNIST. On top of the
backbones, we add the head network (see Fig. 3) composed of 2 hidden layers with 500 units before the
kernel approximation layer. Other hyper-parameters are discussed in Appendix A.

Metrics. We present the sample class-specific accuracy, the aligned OOD recall, and the aligned efficiency
(see Appendix B for the details of alignment). Additionally, we report the AURec (area under the curve
between the OOD recall and the accuracy) and AUEff (area under the curve between the efficiency and
accuracy) to see the overall performance of a set-valued classifier around the neighborhood of 1 − γ (see the
definitions in Appendix B). Intuitively, the higher the OOD recall and the higher the efficiency, the better
the classifier. The bold numbers in Table 1 denote the best performances among all set-valued classifiers.

Results. The results of two SCOD methods are reported when the rate of incorrectly rejecting normal
observations is around γ by thresholding their score functions. As shown in Table 1, even though they
maintain the highest (100%) efficiency, the overly-confident single-valued classification rule fails to guaran-
tee the class-specific accuracy for normal classes. Contrastively, by providing plausible labels for certain
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Table 1: Average performance metrics on CIFAR-10, MNIST, and Fashion-MNIST

DeepGPS
DeepGPS-based

GPS BCOPS CDL
SCOD

GPS BCOPS CDL SIRC OpenMix

Bird 96.7±0.33 96.2±0.4 94.3±0.39 95.2±0.79 96.5±0.5 95.3±0.3 94±0.43 76.8±0.7 75±1.48
Cat 94.6±0.46 93.3±1.27 94.4±0.41 94.7±0.51 94.5±0.68 94.8±0.59 95.7±0.03 62.6±1.35 65.1±1.07
Deer 97.1±0.43 95.1±0.56 95.5±0.6 95.8±0.56 96.4±0.72 94.5±0.28 96.2±0.3 80.5±1.07 75.9±1.8
Dog 96.1±0.5 94.8±0.63 95.2±0.48 94.8±0.21 95.2±0.77 95.9±0.22 94.6±0.51 69.2±0.71 67.6±0.99
Frog 95.8±0.11 96.3±0.45 95.6±0.4 95.4±0.23 94.7±0.32 96.9±0.26 95.6±0.53 86.2±0.54 84±1.55

Acc.

Horse 95.1±0.61 94.2±0.83 94.8±0.44 95.4±0.47 95.9±0.25 95.4±0.36 95.9±0.26 84.4±0.83 84.8±0.94

Aligned OOD Recall 66.9±1.83 66.8±1.33 63.7±1.87 20.3±4.55 19.8±0.44 16.5±0.24 0.2±0.03 12.9±0.49 14.4±0.91
Aligned Efficiency 72.6±0.9 60±1.85 67±0.36 20.5±2.55 16.8±0.24 25.3±0.09 10.3±0.09 100±0 100±0

AURec 56.7±3.1 57.8±2.26 59.8±2.21 19.4±4.38 18.4±0.31 15.6±0.33 0.2±0.02 ⧸ ⧸

C
IFA

R
-10

AUEff 65.1±0.9 55±1.02 61.1±0.29 19.8±2.4 16.3±0.18 23.9±0.18 9.9±0.1 ⧸ ⧸

Digit 1 99.7±0.1 99.1±0.33 99.5±0.04 99.2±0.07 99.6±0.02 99.4±0.07 99.1±0.12 99.3±0.23 99.2±0.16
Digit 4 99.2±0.18 99.3±0.28 99.2±0.17 99±0.22 99.3±0.26 99.5±0.07 99.1±0.12 98.5±0.14 98.6±0.13
Digit 6 99.1±0.04 98.6±0.05 98.7±0.15 98.4±0.13 99.2±0.23 98.6±0.06 98.7±0.17 99.1±0.07 99.2±0.1
Digit 7 99.1±0.18 99.4±0.11 98.8±0.21 98.8±0.2 98.6±0.14 98.3±0.11 98.7±0.16 98.6±0.32 98±0.11

Acc.

Digit 9 98.6±0.14 98.9±0.27 98.9±0.1 99.1±0.17 98.7±0.16 98.5±0.11 98.8±0.18 97.4±0.52 98.1±0.13

Aligned OOD Recall 90.4±1.27 75.8±1.9 79±1.59 59.2±4.34 74.1±3.46 73.3±0.88 8.8±0.55 23.8±3.05 39.1±2.31
Aligned Efficiency 99.7±0.06 96.2±0.47 96.8±0.56 85.7±1.45 88±2.19 90.4±0.4 37.4±1.2 100±0 100±0

AURec 83.1±2.47 67.2±2.84 72±1.67 54.1±4.09 66.5±2.28 67.1±0.89 8.1±0.45 ⧸ ⧸

M
N

IST

AUEff 97.5±0.43 92.3±1.52 94±0.66 82.8±1.55 84±1.68 87.8±0.47 35.3±0.95 ⧸ ⧸

Pullover 98.9±0.05 99±0.15 98.8±0.14 99.2±0.19 99.1±0.12 98.9±0.07 99.1±0.1 93.6±0.24 92.2±0.42
Dress 98.6±0.16 99.1±0.11 98.6±0.31 98.8±0.2 98.1±0.5 98.3±0.08 99.2±0.11 94±1.1 95.3±0.33
Coat 99.1±0.15 99.1±0.38 99.4±0.18 99.4±0.06 98.5±0.55 99.3±0.07 98.9±0.13 88.5±0.35 90.5±0.58

Sandal 99.7±0.08 99.3±0.29 99.2±0.12 99.5±0.06 98.7±0.44 98.7±0.11 98.8±0.1 99.2±0.09 99.4±0.1
Acc.

Ankle boot 99.3±0.12 99.2±0.24 98.9±0.12 98.9±0.2 98.9±0.18 99±0.1 99.2±0.16 99.4±0.1 99.3±0.07

Aligned OOD Recall 59.2±1.52 48.4±1.96 56.1±1.29 32.7±1.97 40.5±3.38 54±0.72 4.9±0.25 4.4±0.52 9.3±0.8
Aligned Efficiency 91.1±0.11 88.9±0.51 90±0.28 81.3±1.18 84.5±0.61 88±0.22 43±0.58 100±0 100±0

AURec 49.7±1.43 40.3±0.58 50.5±1 30.6±1.84 35.6±3.19 49.3±0.4 4.4±0.22 ⧸ ⧸

Fashion-M
N

IST

AUEff 86.8±0.32 83.9±1.81 86.8±0.39 78.2±1.16 80.8±0.7 85.6±0.09 41±0.41 ⧸ ⧸

observations, set-valued classification controls the accuracy and returns cautious decisions for those classes
of interest. Without representation learning, three shallow set-valued baselines exhibit inferior results on
both OOD recall and efficiency (or their AUCs). With the learned features from DeepGPS, the OOD recall
and efficiency of the DeepGPS-based baselines are significantly improved, but they are still not as good
as DeepGPS overall. In contrast, besides controlling the class-specific accuracy, the proposed end-to-end
DeepGPS also exhibits high OOD recall and the highest efficiency under the prescribed accuracy.

Notice that the performance of set-valued classification is driven by the prescribed accuracy level. Intuitively,
aiming for a higher prescribed accuracy tends to decrease the prediction efficiency (i.e., larger prediction
sets) and lower the OOD recall. This trade-off is shown through the curves in Fig. 5, where the top row
illustrates the change in OOD recall across different accuracy thresholds, and the bottom row demonstrates
the corresponding changes in prediction efficiency. Both the values of AURec and AUEff in Table 1 are
computed based on these curves. Overall, our proposed method DeepGPS returns efficient prediction sets
while maintaining competing OOD recall.

Fig. 6 illustrates some examples of OOD-rejected images (|ϕ̂(x)| = 0) in the first row and ambiguous images
(1 < |ϕ̂(x)| < K) in the second row with the predicted labels shown in the bracket. For instance, the
ambiguous cat (row 2, col. 3 in Fig. 6a) is classified with the set {Dog, Deer, Cat, Horse} (possibly due to
its upright legs and hair color), while the cat (row 1, col. 3) is rejected as an OOD point because of its rare
posture. A plane from the OOD class is classified as {Bird, Frog} since the shape and the green color confuse
the classifier. A car in the first row is rightfully rejected as an OOD point since its red profile is unlike any
other normal class. These set-valued decisions allow for further inspection in the presence of ambiguity to
reduce the risk of misclassification.
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Figure 5: Trade-off between OOD recall (and efficiency) with accuracy. Methods associated with "DG-"
denote the baselines trained on the features obtained from DeepGPS.
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(a) Predictions on CIFAR-10
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(b) Predictions on Fashion-MNIST

Figure 6: For each panel, images in the same column come from the same class (OOD class or a certain
normal class). The first row in each panel refers to OOD-rejected images; the second row refers to ambiguous
images with the predicted labels shown in the bracket. Note that the ground truth class is shown in red.
Images in the first column in each panel are from the OOD class.
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Figure 7: Acceptances regions for MNIST (top)
and Fashion-MNIST (bottom), without (left) and
with (right) the KAOP technique.

Ablation for Kernel Approximation with Offset
Penalization. As was discussed in Section 3, the Gaus-
sian Kernel Approximation in the penultimate layer al-
lows us to scale the computation. In addition, we now
conduct an ablation study for the Kernel Approxima-
tion with Offset Penalization (KAOP) technique to show
its impact on the acceptance regions. By setting the
number of output neurons in the backbone network to
two, we can visualize the MNIST and Fashion-MNIST
datasets and the closure and tightness of the acceptance
regions. As shown in Fig. 7, DeepGPS with the KAOP
(right panel) outputs closed and tighter acceptance re-
gions than the one without KAOP (left panel). Some
acceptance regions in the left panel are fairly large, pos-
sibly not even closed. This means that potentially more
OOD points are wrongly accepted and decisions can be
more ambiguous.
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Fig. 8 exhibits the performance of DeepGPS with and without using the KAOP technique and using the
weighted loss. When solely comparing Bar1 with Bar2 (or Bar3 with Bar4), we can see that the method
without KAOP either fails to balance the trade-off between OOD recalls and efficiencies, or returns the lowest
OOD recalls and efficiencies. In CIFAR-10, for example, DeepGPS without KAOP yields an extremely low
efficiency. For this dataset, the KAOP technique significantly improves the efficiency at the cost of a slightly
smaller OOD recall. For both MNIST and Fashion-MNIST, KAOP improves both the efficiency and the
OOD recall in general.

Aligned 
OOD Recall
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Efficiency
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Figure 8: Ablation studies for KAOP and weighted loss. ✓ denotes a technique is deployed, while ✗ denotes
not. q = 5 or 10 denotes the parameter value in the weighted loss.

Ablation for Weighted Loss. Similar to the impact of KAOP, the weighted loss provides a trade-off
between prediction efficiency and OOD recall for the CIFAR-10; see the comparison between Bar1 and Bar3
(or Bar2 and Bar4). For the MNIST and Fashion-MNIST data, both efficiency and OOD recall are improved
due to the use of the weighted loss. Different values of the parameter q in the weighted loss lead to a similar
effect on the efficiency and OOD recall, when compared to the method without using the weighted loss (see
Bar4 and Bar5 when compared to Bar2).

Overall, Fig. 8 shows that with both KAOP and weighted loss, we tend to obtain compact acceptance regions
that have high prediction efficiency and OOD recall.

Sensitivity for OOD Proportion. In addition, we include the sensitivity study (in Appendix C.3) to
explore DeepGPS with varying proportions of OOD data in the target distribution Q. The efficiency remains
relatively stable across different OOD proportions in all three datasets.

6 Conclusion

Conventional single-valued predictions make decisions without guaranteed confidence for interested classes.
Moreover, current set-valued classification methods have sub-optimal performances on large and complex
datasets. To address these limitations, we propose an end-to-end DeepGPS method. Empirically, besides
detecting OOD points, DeepGPS provides reliable control over class-specific accuracy for normal classes,
offering cautious yet informative decisions to mitigate risks. Theoretically, we show that DeepGPS minimizes
the prediction set size under the prescribed accuracy. These support the effectiveness of DeepGPS in scenarios
where misclassification may have severe consequences, and hence highly accurate predictions are desired.

The DeepGPS network provides scalable set-valued classification with OOD detection. The kernel approxi-
mation allows Deep Neural Networks to tap into the good learning property of the kernels. This, along with
the offset penalization, facilitates the construction of closed acceptance regions. The usage of weighted loss
further renders more compact acceptance regions. As per the resulting predictions, DeepGPS differentiates
between OOD-rejected observations (i.e., |ϕ̂(x)| = 0), which were not considered in the CRO method, from
difficult observations (i.e., 2 ≤ |ϕ̂(x)| ≤ K). This distinction has not been well-explicitly explored in the
OOD detection and SCOD literature.

While the current implementation learns a shared σ value in Random Fourier Features, it is important to
note that this approach may overlook the heterogeneity among different classes, potentially resulting in larger
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acceptance regions for certain classes and hence degrading the performance. Future work could involve the
design of a new architecture that enables the learning of class-specific σ values. Additionally, our proposed
method leverages unlabeled datasets. Expanding the framework to operate in an online learning mode,
allowing for incremental updates with limited data availability, presents an intriguing avenue for future
exploration. Lastly, proposing a method that even controls the OOD recall with a theoretical guarantee
would be another intriguing topic. However, to our best knowledge, this further relies on the assumption of
the OOD data (Liu et al., 2018; Fang et al., 2021), which might be challenging in practice.
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Appendix

A Details of Experiments

All deep methods consistently use the same backbone and head network with the same dimension of weight
matrices in each layer. Experiments run over 150 epochs with batch size 512. The ResNet18 (He et al., 2016)
architecture is the same as the one in PyTorch and LeNet-type CNNs are identical to Ruff et al. (2020). The
training set (labeled set and unlabeled set as mentioned in Section 5) is further split with a ratio 9:1 into
training data for learning f and validation data for tuning parameters. The average and standard errors of
performances are reported after 5 runs.

DeepGPS. We use the Adam optimizer (Kingma & Ba, 2014) with learning rate lr = 10−4 and (β1, β2) =
(0.999, 0.999). Additionally, we set the weight decay in Adam as 10−4 and set λl = 0, l ∈ [L] in the objective
function Eq. (1) to implicitly regularize weight matrices instead of explicitly imposing a penalty on the first
term in J(f). In contrast, the parameter λ′

k = 1, k ∈ [K], same as in OCSVM (Schölkopf et al., 2000), is to
explicitly penalize the offset term in J(f). The tuning parameter C is determined such that the prediction
set is smallest on the unlabeled part in the validation data when the misclassification rate is close to γ on
the labeled part in the validation data.

For the below set-valued baselines (or DeepGPS-based variants), we conduct the split-conformal (Vovk et al.,
2005; Lei et al., 2015) and search for the optimal tuning parameters on the validation data (Lei, 2014). In
particular, let f̂k be the score function returned by a baseline and τ̂k be a γ×100% quantile of {fk(xj)}j∈Gval

k
,

where Gvalk denotes the index set of the observations from class k in the validation data. Then the optimal
parameter is chosen when the prediction set size

∑
j∈Gval

u

∑K
k=1 1{f̂k(xj) ≥ τ̂k} is minimized on the unlabeled

points in the validation data, where Gvalu denotes the index set of unlabeled observations in the validation
data.

GPS. We search the value of penalty in the GPS method from the grid {0.1, 1, 10}, and use the median of
pairwise Euclidean distance among observations as the bandwidth in its Gaussian kernel.

BCOPS. The maximum depth of the tree is searched from {10, 30, 50}. Minimum samples to split an
internal node, minimum samples at a leaf node, and the number of trees are searched from {5, 10}, {4, 6},
and {50, 100}, respectively.

CDL. We search the value of bandwidth in an even grid with length 5, starting from σ̂(1) × ( 4
(p+2)n )1/(p+4)

to σ̂(p) × ( 4
(p+2)n )1/(p+4), based on Silverman’s rule-of-thumb bandwidth estimator (Silverman, 2018), where

n is the sample size, p is the dimension of the feature and σ̂(1) and σ̂(p) are the minimum and maximum
standard deviations across all dimension of features.

SIRC. By following Xia & Bouganis (2022), we use the score function consisting of maximum softmax
probability and the l1 norm of the embedding in the penultimate layer, where the former is to separate easy
normal observations from both difficult normal observations and OOD observations while the latter is to
distinguish normal observations from OOD observations.

OpenMix. This method requires OOD exposure data, where we use the Gaussian noise as mentioned in
Zhu et al. (2023). In this method, the score function is the max logits returned from the output layer.

B Evaluation Metrics for Set-valued Classification

Note that the prediction performance is driven by the user-defined class-specific accuracy 1−γ. There exists
a trade-off among accuracy, OOD detection performance, and efficiency. Intuitively, a higher prescribed
accuracy leads to lower OOD detection performance and efficiency.

16



Published in Transactions on Machine Learning Research (05/2024)

In our evaluation, we report several key metrics for assessing the performance from different perspectives.
Let Gte be the index set of the test set. We report the sample class-specific accuracy∑

j∈Gte
1{Yj = k and Yj ∈ ϕ̂(Xj)}∑

j∈Gte
1{Yj = k}

× 100%, k ∈ [K]

to measure the accuracy of class predictions for normal classes; the aligned OOD recall

Rec(1 − γ) :=
∑
j∈Gte

1{Yj = OOD and |ϕ̂(Xj)| = 0}∑
j∈Gte

1{Yj = OOD}
× 100%

to evaluate the ability to correctly identify OOD samples; and the aligned efficiency

Eff(1 − γ) := 1 − 1
K − 1 ·

[∑
j∈Gte

1{Yj ̸= OOD} · |ϕ̂(Xj)|∑
j∈Gte

1{Yj ̸= OOD}
− 1
]

+

× 100%

to show how the classifier distinguishes between normal observations. The first term in [·]+ in Eff(1 − γ)
denotes the average prediction set size on the normal observations, ranging from 0 to K.

The above two aligned metrics are obtained by adjusting the thresholds in such a way that a set-valued
classifier exactly achieves the sample accuracy to be the prescribed value 1 − γ for each class, regardless of
the goodness of the original sample class-specific accuracy. This strategy helps us to conduct a relatively
fair comparison for set-valued classifiers since sample OOD recall and sample efficiency are affected by the
sample class-specific accuracy.

In SIRC and OpenMix methods, to obtain the aligned OOD recall, we set the threshold for the score functions
such that the error rate of incorrectly rejecting normal observations is γ. This strategy results in both single-
valued and set-valued rules exhibiting a similar overall error rate of rejecting normal observations, mitigating
potential disparities in our comparison. Notably, the single-valued prediction has 100% efficiency.

To see the overall performances, one may consider two new metrics, namely, AURec (area under the curve
between OOD recall and accuracy) and AUEff (area under the curve between efficiency and accuracy). These
two metrics are defined near the neighborhood of the prescribed accuracy 1 − γ, i.e., from 1 − 2γ to 1:

AURec := 1
2γ

∫ 1

1−2γ
Rec(t)dt, and AUEff := 1

2γ

∫ 1

1−2γ
Eff(t)dt.

It is important to note that these overall performance metrics (even though defined near the neighborhood
of 1−γ) have limitations as they overlook the specific accuracy value the user prescribed. Additionally, both
AURec and AUEff are calculated when all normal classes attain every accuracy value within the integral
region, which alludes that these two metrics are not applicable for single-valued classification, leaving them
blank for both SIRC and OpenMix methods in our reports.

C Extra Experiments

C.1 Set-valued Classification on CIFAR-100

We train the set-valued classification with ResNet50 backbone on the CIFAR-100 dataset with 20 coarser
class labels. Here 10 normal classes consist of {aquatic mammals, flowers, fruit and vegetables, natural
outdoor scenes, omnivores and herbivores, medium-sized mammals, invertebrates, reptiles, small mammals,
trees}, while the remaining 10 classes form as the OOD class. Table 2 shows that almost all the methods
can control the prescribed accuracy on all normal classes. With the representation learning, DeepGPS,
DeepGPS-based GPS, BCOPS, and CDL outperform the vanilla GPS, BCOPS, and GPS. Additionally, the
proposed DeepGPS has a better trade-off between OOD recall and efficiency.

17



Published in Transactions on Machine Learning Research (05/2024)

Table 2: Average performance metrics for CIFAR-100 (γ = 0.05)

CIFAR-100 DeepGPS
DeepGPS-based

GPS BCOPS CDL
GPS BCOPS CDL

aquatic mammals 98±0.51 96.6±0.3 94.4±1.14 95.2±0.8 96.9±0.42 94.3±0.61 95.6±0.75
flowers 97±0.73 95.3±1.09 94.7±0.64 94.5±0.85 95.8±0.65 96.4±0.83 93.1±0.53

fruit and vegetables 97±0.54 91.8±1.06 95.4±0.54 95.1±0.61 95.3±0.54 95.4±0.3 94.6±0.94
natural outdoor scenes 96.9±1.64 94.2±0.73 94.4±1.04 94.6±0.66 94.1±0.54 95.8±0.56 95.8±0.22

omnivores and herbivores 96.7±0.46 96±0.39 94.8±0.8 96±0.69 94.8±1.54 95.8±1.02 95±0.32
medium-sized mammals 96.6±0.59 96±0.22 95.6±0.26 96.5±0.54 94.9±1.14 95.5±0.68 96.1±0.59

invertebrates 94.5±1 95.8±1.75 95.1±0.57 95.8±1.12 96.5±0.67 95.4±0.28 94.6±0.6
reptiles 95.2±1.11 96.1±0.67 95.1±0.93 94.6±0.59 95.3±0.53 94.3±0.48 93±0.69

small mammals 95±0.66 94.7±0.87 95.7±0.54 95.9±0.52 91.8±1.62 94±0.64 94±0.55

Acc.

trees 96.6±1.11 93±1.59 94.2±1.12 95.1±0.66 95.6±0.82 95.4±0.18 94.4±0.67

Aligned OOD Recall 43.9±1.49 1.8±0.95 8.8±1.35 6.3±0.98 0±0.03 0.1±0.01 0±0.01
Aligned Efficiency 47.4±3.64 53.9±1.49 62.6±0.78 29.7±1.96 33.7±0.33 35.1±0.31 11.5±0.26

AUODR 38.4±0.96 3.4±0.99 8.5±1.05 6.6±0.9 0.1±0.06 0.1±0.01 0±0.01
AUEff 41±2.44 48.8±1.14 56.9±0.85 29±1.32 32±0.16 33.1±0.25 11.1±0.19

C.2 Class-specific Accuracy Control in Ablation Studies

Fig. 9 exhibits the accuracy control in the ablation studies on three datasets, where the height of each bar
represents the average sample accuracy and the black vertical segment on the top of each bar denotes the
standard error. Additionally, red dashed horizontal lines denote the prescribed accuracy level of 1 − γ.
In this figure, we can see that the DeepGPS method effectively controls the class-specific accuracy across
various techniques employed in the ablation studies. The metrics of prediction efficiency and OOD detection
performances are displayed in Fig. 8.

Bird Cat Deer Dog Frog Horse
0.0

0.2

0.4

0.6

0.8

1.0
CIFAR-10

Digit 1 Digit 4 Digit 6 Digit 7 Digit 9

MNIST

Pullover Dress Coat Sandal Ankle boot

Fashion-MNIST

Bar1: KAOP ; wgh Bar2: KAOP ; wgh Bar3: KAOP ; wgh q=5 Bar4: KAOP ; wgh q=5 Bar5: KAOP ; wgh q=10

Figure 9: Accuracy control in ablation studies for KAOP and weighted loss. ✓ denotes a technique is
deployed, while ✗ denotes not. q = 5 or 10 denotes the parameter value in the weighted loss.

C.3 Sensitivity for OOD Proportion

The results presented in Table 1 are based on OOD proportions of 4/10, 5/10, and 5/10 for CIFAR-10,
MNIST, and Fashion-MNIST, respectively (due to the number of sub-classes chosen for the OOD class). In

Table 3: Sensitivity study for varied OOD proportions on CIFAR-10 (γ = 0.05)

Acc. Aligned
OOD Recall

Aligned
Efficiency AURec AUEff

Bird Cat Deer Dog Frog Horse
0.2 95.4±0.59 95.5±0.34 96.8±0.6 96.4±0.54 97±0.38 95.3±1.21 15.8±2.15 71.9±0.87 14.8±2.01 66.7±0.68
0.3 95±1.24 94.4±0.75 95.9±1.01 96.1±0.74 96±0.66 94.7±1.29 33.8±11.71 72.4±1.33 32.2±10.16 64.6±1.29
0.8 96±0.78 95.3±0.88 96.8±0.88 96±0.57 96.5±0.83 95.7±0.66 70.7±5.08 70.3±1.13 66±4.7 62.8±0.74
0.9 96.5±0.69 94.3±1.26 97±0.73 95.7±0.8 96.7±0.69 96±0.81 73.6±1.56 69.3±1.84 70.4±2.16 62±1.36
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this section, we include the sensitivity study to explore the performance of DeepGPS under another four
different values, i.e., 0.2, 0.3, 0.8, and 0.9, of OOD proportion in three different datasets. As shown in Tables 3
to 5, the class-specific accuracies are well-controlled. The metrics of the efficiency, remain relatively stable
across different OOD proportions in all three datasets. When it comes to the OOD detection performance,
in general, the higher OOD proportion helps to improve the OOD detection performance.

Table 4: Sensitivity study for varied OOD proportions on MNIST (γ = 0.01)

Acc. Aligned
OOD Recall

Aligned
Efficiency AURec AUEff

Digit 1 Digit 4 Digit 6 Digit 7 Digit 9
0.2 99.9±0.02 99.4±0.09 99.3±0.13 99.2±0.16 99.2±0.11 68.2±2.2 99.8±0.06 60.1±2.92 97.6±0.31
0.3 99.9±0.06 99.4±0.1 99.3±0.13 99.1±0.2 98.9±0.09 80.4±1.5 99.7±0.08 70.2±2.07 97.2±0.26
0.8 99.7±0.05 99.4±0.07 99.1±0.08 99.1±0.22 98.8±0.14 89.4±1.59 99.5±0.12 82.4±1.65 97.2±0.32
0.9 99.7±0.04 99.4±0.04 99±0.1 99.3±0.16 98.7±0.1 88.5±1.82 99.5±0.12 81.1±2.57 97±0.46

Table 5: Sensitivity study for varied OOD proportions on Fashion-MNIST (γ = 0.01)

Acc. Aligned
OOD Recall

Aligned
Efficiency AURec AUEff

Pullover Dress Coat Sandal Ankle boot
0.2 99.3±0.09 98.7±0.15 99.3±0.08 99.7±0.07 99.4±0.12 19.3±1.59 92.4±0.27 17.7±1.2 87.5±0.27
0.3 99±0.15 98.8±0.17 99±0.2 99.4±0.05 99.4±0.11 33.1±4.52 91.4±0.1 30±3.5 86.6±0.63
0.8 99.1±0.04 98.6±0.19 99.5±0.11 99.6±0.09 99.4±0.09 59.5±1.86 91.3±0.16 46.6±1 85.3±0.77
0.9 99±0.04 98.7±0.19 99.6±0.11 99.6±0.1 99.5±0.05 57.1±2.26 90.9±0.2 47.3±1.27 86.5±0.44

C.4 Alternative Loss Functions

In this section, we test the performance of DeepGPS on the CIFAR-10 with different surrogate losses, i.e.,
exponential and logistic loss functions. Table 6 shows that the alternative two loss functions significantly
sacrifice the prediction efficiency. This is mainly due to both logistic log(1 + exp(−u)) and exponential loss
exp(−u) having non-zero loss value when u > 0, which forces the prediction sets to include more labels such
that the empirical loss values are below than the error bound γ on average. In contrast, the hinge loss used
in Table 1 returns smaller prediction sets without sacrificing too much OOD recall.

Furthermore, we once considered the sigmoid function 1
1+exp(u) as a candidate loss function which is closer

to 0-1 loss than the hinge loss; however, the gradient vanishing with u away from 0 hinders the training
progress.

Table 6: Average performance on CIFAR-10 (γ = 0.05) under alternative loss functions

Loss
Functions

Acc. Aligned
OOD Recall

Aligned
Efficiency AUODR AUEff

Bird Cat Deer Dog Frog Horse
logistic 96.7±0.68 97.7±0.58 98.5±0.53 98.3±0.73 98.6±0.51 98.2±0.53 83.1±0.28 34.1±6.37 71.7±3.12 33.7±5.11
exponential 97.3±0.68 97.9±0.54 99±0.45 99.1±0.21 99.1±0.22 98.4±0.41 84.8±1.51 36.2±5.3 70.7±2.23 35.9±4.2
hinge (in Table 1) 96.7±0.33 94.6±0.46 97.1±0.43 96.1±0.5 95.8±0.11 95.1±0.61 66.9±1.83 72.6±0.9 56.7±3.1 65.1±0.9
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D Proof of Theorems

For a matrix Wl ∈ Rml×pl in l-th layer, l ∈ [L], if ∥Wℓ∥F ≤ κl, thus we have ∥Wl∥ ≤ κl and ∥W⊤
l ∥2,1 ≤√

mlκl := bl, where ∥ · ∥ is the operator norm and ∥ · ∥2,1 is the sum of Euclidean norms of the matrix
columns.

To prove Theorem 1, we need the notion of Rademacher complexity to measure the richness of a hypothesis
class. Following this, we show the Rademacher complexity of a particular hypothesis class with Lemma 1,
which will be used in the subsequent proofs.
Definition 1. Let G be a class of real-valued functions g : X 7→ R. The Rademacher complexity Rn(G) and
the empirical Rademacher complexity R̂n(G) of the hypothesis class G are respectively defined as

Rn(G) := E

sup
g∈G

1
n

n∑
j=1

σjg(xj)

 , R̂n(G) := E

sup
g∈G

1
n

n∑
j=1

σjg(xj) | {xj}nj=1

 ,
where σj , j = 1, . . . , n are Rademacher random variables which independently and uniformly take values from
{−1,+1}, and xj , j = 1, . . . , n are sample points.
Remark 2. In Definition 1, the first expectation is taken with respect to both Rademacher random variables
and sample points, while the second expectation is only taken with respect to Rademacher random variables
by conditioning on sample points. Given this, we have Rn(G) = E[R̂n(G)].
Lemma 1. (Liang, 2016) Let x̃i ∈ Rp and assume E[∥x̃i∥2

2] ≤ c2
x̃ holds for all i = 1, . . . , n. The Rademacher

complexity of the inner product operation with constrained ℓ2 norm on a dataset with sample size n is

Rn

(
x̃ 7→ x̃⊤β : ∥β∥2 ≤ bβ,β ∈ Rp

)
≤ cx̃bβ√

n
.

Proof.

Rn

(
x̃ 7→ x̃⊤β : ∥β∥2 ≤ bβ,β ∈ Rp

)
= 1
n
E

[
sup

β:∥β∥2≤bβ

n∑
i=1

σix̃
⊤
i β

]
= 1
n
E

[
sup

β:∥β∥2≤bβ

β⊤
n∑
i=1

σix̃i

]

≤ bβ

n
E

[
∥

n∑
i=1

σix̃i∥2

]
Cauchy-Schwartz inequality

= bβ

n
E

√√√√∥
n∑
i=1

σix̃i∥2
2

 ≤ bβ

n

√√√√E

[
∥

n∑
i=1

σix̃i∥2
2

]
√

· is concave

≤ bβ

n

√√√√E

[
n∑
i=1

∥x̃i∥2
2

]
≤ bβ · cx̃√

n
.

The main idea in the proof of Theorem 1 is to treat sampled the Gaussian frequencies ξj ∈ R
mL−2 , j =

1, . . . , D as "data points", and find the Rademacher complexity of certain mapping applied on these ξj .

Proof of Theorem 1: Inequality (5) can be obtained by using the Hoeffding’s inequality. To show (6), let
∆z := zxi

− zxj
and

KD := sup
∆z

ζ̂(zxi
;σ)⊤ζ̂(zxj

;σ) − exp
(

−
σ2∥zxi − zxj ∥2

2

)

= sup
∆z

1
D

D∑
j=1

cos
(
σξ⊤

j ∆z

)
− exp

(
−σ2∥∆z∥2

2

)
.
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By McDiarmid’s inequality (the bounded difference is 2
D ), with the probability at least 1 − δ, we have

KD ≤ E[KD] +
√

2
D

log 2
δ

≤ 2 · RD({ξ 7→ cos(σξ⊤∆z)}) +
√

2
D

log 2
δ

(9)

≤ 2 · RD({ξ 7→ σξ⊤∆z}) +
√

2
D

log 2
δ

(10)

≤ 2√
mL−2

|σ| · 2c0
∏L−2
l=1 κl√

D
+
√

2
D

log 2
δ
, (11)

where E[KD] ≤ 2 · RD({ξ 7→ cos(σξ⊤∆z)}) in (9) holds due to Ma (2022, Theorem 4.13); (10) holds by
using Talagrand’s lemma (Mohri et al., 2018) and the fact that cos(·) is a 1-Lipschitz function. As for (11),
it is true since

RD({ξ 7→ σξ⊤∆z}) ≤
√
mL−2 · |σ| · sup ∥∆z∥2√

D
because of Lemma 1 and ξj ∼ N (0, ImL−2)

≤
√
mL−2 · |σ|

√
D

· (
L−2∏
l=1

κl) · ∥xi − xj∥2 (12)

≤
√
mL−2 · |σ| · 2c0√

D
·
L−2∏
l=1

κl,

where (12) holds because zi, zj are outputs from the neural network up to (L− 2)-th layer, which is also a
Lipschitz mapping (with Lipschitz constant

∏L−2
l=1 κl) evaluated on xi,xj . The last inequality holds due to

the assumption of ∥xi∥2 ≤ c0 mentioned in Section 4.

To derive Theorems 2 and 3, we need the notion of the covering number with metric entropy, which is another
approach to show the capacity of a hypothesis class. The covering number and the (empirical) Rademacher
complexity can be bridged by Dudley’s Theorem. Additionally, we introduce Lemmas 2 and 3 that are
critical to deriving our theorems.
Definition 2. The covering number of a hypothesis class F with respect to a metric ρ : F × F 7→ R is
defined as the smallest number of balls with radius ε covering F , i.e.,

N (ε,F , ρ) := min{N : ∃ {f1, f2, · · · , fN} ⊂ F ⊂ ∪Ni=1Bρ(fi, ε)},

where the ball with center fi and radius ε under the metric ρ is defined as Bρ(fi, ε) := {f : ρ(fi, f) ≤ ε}.
Additionally, the metric entropy is defined as the logarithm of the covering number, i.e., log N (ε,F , ρ).
Remark 3. In particular, throughout this article, the distance between two functions fi and f under the
metric ρ = L2(Pn) is defined as

ρ(fi, f) = L2(Pn) (fi, f) =
∫

∥fi − f∥2
2dPn :=

√√√√ 1
n

n∑
i=1

∥fi(xj) − f(xj)∥2
2,

where xj , j = 1, . . . , n are sample points. Here fi(·) and f(·) could be a vector output.

Lemma 2. (Bartlett et al., 2017; Ma, 2022) Let H′
l,bl

= {z 7→ Wz : W ∈ Rml×pl , ∥W⊤∥2,1 ≤ bl} and
∥zi∥2 ≤ cl−1, i = 1, . . . , n. The metric entropy

log N
(
εl,H′

l,bl
, L2(Pn)

)
≤
b2
l c

2
l−1
ε2
l

ln(2mlpl).

Remark 4. Slightly different from Bartlett et al. (2017); Ma (2022), for notation simplicity, we do not apply
ceiling operation on b2

l c
2
l−1
ε2

l

in Lemma 2. This is not a big deal because we can remove the ceiling operation
by adjusting the value of εl to obtain the ceiling integer.
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Remark 5. Lemma 2 can immediately yield log N (εl,Hl,κl
, L2(Pn)) ≤ b2

l c
2
l−1
ε2

l

ln(2mlpl) with bl = √
mlκl as

defined at very beginning.
Lemma 3. Ma (2022) Assume the input zl−1 in l-th layer of the network architecture FL,κ satis-
fies ∥zl−1∥2 ≤ cl−1. If the metric entropy of the hypothesis class in l-th layer has an upper bound
log N (εl,Hl,κl

, L2(Pn)) ≤ g(εl, cl−1), where εl is the radius of covering balls for Hl,κl
, there exists an ε-

covering of FL,κ such that the metric entropy

log N (ε,FL,κ, L2(Pn)) ≤
L∑
l=1

g(εl, cl−1).

Theorem 4. Let r := c0 ·
L∏
l=1

κl. For any Lipschitz mapping ψ : RK 7→ R with Lipschitz constant cψ, under

the assumptions in Lemma 3, the Rademacher complexity of the hypothesis class ψ ◦FL,κ on the dataset with
sample size n is

Rn(ψ ◦ FL,κ) ≤ 4√
n

+ 12 · cψ · r log(r
√
n)√

n
·

[
L∑
l=1

(ml ln(2mlpl))
1
3

] 3
2

.

Proof. By using Remark 5 and Lemma 3, we have

log N (ε,FL,κ, L2(Pn)) ≤
L∑
l=1

b2
l c

2
l−1
ε2
l

ln(2mlpl). (13)

Our goal now is to bound the metric entropy log N (ε,FL,κ, L2(Pn)) directly involved with ε instead of εl
in (13). As shown in the proof of Lemma 3 in Ma (2022), there exists a covering for FL,κ with radius
ε =

∑L
l=1 εl

∏L
j=l+1 κj . Then, through the Holder’s inequality, we have

L∑
l=1

(
blcl−1

√
ln(2mlpl)

L∏
j=l+1

κj

) 2
3

=
L∑
l=1

(
blcl−1

εl

√
ln(2mlpl)

) 2
3

·
(
εl

L∏
j=l+1

κj

) 2
3

≤

[
L∑
l=1

b2
l c

2
l−1
ε2
l

ln(2mlpl)
] 1

3

·
[ L∑
l=1

(
εl

L∏
j=l+1

κj

)
︸ ︷︷ ︸

ε

] 2
3

⇒
[ L∑
l=1

(
blcl−1

√
ln(2mlpl)

L∏
j=l+1

κj

) 2
3
]3 1
ε2 ≤

L∑
l=1

b2
l c

2
l−1
ε2
l

ln(2mlpl)

and equality can be achieved when we choose

εl = ε(bl/κl)1/2(ln(2mlpl))1/4∏L
j=l+1 κl

·

(
L∑
l=1

( bl
κl

√
ln(2mlpl))2/3

)−3/2

·

(
L∑
l=1

bl
κl

√
ln(2mlpl)

)1/2

.

Hence, the upper bound in (13) can be re-expressed as

L∑
l=1

b2
l c

2
l−1
ε2
l

ln(2mlpl) =
[ L∑
l=1

(
blcl−1

√
ln(2mlpl)

L∏
j=l+1

κj

) 2
3
]3 1
ε2

=
L∏
l=1

κ2
l

[ L∑
l=1

(
blcl−1

√
ln(2mlpl)

l∏
j=1

κ−1
j

) 2
3
]3 1
ε2 = c2

0

L∏
l=1

κ2
l︸ ︷︷ ︸

r2

[ L∑
l=1

(
√
ml ln(2mlpl))

2
3

]3 1
ε2
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where the last equality holds due to cl = c0 ·
∏l
j=1 κj (composition of Lipschitz continuous functions) and

bl = √
mlκl. Thereby Eq. (13) concludes

log N (ε,FL,κ, L2(Pn)) ≤ r2

ε2 ·

[
L∑
l=1

(ml ln(2mlpl))
1
3

]3

.

Together with the Lipschitz transformation property in the covering number (Park & Muandet, 2023), i.e.,
N (ε, ψ ◦ FL,κ, L2(Pn)) ≤ N (ε/cψ,FL,κ, L2(Pn)), the above further indicates

log N (ε, ψ ◦ FL,κ, L2(Pn)) ≤
c2
ψr

2

ε2 ·

[
L∑
l=1

(ml ln(2mlpl))
1
3

]3

,

According to the Localized Dudley’s Theorem (Ma, 2022), we have

R̂n(ψ ◦ FL,κ) ≤ 4α+ 12
∫ r

α

√
log (ε, ψ ◦ FL,κ, L2(Pn))

n
dε

≤ 4√
n

+ 12cψ · r log(r
√
n)√

n
·

[
L∑
l=1

(ml ln(2mlpl))
1
3

] 3
2

by choosing α = 1√
n

. Therefore,

Rn(ψ ◦ FL,κ) = E
[
R̂n(ψ ◦ FL,κ)

]
≤ 4√

n
+ 12cψ · r log(r

√
n)√

n
·

[
L∑
l=1

(ml ln(2mlpl))
1
3

] 3
2

.

Proof of Theorem 2: Define Gnk
:= sup

f∈F̂+
L,κ

(γ,ν)
E[ℓ2,γ(fk(X)) | Y = k] − 1

nk

∑
yi=k

ℓ2,γ(fk(xi)). By the

McDiarmid’s inequality (the bounded difference is 2r
nk

), with probability at least 1 − δ
K , we have

Gnk
≤ E[Gnk

] + 2r
√

1
2nk

log 2K
δ

≤ 2 · Rnk
(ℓ2,γ ◦ πk ◦ F̂+

L,κ(γ, ν)) + r

√
2
nk

log 2K
δ
, (14)

where πk denotes the k-th coordinate projection.

Note that both loss function ℓ2,γ and projection operator πk are 1-Lipschitz mappings, and Rnk
(ℓ2,γ ◦ πk ◦

F̂+
L,κ(γ, ν)) ⊂ Rnk

(ℓ2,γ ◦ πk ◦ F+
L,κ(γ, ν)) because of F̂+

L,κ(γ, ν) ⊂ FL,κ. Thereby, by applying Talagrand’s
lemma, (14) leads to

E
[
ℓ2,γ(f̂k(X)) | Y = k

]
≤ 1
nk

∑
yi=k

ℓ2,γ(f̂k(xi)) + 2 · Rnk
(πk◦FL,κ) + r

√
2
nk

log 2K
δ

:= 1
nk

∑
yi=k

ℓ2,γ(f̂k(xi)) + ϑnk
(δ),

(15)

where

Rnk
(πk◦FL,κ) = 4

√
nk

+
12r log(r√nk)

√
nk

·

[
L∑
l=1

(ml ln(2mlpl))
1
3

] 3
2

(16)

by applying Theorem 4.

Proof of Theorem 3: We skip the proof of Statement (1) since it can be immediately derived from
Eq. (15) with the hypothesis class F̂+

L,κ(γ − ν − ϑ∗, ν). Now let’s work on the proof of Statement (2),
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which will be divided into 2 parts. We define f̂ , f̄ ∈ F̂+
L,κ(γ − ν − ϑ∗, ν) be the minimizer of R̂ℓ1(f) :=

1
n

∑n
i=1
∑K
k=1 ℓ1(fk(xi)) and 1

K

∑K
k=1 E[ℓ1(fk(X))], respectively. WLOG, we assume the loss function ℓ1

has the Lipschitz constant c. Note that the operation
∑K
k=1 ℓ1(fk(xi)) here can be viewed as 1⊤ ◦ ℓ1 ◦ f(xi),

where 1 is the vector with all K entries taking the value 1; ℓ1 is element-wisely applied on f(xi) and
the composite mapping 1⊤ ◦ ℓ1 has Lipschitz constant

√
Kc due to the fact that ∀z = (z1, · · · , zK)⊤ and

z̃ = (z̃1, · · · , z̃K)⊤,

∥1⊤ ◦ ℓ1(z) − 1⊤ ◦ ℓ1(z̃)∥2 ≤ ∥1⊤∥2 · ∥ℓ1(z) − ℓ1(z̃)∥2

=
√
K ·

√√√√ K∑
k=1

(
ℓ1(zk) − ℓ1(z̃k)

)2 ≤
√
Kc

√√√√ K∑
k=1

(
zk − z̃k)2 =

√
Kc · ∥z − z̃∥2.

i) This part is to bound Rℓ1(f̂) − min
f∈F+

L,κ
(γ−ν̃−2ϑ∗,ν̃)

Rℓ1(f), where ν̃ ∈ [0, γ − 2ϑ∗].

Let’s first prove the statement: with probability at least 1 − δ,

F+
L,κ(γ − ν̃ − 2ϑ∗, ν̃) ⊂ F̂+

L,κ(γ − ν − ϑ∗, ν). (17)

Proof. On the one hand, for any f̃ ∈ F+
L,κ(γ − ν̃ − 2ϑ∗, ν̃), we have

P(f̃k(X) < 0 | Y = k) − (γ − ν̃ − 2ϑ∗) ≤ E[ℓγ−ν̃−2ϑ∗(f̃k(X)) | Y = k] ≤ ν̃

⇒ P(f̃k(X) < 0 | Y = k) ≤ γ − 2ϑ∗.

On the other hand, for any f̆ ∈ F̂+
L,κ(γ − ν − ϑ∗, ν), similar to the prove of Eq. (15), with low probability

at most δ, we have

E[ℓγ−ν−ϑ∗(f̆k(X)) | Y = k] ≤ 1
nk

∑
yi=k

ℓγ−ν−ϑ∗(f̆k(xi)) − ϑnk
(δ)

≤ ν − ϑnk
(δ)

⇒ P(f̆k(X) < 0 | Y = k) − (γ − ν − ϑ∗) ≤ ν − ϑnk
(δ)

⇒ P(f̆k(X) < 0 | Y = k) ≤ γ − ϑ∗ − ϑnk
(δ),

thus with probability at least 1 − δ, we have

P(f̆k(X) < 0 | Y = k) > γ − ϑ∗ − ϑnk
(δ) ≥ γ − 2ϑ∗ ≥ P(f̃k(X) < 0 | Y = k),

which implies F+
L,κ(γ − ν̃ − 2ϑ∗, ν̃) ⊂ F̂+

L,κ(γ − ν − ϑ∗, ν).

Therefore, with probability 1 − δ, the following inequality holds

Rℓ1(f̂) − min
f∈F+

L,κ
(γ−ν̃−2ϑ∗,ν̃)

Rℓ1(f) = Rℓ1(f̂) − R̂ℓ1(f̂) + R̂ℓ1(f̄) − Rℓ1(f̄)

+ R̂ℓ1(f̂) − R̂ℓ1(f̄) (18)
+ Rℓ1(f̄) − min

f∈F+
L,κ

(γ−ν̃−2ϑ∗,ν̃)
Rℓ1(f) (19)

≤ 2 sup
f∈FL,κ

|Rℓ1(f) − R̂ℓ1(f)|, (20)

because Eq. (18) is non-positive (f̂ is an empirical minimizer), and Eq. (19) is non-positive with probability
1 − δ due to the fact of Eq. (17) and f̄ is a minimizer in F̂+

L,κ(γ − ν − ϑ∗, ν).
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Let Fsum,ℓ1
L,κ := {x 7→

∑K
k=1 ℓ1(fk(x)) : f = (f1, · · · , fK) ∈ FL,κ} be a space in which a Lipschitz continuous

function (the Lipschitz constant is
√
Kc) is applied on the function vector f ∈ FL,κ. Thus, by applying

Theorem 4, we have

Rn(Fsum,ℓ1
L,κ ) ≤ 4√

n
+ 12

√
Kc · r log(r

√
n)√

n
·

[
L∑
l=1

(ml ln(2mlpl))
1
3

] 3
2

, (21)

where c = 1 when we particularly work with the hinge loss.

Following the similar proof for Eq. (14) (now the bounded difference is 2
√
Kcr/n), with probability 1 − δ

we have

sup
f∈FL,κ

|Rℓ1(f) − R̂ℓ1(f)| ≤ 2Rn(Fsum,ℓ1
L,κ ) + 2

√
Kcr

√
1

2n log 2
δ

(22)

and hence with probability at least 1 − 2δ, (20) and (22) yields

Rℓ1(f̂) − min
f∈F+

L,κ
(γ−ν̃−2ϑ∗,ν̃)

Rℓ1(f) ≤ 4Rn(Fsum,ℓ1
L,κ ) + 4

√
Kcr

√
1

2n log 2
δ
. (23)

ii) This part is to bound min
f∈F+

L,κ
(γ−ν̃−2ϑ∗,ν̃)

Rℓ1(f) − min
f∈F+

L,κ
(γ−ν̃,ν̃)

Rℓ1(f).

Let f in = argmin
f∈F+

L,κ
(γ−ν̃−2ϑ∗,ν̃)

Rℓ1(f) and fout = argmin
f∈F+

L,κ
(γ−ν̃,ν̃)

Rℓ1(f). Note that f in,fout ∈ FL,κ. Thus

min
f∈F+

L,κ
(γ−ν̃−2ϑ∗,ν̃)

Rℓ1(f) − min
f∈F+

L,κ
(γ−ν̃,ν̃)

Rℓ1(f)

= Rℓ1(f in) − Rℓ1(fout)

= Rℓ1(f in) − R̂ℓ1(f in) + R̂ℓ1(fout) − Rℓ1(fout) + R̂ℓ1(f in) − R̂ℓ1(fout)

≤ 2 sup
f∈FL,κ

|Rℓ1(f) − R̂ℓ1(f)| + R̂ℓ1(f in) − R̂ℓ1(fout)

(24)

Define R̃(f in,fout) := R̂ℓ1(f in) − R̂ℓ1(fout) = 1
n

n∑
i=1

K∑
k=1

ℓl(f ink (xi)) − ℓ1(foutk (xi)). Since

∣∣∣∣∣
K∑
k=1

ℓl(f ink (xi)) − ℓ1(foutk (xi)) −
K∑
k=1

ℓl(f ink (x′
i)) − ℓ1(foutk (x′

i))

∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

ℓl(f ink (xi)) − ℓ1(f ink (x′
i)) −

K∑
k=1

ℓl(foutk (xi)) − ℓ1(foutk (x′
i))

∣∣∣∣∣
≤

K∑
k=1

∣∣ℓl(f ink (xi)) − ℓ1(f ink (x′
i))
∣∣+

K∑
k=1

∣∣ℓl(foutk (xi)) − ℓ1(foutk (x′
i))
∣∣

≤ 2
K∑
k=1

|ℓl(fk(xi)) − ℓ1(fk(x′
i))| here f = (f1, . . . , fK)⊤ ∈ FL,κ

≤ 2
K∑
k=1

c|fk(xi) − fk(x′
i)| ℓ1 is a c-Lipschitz continuous function

≤ 2c
K∑
k=1

∥(WL)k,·∥2 ·

(
L−1∏
l=1

κl

)
∥xi − x′

i∥2 (WL)k,· denotes k-th row of matrix WL

≤ 4c
√
Kc0

L∏
l=1

κl = 4
√
Kcr,
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by McDiarmid’s inequality (the bounded difference is 4
√
Kcr/n), with the probability at least 1−δ, we have

R̃(f in,fout) ≤ E[R̃(f in,fout)] + 4
√
Kcr

√
1

2n log 2
δ

≤ 2Rn

(
x 7→

K∑
k=1

ℓ1(f ink (x)) − ℓ1(foutk (x))
)

+ 4
√
Kcr

√
1

2n log 2
δ

≤ 4Rn(Fsum,ℓ1
L,κ ) + 4

√
Kcr

√
1

2n log 2
δ

(25)

Therefore, together with (22) and (25), (24) can be bounded as follows:

min
f∈F+

L,κ
(γ−ν̃−2ϑ∗,ν̃)

Rℓ1(f) − min
f∈F+

L,κ
(γ−ν̃,ν̃)

Rℓ1(f)

≤ 2 sup
f∈FL,κ

|Rℓ1(f) − R̂ℓ1(f)| + R̂ℓ1(f in) − R̂ℓ1(fout)

≤ 4Rn(Fsum,ℓ1
L,κ ) + 4

√
Kcr

√
1

2n log 2
δ

+ 4Rn(Fsum,ℓ1
L,κ ) + 4

√
Kcr

√
1

2n log 2
δ

= 8Rn(Fsum,ℓ1
L,κ ) + 8

√
Kcr

√
1

2n log 2
δ
.

(26)

Combining (23) in Part (i) and (26) in Part (ii), we conclude that, with probability at least 1 − 3δ,

Rℓ1(f̂) − min
f∈F+

L,κ
(γ−ν̃,ν̃)

Rℓ1(f)

≤ 4Rn(Fsum,ℓ1
L,κ ) + 4

√
2cr
√

1
2n log K

δ
+ 8Rn(Fsum,ℓ1

L,κ ) + 8
√
Kcr

√
1

2n log 2
δ

≤ 12Rn(Fsum,ℓ1
L,κ ) + 12

√
Kcr

√
1

2n log 2
δ
,

(27)

where c = 1 if we particularly use the hinge loss.
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