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Abstract

Pixel-level segmentation of structural cracks across var-
ious scenarios remains a considerable challenge. Cur-
rent methods encounter challenges in effectively modeling
crack morphology and texture, facing challenges in bal-
ancing segmentation quality with low computational re-
source usage. To overcome these limitations, we propose
a lightweight Structure-Aware Vision Mamba Network (SC-
Segamba), capable of generating high-quality pixel-level
segmentation maps by leveraging both the morphological
information and texture cues of crack pixels with minimal
computational cost. Specifically, we developed a Structure-
Aware Visual State Space module (SAVSS), which incor-
porates a lightweight Gated Bottleneck Convolution (GBC)
and a Structure-Aware Scanning Strategy (SASS). The key
insight of GBC lies in its effectiveness in modeling the mor-
phological information of cracks, while the SASS enhances
the perception of crack topology and texture by strength-
ening the continuity of semantic information between crack
pixels. Experiments on crack benchmark datasets demon-
strate that our method outperforms other state-of-the-art
(SOTA) methods, achieving the highest performance with
only 2.8M parameters. On the multi-scenario dataset,
our method reached 0.8390 in F1 score and 0.8479 in
mIoU. The code is available at https://github.com/
Karl1109/SCSegamba.

1. Introduction
Structures like bitumen pavement, concrete, and metal fre-
quently develop cracks under shear stress, making regu-
lar health monitoring essential to avoid production issues
[3, 4, 19, 23, 30]. Due to differences in material proper-
ties and environmental conditions, various materials exhibit
significant variations in crack morphology and visual ap-
pearance [24]. As a result, achieving pixel-level crack seg-
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(a) Comparison with SOTA methods. (b) Different numbers of SAVSS layers.

(c) Segmentation results in complex interference conditions.
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Figure 1. Performance of SCSegamba on multi-scenario TUT [33]
dataset. (a) Comparison with SOTA methods. (b) Impact of differ-
ent SAVSS layer numbers on performance, with normalized met-
rics; FLOPs (G), Params (M), and Size (MB) decrease towards the
edges. (c) Visual results under complex interference.

mentation across diverse scenarios remains a complex chal-
lenge. Recently, Convolutional Neural Networks (CNNs),
such as ECSNet [59] and SFIAN [5], have shown effec-
tive crack feature extraction capabilities in segmentation
tasks due to their strong local inductive properties. How-
ever, their limited receptive field constrains their ability to
model broad-scope irregular dependencies across the entire
image, resulting in discontinuous segmentation and weak
background noise suppression. Although dilated convolu-
tion [2] expand the receptive field, their inherent induc-
tive bias still prevents them from fully addressing this is-
sue [58], especially in complex crack patterns with heavy
background interference.

The success of Vision Transformer (ViT) [10, 45, 47]
has demonstrated Transformer’s effectiveness in capturing
irregular pixel dependencies, which is crucial for recogniz-
ing complex crack textures, as seen in networks like DTr-
CNet [48], MFAFNet [9], and Crackmer [46]. However,
the quadratic complexity of attention calculations with se-
quence length leads to high memory use and training chal-
lenges for high-resolution images, limiting deployment on
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resource-constrained edge devices and practical applica-
tions. As shown in Figure 1(a), Transformer-based meth-
ods like CTCrackseg [44] and DTrCNet [48] perform well,
but their large parameter counts and high computational
demands limit their deployability on resource-constrained
devices. Although variants like Sparse Transformer [6]
and Linear Transformer [21] reduce computational require-
ments by sparsifying or linearizing attention, they sacrifice
the ability to model irregular dependencies and pixel tex-
tures, hindering pixel-level detection tasks. Consequently,
Transformer-based methods struggle to balance segmenta-
tion performance with computational efficiency.

Recently, Selective State Space Models (SSMs) have
attracted considerable interest due to Mamba’s showing
strong performance in sequence modeling while maintain-
ing low computational demands [14, 15]. Vision Mamba
(ViM) [62] and VMamba [36] have extended Mamba to
the visual domain. The irregular extension of crack re-
gions with numerous branches in low-contrast images, of-
ten affected by irrelevant areas and shadows, challenges
existing Mamba VSS (Visual State Space Model) block
structures and scanning strategies in capturing crack mor-
phology and texture effectively. Most Mamba-based meth-
ods [37, 51, 52, 55] process feature maps through linear
layers, limiting selective enhancement or suppression of
crack features against irrelevant disturbances, thus reduc-
ing detailed morphological extraction. Additionally, com-
mon parallel or unidirectional diagonal scans [16] strug-
gle to maintain semantic continuity when handling irregu-
lar, multi-directional pixel topologies, weakening their abil-
ity to manage complex textures and suppress noise. Con-
sequently, current Mamba-based SSM frequently produce
false or missed detections in multi-scenario crack images.
Moreover, although these methods have the advantage of
fewer parameters, there remains potential to further reduce
their computational demands and enhance their deployabil-
ity on edge devices. As shown in Figure 1(b), CSMamba
[37], MambaIR [16], and PlainMamba [55] showed unsat-
isfactory performance on crack images, with room for im-
provement in parameter count and computational load.

To tackle the challenge of balancing high segmenta-
tion quality with low computational demands, we propose
the SCSegamba network that produces high-quality pixel-
level crack segmentation maps with low computational re-
sources. To improve the Mamba network’s perception of
irregular crack textures, we design a Structure-Aware Vi-
sual State Space block (SAVSS), employing a Structure-
Aware Scanning Strategy (SASS) to enhance semantic con-
tinuity and strengthen crack morphology perception. For
capturing crack shape cues while maintaining low param-
eter and computational costs, we designed a lightweight
Gated Bottleneck Convolution (GBC) that dynamically ad-
justs weights for complex backgrounds and varying mor-

phologies. Additionally, the Multi-scale Feature Segmen-
tation head (MFS) integrates the GBC and Multi-layer Per-
ceptron (MLP) to achieve high-quality segmentation maps
with low computational requirements. As shown in Figure
1(c), optimal segmentation performance was achieved with
four SAVSS layers, producing clear segmentation maps that
effectively mask complex interference while maintaining
model lightweightness.

In essence, the primary contributions of our work are
outlined as follows:
• We propose a novel lightweight vision Mamba network,

SCSegamba, for crack segmentation. This model effec-
tively captures morphological and irregular texture cues
of crack pixels, using low computational resources to gen-
erate high-quality segmentation maps.

• We design the SAVSS with a lightweight GBC Convolu-
tion and a SASS scanning strategy to enhance the han-
dling and perception of irregular texture cues in crack im-
ages. Additionally, a simple yet effective MFS is devel-
oped to generate segmentation maps with relatively low
computational resources.

• We evaluate SCSegamba on benchmark datasets across
diverse scenarios, with results demonstrating that our
method outperforms other SOTA methods while main-
taining the low parameter count.

2. Related Works
2.1. Crack Segmentation Network
Early crack detection methods often relied on traditional
feature extraction techniques, such as wavelet transform
[61], percolation models [54], and the k-means algorithm
[25]. Although straightforward to implement, these meth-
ods face challenges in suppressing background interference
and achieving high segmentation accuracy. With advance-
ments in deep learning, researchers have developed CNN-
based crack segmentation networks that achieve SOTA per-
formance [5, 7, 18, 26, 40, 49]. For instance, DeepCrack
[35] enables end-to-end pixel-level segmentation, while
FPHBN [56] demonstrates strong generalization capabili-
ties. BARNet [17] detects crack boundaries by integrat-
ing image gradients with features, and ADDUNet [1] cap-
tures both fine and coarse crack characteristics across varied
conditions. Although CNN-based methods show significant
promise, the local operations and limited receptive fields of
CNNs limit their ability to fully capture crack texture cues
and effectively suppress background noise.

Transformers [45], with their self-attention mechanism,
are well-suited for visual tasks that require long-range
dependency modeling, making them increasingly popu-
lar in crack segmentation networks [9, 31, 32, 41, 53].
For example, VCVNet [39], based on Vision Transformer
(ViT), is designed for bridge crack segmentation, address-
ing fine-grained segmentation challenges. SWT-CNN [27]
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Figure 2. Overview of our proposed method. (a) illustrates the overall architecture of SCSegamba and the processing flow for crack
images. (b) displays the structure of the SAVSS block. The input crack image undergoes comprehensive morphological and texture feature
extraction through SAVSS, while MFS produces a high-quality pixel-level segmentation map.

combines Swin Transformer and CNN for automatic fea-
ture extraction, while TBUNet [60], a Transformer-based
knowledge distillation model, achieves high-performance
crack segmentation with a hybrid loss function. Although
Transformer-based methods are highly effective at captur-
ing crack texture cues and suppressing background noise,
their self-attention mechanism introduces computational
complexity that grows quadratically with sequence length.
This results in a high parameter count and significant
computational demands, which limit their deployment on
resource-constrained edge devices.
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Figure 3. Architecture of GBC. It employs bottleneck convolu-
tion to efficiently reduce the parameters and computational load,
while the gating mechanism enhances the model’s adaptability in
processing diverse crack patterns and complex backgrounds. GN
represents group normalization.
2.2. Selective State Space Model
The introduction of the Selective State Space Models (S6)
in the Mamba model [14] has highlighted the potential of
SSM [12, 13]. Unlike the linear time-invariant S4 model,
S6 efficiently captures complex long-distance dependencies
while preserving computational efficiency, achieving strong
performance in NLP, audio, and genomics. Consequently,

researchers have adapted Mamba to the visual domain, cre-
ating various VSS blocks. ViM [62] achieves comparable
modeling to ViT [10] without attention mechanisms, using
fewer computational resources, while VMamba [36] prior-
itizes efficient computation and high performance. Plain-
Mamba [55] employs a fixed-width layer stacking ap-
proach, excelling in tasks such as instance segmentation
and object detection. However, the VSS block and scanning
strategy require specific optimizations for each visual task,
as tasks differ in their reliance on long- and short-distance
information, necessitating customized VSS block designs to
ensure optimal performance.

Currently, no high-performing Mamba-based model ex-
ists for crack segmentation. Thus, designing an optimized
VSS structure specifically for crack segmentation is essen-
tial to improve performance and efficiency. Given the intri-
cate details and irregular textures of cracks, the VSS block
requires strong shape extraction and directional awareness
to effectively capture crack texture cues. Additionally, it
should facilitate efficient crack segmentation while mini-
mizing computational resource requirements.

3. Methodology
3.1. Preliminary
The complete architecture of our proposed SCSegamba is
depicted in Figure 2. It includes two main components:
the SAVSS for extracting crack shape and texture cues, and
the MFS for efficient feature processing. To capture key
crack region cues, we integrate the GBC at the initial stage
of SAVSS and the final stage of MFS.

For a single RGB image E ∈ R3×H×W , spatial in-
formation is divided into n patches, forming a sequence
{B1, B2, . . . , Bn}. This sequence is processed through the
SAVSS block, embedding key crack pixel cues into multi-
scale feature maps {F1, F2, F3, F4}. Finally, in the MFS,
all information is consolidated into a single tensor, produc-



ing a refined segmentation output W ∈ R1×H×W .

3.2. Lightweight Gated Bottleneck Convolution
The gating mechanism enables dynamic features for each
spatial position and channel, enhancing the model’s abil-
ity to capture details [8, 57]. To further reduce parameter
count and computational cost, we embedded a bottleneck
convolution (BottConv) with low-rank approximation [28],
mapping matrices from high to low dimensional spaces and
significantly lowering computational complexity.

In the convolution layer, assuming the spatial size of the
filter is p, the number of input channels is d and the input is
s, the convolution response can be represented as:

z = Qs+ c (1)

where Q is a matrix of size f × (p2×d), f is the number of
output channels, and c is the original bias term. Assuming z
lies in a low-rank subspace of rank f0, it can be represented
as z = V (z − z1) + z1, where z1 abstracts the mean vector
of features, acting as an auxiliary variable to facilitate the-
oretical derivation and correct feature offsets, V = LMT

(L ∈ Rf×f0 , M ∈ R(p2d)×f0 ) represents the low-rank pro-
jection matrix. The simplified response then becomes:

z = LMT s+ c′ (2)

Since f0 < f , the computational complexity reduces
from O(fp2d) to O(f0p

2d) + O(ff0), where O(ff0) ≪
O(fp2d), indicating that the computational complexity re-
duction is proportional to the original ratio of f0/f .

In BottConv, pointwise convolutions project features
into or out of low-rank subspace, thus significantly reduc-
ing complexity, while depthwise convolution that perform
spatial information-adequate extraction in subspace guar-
antees negligibly low complexity. As shown in Figure 5,
BottConv in our GBC design significantly reduces parame-
ter count and computational load compared to the original
convolution, with minimal performance impact.

As shown in Figure 3, the input feature x ∈ RC×H×W is
retained as xresidual = x to facilitate the residual connection.
Subsequently, the feature x is passed through the BottConv
layer, followed by normalization and activation functions,
resulting in the features x1 and g2(x) as shown below:

g1(x) = ReLU(Norm1(f1(x))) (3)

x1 = ReLU(Norm2(BottConv2(g1(x)))) (4)

g2(x) = ReLU(Norm3(BottConv3(x))) (5)

To generate the gating feature map, x1 and g2(x) are
combined through the Hadamard product:

m(x) = x1 ⊙ g2(x) (6)

The gating feature map m(x) is subsequently processed
through BottConv once again to further refine fine-grained

details. After the residual connection is applied, the result-
ing output is:

y = ReLU(Norm4(BottConv4(m(x)))) (7)

Output = y + xresidual (8)

The design of BottConv and deeper gated branch enable
the model to preserve basic crack features while dynami-
cally refining the fine-grained feature characterization of the
main branch, resulting in more accurate segmentation maps
in detailed regions.

3.3. Structure-Aware Visual State Space Module
Our designed SAVSS features a two-dimensional selective
scan (SS2D) tailored for visual tasks. Different scanning
strategies impact the model’s ability to capture continuous
crack textures. As shown in Figure 4, current vision Mamba
networks use various scanning directions, including paral-
lel, snake, bidirectional, and diagonal scans [36, 55, 62].
Parallel and diagonal scans lack continuity across rows or
diagonals, which limits their sensitivity to crack directions.
Although bidirectional and snake scans maintain semantic
continuity along horizontal or vertical paths, they struggle
to capture diagonal or interwoven textures. To address this,
our proposed diagonal snake scanning is designed to better
capture complex crack texture cues.

SASS consists of four paths: two parallel snake paths
and two diagonal snake paths. This design enables the
effective extraction of continuous semantic information in
regular crack regions while preserving texture continuity
in multiple directions, making it suitable for multi-scenario
crack images with complex backgrounds.

After the RGB crack image undergoes Patch Embedding
and Position Encoding, it is input as a sequence into the
SAVSS block. To maintain a lightweight network, we use
only 4 layers of SAVSS blocks. The processing equations
are as follows:

P = e∆P (9)

Q = (∆P )−1(e∆P − I) ·∆Q (10)

zk = Pzk−1 +Qwk (11)

uk = Rzk + Swk (12)

In these equations, the input w ∈ Rt×D, P ∈ RG×D

controls the hidden spatial state, S ∈ RD×D is used to
initialize the skip connection for input, zk represents the
specific hidden state at time step k, and Q ∈ RG×D and
R ∈ RG×D are matrices with hidden spatial dimensions G
and temporal dimensions D, respectively, obtained through
selective scanning SS2D. These are trainable parameters
that are updated accordingly. uk represents the output at
time step k. SASS establishes multi-directional adjacency
relationships, allowing the hidden state zk to capture more
intricate topological and textural details, while enabling the
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Figure 5. Performance comparison between using BottConv and
raw convolution in GBC on the TUT [33] dataset.

output uk to more effectively integrate multi-directional
features.

To effectively combine the initial sequence x with the
sequence processed through SS2D, we incorporate Pixel
Attention-oriented Fusion (PAF) [33], enhancing SAVSS’s
ability to capture crack shape and texture details. Follow-
ing selective scanning, a residual connection is applied to
the fused information to preserve detail and facilitate fea-
ture flow. Furthermore, GBC refines the inter-layer output
within SAVSS, strengthening crack information extraction
and boosting performance in later stages.

3.4. Multi-scale Feature Segmentation Head
Unlike convolutional layers, the MLP swiftly learns the
mapping relationships between features and labels, thereby
reducing model complexity. When the four feature maps
F1, F2, F3, F4 ∈ RC×H×W produced by SAVSS are fed
into MFS, they undergo individual processing through the
efficient MLP operation and dynamic upsampling [34],
restoring their resolution to the original size and yielding
F up
1 , F up

2 , F up
3 , F up

4 ∈ RC×H×W . The formula is as follows:

Fup
i = DySample(MLPi(Fi)) (13)

where i denotes the layer index.
To integrate all multi-scale crack shape and texture rep-

resentations, these feature maps are aggregated into a sin-
gle tensor, obtaining a high-quality crack segmentation map

o ∈ R1×H×W as follows:

o1 = GBC(Concat(Fup
1 , Fup

2 , Fup
3 , Fup

4 )) (14)

o = MLP (Conv(o1)) (15)

3.5. Objective Function
We use a blend of Binary Cross-Entropy loss (BCE) [29]
and Dice loss [43] as the objective function, which helps
improve the network’s robustness to imbalanced pixel data.
The overall loss function is expressed as follows:

L = α · LDice + β · LBCE (16)

where the hyperparameters α and β control the weights of
the two loss components. The ratio of α to β is set to 1:5.

4. Experiments
4.1. Datasets
Crack500 [56] . The images in this dataset were captured
using a mobile phone. The original dataset consists of 500
bitumen crack images, which were expanded to 3368 im-
ages through data augmentation. Each image is paired with
a corresponding pixel-level annotated binary image.
DeepCrack [35] . The dataset comprises 537 RGB images
of cement, bricks and bitumen cracks under various condi-
tions, including fine, wide, stained, and fuzzy cracks, ensur-
ing diversity and representativeness.
CrackMap [22] . The dataset was created for a road crack
segmentation study and consists of 120 high-resolution
RGB images capturing a variety of thin and complex bi-
tumen road cracks.
TUT [33] . In contrast to other datasets with simple back-
grounds, this dataset includes a dense, cluttered background
and features cracks with elaborate, intricate shapes. It con-
tains 1408 RGB images across eight scenarios: bitumen,
cement, bricks, runway, tiles, metal, blades, and pipes.
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Figure 6. Visual comparison of typical cracks with 9 SOTA methods across four datasets. Red boxes highlight critical details, and green
boxes mark misidentified regions.

During processing, all datasets were divided into train-
ing, validation, and test sets with a 7:1:2 ratio.

4.2. Implementation Details.
Experimental Settings. We built our SCSegamba network
using PyTorch v1.13.1 and trained it on an Intel Xeon Plat-
inum 8336C CPU with eight Nvidia GeForce RTX 4090
GPUs. The AdamW optimizer was used with an initial
learning rate of 5e-4, PolyLR scheduling, a weight decay
of 0.01, and a random seed of 42. The network was trained
for 50 epochs, and the model with the best validation per-
formance was selected for testing.
Comparison Methods. To comprehensively evaluate our
model, we compared SCSegamba with 9 SOTA methods.
The CNN or Transformer-based models included RIND
[38], SFIAN [5], CTCrackSeg [44], DTrCNet [48], Crack-
mer [46] and SimCrack [20]. Additionally, we compared
it with other Mamba-based models, including CSMamba
[37], PlainMamba [55], and MambaIR [16].
Evaluation Metrics. We used six metrics to evaluate
SCSegamba’s performance: Precision (P), Recall (R), F1
Score (F1 = 2RP

R+P ), Optimal Dataset Scale (ODS), Opti-
mal Image Scale (OIS), and mean Intersection over Union
(mIoU). ODS measures the model’s adaptability to datasets
of varying scales at a fixed threshold m, while OIS evaluates
adaptability across image scales at an optimal threshold n.
The calculation formulas are as follows:

ODS = max
m

2 · Pm ·Rm

Pm +Rm
(17)

OIS =
1

N

N∑
i=1

max
n

2 · Pn,i ·Rn,i

Pn,i +Rn,i
(18)

mIoU is used to measure the mean proportion of the in-
tersection over union between the ground truth and the pre-
dicted results. The calculation is given by the formula:

mIoU =
1

N + 1

N∑
l=0

pll∑N
t=0 plt +

∑N
t=0 ptl − pll

(19)

where N is the number of classes, which we set as N =
1; t represents the ground truth, l represents the predicted
value, and ptl represents the count of pixels classified as l
but belonging to t.

Additionally, we evaluated our method’s complexity us-
ing three metrics: FLOPs, Params, and Model Size, rep-
resenting computational complexity, parameter complexity,
and memory footprint.

4.3. Comparison with SOTA Methods
As listed in Table 1, compared with 9 other SOTA meth-
ods, our proposed SCSegamba achieves the best perfor-
mance across four public datasets. Specifically, on the
Crack500 [56] and DeepCrack [35] datasets, which con-
tain larger and more complex crack regions, SCSegamba
achieved the highest performance. Notably, on the Deep-
Crack dataset, it surpassed the next best method by 1.50%
in F1 score and 1.09% in mIoU. This improvement is due
to the robust ability of GBC to capture morphological clues
in large crack areas, enhancing the model’s representational
power. On the CrackMap [22] dataset, which features thin-
ner and more elongated cracks, our method surpasses all
other SOTA methods in every metric, outperforming the
next best method by 2.06% in F1 and 1.65% in mIoU. This
demonstrates the effectiveness of SASS in capturing fine
textures and elongated crack structures. As illustrated in



Methods Crack500 DeepCrack
ODS OIS P R F1 mIoU ODS OIS P R F1 mIoU

RIND [38] 0.6469 0.6483 0.6998 0.7245 0.7119 0.7381 0.8087 0.8267 0.7896 0.8920 0.8377 0.8391
SFIAN [5] 0.6977 0.7348 0.6983 0.7742 0.7343 0.7604 0.8616 0.8928 0.8549 0.8692 0.8620 0.8776
CTCrackSeg [44] 0.6941 0.7059 0.6940 0.7748 0.7322 0.7591 0.8819 0.8904 0.9011 0.8895 0.8952 0.8925
DTrCNet [48] 0.7012 0.7241 0.6527 0.8280 0.7357 0.7627 0.8473 0.8512 0.8905 0.8251 0.8566 0.8661
Crackmer [46] 0.6933 0.7097 0.6985 0.7572 0.7267 0.7591 0.8712 0.8785 0.8946 0.8783 0.8864 0.8844
SimCrack [20] 0.7127 0.7308 0.7093 0.7984 0.7516 0.7715 0.8570 0.8722 0.8984 0.8549 0.8761 0.8744
CSMamba [37] 0.6931 0.7162 0.6858 0.7823 0.7315 0.7592 0.8738 0.8766 0.9025 0.8863 0.8943 0.8863
PlainMamba [55] 0.7035 0.7173 0.7170 0.7557 0.7358 0.7682 0.8646 0.8668 0.9050 0.8659 0.8850 0.8788
MambaIR [16] 0.7043 0.7189 0.7204 0.7681 0.7435 0.7663 0.8796 0.8840 0.9056 0.8895 0.8975 0.8907
SCSegamba (Ours) 0.7244 0.7370 0.7270 0.7859 0.7553 0.7778 0.8938 0.8990 0.9097 0.9124 0.9110 0.9022

Methods CrackMap TUT
ODS OIS P R F1 mIoU ODS OIS P R F1 mIoU

RIND [38] 0.6745 0.6943 0.6023 0.7586 0.6699 0.7425 0.7531 0.7891 0.7872 0.7665 0.7767 0.8051
SFIAN [5] 0.7200 0.7465 0.6715 0.7668 0.7160 0.7748 0.7290 0.7513 0.7715 0.7367 0.7537 0.7896
CTCrackSeg [44] 0.7289 0.7373 0.6911 0.7669 0.7270 0.7785 0.7940 0.7996 0.8202 0.8195 0.8199 0.8301
DTrCNet [48] 0.7328 0.7413 0.6912 0.7681 0.7276 0.7812 0.7987 0.8073 0.7972 0.8441 0.8202 0.8331
Crackmer [46] 0.7395 0.7437 0.7229 0.7467 0.7346 0.7860 0.7429 0.7640 0.7501 0.7656 0.7578 0.7966
SimCrack [20] 0.7559 0.7625 0.7380 0.7672 0.7523 0.7963 0.7984 0.8090 0.8051 0.8371 0.8208 0.8334
CSMamba [37] 0.7371 0.7413 0.7053 0.7663 0.7346 0.7841 0.7879 0.7946 0.7947 0.8353 0.8146 0.8263
PlainMamba [55] 0.7150 0.7189 0.6649 0.7616 0.7099 0.7699 0.7867 0.7967 0.7701 0.8523 0.8102 0.8253
MambaIR [16] 0.7332 0.7347 0.7569 0.7013 0.7280 0.7834 0.7861 0.7930 0.7877 0.8387 0.8125 0.8249
SCSegamba (Ours) 0.7741 0.7766 0.7629 0.7727 0.7678 0.8094 0.8204 0.8255 0.8241 0.8545 0.8390 0.8479

Table 1. Comparison with 9 SOTA methods across 4 datasets. Best results are in bold, and second-best results are underlined.

Methods Year FLOPs↓ Params↓ Size↓
RIND [38] 2021 695.77G 59.39M 453MB
SFIAN [5] 2023 84.57G 13.63M 56MB
CTCrackSeg [44] 2023 39.47G 22.88M 174MB
DTrCNet [48] 2023 123.20G 63.45M 317MB
Crackmer [46] 2024 14.94G 5.90M 43MB
SimCrack [20] 2024 286.62G 29.58M 225MB
CSMamba [37] 2024 145.84G 35.95M 233MB
PlainMamba [55] 2024 73.36G 16.72M 96MB
MambaIR [16] 2024 47.32G 10.34M 79MB
SCSegamba (Ours) 2024 18.16G 2.80M 37MB

Table 2. Comparison of complexity with other methods. Best re-
sults are in bold, and second-best results are underlined.

Figure 6, our method produces clearer and more precise fea-
ture maps, with superior detail capture in typical scenarios
such as cement and bitumen, compared to other methods.

For the TUT dataset [33], which includes eight diverse
scenarios, our method achieved the best performance, sur-
passing the next best method by 2.21% in F1 and 1.74% in
mIoU. As shown in Figure 6, whether in the complex crack
topology of plastic tracks, the noise-heavy backgrounds of
metallic materials and turbine blades, or the low-contrast,
dimly lit underground pipeline images, SCSegamba consis-
tently produced high-quality segmentation maps while ef-
fectively suppressing irrelevant noise. This demonstrates

that our method, with the enhanced crack morphology
and texture perception from GBC and SASS, exhibits ex-
ceptional robustness and stability. Additionally, leverag-
ing MFS for feature aggregation improves multi-scale per-
ception, making our model particularly suited for diverse,
interference-rich scenarios.

4.4. Complexity Analysis
Table 2 shows a comparison of the complexity of our
method with other SOTA methods when the input image
size is uniformly set to 512. With only 2.80M param-
eters and a model size of 37MB, our method surpasses
all others, being 52.54% and 13.95% lower than the next
best result, respectively. Additionally, compared to Crack-
mer [46], which prioritizes computational efficiency, our
method’s FLOPs are only 3.22G higher. This demonstrates
that the combination of lightweight SAVSS and MFS en-
ables high-quality segmentation in noisy crack scenes with
minimal parameters and low computational load, which is
essential for resource-constrained devices.
4.5. Ablation Studies
We performed ablation experiments on the representative
multi-scenario dataset TUT [33].
Ablation study of segmentation heads. As listed in Ta-
ble 3, with our designed MFS, SCSegamba achieved the
best results across all six metrics, with F1 and mIoU scores
1.57% and 1.21% higher than the second-best method. In



Seg Head ODS OIS P R F1 mIoU Params ↓ FLOPs ↓ Model Size ↓
UNet [42] 0.8055 0.8151 0.8148 0.8376 0.8260 0.8378 2.92M 19.27G 39MB
Ham [11] 0.7703 0.7784 0.7962 0.7838 0.7909 0.8124 2.86M 35.08G 38MB
SegFormer [50] 0.7947 0.7983 0.8170 0.8174 0.8172 0.8307 2.79M 17.87G 35MB
MFS 0.8204 0.8255 0.8241 0.8545 0.8390 0.8479 2.80M 18.16G 37MB

Table 3. Ablation study of different segmentation heads. UNet [42], Ham [11], and SegFormer [50] are high-performance heads.

GBC PAF Res ODS OIS P R F1 mIoU Params ↓ FLOPs ↓ Model Size ↓
0.8136 0.8196 0.8213 0.8461 0.8335 0.8434 2.49M 16.75G 34MB
0.7998 0.8084 0.7918 0.8524 0.8222 0.8343 2.28M 14.91G 33MB
0.7936 0.8069 0.7952 0.8438 0.8197 0.8313 2.48M 15.65G 35MB
0.8047 0.8102 0.8174 0.8379 0.8275 0.8377 2.54M 17.08G 35MB
0.8116 0.8200 0.8156 0.8522 0.8334 0.8425 2.75M 17.82G 37MB
0.8023 0.8076 0.8219 0.8302 0.8260 0.8360 2.54M 15.99G 35MB
0.8204 0.8255 0.8241 0.8545 0.8390 0.8479 2.80M 18.16G 37MB

Table 4. Ablation study of components within the SAVSS block. Best results are in bold, and second-best results are underlined.

terms of complexity, although Params, FLOPs, and Model
Size are only 0.01M, 0.29G, and 2MB larger than the Seg-
Former head, our method surpasses it in F1 and mIoU by
2.67% and 2.07%, respectively. This demonstrates that
MFS enhances SAVSS output integration, significantly im-
proving performance while keeping the model lightweight.

Scan ODS OIS P R F1 mIoU
Parallel 0.8123 0.8184 0.8146 0.8523 0.8330 0.8427
Diag 0.8091 0.8148 0.8225 0.8417 0.8320 0.8410
ParaSna 0.8102 0.8162 0.8219 0.8365 0.8291 0.8408
DiagSna 0.8153 0.8215 0.8237 0.8497 0.8365 0.8451
SASS 0.8204 0.8255 0.8241 0.8545 0.8390 0.8479

Table 5. Ablation studies with different four-route scanning strate-
gies in the SAVSS block, comparing parallel, diagonal, parallel
snake, and diagonal snake scanning. The impact of different scan-
ning strategies on complexity is negligible; thus, complexity anal-
ysis is omitted from this table. Best results are in bold, and second-
best results are underlined.

Ablation study of components. Table 4 shows the im-
pact of each component in SAVSS on model performance.
When fully utilizing GBC, PAF, and residual connections,
our model achieved the best results across all metrics. No-
tably, adding GBC led to significant improvements in F1
and mIoU by 1.57% and 1.42%, respectively, highlighting
its strength in capturing crack morphology cues. Similarly,
residual connections boosted F1 and mIoU by 0.13% and
2.47%, indicating their role in focusing on essential crack
features. Although using only PAF resulted in the lowest
Params, FLOPs, and Model Size, it significantly reduced
performance. These findings demonstrate that our fully in-
tegrated SAVSS effectively captures crack morphology and
texture cues, achieving top pixel-level segmentation results
while maintaining a lightweight model.

Ablation studies of scanning strategies. As listed in Ta-
ble 5, under the same conditions of using four different di-
rectional scanning paths, the model achieved the best per-
formance with our designed SASS scanning strategy, im-
proving F1 and mIoU by 0.30% and 0.33% over the diag-
onal snake strategy. This demonstrates SASS’s ability to
construct semantic and dependency information suited to
crack topology, enhancing crack pixel perception in sub-
sequent modules. More comprehensive experiments and
real-world deployments are available in the Appendix.
5. Conclusion
In this paper, we proposed SCSegamba, a lightweight
structure-aware Vision Mamba for precise pixel-level crack
segmentation. SCSegamba combines SAVSS and MFS to
enhance crack shape and texture perception with a low
parameter count. Equipped with GBC and SASS scan-
ning, SAVSS, captures irregular crack textures across var-
ious structures. Experiments on four datasets show SC-
Segamba’s exceptional performance, especially in complex,
noisy scenarios. On the challenging multi-scenario dataset,
it achieved an F1 score of 0.8390 and mIoU of 0.8479 with
only 18.16G FLOPs and 2.8M parameters, demonstrating
its effectiveness for real-world crack detection and suitabil-
ity for edge devices. Future work will incorporate multi-
modal cues to enhance segmentation quality, while further
optimizing VSS design and scan strategies to achieve high-
quality results with low computational resources.
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