
Achieving Linear Convergence with Parameter-Free
Algorithms in Decentralized Optimization

Ilya Kuruzov
Innopolis University

kuruzov.ia@phystech.edu.

Gesualdo Scutari
Purdue University

gscutari@purdue.edu.

Alexander Gasnikov
Innopolis University
gasnikov@yandex.ru

Abstract
This paper addresses the minimization of the sum of strongly convex, smooth
functions over a network of agents without a centralized server. Existing decen-
tralized algorithms require knowledge of functions and network parameters, such
as the Lipschitz constant of the global gradient and/or network connectivity, for
hyperparameter tuning. Agents usually cannot access this information, leading
to conservative selections and slow convergence or divergence. This paper intro-
duces a decentralized algorithm that eliminates the need for specific parameter
tuning. Our approach employs an operator splitting technique with a novel variable
metric, enabling a local backtracking line-search to adaptively select the stepsize
without global information or extensive communications. This results in favorable
convergence guarantees and dependence on optimization and network parameters
compared to existing nonadaptive methods. Notably, our method is the first adap-
tive decentralized algorithm that achieves linear convergence for strongly convex,
smooth objectives. Preliminary numerical experiments support our theoretical
findings, demonstrating superior performance in convergence speed and scalability.

1 Introduction
We study optimization across a network of m > 1 agents, modeled as an undirected, static graph,
possibly with no centralized server. The agents cooperatively solve the following problem:

min
x∈Rn

m∑
i=1

fi(x), (P)

where fi : Rn → R is the loss function of agent i, assumed to be strongly convex and smooth (i.e.,
with gradient being Lipschitz continuous), and accessible only to agent i.

This formulation applies to various fields, particularly emphasizing decentralized machine learning
problems where datasets are produced and collected at different locations. Traditionally, statistical
and computational methods in this domain have relied on a centralized paradigm, aggregating
computational resources at a single, central location. However, this approach is increasingly unsuitable
for modern applications with many machines, leading to server congestion, inefficient communication,
and high energy consumption [27, 23]. This has motivated the surge of learning algorithms that target
decentralized networks with no servers, a.k.a. mesh networks, which is the setting of this paper.

Decentralized convex optimization has a long history, with numerous algorithms applicable to
Problem (P); recent tutorials include [34, 41, 6, 33, 45]. Lack of adaptivity: These methods share
the hurdle of relying sensibly on the tuning of hyperparameters, such as the stepsize (a.k.a. learning
rate), for both theoretical and practical convergence. Existing theories ensure convergence under
generally conservative bounds on the stepsize, which depend on parameters like the Lipschitz constant
of the global gradient, the spectral gap of the graph adjacency matrix, or other topological properties.
Acquiring such information is challenging in practice, due to physical or privacy limitations and
computational/communication constraints. This often leads to manual tuning, which is not only
tedious but also results in less predictable, problem-dependent, and non-reproducible performance.
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Parameter-free centralized methods: On the the hand, significant progress has been made in the
centralized setting to automate the selection of the stepsize across various optimization and learning
problem classes. (i) Traditional approaches in optimization–such as line-search methods [36], Barzilai-
Borwein’s stepsize [3], and Polyak’s stepsize [37]–have been supplemented by recent adaptive stepsize
rules based on estimates of local curvature [30] and subsequent techniques [31, 19, 20, 22, 50]. (ii)
In the ML community, adaptive gradient methods such as AdaGrad [11], Adam [18], AMSGrad
[40], NSGD-M [9], and variants [25, 44, 29] have gained significant attention for training large-scale
learning models. These methods apply to stochastic, nonconvex optimization problems. (iii) Further
advancements extend adaptivity to stochastic/online convex optimization problems, e.g., [5, 15].

Distributed adaptive methods: While variant of these centralized algorithms have been adapted to
federated architectures (server-client systems), e.g., in [39, 24, 8], their application to mesh networks
is not feasible. In federated learning, a central server aggregates local model updates, a process integral
to its hierarchical structure. However, mesh networks, which lack a centralized coordinating node, do
not support such a direct aggregation of large-scale vectors. Recent attempts to implement some form
of stepsize adaptivity for stochastic (non)convex/online optimization problems over mesh networks
are [32, 7, 21]. These methods generally achieve adaptivity by properly normalizing agents’ gradients
using past information. However, with the exception of [21], they rely on the strong assumption that
the (population) losses are globally Lipschitz continuous (i.e., their gradients are bounded). In fact,
Lipschitz continuity in convex optimization readily unlocks parameter-free convergence by using
stepsize tuning of O(1/

√
k) (here, k is the iteration index). Moreover, [32, 7] still require knowledge

of some optimization parameters for the stepsize tuning, to guarantee convergence.

Attempts to introduce adaptivity in decentralized optimization for solving (P) have been explored
in [12, 14, 13]. These methods bring the Barzilai-Borwein (BB)’s stepsize strategy into gradient
tracking algorithms [43, 28, 35, 48]. (i) However, convergence of these algorithms is not guaranteed
under the proposed BB strategy, unless the stepsizes remain uniformly bounded from below and
above throughout the algorithm’s trajectory–a condition the BB rule does not inherently satisfy in
decentralized settings. Furthermore, these bounds for the stepsizes are typically unknown to the agents,
as they depend on the strong convexity and smoothness constants of all agents’ losses. Even with such
knowledge, enforcing these conservative bounds contradicts the principle of adaptivity by potentially
negating the advantages of a variable stepsize strategy that adapts based on local loss curvature,
producing stepsize values significantly larger than theoretical thresholds used in nonadaptive methods.
(ii) Additionally, to ensure contraction of the iterates, studies such as [13, 14] require multiple
rounds of communications per iteration (gradient evaluation)–this demands the knowledge of network
and optimization parameters at the agents’ sides, making practical implementation unfeasible. (iii)
None of these studies offer expressions of convergent rates for the explored algorithms, leaving it
unclear whether the BB stepsize rule can provably outperform nonadaptive methods. (iv) Lastly, the
methods discussed employ the traditional BB rule, which is only proven in centralized settings to
produce convergence methods when minimizing quadratic losses. Simulations in [12, 13] are in fact
performed only on quadratic functions.

Open questions and challenges: To our knowledge, no deterministic, parameter-free decentralized
algorithms exist that solve Problem (P) over mesh networks, particularly achieving linear convergence
when agents’ functions are strongly convex and smooth. The current decentralized adaptive stochastic
methods [32, 7, 21] discussed earlier do not adequately bridge this gap. Tailored for stochastic
environments, these methods merely ensure that cumulative consensus errors along the iterations
remain bounded, not necessarily decreasing. This typically involves either diminishing stepsizes or
adjustments based on the final horizon to manage the bias-variance trade-off. These strategies fall
short in deterministic scenarios like Problem (P), failing to ensure convergence to exact solutions, and
achieve faster O(1/k) convergence rates in convex cases or linear rates in strongly convex scenarios.

Major contributions: This paper addresses this open problem. Our contributions are the following:

1. A new parameter-free decentralized algorithm: We propose a decentralized algorithm that
eliminates the need for specific tuning of the stepsize. Our approach leverages a Forward-Backward
operator splitting technique combined with a novel variable metric, enabling a local backtracking
line-search procedure to adaptively select the stepsize at each iteration without requiring global
information on optimization and network parameters or extensive communications. We are not aware
of any other provable decentralized line-search methods over mesh networks.
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Designing decentralized line-search procedures that are well-defined (terminating in a finite number
of steps), locally implementable, and ensure algorithm convergence through satisfactory descent on an
appropriate merit function presents significant challenges. A major issue is that line-search procedures
merely based on the local curvature of agents’ functions often fail to ensure convergence, producing
excessively large, heterogeneous stepsizes that, e.g., poorly connected networks cannot support. This
necessitates the identification of line-search directions and surrogate functions that encapsulate both
optimization and network influences, aspects that have not yet formalized. Our design guidelines (cf.,
Sec. 3) are of independent interest; hopefully they will provide valuable insights for the development
of other decentralized adaptive schemes, such as those based on alternative operator splittings.

2. Convergence guarantees: We have established linear convergence for the proposed decentralized
adaptive method. Our analysis identifies critical quantities that capture the interplay between opti-
mization conditions and network topology, directly influencing the convergence rates. Specifically:
(a) In “well-connected” networks, the convergence rate exhibits a separation property: the overall
rate is dictated by the slower of either the centralized gradient algorithm solving the same problem or
a consensus algorithm run on the same mesh network. (b) Conversely, in “poorly” connected net-
works, the separation property vanishes, and the convergence rates are adversely affected by network
degradation terms, still exhibiting a linear dependence on the condition number of the optimization
loss. (ii) Unlike many existing distributed optimization frameworks, the optimization parameters
in our rate expressions–such as smoothness and strong convexity constants–are localized to the
convex hull of the traveled iterates. This localization arises from our adaptive stepsize strategy, which
employs a line-search procedure tailored to local geometries, yielding more favorable dependencies
on optimization parameters and thus enhanced convergence guarantees. (iii) Numerical experiments
demonstrate superior performance of the proposed adaptive algorithm in convergence speed and
scalability compared to existing non-adaptive methods.

1.1 Notation and paper organization

Capital letters denote matrices. Bold capital letters represent matrices where each row is an agent’s
variable, e.g., X = [x1, . . . , xm]⊤. For such matrices, the i-th row is denoted by the corresponding
lowercase letter with the subscript i; e.g., for X, we write xi (as column vector). Let Sm, Sm+ , and
Sm++ be the set of m×m (real) symmetric, symmetric positive semidefinite, and symmetric positive
definite matrices, respectively; A† denotes the Moore-Penrose pseudoinverse of A. The eigenvalues
of W ∈ Sm are ordered in nonincreasing order, and denoted by λ1(W ) ≥ · · · ≥ λm(W ). For two
operators A and B of appropriate size, (A◦B)(•) stands for A(B(•)). We denote: [m] = {1, . . . ,m},
for any integer m ≥ 1; [x]+:= max(x, 0), x ∈ R; 1m ∈ Rm is the vector of all ones; Im (resp. 0m)
is the m×m identity (resp. the m×m zero) matrix; the information on the dimension is omitted
when not necessary; null(A) (resp. span(A)) is the nullspace (resp. range space) of the matrix
A. Let ⟨X,Y ⟩ := tr(X⊤Y ), for any X and Y of suitable size (tr(•)) is the trace operator; and
∥X∥M :=

√
⟨MX,X⟩, for any symmetric, positive definite M and X of suitable dimensions. We

still use ∥X∥M when M is positive semidefinite and X ∈ span(M).

2 Problem Setup
We investigate Problem (P) over a network of [m] agents, modeled as an undirected, static, connected
graph G = ([m], E), where (i, j) ∈ E if there is communication link (edge) between i and j. For
each agent i, we define by Ni := {j : | (i, j) ∈ E , for some i ∈ [m]} ∪ {i} the set of immediate
neighbors of agent i (including agent i itself).

Assumption 1. (i) Each function fi in (P) is L-smooth and µ-strong convex on Rn, for some
L ∈ (0,∞) and µ ∈ (0,∞); and (ii) each agent i has access only to its own function fi.

The following matrices are commonly utilized in the design of gossip-based algorithms.

Definition 2 (Gossip matrices). Let WG denote the set of matrices W̃ = [W̃ij ]
m
i,j=1 that satisfy

the following properties: (i) (compliance with G) W̃ij > 0 if (i, j) ∈ E; otherwise W̃ij = 0.
Furthermore, W̃ii > 0, for all i ∈ [m]; and (ii) (doubly stochastic) W̃ ∈ Sm and W̃1m = 1m.

These matrices are standard in the literature on decentralized optimization algorithms, and several
instances have been employed in practice; see [34, 41, 33] for some representative examples. Notice
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that for any W̃ ∈ WG (assuming G connected) it hold: (i) (null space condition) null(Im −W ) =

span(1m); and (ii) (eigen-spectrum distribution) 2I ⪰ W̃ + I ≻ 0m.

3 Algorithm Design
Our approach to solving Problem (P) involves a saddle-point reformulation tackled via a variable
metric operator splitting, implementable across the graph G. The innovative aspect of the proposed
method lies in the selection of the variable metric that, coupled with a Forward Backward Splitting
(FBS), enable adaptive stepsize selections through a decentralized line-search procedures.

Introducing local copies xi ∈ Rd of the shared variable x (the i-th one is controlled by agent i), and
the stack matrix X := [x1, . . . , xm]⊤ ∈ Rm×n, let us consider the following auxiliary problem:

min
X∈Rm×n

[
F (X) :=

m∑
i=1

fi([KX]i)

]
, s.t. ŁX = 0. (P′)

Here, Ł and K are m×m matrices that meet the following criteria: (c1) Ł ∈ Sm and null(Ł) =
span(1m); (c2) K ∈ Sm++ and null(I −K) = span(1m); and (c3) Ł and K commute. Conditions
(c1) and (c2) ensure that (P) and (P′) are equivalent. Specifically, any solution X⋆ of (P′) has the
form of X⋆ = 1m(x⋆)⊤, where x⋆ solves (P), and vice versa. While not essential, condition (c3) is
postulated to simplify the algorithm derivation.

Primal-dual optimality for (P′) reads, with Y being the dual-variable associated with the constraints,

(A+B)

([
X⋆

Y⋆

])
= 0, where A :=

[
K ◦ ∇F ◦K 0

0 0

]
and B :=

[
0 Ł
−Ł 0

]
.

Given Xk,Yk at iteration k, the update Xk+1,Yk+1 via FBS with metric C ∈ S2m++ reads [4]

(C +B)

([
Xk+1

Yk+1

])
= (C −A)

([
Xk

Yk

])
. (1)

Monotone operator theory [4] ensures convergence of (1) under the following conditions:

(c4) B is a monotone operator, C ∈ S2m++, and (c5) I − C−1/2AC−1/2 is an averaged operator.

Condition (c4) is satisfied by construction; (c5) can be enforced through a suitable selection of
C ∈ S2m++ while leveraging the co-coercivity of A (implied by Assumption 1). Denoting by α > 0
the stepsize employed in the algorithm, we seek for C with the following structure:

C =

[
α−1C1 0

0 C2

]
, with C1, C2 ∈ Sm++

to be determined. We proceed solving (1). Taking (C +B)−1, we have

Xk+1 = (I) (Xk)− α
(
(II) (Xk) + (III) (Yk)

)
,

Yk+1 = (IV ) (Yk) + (V ) (Xk),
(2)

where
(I) := Im − α · C−1

1 Ł
(
C2 + α · ŁC−1

1 Ł
)−1

Ł,

(II) := (I)C−1
1 K∇F ◦K,

(III) := C−1
1 Ł

(
C2 + α · ŁC−1

1 Ł
)−1

C2,

(IV ) :=
(
C2 + α · ŁC−1

1 Ł
)−1

C2,

(V ) :=
(
C2 + α · ŁC−1

1 Ł
)−1

Ł
(
I − α · C−1

1 K∇F ◦K
)
.

(3)

In addition to satisfying (c5), C1, C2 ∈ Sm++ must be strategically chosen to facilitate the design of a
decentralized line-search procedure for α. We propose the following guiding principles:

(c6) The range of admissible stepsize values α ensuring convergence–hence satisfying (c5)–should
be independent of the network parameters; and
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(c7) the operators (I), (II), and (III) in (2) should be independent of α.

At a high level, (c6) aims to decouple the line-search mechanism from network-dependent constraints.
By doing so, it ensures that performing the line-search from the agents’ sides requires no mid-
process communications during backtracking, relying solely on local computations. Meanwhile, (c7)
facilitates the identification of −((II)(Xk) + (III)(Yk)) in (2) as a potential line-search direction.
This direction must be paired with an appropriate surrogate function, which we will define shortly.

Among several potential selections, in this paper, we consider the following for C1 and C2:

C1 = K and C2 = αK−1
(
c−1 I − Ł2

)
, with c < 1/2, (4)

which satisfy all the specified requirements. Using (4) and (c3), the operators in (3) simplify to

(I) = Im−c·Ł2, (II) = (I)∇F◦K, (III) = (I)Ł2K−1, (IV ) = (I), (V ) =
c

α
·K Ł (I−∇F◦K).

Notice that (I), (II), and (III) are independent of the stepsize. Substituting the above expressions
in (2) and introducing Dk := K−1ŁYk, the algorithm can be rewritten as

Xk+1 = (I − cŁ2)Xk − α · (I − cŁ2)
(
Dk +∇F (KXk)

)
,

Dk+1 = (I − cŁ2)Dk +
c

α
· Ł2

(
Xk − α∇F (KXk)

)
.

To make the above updates compliant with the graph G while satisfying (c1)-(c3), we set Ł2 =

(I − W̃ ), with W̃ ∈ WG , and K = I − cŁ2, where c ∈ (0, 1/2) is a free universal constant.
Introducing W := (1− c)Im + cW̃ ∈ WG , the final decentralized algorithm can be rewritten as

Xk+1/2 = W Xk, Dk+1/2 = W
(
Dk +∇F (Xk+1/2)

)
,

Xk+1 = Xk+1/2 − α ·Dk+1/2,

Dk+1 = Dk+1/2 +
1

α
·
(
Xk −Xk+1 − α∇F (Xk+1/2)

)
.

(5)

Finally, it can be verified that (c6) is met if (
√
αK−1/2) ◦∇F ◦ (

√
αK−1/2) is nonexpansive, which

holds if α < 1/L, being independent on the network parameters. Next, we introduce a line-search
procedure that enables the use of an adaptive stepsize α rather than a constant one satisfying the
above more conservative bound.

Decentralized backtracking: It is not difficult to check that −Dk+1/2 is a descent direction of
F k(X) := F (X)+⟨Dk,X⟩ at Xk+1/2. This naturally suggests the following backtracking procedure
for α: at iteration k, find the largest αk > 0 such that

F k(Xk+1) ≤ F k(Xk+1/2)+
〈
∇F k(Xk+1/2),Xk+1 −Xk+1/2

〉
+

δ

2αk
∥Xk+1−Xk+1/2∥2, (6)

where δ ∈ (0, 1] is a tuning parameter. However, this condition would require a communication
round for each backtracking step. To reduce the communication burden, we introduce a local stepsize
for each agent i, denoted by αk

i , determined by a backtracking line-search on the local function
fk
i (x) := fi(x) + ⟨dki , x⟩. Specifically, each αk

i is the largest positive value satisfying

fk
i (x

k+1
i ) ≤ fk

i (x
k+1/2
i ) +

〈
∇fk

i (x
k+1/2
i ), xk+1

i − x
k+1/2
i

〉
+

δ

2αk
i

∥xk+1
i − x

k+1/2
i ∥2. (7)

Clearly αk = mini∈[m] α
k
i also satisfies (6). Noticing that fk

i has the same smooth (and strong
convexity) constant(s) of fi, one can replace fk

i in (7) with fi. The proposed decentralized algorithm
is summarized in Algorithm 1, with the backtracking line-search procedure detailed in Algorithm 2.

3.1 Discussion
Several comments are in order.

On the proposed algorithm: We emphasize that selecting K ̸= Im in (P′) marks a significant
departure from the commonly used saddle-point reformulations of Problem (P), where K = Im, e.g.,
[46, 34, 33, 1]. Choosing K ̸= Im, in conjunction with the novel variable metric C in the FBS as
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Algorithm 1
Data: (i) Initialization X0 ∈ Rm×n and D0 = 0; (ii) initial value α−1 ∈ (0,∞); (iii) Backtracking
parameters δ ∈ (0, 1]0; (iv) nondecreasing sequence {γk}k ⊆ [1,∞) (v) Gossip matrix W :=

(1− c)Im + cW̃ , with W̃ ∈ WG , and c ∈ (0, 1/2]. Set the iteration index k = 0.

1: (S.1) Communication step: Agents updates primal and dual variables via gossiping:

Xk+1/2 = W Xk and Dk+1/2 = W
(
Dk +∇F (Xk+1/2)

)
;

2: (S.2) Decentralized line-search: Each agent updates αk
i according to

αk
i = Backtracking

(
αk−1, fi, x

k+1/2
i ,−dk+1/2

i , γk, δ
)
;

3: (S.3) Global min-consensus:
αk = min

i∈[m]
αk
i ;

4: (S.4) Local updates of the primal and dual variables:

Xk+1 = Xk+1/2 − αk ·Dk+1/2,

Dk+1 = Dk+1/2 +
1

αk
·
(
Xk −Xk+1/2 − αk∇F (Xk+1/2)

)
.

5: (S.5) If a termination criterion is not met, k ← k + 1 and go to step (S.1).

Algorithm 2 Backtracking(α, f , x, d, γ, δ)

1: α+ := γα;
2: x+ := x+ α+ d; set t = 1;
3: while f(x+) > f(x) + ⟨∇f(x), x+ − x⟩+ δ

2α+ ∥x+ − x∥2 do
4: α+ ← (1/2)α+;
5: x+ := x+ α+d;
6: t← t+ 1;

return α+.

specified in (4), is critical to obtain a valid line-search procedure that is also implementable across the
network. For instance, popular decentralized algorithms such as EXTRA [42] and NIDS [26] can be
interpreted as FBS with suitable metrics associated with the primal-dual reformulation of (P) as (P′)
but with K = Im. However, these schemes do not facilitate any suitable line-search, as no stepsize-
independent descent direction can be identified in their updates. Hopefully, our approach will provide
principled guidelines for the design of other parameter-free decentralized algorithms, stemming from
alternative decentralized formulations of (P) and their corresponding operator splittings.

On the backtracking: The following Lemma shows that the line-search procedure in Algorithm 2 is
well-defined, as long as the function f is locally smooth.
Lemma 3. Let f in Algorithm 2 be any Lf -smooth and µf -strongly convex function on the segment
[x, x+ γαd], where Lf ∈ (0,∞), µf ∈ [0,∞), and γ ∈ [1,∞). The following hold for Algorithm 2:

1. The returned α+ satisfies

min

(
γα,

δ

2Lf

)
≤ α+ ≤ min

(
γα,

δ

µf

)
≤ ∞. (8)

Therefore, the backtracking procedure terminates in at most max
(
1, ⌈log2

2Liγα
δ ⌉

)
t-steps;

2. For any α+ returned by Algorithm 2, any ᾱ+∈ (0, α+] also satisfies the backtracking condition.

Notice that the last statement of the Lemma guarantees that the each αk = mini∈[m] α
k
i satisfies the

descent property (6) on the global loss F k, as each αk
i meets the local condition (7).

The sequence {γk}∞k=1 used in line 1 of the backtracking algorithm, with each γk ≥ 1, is introduced
to favor nonmonotone, and thus potentially larger, stepsize values between two consecutive line-
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search calls. Any sequence satisfying γk ↓ 1 and
∏∞

k=1 γ
k =∞, is advisable. In our experiments,

we found the following rule quite effective: γk=
(
(k+β1)/(k+1)

)β2 , for some β2 > 0 and β1 ≥ 1.

One can opt for γk = 1, for all k, thus eliminating this extra parameter, if simplicity is desired.

On the min-consensus: Step (S.3) involves a min-consensus across the network to establish a
common stepsize, αk = mini∈[m] α

k
i , among the agents. This procedure is easily implemented in

federated systems, where a server node facilitates information exchange between clients. Interestingly,
this min-consensus protocol is also well-suited to current wireless mesh network technologies.
Modern networks support multi-interface communications, including WiFi and LoRa (Low-Range)
[17, 2, 16]. WiFi allows high-speed, short-range communications, supporting a mesh topology where
nodes transmit large data volumes to immediate neighbors. Conversely, LoRa facilitates long-range
but low-rate communications, ideal for communication flooding that reaches all network nodes in a
single hop but transmits minimal information. Therefore, in multi-interface networks, the proposed
algorithm operates by transmitting vector variables in Steps (S.1) via WiFi, while LoRa is used for
the min-consensus in Step (S.3). Furthermore, the values αk

i ’s can be quantized to their nearest
lower values using a few bits before transmission. Based on Lemma 3(3), this quantization ensures
that the descent condition (6) is still met with the resultant min quantized stepsize. This approach
renders the extra communication cost for implementing the global min-consensus step negligible.

For networks where LoRa technology cannot be used, Sec. 5 proposes a variation of Algorithm 1
wherein the global min-consensus step (S.3) is replaced by a local min-consensus procedure.

4 Convergence Results
We begin introducing a quantity of interest that helps identifying different operational regimes of the
proposed algorithm. Let (X⋆,D⋆) be a fixed point of Algorithm 1 (whose existence is ensured by
Assumption 1), and let {(Xk,Dk)} be the iterates generated by Algorithm 1. Define

rk =

√
1

(αk)2
∥Xk∥2

c(I−W̃ )
+
∥∥∥c(I − W̃ )

(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

max
(

1
αk ∥Xk −X⋆∥, ∥Dk −D⋆∥M

) , with M := c−1(I−W̃ )†−I.

(9)
The following comments are in order. (i) Both Dk and D⋆ lie in the span(I − W̃ ) = span(I −W ),
for all k, and M is positive defined on this span. Consequently, ∥Dk −D⋆∥M > 0 for all Dk ̸= D⋆,
and ∥Dk − D⋆∥M = 0 if and only if Dk = D⋆. (ii) Under Assumption 1, X⋆ takes the form
X⋆ = 1(x⋆)⊤, where x⋆ is the solution of Problem (P). (iii) The quantity rk reflects the algorithm’s
convergence progress through the evolution of the dual variables and consensus error. Rewriting the
update of the dual variables as Dk+1 = Dk + c

αk (I − W̃ )Xk − c(I − W̃ )
(
∇F (Xk+1/2) +Dk

)
,

we observe that small values of ∥ c
αk (I − W̃ )Xk − c(I − W̃ )

(
∇F (Xk+1/2) +Dk

)
∥ compared to

∥Dk−D⋆∥ and ∥Xk−X⋆∥–hence small rk values–indicate slow improvement of the dual variables
and consensus errors towards convergence (see Lemma 8 in the appendix).

We remark that rk need not be known by the agents; it is instrumental only for the analysis and
posterior assessment of algorithm performance.

Linear convergence is established below via contraction of the following merit function

V k :=
∥∥Xk −X⋆

∥∥2 + (αk−1)2∥Dk −D⋆∥2M . (10)

Theorem 4. Given Problem (P) under Assumption 1, let {(Xk,Dk)} be the iterates generated by
Algorithm 1. Then, the following holds

V k+1 ≤ max

(
αk

αk−1
, 1

)2 (
1−min

(
ρk1 , δ(r

k)2
))

V k, where ρk1 :=
µkαk

2
(1−c(1−λm(W̃ )))2< 1.

(11)
If rk <

√
2/4, then

V k+2 ≤ max

(
αk+1

αk
, 1

)2

max

(
αk

αk−1
, 1

)2 (
1− ρk2

)
V k, (12)

where

ρk2 :=
(1− c(1− λm(W̃ )))2

128(γk)2 max(1, λmax(M))
min

(
µk+1αk+1, µkαk,

1

Lkαk

)
< 1.
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Here µk (resp. µk+1) and Lk are the strong convexity and smoothness constants of (each) fi along
the segment [xk+1/2

i , x⋆] (resp. [xk+1+1/2
i , x⋆]), respectively.

The theorem establishes linear convergence of Algorithm 1. As max(1, (αk/αk−1)2) is bounded
away from zero and uniformly upper bounded (with value depending on the sequence {γk})–see
Lemma 3–the convergence rate is predominantly determined by {ρk1}, {ρk2}, and {rk}. Notice that,
in the setting of the theorem, each ρk1 , ρ

k
2 ∈ [0, 1). Intriguingly, the algorithm exhibits different

operational regimes based on the range of values rk takes along the traveled trajectory. At the high
level, if rk remains “large”, faster convergence can be guaranteed, as certified by (11); otherwise V k

decreases every two consecutive iterations (see (12)), yielding to a slower convergence. The number
of iterations required to reach a desired termination accuracy is given next.
Corollary 4.1. Instate the setting of Theorem 4, with now {γk} being chosen such that γk ≤(
(k + β1)/(k + 1)

)β2 , for all k and some β1 ≥ 1, β2 > 0. Then∥∥Xk+1 −X⋆
∥∥2 + 1

4L2
∥Dk+1 −D⋆∥2M ≤ ε,

for all k ≥ Nε, where Nε is given as follows:

If rk ≥ rlow :=
1√
2
min

(
1
2 ,

1√
λmax(M)

)
, for all k,

Nε = O

(
1

δ
max

(
1

c(1− λ2(W̃ )
,

κ

(1− c(1− λm(W̃ )))2

)
log(V 0/ε)

)
; (13)

otherwise,

Nε = O

(
1

δ

κ

(1− c(1− λm(W̃ )))2c(1− λ2(W̃ ))
log(V 0/ε)

)
. (14)

Here κ is the condition number of each fi restricted to the convex hull of {x⋆, {xk
i , x

k+1/2
i }Nε

k=0},
and O hides the dependence on β1 and β2.

Corollary 4.1 identifies the following two different operational regimes of the algorithm, resulting in
difference performance based upon the network connectivity and optimization condition number.

(1) Strong connectivity regime: when rk ≥ rlow, for all k, a fact that numerically has been
observed for ‘relatively good’ network connectivity, the convergence rate exhibits a separation in
the dependence on the network and optimization parameters. Since 1− c(1− λm(W̃ )) > 1− 2c, it
follows that, when c(1 − λ2(W̃ )) ≥ (1 − 2c)/

√
κ, Nε reduces to O(κ) (omitting the dependence

on ε), which matches the complexity of the centralized gradient algorithm. This suggests scenarios
where the optimization problem is harder than a consensus problem over the same network, resulting
in the bottleneck between the two. Conversely, when the condition number κ is large relative to the
network connectivity 1− λ2(W̃ ), the rate is determined by that of the consensus algorithm running
on the same network, that is, O((1− λ2(W̃ ))−1). The above rate separation property mirrors that of
certain nonadaptive primal-dual decentralized schemes including NEXT [10], AugDGM [47], Exact
Diffusion [49] (with rate expression as improved in [46]), NIDS [26], and ABC [46].

(2) Worst-case regime: This regime reflects the algorithm’s worst-case performance, typically
registered in “weakly” connected networks: the convergence rate reads O(κ/(1− λ2(W̃ ))), where
optimization and network parameters are now mixed. This rate aligns with those of nonadaptive
decentralized gradient-tracking schemes, such as DGing [35], SONATA [43] (subject to sufficiently
small network connectivity), and [38].

The convergence rate of Algorithm 1 resembles in the form that of existing nonadaptive decentralized
methods, but offers more favorable dependence on the condition number than that typically found
in those algorithms. Specifically, the condition number in (13 ) and (14 ) is the local condition
number, defined on the convex hull of the trajectory, which is generally much smaller than the
global condition number governing decentralized algorithms in the literature. This demostrates the
algorithm’s capability to adapt to the local geometry of the optimization problem.
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5 From Global to Local Min-Consensus

This section extends Algorithm 1 to settings where the global min-consensus procedure in (S.3) is
not implementable. For these cases, we propose to replace such a step with a local min-consensus
procedure. The new algorithm is formally described in Algorithm 3 and briefly commented next.

In step (S.3), each agent now computes its stepsize taking the minimum values among those of
their immediate neighbors only (including itself). This produces possibly different stepsizes αk

i for
each agent (collected in the diagonal matrix Λk = diag(αk

1 . . . α
k
m)). Because of that, in order to

still guarantee Dk ∈ span(I − W̃ )–a key property for the convergence of the algorithm–we slightly
modified the updates of the dual variable in (S.4), compared with the same step in Algorithm 1.
Specifically, the updating direction of the dual variable as in Algorithm 1, (αk)−1(Xk −Xk+1/2 −
αk∇F (Xk+1/2)), is replaced in Algorithm 3 by (Λk)−1Xk − X

k+1/2
Λ − ∇F (Xk+1/2), where

X
k+1/2
Λ = W (Λk)−1Xk. Notice that if all the stepsizes are equal, the update (S.4) in Algorithm 3

reduced to that in Algorithm 1. Finally, we point out that the computation of Xk+1/2
Λ requires only

the extra communication of neighboring stepsizes (thus scalar) values, which has a negligible cost.

Algorithm 3
Data: (i) Initialization X0 ∈ Rm×n and D0 = 0; (ii) initial value α−1 ∈ (0,∞); (iii) Backtracking
parameters δ ∈ (0, 1]; (iv) nondecreasing sequence {γk}k ⊆ [1,∞) (v) Gossip matrix W :=

(1− c)Im + cW̃ , with W̃ ∈ WG , and c ∈ (0, 1/2]. Set the iteration index k = 0.

1: (S.1) Communication step: Agents updates primal and dual variables via gossiping:

Xk+1/2 = W Xk and Dk+1/2 = W
(
Dk +∇F (Xk+1/2)

)
;

2: (S.2) Decentralized line-search: Each agent updates αk
i according to

αk
i = Backtracking

(
αk−1, fi, x

k+1/2
i , d

k+1/2
i , γk, δ

)
;

3: (S.3) Local min-consensus:
αk
i = min

j∈Ni

αk
j , ∀i ∈ [m];

Define Λk = diag(αk
1 . . . α

k
m);

4: (S.4) Local updates of the primal and dual variables:

Xk+1 = Xk+1/2 − Λk ·Dk+1/2, X
k+1/2
Λ = W (Λk)−1Xk,

Dk+1 = Dk+1/2 + (Λk)−1Xk −X
k+1/2
Λ −∇F (Xk+1/2).

5: (S.5) If a termination criterion is not met, k ← k + 1 and go to step (S.1).

Convergence of Algorithm 3 is established in the following theorem.
Theorem 5. Instate assumptions in Theorem 4, applied now to Algorithm 3, with {γk} being chosen
such that γk ≤

(
(k + β1)/(k + 1)

)β2 , for all k and some β1 ≥ 1, β2 > 0. Further, suppose there
exists a constant R > 0 such that V k ≤ R, for all k. Then

min
j∈[1,N+1]

∥∥Xj −X⋆
∥∥2 + 1

4L2
∥Dj −D⋆∥2M ≤ ε,

with
N = O (max (log dG + logNε, logα0L)max(Nε, dG)) ,

where Nε is defined as in Corollary 4.1 (replacing therein V0 with R).

Interestingly, Theorem 5 states that the degradation of the convergence rate when a local-min
consensus is used instead of the global one is mild. Specifically, up to log factors, the total number of
iterations to ε-optimality depends on dG (the diameter of the graph G), if dG > Nε. This result is
somehow expected, as min-consensus requires a number of iterations proportional to dG to propagate
through the entire network. However, monotonicity in the decrease of the primal and dual errors can
no longer be guaranteed when min-consensus is employed.
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6 Numerical Results

This section presents some preliminary numerical results. We compare Algorithm 1 and Algorithm 3
with EXTRA [42] and NIDS [26] on a ridge regression problem using synthetic data. Further
experiments are presented in the appendix. All experiments are run on Acer Swift 5 SF514-55TA-
56B6, with processor Intel(R) Core(TM) i5-8250U @ CPU 1.60GHz, 1800 MHz.

Ridge regression: It is an instance of (P), with fi(x) = ∥Aixi − bi∥2 + σ∥xi∥22, where we set
Ai ∈ R20×300, bi ∈ R20, and σ = 0.1.The elements of Ai, bi are independently sampled from the
standard normal distribution; the regularization is set to σ = 0.1. We simulated a network of m = 20
agents, and the following three different graph topologies, reflecting varying connectivity levels: (i)
G1: Graph-path with m − 1 edges and diameter m − 1, i.e., G = {[m], {(i, i + 1)}m−1

i=1 }; (ii) G2:
Erdős–Rényi graph, sparsely connected; and (iii) G3: Erdős–Rényi graph, well-connected.

Results are summarized in Fig. 1 and Fig. 2. For EXTRA and NIDS we use a grid-search tuning,
chosen to achieve the best practical performance. Algorithm 1 and Algorithm 3 are simulated under
the following choice of the line-search parameters satisfying Corollary 4.1: γk = (k + 2)/(k + 1),
δ = 1. For all the algorithms we used the Metropolis-Hastings weight matrix W ∈ GW [34].

(a) Line Graph (b) Erdős-Rényi Graph, p = 0.1 (c) Erdős-Rényi Graph, p = 0.5

Figure 1: Ridge regression on different graphs: (1a) Line graph; (1b) Erdős-Rényi Graph with edge activation
probability p = 0.1; (1c) Erdős-Rényi Graph with edge activation probability p = 0.5

(a) Line Graph (b) Erdős-Rényi Graph, p = 0.1 (c) Erdős-Rényi Graph, p = 0.5

Figure 2: Ridge regression: Number of iterations N for ∥XN −X⋆∥ ≤ 10−5 versus the condition number of
agents’ looses on different graphs; (2a) Line graph; (2b) Erdős-Rényi Graph with edge activation probability
p = 0.1; (2c) Erdős-Rényi Graph with edge activation probability p = 0.5

The figures demonstrate that the proposed method consistently outperforms both EXTRA and NIDS,
even when using the local min-consensus strategy, with a significant gap emerging as the condition
number increases. This performance is particularly noteworthy given that Algorithm 1 and 3 operate
effectively without requiring tedious tuning or global knowledge of the optimization and network
parameters. Notably, Algorithms 1 and 3 exhibit different convergence behaviors: as predicted by
Theorem 5, local min-consensus results in nonmonotonic error dynamics ∥Xk −X⋆∥2. However,
the practical convergence speed remains largely unaffected compared to the global min-consensus.
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Appendix

A Proof of Lemma 3

The proof of the lemma is quite standard, and it is reported here for the sake of completeness.

1. Smoothness of f implies that Algorithm 2 terminates when α+ ≤ δ/Lf . Therefore, it must be
α+ ≥ min(δ/2Lf , γα). Furthermore, it follows from the strong convexity of f that δ/(2α+) ≥ µ/2;
hence, α+ ≤ min(δ/µ, γα). This proves (8).

Further, by the lower bound above, one infers that the backtracking procedure terminates when
α+ ≤ δ

Li
. Noting that α+ = 2−t+1γ, we deduce that t =

⌊
log2

2Liγα
δ

⌋
interations suffice.

2. Let ϕ(α) := f(x + αd). Notice that ϕ is convex and ϕ′(0) = ⟨∇f(x), d⟩. The termination
condition in Algorithm 2 can be equivalently rewritten in terms of ϕ as

ϕ(α+) ≤ ϕ(0) + ϕ′(0)α+ + α+ δ

2
∥d∥2. (15)

Given λ ∈ [0, 1], let ᾱ = λα+. Invoking convexity of ϕ, we can write
ϕ(ᾱ) = ϕ

(
λα+ + (1− λ)0

)
≤ λϕ(α+) + (1− λ)ϕ(0)

(15)
≤ ϕ(0) + ϕ′(0) (λα+) + (λα+)

δ

2
∥d∥2,

which completes the proof. □

B Proof of Theorem 4

We begin establishing the dynamics of V k defined in (10) along two consecutive updates.
Lemma 6. The following holds along the update (Dk,Xk)→ (Dk+1,Xk+1):

V k+1 =
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M
− ∥Xk −Xk+1∥2 − (αk)2∥Dk −Dk+1∥2M
+ 2αk

〈
∇F (Xk+1/2)−∇F (X⋆),X⋆ −Xk+1

〉
.

(16)

Proof. See Appendix E.1.

Using the properties of the backtracking procedure (Lemma 3) and leveraging strong convexity and
smoothness of F , the inner product in (16) can be bounded as follows.
Lemma 7. The following holds:〈

∇F (Xk+1/2)−∇F (X⋆),X⋆ −Xk+1
〉
≤ δ

2αk
∥Xk+1 −Xk+1/2∥2

−max

(
µk

2
∥Xk+1/2 −X⋆∥2, 1

2Lk
∥∇F (Xk+1/2) +D∗∥2

)
,

where µk (resp. Lk) is the strong convexity (resp. smoothness) constant of each fi along the segment
[x

k+1/2
i , x⋆].

Proof. See Appendix E.2.

Combining Lemma 6 and Lemma 7, after some algebraic manipulation, we obtain the following.
Lemma 8. In the setting above, it holds

V k+1 ≤
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M

−max

(
µkαk∥Xk+1/2 −X⋆∥2, α

k

Lk
∥∇F (Xk+1/2) +D∗∥2

)
− δ

(
∥Xk∥2

c(I−W̃ )
+ (αk)2

∥∥∥c(I − W̃ )
(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

)
.

(17)
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Proof. See Appendix E.3.

Lemma 8 suggests the path for the rest of the analysis: the decrease of V k+1 relies on the values of
the terms

∥Xk∥2
c(I−W̃ )

+ (αk)2
∥∥∥c(I − W̃ )

(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

and

max

(
µkαk∥Xk −X⋆∥2, α

k

L
∥∇F (Xk+1/2) +D∗∥2

)
relative to the the primal and dual optimality gaps ∥Xk−X⋆∥2 and (αk)2∥Dk−D⋆∥2M , respectively.
At the high-level, one can say that “higher” values of such quantities relative to ∥Xk −X⋆∥2 and
(αk)2∥Dk −D⋆∥2M , determine larger decrease of V k+1.

The above argument can be formally recorded by the following quantities:

rk :=

√
1

(αk)2
∥Xk∥2

c(I−W̃ )
+
∥∥∥c(I − W̃ )

(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

max
(

1
αk ∥Xk −X⋆∥, ∥Dk −D⋆∥M

) , (18)

and

gk :=
max

(
1
αk ∥Xk −X⋆∥, ∥∇F (Xk+1/2) +D∗∥

)
∥Dk −D⋆∥M

. (19)

Using rk and gk in (17), the next lemma establishes contraction of V k+1, with a contraction factor
depending in particular on such quantities.
Lemma 9. The following holds

V k+1 ≤ max

(
αk

αk−1
, 1

)2 (
1−min

(
ρk1 , ζ

k
))

V k, (20)

where

ρk1 :=
µkαk

2
(1− c(1− λm(W̃ )))2 < 1

and

ζk := max

(
δ(rk)2, (gk)2 min

(
µkαk(1− c(1− λm(W̃ )))2

2
,

1

2Lkαk

))
.

Proof. See Appendix E.4.

The final expression (11) in Theorem 4 follows easily from ζk ≥ δ(rk)2.

The above result ensures a “sufficient” descent of V k+1 when rk (or gk) is large enough. However,
the contraction factor in (20) becomes vacuous for arbitrarily small values of rk (or gk).

Next, we examine the unfavorable case where both rk and gk are “small”, leading to the proof of
the decay of V k+1 as stated in (12) of Theorem 4. We build on the following key property of the
sequence gk in this scenario: under low rk values, if gk is “small”, the subsequent value gk+1 cannot
become arbitrarily small.
Lemma 10. Suppose

rk <
1√
2

and gk ≤ min

(
1− rk

√
2

2
√

λmax(M)
, 1

)
. (21)

Then,

1

(αk)2
∥Xk+1 −X⋆∥2

∥Dk+1 −D⋆∥2M
≥ 1

λmax(M)

(
1−

2gk
√
λmax(M)

1− rk
√
2

)2

. (22)

Proof. See Appendix E.5.
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We infer from Lemma 10 that

gk+1
(19)
≥ 1

αk+1

∥Xk+1 −X⋆∥
∥Dk+1 −D⋆∥M

(22)
≥ 1

γk
√
λmax(M)

(
1−

2gk
√
λmax(M)

1− rk
√
2

)
,

where we used αk/αk+1 ≥ 1/γk (due to αk+1 ≤ γkαk, see Step 1 of Algorithm 2). Notice that
(i) the term in the parenthesis will be around one for small enough values of gk and rk; and (ii) the
sequence {γk} is chosen being eventually uniformly lower bounded. Therefore, the above bound
implies that rk and gk cannot both progressively diminish along the iterates. Consequently, in the
unfavorable scenario described by (21), V k+1 still decreases, albeit over two consecutive iterations.
This outcome is formalized in the following lemma.
Lemma 11. Suppose condition (21) holds. Then,

V k+2 ≤ max

(
αk+1

αk
, 1

)2

max

(
αk

αk−1
, 1

)2 (
1− ρ̂k2

)
V k, (23)

where

ρ̂k2 :=
µk+1αk+1

(
1− c(1− λm(W̃ ))

)2
2(γk)2 max(λmax(M), 1)

(
1−

2gk
√
λmax(M)

1− rk
√
2

)2

< 1.

Here, µk+1 is the strong convexity constants of (each) fi along the segment [x(k+1)+1/2
i , x⋆].

Proof. See Appendix E.6.

The final convergence result as stated in (12) is obtained using Lemma 9 and Lemma 11, with the
variable gk, absorbed, as outlined next. We strengthen condition on rk in (21) by rk ≤

√
2/4. We

consider two cases for the value of gk, in the above scenario. Specifically, (Case 1) gk is bounded
away from zero, implying ζk in (20) to be so. Therefore,

(
1−min

(
ρk1 , ζ

k
))

< 1. This will be
sufficient to ensure enough descent for V k+1, though in two consecutive iterations. (Case 2): gk may
be arbitrarily small; in this case, ρ̂k2 in (23) remains bounded away from zero, ensuring contraction
though from V k to V k+2. More formally we have the following.

• Case 1: Consider (20), under (21) strengthened by rk ≤
√
2/4. If

gk ≥ min

(
1

8
√
λmax(M)

, 1

)
, (24)

then

min(ρk1 , ζ
k) ≥

(
1− c(1− λm(W̃ ))

)2
16max(1, 8λmax(M))

min

(
µkαk,

1

αkLk

)
.

Using lower bound above in (20), yields

V k+2 ≤ max

(
αk+1

αk
, 1

)2

V k+1 ≤ max

(
αk+1

αk
, 1

)2

max

(
αk

αk−1
, 1

)2 (
1− ρ̂k1

)
V k,

with

ρ̂k1 =

(
1− c(1− λm(W̃ ))

)2
16max(1, 8λmax(M))

min

(
µkαk,

1

αkLk

)
. (25)

Notice that if the interval of admissible values for gk, as specified by (21) and (24) is empty, this case
does not apply.

• Case 2: Consider (23) under (21) strengthened by rk ≤
√
2/4. If

0 < gk ≤ min

(
1,

1

8
√

λmax(M)

)
,
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then

1−
2gk
√

λmax(M)

1− rk
√
2

>
1

2
,

where we used rk ≤
√
2/4. This implies

ρ̂k2 ≥
µk+1αk+1

(
1− c(1− λm(W̃ ))

)2
8(γk)2 max(λmax(M), 1)

.

Using this lower bound in (23), yields

V k+2 ≤ max

(
αk+1

αk
, 1

)2

max

(
αk

αk−1
, 1

)2 (
1− ρ̂k3

)
V k,

with

ρ̂k3 =

(
1− c(1− λm(W̃ ))

)2
8max(λmax(M), 1)

µk+1αk+1

(γk)2
. (26)

Combining Case 1 and Case 2 above–taking the minimum between (25) and (26) and using the fact
that γk ≥ 1, leads to the desired decay of V k+1 as in (12).

This completes the proof of Theorem 4. □

C Proof of Corollary 4.1

Let us consider the first N > 0 iterations of Algorithm 1. Let us denote by L and µ the constants of
smoothness and strong convexity of each fi restricted to the convex hull of {x⋆, {xk

i , x
k+1/2
i }Nk=0}.

We proceed lower bounding ρk1 and ρk2 given in Theorem 4. We will use the following facts:

αk ≥ δ/(2L), αk < δ/µ, and
αk+1

αk
≤ γk,

due to Lemma 7, and given λmax(M) = (c(1− λ2(W̃ ))−1 − 1,
1

max(λmax(M), 1)
≥ c(1− λ2(W̃ )) and

1

λmax(M)
≥ c(1− λ2(W̃ )).

We can bound ρk1 and ρk2 as

ρk1 ≥ δ
µ

4L
(1−c(1−λm(W̃ )))2 and ρk2 ≥ δ

µ

L

(
1− c(1− λm(W̃ ))

)2
c(1− λ2(W̃ ))

256(γk)2
, ∀k ≤ N.

(27)

Using (27), we can simplify the rate decay of V N in Theorem 4 as follows.

• Case 1: Suppose

rk ≥ rlow :=
1√
2
min

(
1

2
,

1√
λmax(M)

)
, ∀k ≥ N. (28)

Substituting the lower bounds of ρk1 and rk in (11), we obtain the following simplified convergence
rate:

V N ≤

(
N−1∏
k=0

γk

)2(
1− δ

8
min

(
µ

L

(
1− c(1− λm(W̃ ))

)2
, c(1− λ2(W̃ ))

))N

V 0.

• Case 2: Condition (28) does not hold. For the values of k such that rk ≤
1√
2
min

(
1
2 ,

1√
λmax(M)

)
≤

√
2
4 , we can use (12). Substituting threin the lower bound for ρ2 and

γk = ((k + β1)/(k + 1))β2 ≥ ββ2

1 , yields

V k+2 ≤
(
γkγk+1

)2(
1− δ

(1− c(1− λm(W̃ )))2c(1− λ2(W̃ ))

256β2β2

1

µ

L

)
V k. (29)
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On the other hand, for k such that rk ≥ 1√
2
min

(
1
2 ,

1√
λmax(M)

)
, using (11) on two consecutive

iterations, we have

V k+2 ≤(γk+1)2V k+1

≤
(
γkγk+1

)2(
1− δ

8
min

(
µ

L

(
1− c(1− λm(W̃ ))

)2
, c(1− λ2(W̃ ))

))
V k

≤
(
γkγk+1

)2(
1− δ

(1− c(1− λm(W̃ )))2c(1− λ2(W̃ ))

256β2β2

1

µ

L

)
V k. (30)

Therefore, in either situations of Case 2, one can ensure contraction after two consecutive iterations
by a factor

δ
(1− c(1− λm(W̃ )))2c(1− λ2(W̃ ))

256β2β2

1

µ

L
< 1.

Using V k+1 ≤ (γk)2V k, we can merge (29) and (30) as follows:

V N ≤

(
N−1∏
k=0

γk

)2(
1− δ

(1− c(1− λm(W̃ )))2c(1− λ2(W̃ ))

256β2β2

1

µ

L

)⌊N/2⌋

V 0

≤

(
N−1∏
k=0

γk

)2(
1− δ

(1− c(1− λm(W̃ )))2c(1− λ2(W̃ ))

256β2β2

1

µ

L

)(N−1)/2

V 0

≤

(
N−1∏
k=0

γk

)2(
1− δ

(1− c(1− λm(W̃ )))2c(1− λ2(W̃ ))

512β2β2

1

µ

L

)N−1

V 0.

• Case 1 + Case 2: We can combine the rate expressions derived in the two cases above as follows:

V N ≤

(
N−1∏
k=0

γk

)2

(1− ρ)N−1V 0,

where

ρ =


δ

8
min

( µ

4L
(1− c(1− λm(W̃ )))2, c(1− λ2(W̃ ))

)
, if rk ≥ 1√

2
min

(
1
2 ,

1√
λmax(M)

)
for all k;

δ
(1− c(1− λm(W̃ )))2c(1− λ2(W̃ ))

512(γk)2
µ

L
, else.

Notice that ρ ∈ (0, 1).

Finally, we can obtain the desired asymptotic convergent rate noting that the growth of
∏

k γ
k is

dominated by the geometric decay of the contraction factor. This is formalized next.
Lemma 12. Let γk = ((k + β1)/(k + 1))β2 with β1 ≥ 1, β2 ≥ 0. Then the following holds:

N−1∏
k=0

γk ≤ β
β2(⌈β1⌉+1)
1 Nβ2(β1−1). (31)

Furthermore, for any given ρ ∈ (0, 1), we have(
N−1∏
k=0

γk

)2

(1− ρ)N−1 ≤ (1− ρ/2)N−1, (32)

for all

N ≥ N0 :=
4

ρ
max

(
2β2(⌈β1⌉+ 1) lnβ1 + ln(2), 4β2β1 ln

8β1β2

ρ

)
.
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Proof. See Appendix E.7

Inequality (32) provides the asymptotic rate expression, as stated in the corollary where O hides the
dependence on β1 and β2. □

D Proof of Theorem 5

We begin noticing that if the stepsizes in Algorithm 3 are identical across agents, Algorithm 3 reduces
to Algorithm 1. For the iterates where this happens, one can rely on the convergence guarantees
established for Algorithm 1. Specifically, we have the following result, whose proof is straightforward.
Lemma 13. Suppose that exists some kε ≥ 1 such that αk

1 = · · · = αk
m, for k = kε, . . . , kε +Nε.

Then one can guarantee∥∥Xkε+Nε −X⋆
∥∥2 + 1

4L2
∥DKε+Nε −D⋆∥2M ≤ ε,

where Nε is defined as in Corollary 4.1 (replacing therein V 0 with V Kε ).

The remainder of the proof focuses on characterizing the properties of certain key events identified as
detrimental for the local-min consensus algorithm to achieve convergence. We will demonstrate that
the occurrence of such events within N consecutive iterations is of the order of logN , indicating that
these are sporadic events relative to the total of N iterations.

Given αk
i ’s, as defined in Step (S.3) of Algorithm 3, let us denote their minimum across all agents

at time k as
αk
min := min

i∈[m]
αk
i .

If the backtracking loop (steps 3-6 in Algorithm 2) is not activated at iteration k − 1 in any of the
agents’ local line searches, then all output stepsizes αk

i will increase by the same factor γk, that is,
αk
i = γkαk−1

i ; hence, does αk
min. On the other hand, if all stepsizes are consensual at iteration k − 1

and the backtracking procedure at some of the agents’ side enters its steps- 3-6, a “desynchronization”
of the stepsizes occurs. This event can be detected by the condition

αk
min <γkαk−1

min .

When the stepsize at time k−1 are not consensual, the condition above identifies increases in stepsize
disagreements from iteration k − 1 to k, measured by

max
j∈[m]

αk
j − αk

min > γk

(
max
j∈[m]

αk−1
j − αk−1

min

)
.

This motivates the definition of the following index set: given N = 1, 2, . . . , let

IN =
{
k ∈ [N ] : αk

min < γkαk−1
min

}
.

The key properties of interest of this set are summarized below.
Lemma 14. For any given N = 1, 2, . . . , the following statements hold:

1. If αk
i = αk

min, for all i ∈ [m], and k + 1 /∈ IN , then αk+1
i = αk+1

min , for all i ∈ [m];

2. If k ∈ IN , k < N − dG , and k+1, . . . k+ dG /∈ IN , then αk+dG
i = αk+dG

min , for all i ∈ [m];

3. |IN | ≤ max
(
lnα0L+ ln

∏N−1
k=0 γk + ln 2

δ , 0
)

.

Proof. See Appendix F.1.

In words, the first statement confirms that consensus on the stepsizes is maintained if none of the local
backtracking procedures are triggered. The second statement ensures that, the local-min consensus
algorithm requires at most dG iterations to converge, from any initialization, provided that during
those iterations no backtracking events alter the minimum stepsize across agents. Lastly, the third
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assertion provides a limit on the maximum number of detrimental events that can occur during
the N iterations under consideration. If this number is small relative to N , a fact that will be
proved shortly, one we can find (multiple) window(s) of consecutive iterations wherein the stepsizes
remain consensual across all agents. Within these windows, Lemma 13 can be applied, to establish
convergence. This idea is formalized next.
Lemma 15. Suppose V k ≤ R. Then,

min
j∈[1,N+1]

∥∥Xj −X⋆
∥∥2 + 1

4L2
∥Dj −D⋆∥2M ≤ ε, (33)

if
N

Nε + dG
> |IN |+ 1. (34)

Here, Nε is defined as in Corollary 4.1 (replacing therein V0 with R).

Proof. See Appendix F.2.

To finalize our proof, let us simplify an upper bound of |IN |, when γk =
(

k+β1

k+1

)β2

. For the sake of
simplicity, we consider the case lnN ≥ 1. Invoking Lemma 12, we have

ln
2

δ
+ ln

N−1∏
k=0

γk
(31)
≤ ln

2

δ
+ β2(⌊β1⌋+ 1) lnβ1 + β2(β1 − 1) lnN

≤
(
β2(⌊β1⌋+ 1) lnβ1 + β2(β1 − 1) + ln ln

2

δ

)
︸ ︷︷ ︸

ξ:=

lnN

= ξ lnN,

where the constant ξ depends on the algorithm parameters. Therefore, one can guarantee (33), under
the following condition

N

ξ lnN + lnα0L
≥ Nε + dG . (35)

A sufficient condition for (35) is

N

max (lnN, lnα0L)
≥ 2max(ξ, 1)max(Nε, dG).

Let N∗ be the smallest iteration for which the above inequality holds. Then,

N∗ = O(max [log dG + logNε, logα0L] max(Nε, dG)).

□

E Proof of the Intermediate Results in Appendix B

E.1 Proof of Lemma 6

Let us rewrite V k+1 in terms of ∥Xk −X⋆∥2 and (αk)2∥Dk −D⋆∥2M , to link it back to V k:

V k+1 =∥Xk −X⋆∥2 + (αk)2∥Dk −D⋆∥2M
− ∥Xk −Xk+1∥2 − (αk)2∥Dk −Dk+1∥2M
− 2

〈
Xk+1 −X⋆,Xk −Xk+1

〉︸ ︷︷ ︸
term I

−2 (αk)2
〈
Dk+1 −D⋆,Dk −Dk+1

〉
M︸ ︷︷ ︸

term II

.
(36)

where the equality follows from ∥a∥2 = ∥b∥2 − ∥a− b∥2 − 2⟨a, b− a⟩.

Notice that the negative terms on the RHS of (36) will contribute to the decrease of V k+1. We are
thus left to deal with term I and term II. The idea is to bound them so that they can overall being
controlled by the backtracking inequality.
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Let us proceed bounding term I and term II using the algorithm dynamics. We have the following:

term I =
〈
(Xk − αkDk+1)−X⋆,Xk −Xk+1

〉
− αk

〈
∇F (Xk+1/2),Xk −Xk+1

〉
=
〈
Xk −X⋆,Xk −Xk+1

〉
+ αk

〈
Dk+1 −D⋆,Xk+1 −Xk

〉
− αk

〈
∇F (Xk+1/2)−∇F (X⋆),Xk −Xk+1

〉
,

(37)

where in the second equality we used ∇F (X⋆) = −D⋆. Note that the last term in the expression
above can be controlled through the backtracking procedure. Hence, we proceed bounding term II
to “cancel” out the other terms on the RHS of (37). Specifically,

term II =− αk

〈
Dk+1 −D⋆, αkc−1

(
I − W̃

)†
(Dk+1 −Dk) + αkDk − αkDk+1

〉
=− αk

〈
Dk+1 −D⋆,Xk − αk∇F (Xk+1/2)− αkDk+1 −X⋆

〉
=− αk

〈
Dk+1 −D⋆,Xk+1 −X⋆

〉
,

(38)

where we used the update of Xk+1 and the facts Dk+1−D⋆ ∈ span(I−W̃ ) and X⋆ ∈ null(I−W̃ ).

Summing up (37) and (38), we obtain

term I+ term II =
〈
Xk −X⋆,Xk −Xk+1

〉
+ αk

〈
Dk+1 −D⋆,Xk+1 −Xk

〉
− αk

〈
∇F (Xk+1/2)−∇F (X⋆),Xk −Xk+1

〉
− αk

〈
Dk+1 −D⋆,Xk+1 −X⋆

〉
=
〈
Xk −X⋆,Xk −Xk+1

〉
+ αk

〈
Dk+1 −D⋆,Xk −X⋆

〉
− αk

〈
∇F (Xk+1/2)−∇F (X⋆),Xk −Xk+1

〉
=αk

〈
Xk −X⋆,

1

αk

(
Xk −Xk+1

)
−Dk+1 +D⋆

〉
− αk

〈
∇F (Xk+1/2)−∇F (X⋆),Xk −Xk+1

〉
= αk

〈
Xk −X⋆,∇F (Xk+1/2)−∇F (X⋆)

〉
− αk

〈
∇F (Xk+1/2)−∇F (X⋆),Xk −Xk+1

〉
=− αk

〈
∇F (Xk+1/2)−∇F (X⋆),X⋆ −Xk+1

〉
.

(39)

The statement of the Lemma follows readily substituting (39) in (36). □

E.2 Proof of Lemma 7

We preliminary notice that, in view of Lemma 3, the backtracking inequality (6) on F k holds with
αk = mini∈[m] α

k
i , where each αk

i is the outcome of the backtracking procedure on the local fk
i .

Since F and F k have the same curvature, it follows that (6) holds also on F , that is,

F (Xk+1) ≤ F (Xk+1/2) +
〈
∇F (Xk+1/2),Xk+1 −Xk+1/2

〉
+

δ

2αk
∥Xk+1 −Xk+1/2∥2. (40)

We proceed now bounding
〈
∇F (Xk+1/2)−∇F (X⋆),X⋆ −Xk+1

〉
building on (40). To do so, we

decompose the inner product as follows〈
∇F (Xk+1/2)−∇F (X⋆),X⋆ −Xk+1

〉
=
〈
∇F (Xk+1/2),X⋆ −Xk+1/2

〉
︸ ︷︷ ︸

term I

−
〈
∇F (Xk+1/2),Xk+1 −Xk+1/2

〉
︸ ︷︷ ︸

term II

+
〈
∇F (X⋆),Xk+1 −X⋆

〉
(41)
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We bound term I invoking strong convexity and co-coercivity of F while we use (40) to bound
term II. Specifically,

term I ≤ F (x⋆)− F (Xk+1/2) +


−µk

2

∥∥Xk+1/2 −X⋆
∥∥2 , (by strong convexity)

− 1

2Lk

∥∥∇F (Xk+1/2) +D⋆
∥∥2 , (by co-coercivity),

where we also used ∇F (X⋆) = −D⋆. Therefore

term I ≤ F (x⋆)− F (Xk+1/2)−max

(
µk

2

∥∥∥Xk+1/2 −X⋆
∥∥∥2 , 1

2Lk

∥∥∥∇F (Xk+1/2) +D⋆
∥∥∥2) .

(42)
Using (40), term II can be bounded as

term II ≤ F (Xk+1/2)− F (Xk+1) +
δ

2αk

∥∥∥Xk+1 −Xk+1/2
∥∥∥2 . (43)

Using (42) and (43) in (41), yields〈
∇F (Xk+1/2)−∇F (X⋆),X⋆ −Xk+1

〉
≤ δ

2αk

∥∥∥Xk+1 −Xk+1/2
∥∥∥2 −max

(
µk

2

∥∥∥Xk+1/2 −X⋆
∥∥∥2 , 1

2Lk

∥∥∥∇F (Xk+1/2) +D⋆
∥∥∥2)

+ F (X⋆) +
〈
∇F (X⋆),Xk+1 −X⋆

〉
− F (Xk+1)︸ ︷︷ ︸

≤0

.

This completes the proof. □

E.3 Proof of Lemma 8

Combining Lemma 6 and Lemma 7, we can write

V k+1 ≤
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M

−max

(
µk

2
∥Xk+1/2

k −X⋆∥2, 1

2Lk
∥∇F (Xk+1/2) +D∗∥2

)
− ∥Xk −Xk+1∥2︸ ︷︷ ︸

term I

− (αk)2∥Dk −Dk+1∥2M︸ ︷︷ ︸
term II

+δ ∥Xk+1 −Xk+1/2∥2︸ ︷︷ ︸
term III

.

Next, we demonstrate that the sum of the last three terms contributes to the decrease of V k+1.

Using the definition of Xk+1 and Xk+1/2, we can bound term III as follows:

term III =
∥∥∥(Xk+1 −Xk

)
−
(
Xk+1/2 −Xk

)∥∥∥2
=−

∥∥∥Xk+1/2 −Xk
∥∥∥2 − 2

〈
Xk+1/2 −Xk,Xk+1 −Xk+1/2

〉
+
∥∥Xk+1 −Xk

∥∥2
=−

∥∥∥c(I − W̃ )Xk
∥∥∥2 − 2αk

〈
Dk+1/2, c(I − W̃ )Xk

〉
+
∥∥Xk+1 −Xk

∥∥2
=−

∥∥∥c(I − W̃ )Xk
∥∥∥2 − 2αk

〈(
c(I − W̃ )− I

)(
∇F (Xk+1/2) +Dk

)
, c(I − W̃ )Xk

〉
+ ∥Xk −Xk+1∥2.

Proceeding with ∥Dk −Dk+1∥2M , we have

term II =(αk)2
∥∥∥−c(I − W̃ )

(
∇F (Xk+1/2) +Dk

)
+

c

αk
(I − W̃ )Xk

∥∥∥2
M

=−
∥∥∥c(I − W̃ )Xk

∥∥∥2 + ∥Xk∥2
c(I−W̃ )

− 2αk
〈(

I − c(I − W̃ )
)(
∇F (Xk+1/2) +Dk

)
, c(I − W̃ )Xk

〉
+ (αk)2

∥∥∥c(I − W̃ )
(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

,
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where the second equality follows from the definition of M = c−1(I − W̃ )† − I.

Combining the three terms yields

− term I− term II+ δterm III
=δ(−term I− term II+ term III)− (1− δ)(term I+ term II)
≤δ(−term I− term II+ term III)

=− δ∥Xk∥2
c(I−W̃ )

− δ(αk)2
∥∥∥c(I − W̃ )

(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

,

which proves the statement of the lemma. □

E.4 Proof of Lemma 9

The proof involves further bounding the RHS of (17) in Lemma 8, appropriately in terms of rk and
gk. To achieve this, we construct two alternative bounds of the RHS of (17), as discussed below.

The first bound will reveal the dependence on rk, and it is based on using in (17)

max

(
µkαk∥Xk+1/2

k −X⋆∥2, α
k

Lk
∥∇F (Xk+1/2) +D∗∥2

)
≥ µkαk

2
∥Xk+1/2 −X⋆∥2

along with

∥Xk+1/2 −X⋆∥2 ≥
(
1− c(1− λm(W̃ ))

)2
∥Xk −X⋆∥2. (44)

We obtain

V k+1 ≤
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M

− µkαk

2
(1− c(1− λm(W̃ )))2∥Xk −X⋆∥2

− δ
∥∥Xk

∥∥2
c(I−W̃ )

− δ(αk)2
∥∥∥c(I − W̃ )

(
∇F (Xk+1/2) +Dk

)∥∥∥2
M

(18)
≤
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M

− µkαk

2
(1− c(1− λm(W̃ )))2∥Xk −X⋆∥2

− δ(rk)2(αk)2∥Dk −D∗∥2M

=

(
1− µkαk

2
(1− c(1− λm(W̃ )))2

)
∥Xk −X⋆∥2 +

(
1− δ(rk)2

)
(αk)2∥Dk −D⋆∥2M .

The second bound of the RHS of (17) aims to obtain an explicit dependence on gk. This is done by
just neglecting the last two negative terms in the RHS of (17):

V k+1 ≤
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M

−max

(
µkαk∥Xk+1/2 −X⋆∥2, α

k

Lk
∥∇F (Xk+1/2) +D∗∥2

)
(44)
≤
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M

−max

(
µkαk(1− c(1− λm(W̃ )))2∥Xk −X⋆∥2, α

k

Lk
∥∇F (Xk+1/2) +D∗∥2

)
≤
∥∥Xk −X⋆

∥∥2 + (αk)2∥Dk −D⋆∥2M −
µkαk

2
(1− c(1− λm(W̃ )))2∥Xk −X⋆∥2

−min

(
µk(αk)3(1− c(1− λm(W̃ )))2

2
,
αk

2Lk

)
max

(
1

(αk)2
∥Xk −X⋆∥2, ∥∇F (Xk+1/2) +D∗∥2

)
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=

(
1− µkαk

2
(1− c(1− λm(W̃ )))2

)
∥Xk −X⋆∥2

+

(
1− (gk)2 min

(
µkαk(1− c(1− λm(W̃ )))2

2
,

1

2Lkαk

))
(αk)2∥Dk −D⋆∥2M .

The final result follows combining the above two bounds while using the definition of ρk1 and ζk. □

E.5 Proof of Lemma 10

Invoking the update of the primal variable in the form

Xk+1 = Xk − αk(∇F (Xk+1/2) +D⋆)− αk(Dk+1 −D⋆),

where we used D⋆ +∇F (X⋆) = 0, and the definition of gk, we can write

1

αk
∥Xk+1 −X∗∥ ≥∥Dk+1 −D⋆∥ − 1

αk
∥Xk −X∗∥ − ∥∇F (Xk+1/2) +D⋆∥

≥∥Dk+1 −D⋆∥ − 2gk∥Dk −D⋆∥M

≥ 1√
λmax(M)

∥Dk+1 −D⋆∥M − 2(gk)∥Dk −D⋆∥M .

(45)

Let us proceed lower bounding ∥Dk+1 −D⋆∥M . Using the update of the dual variable, in the form

Dk+1 = Dk +
1

αk
c(I − W̃ )Xk − c(I − W̃ )(∇F (Xk+1/2) +Dk),

we obtain

∥Dk+1−D⋆∥M ≥ ∥Dk−D⋆∥M−
1

αk
∥c(I−W̃ )Xk∥M−∥c(I−W̃ )(∇F (Xk+1/2)+Dk)∥M . (46)

Using

∥c(I − W̃ )Xk∥M ≤ ∥Xk∥
c(I−W̃ )

,

the following holds for the last two terms on the RHS of (46):

1

(αk)2
∥Xk∥2

c(I−W̃ )
+ ∥c(I − W̃ )(∇F (Xk+1/2) +Dk)∥2M

= (rk)2 max

(
1

(αk)2
∥Xk −X⋆∥2, ∥Dk −D⋆∥2M

)
≤ (rk)2 max((gk)2∥Dk −D⋆∥2M , ∥Dk −D⋆∥2M )

= (rk)2 max((gk)2, 1)∥Dk −D⋆∥2M
= (rk)2∥Dk −D⋆∥2M ,

where the last equality follows from gk ≤ 1 (as postulated in (21)).

Finally, using
√
2
√
a2 + b2 ≥ a+ b, we deduce

∥Dk+1 −D⋆∥M ≥ (1−
√
2rk)∥Dk −D⋆∥M .

Substituting the above inequality in (45) yields the desired result. □
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E.6 Proof of Lemma 11

Using (22) and (44) in (17) (while neglecting therein the last two negative terms on the RHS), yields

V k+2 ≤
∥∥Xk+1 −X⋆

∥∥2 + (αk+1)2∥Dk+1 −D⋆∥2M − µk+1αk+1∥X(k+1)+1/2 −X⋆∥2

(44)
≤
∥∥Xk+1 −X⋆

∥∥2 + (αk+1)2∥Dk+1 −D⋆∥2M − µk+1αk+1(1− c(1− λm(W̃ )))2∥Xk+1 −X⋆∥2

(22)
≤ (1− µk+1αk+1(1− c(1− λm(W̃ ))2)/2)∥Xk+1 −X⋆∥2 + (αk+1)2∥Dk+1 −D⋆∥2M

− µk+1αk+1

2
(1− c(1− λm(W̃ )))2

1

λmax(M)

(
1−

2gk
√
λmax(M)

1− rk
√
2

)2

(αk)2∥Dk+1 −D⋆∥2M

≤(1− µk+1αk+1(1− c(1− λm(W̃ ))2)/2)∥Xk+1 −X⋆∥2

+

1− µk+1αk+1

2(γk)2
(1− c(1− λm(W̃ )))2

1

λmax(M)

(
1−

2gk
√
λmax(M)

1− rk
√
2

)2


× (αk+1)2∥Dk+1 −D⋆∥2M ,

where the last inequality follows from αk/αk+1 ≥ 1/γk.

We deduce

V k+2 ≤ max

(
αk+1

αk
, 1

)2
1− µk+1αk+1(1− c(1− λm(W̃ )))2

2(γk)2 max(λmax(M), 1)

1

(γk)2

(
1−

2gk
√
λmax(M)

1− rk
√
2

)2
V k+1.

The final statement of the lemma follows from the above inequality and

V k+1 ≤ max

(
αk

αk−1
, 1

)2

V k,

due to (20) and ρk1 < 1. □

E.7 Proof of Lemma 12

Let us consider the case N ≥ ⌈β1⌉+2. Using γk =
(

k+β1

k+1

)β2

, we can bound the product of γk’s as

ln

N−1∏
k=0

γk = β2

N−1∑
k=0

ln
k + β1

k + 1

= β2

⌈β1⌉∑
k=0

ln
k + β1

k + 1
+ β2

N−1∑
k=⌈β1⌉+1

ln

(
1 +

β1 − 1

k + 1

)

≤ β2(⌈β1⌉+ 1) lnβ1 + β2(β1 − 1)

N−1∑
k=⌈β1⌉+1

1

k + 1

≤ β2(⌈β1⌉+ 1) lnβ1 + β2(β1 − 1)

N−1∑
k=1

1

k + 1

≤ β2(⌈β1⌉+ 1) lnβ1 + β2(β1 − 1) lnN,

(47)

which proves (31). Notice that the above bound holds also if N ≤ ⌈β1⌉+ 2.

Let us determine now N0 such that (32) holds. Condition (32) is met if the following inequality holds

ln

(
N−1∏
k=0

γk

)2

+ (N − 1) ln(1− ρ/2) ≤ 0,
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where we used that 1− ρ ≤ (1− ρ/2)2 for ρ ∈ (0, 1). Bounding the LHS yields

ln

(
N−1∏
k=0

γk

)2

+ (N − 1) ln(1− ρ/2)
(47)
≤ 2β2(⌈β1⌉+ 1) lnβ1 + 2β2(β1 − 1) lnN + (N − 1) ln(1− ρ/2)

≤2β2(⌈β1⌉+ 1) lnβ1 − ln(1− ρ/2) + 2β2(β1 − 1) lnN − ρ

2
N

≤2β2(⌈β1⌉+ 1) lnβ1 + ln 2 + 2β2(β1 − 1) lnN − ρ

2
N.

It follows that (32) holds if

N ≥ 4

ρ
(2β2(⌈β1⌉+ 1) lnβ1 + ln 2)

and

N ≥ 8β2(β1 − 1)

ρ
lnN.

A sufficient condition for the last inequality to hold is

N ≥ 16β2β1

ρ
ln

8β2β1

ρ
.

This completes the proof. □

F Proof of the Intermediate Results in Appendix D

F.1 Proof of Lemma 14

1. This assertion comes readily from the definition of IN and the backtracking procedure.

2. Let Ni(k) be the set of neighbors of agent i that are at most k ≥ 1 hops away from agent i,
including agent i itself. For notational consistency, Ni(1) = Ni ∪ {i}.Using Ni(k), we can rewrite
the local-min consensus step of each agent i at iteration k as

αk
i = min

j∈Ni(1)
αk
j ,

where αk
j is the stepsizes produced by the line-search of agent j at iteration k.

Let k > k be an iteration such that k + 1, . . . , k /∈ IN . It must be

αt
min = γtαt−1

min, ∀t = k + 1, . . . , k̄.

In particular, this implies

αt
i = γt min

j∈Ni(1)
αt−1
j , ∀t = k + 1, . . . , k̄,

which leads to

αk
i =

 k∏
l=k+1

γl

 min
j∈Ni(1+k−k)

αk
j .

Finally, taking k = k + dG and noting Ni(dG) = [m], we proved the second statement of the lemma.

3. From the backtracking line-search and the definition of IN it follows that

αk
min

 = γk αk−1
min , if k /∈ IN ;

≤ γk

2
αk−1
min , if k ∈ IN .

Applying the above relation iteratively, yields

αN
min ≤ α02−|IN |

N−1∏
k=0

γk.
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At the same time, it follows from Lemma 3 that

αN
min ≥ min

(
δ

2L
, γkα0

)
.

Combining the lower and upper bounds above, yields the desired result

|IN | ≤ max

(
lnα0L+ ln

N−1∏
k=0

γk + ln
2

δ
, 0

)
.

□

F.2 Proof of Lemma 15

From (34), it follows ⌊
N

Nε + dG

⌋
> |IN |.

Then, according to the Dirichlet’s principle there exists two iteration indices k1 and k2 such that

1. ∀k ∈ [k1, k2]⇒ k /∈ IN ; and
2. k2 − k1 ≥ Nε + dG .

Invoking Lemma 14.(1) and Lemma 14.(2), it follows that all agents’ stepsizes reach consensus after
k1 + dG iterations and remain consensual for the subsequent Nε iterations. One can then invoke
Lemma 13, and conclude ∥∥Xk2 −X⋆

∥∥2 + 1

4L2
∥Dk2 −D⋆∥2M ≤ ε.

This concludes the proof. □

G Additional Numerical Results

This section presents additional experiments for the Ridge Regression problem, introduced in Sec-
tion 6. Here, we consider additional graph topologies, namely: 1) Ring Graphs; 2) Random Regular
Graphs with degree 3; and 3) Random Regular Graphs with degree 10. The rest of the setup (including
algorithms’ tuning) is the same of that described in Section 6.

The experiments are summarized in Fig. 3. The findings corroborate the conclusions presented in

(a) Ring Graph (b) Regular graph, degree 3 (c) Regular graph, degree 10

Figure 3: Ridge regression on different regular graphs: (3a) Ring graph; (3b) Random Regular
Graph, with degree 3; (3c) Random Regular Graph with degree 10.

Sec. 6: both Algorithm 1 and Algorithm 3 outperform EXTRA and NIDS, which were finely tuned
for rapid practical convergence. Quite interestingly, the performance of the proposed methods appears
to be less affected by network topology and depends primarily on network connectivity.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract gives accurate presentation of our result. Part Major contributions of
Introduction contains full description of our work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]
Justification: The main limitaion of proposed procedure is min-consensus. The technology
for its implementation is carefully discribed in part 3.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

28



Answer: [Yes]
Justification: Main assumptions and definitions are presented in Section 2. All main
theoretical results presented in Section 4 with all required assumptions. Proofs are placed in
Appendix A-F because of their large size.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All setup for numerical experiments are described in Section 5. It is enough to
reproduce all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: code in the form of an attached archive.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper demonstrates performance of optimization algorithm. Because of
that, we do not need test some models. But Section 5 contains full information about our
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Numerical experiments demonstrate performance of optimization algorithm
on a given problems. Besides, our algorithm is deterministic.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Information is given at the end of Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Authors are familiar with NeurIPS Code of Ethics and paper conform it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There are different methods of distributed optimization. The paper propose
new method of distributed optimization that has no additional societal impact as the authors
think.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The proposed method does not require safeguard.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Numerical experiments use one of datasets from LIBSVM. Authors cite
corresponding work of owners (see reference [6] in Section 5 and References)
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification:contains contains README file with sufficient description.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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