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Abstract

We study the generalized linear bandit (GLB) problem, a contextual multi-armed
bandit framework that extends the classical linear model by incorporating a non-
linear link function, thereby modeling a broad class of reward distributions such as
Bernoulli and Poisson. While GLBs are widely applicable to real-world scenarios,
their non-linear nature introduces significant challenges in achieving both com-
putational and statistical efficiency. Existing methods typically trade off between
two objectives, either incurring high per-round costs for optimal regret guarantees
or compromising statistical efficiency to enable constant-time updates. In this
paper, we propose a jointly efficient algorithm that attains a nearly optimal regret
bound with O(1) time and space complexities per round. The core of our method
is a tight confidence set for the online mirror descent (OMD) estimator, which is
derived through a novel analysis that leverages the notion of mix loss from online
prediction. The analysis shows that our OMD estimator, even with its one-pass up-
dates, achieves statistical efficiency comparable to maximum likelihood estimation,
thereby leading to a jointly efficient optimistic method.

1 Introduction

Stochastic multi-armed bandits [Robbins, 1952] represent a fundamental class of sequential decision-
making problems where a learner interacts with environments by selecting actions (or arms) and
receiving feedback in the form of rewards. In this paper, we study the contextual multi-armed bandit
problem under the framework of generalized linear models (GLMs). In this setting, each action is
characterized by a contextual feature vector x ∈ Xt ⊂ Rd, where the arm set Xt may vary over
time. More specifically, the learning process can be seen as a T round game between the learner and
environments: at each round t, the learner selects an action Xt ∈ Xt and then observes a stochastic
reward rt ∈ R generated according to a GLM (see Definition 2.1). The goal of the learner is to
maximize the cumulative expected reward obtained over the time horizon T . Under the GLM model,
the expectation of the reward satisfies E[rt |Xt] = µ(X⊤

t θ∗), where µ : R → R is a non-linear link
determined by the GLM model and is known to the learner. The unknown part is the underlying
parameter θ∗ ∈ Rd, which needs to be estimated from the observed action-reward pairs.

Compared with the classical linear case [Abbasi-Yadkori et al., 2011], the generalized linear bandit
(GLB) framework allows for a richer class of reward distributions, including Gaussian, Bernoulli,
and Poisson distributions. This flexibility enables the modeling of various real-world tasks, such as
recommendation systems [Li et al., 2010] and personalized medicine [Tewari and Murphy, 2017],
where the feedback is binary (Bernoulli) or count-based (Poisson) and inherently non-linear. Besides
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Table 1: Comparison of regret guarantees and computational complexity per round for GLBs. Here, κ∗ =

1/
(

1
T

∑T
t=1 µ

′(x⊤
t,∗θ∗)

)
is the slope at the optimal action xt,∗ = argmaxx∈Xt

µ(x⊤θ∗), with κ∗ ≤ κ (see
Section 2 for details). † indicates the amortized time complexity, i.e., average per-round cost over T rounds.

Method Regret Time per Round Memory Jointly Efficient

GLM-UCB [Filippi et al., 2010] O(κ(log T )
3
2

√
T ) O(t) O(t) ✗

GLOC [Jun et al., 2017] O(κ log T
√
T ) O(1) O(1) ✗

OFUGLB [Lee et al., 2024, Liu et al., 2024] O(log T
√

T/κ∗) O(t) O(t) ✗

RS-GLinCB [Sawarni et al., 2024] O(log T
√

T/κ∗) O
(
(log t)2

)† O(t) ✗

GLB-OMD (Theorem 2 of this paper) O(log T
√

T/κ∗) O(1) O(1) ✓

its practical appeal, the study of GLB lays theoretical foundations for other sequential decision-
making problems, such as function approximation in RL [Wang et al., 2021, Li et al., 2024], safe
exploration [Wachi et al., 2021], and dynamic pricing [Chen et al., 2022, Xu and Wang, 2021].

The non-linearity of the link function raises significant concerns regarding both computational and
statistical efficiency in GLBs. A canonical solution to GLB is the GLM-UCB algorithm [Filippi
et al., 2010], which belongs to the family of UCB-type methods [Agrawal, 1995, Auer, 2002]. At
each iteration t ∈ [T ], the algorithm estimates the true parameter θ∗ using maximum likelihood
estimation (MLE) based on the historical data {(xs, rs)}t−1

s=1 and yields an estimator θt, which is
further used for constructing the upper confidence bound for arm selection. As shown in Table 1,
GLM-UCB achieves nearly optimal regret bound in terms of the dependence on T . However, its
reliance on MLE incurs a computational burden: it requires storing all historical data with O(t) space
complexity and solving an optimization problem with O(t) time complexity at each round t. Besides,
in terms of the statistical efficiency, the non-linearity of the link function introduces a notorious
constant κ = 1/ infx∈∪T

t=1Xt,θ∈Θ µ′(x⊤θ) into the regret bound of GLM-UCB (see Section 2 for
details), where µ′ denotes the derivative of µ. In several applications of GLBs, such as logistic bandits(
µ(z) = 1/(1 + e−z)

)
and Poisson bandits

(
µ(z) = ez

)
, the κ term can grow exponentially with

the norm of the parameter ∥θ∗∥2, severely affecting the theoretical performance.

Over the past decade, extensive efforts have been devoted to enhancing the computational or statistical
efficiency of GLBs. However, as summarized in Table 1, how to develop a jointly efficient method
that achieves both low computation cost and strong statistical guarantees remains unclear. For
GLBs, Jun et al. [2017] developed computationally efficient algorithms with one-pass update, but
their regret bound scales linearly with the potentially large constant κ. More recently, by leveraging
the self-concordance of the loss, several works [Lee et al., 2024, Sawarni et al., 2024, Liu et al., 2024,
Clerico et al., 2025] proposed statistically efficient methods that achieve improved dependence on κ;
however, these approaches are still based on the MLE, which has high computation cost.

Our Results. This paper proposes a jointly efficient algorithm for GLBs that achieves an improved
regret bound in terms of κ with constant time and space complexities per round as shown in Table 1.
This advance roots in the construction of a tight confidence set for the online mirror descent (OMD)
estimator used for performing the UCB-based exploration. We show that the OMD estimator, even
though updated in a one-pass fashion, can still match the statistical efficiency of the MLE by carefully
addressing the non-linearity of the link function. Here, “one-pass” refers to processing each data
point only once, without storing past data. We also note that OMD-based online estimators have been
used to develop jointly efficient algorithms in the logistic bandit setting [Faury et al., 2022, Zhang
and Sugiyama, 2023, Lee and Oh, 2024], a special case of GLBs with Bernoulli rewards. However,
their analyses of the confidence set rely heavily on the specific structure of the logistic link function
µ(z) = 1/(1 + e−z), which limits their applicability to the more general GLB setting.

Table 2: Jointly efficient methods for logistic bandits.

Method Regret Time Memory

(ada)-OFU-ECOLog
[Faury et al., 2022]

O(log T
√

T/κ∗) O(log t) O(1)

OFUL-MLogB
[Zhang and Sugiyama, 2023]

O((log T )3/2
√

T/κ∗) O(1) O(1)

GLB-OMD (Theorem 2) O(log T
√

T/κ∗) O(1) O(1)

Technical Contribution. Our main
technical contribution is a new analy-
sis of the estimation error of the OMD
estimator. The analysis is based on the
concept of the mix loss, which has been
used in full-information online learn-
ing to achieve fast-rate regret minimiza-
tion [Vovk, 2001]. Here, we show that
it provides a natural way to bridge the
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gap between the OMD estimator and the true parameter θ∗, thereby enabling the construction of tight
confidence sets for bandit online learning. Our new analysis not only generalizes the OMD-based
approach to the broader GLBs but also improves upon the state-of-the-art for logistic bandits. As
shown in Table 2, the jointly efficient method [Faury et al., 2022] requires O(log t) time per round
and an adaptive warm-up strategy to achieve optimal regret. Zhang and Sugiyama [2023] reduces the
time complexity to O(1) but incurs an extra O(

√
log T ) factor in the regret. In contrast, our refined

analysis yields a tighter error bound for the OMD estimator, allowing our method to achieve improved
regret and low computation cost without warm-up rounds. Details are provided in Section 4.

We were made aware that mix-loss–based analyses have been independently developed in two very
recent concurrent works for constructing tight confidence sets. Specifically, Kirschner et al. [2025]
developed confidence sets based on the sequential likelihood ratios mixing technique, and Clerico
et al. [2025] proposed several confidence sets for GLMs. While conceptually related, these works
focus on the batch setting, where all historical data are repeatedly accessed, leading to substantial
computational overhead. In contrast, our confidence set is based on the OMD estimator with a
one-pass update. This difference leads to a distinct formulation of the mix loss and a tailored analysis
to quantify its gap relative to the time-varying OMD estimator. Details are provided in Section 4.2.

2 Preliminary

This section provides background on the GLB problem, including its formulation, underlying as-
sumptions, and closely related previous research. In the rest of the paper, for a positive semi-definite
matrix H ∈ Rd×d and vector x ∈ Rd, we define ∥x∥H =

√
x⊤Hx and ∥x∥2 as the Euclidean norm.

For the function f : R → R, its first and second derivatives are denoted by f ′ and f ′′, respectively.

2.1 Problem Formulation and GLM-UCB [Filippi et al., 2010]

The GLB problem considers a T -round sequential interaction between a learner and the environment.
At each round t ∈ [T ] ≜ {1, . . . , T}, the learner selects an action Xt ∈ Xt ⊂ Rd from the
feasible domain and then receives a stochastic reward rt ∈ R. We use the notation X t to indicate
that the arm set may vary over time, capturing many practical scenarios where available options
change dynamically. For instance, in product recommendation systems, items can be added or
removed, requiring the algorithm to adapt accordingly. Besides, we denote the learner’s action by
Xt to emphasize its stochastic nature, which may depend on past data captured by the filtration
Ft = σ(X1, r1, . . . , Xt−1, rt−1). In GLBs, conditioned on Ft, the reward rt follows a canonical
exponential family distribution with the natural parameter given by the linear model zt = X⊤

t θ∗.

Pr
[
rt | zt = X⊤

t θ∗,Ft

]
= exp

(
rtzt −m(zt)

g(τ)
+ h(rt, τ)

)
. (1)

Here, θ∗ ∈ Rd is a d-dimensional vector unknown to the learner. The function h(r, τ) is the base
measure, which provides the intrinsic weighting of the variable r, while m(z) is twice continuously
differentiable function used for normalizing the distribution. Besides, g : R → R is the dispersion
function controlling the variability of the distribution and τ ∈ R is a known parameter. The
expectation and variance of the exponential family distribution can be calculated as E[r | z] = µ(z) ≜
m′(z) and Var(r | z) = g(τ)m′′(z) [Wainwright and Jordan, 2008, Proposition 3.1]. Common
examples of (1) include Gaussian, Bernoulli, and Poisson distributions. The goal of the learner is to
maximize the cumulative expected reward, which is equivalent to minimizing the regret,

REGT =

T∑
t=1

µ(x⊤
t,∗θ∗)−

T∑
t=1

µ(X⊤
t θ∗),

where xt,∗ = argminx∈Xt
µ(x⊤θ∗) is the optimal action. Besides, we have the following standard

boundness assumptions used in the GLB literature [Filippi et al., 2010].

Assumption 1 (bounded domain). The set
⋃

t∈[T ] Xt is bounded such that ∥x∥2 ≤ 1 for all x ∈ Xt,
t ∈ [T ] and the parameter θ∗ satisfies ∥θ∗∥2 ≤ S for some constant S > 0 known to the learner.
Assumption 2 (bounded link function). The link function µ is twice differentiable over its feasible
domain. Moreover, there exist constants cµ > 0 and Lµ > 0 such that cµ ≤ µ′(z) ≤ Lµ for all
z ∈ [−S, S]. Consequently, the function m is strictly convex and µ is strictly increasing.
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GLM-UCB Method and Potentially Large Constant. The canonical algorithm for the GLB
problem is GLM-UCB [Filippi et al., 2010], which resolves the exploration-exploitation trade-off
with an upper-confidence-bound strategy [Agrawal, 1995]. Under Assumptions 1, 2 and an additional
condition that the reward rt is non-negative and almost surely bounded for all t ∈ [T ], GLM-UCB
achieves the regret of O

(
κ(log T )

3
2

√
T
)
, where the O(·)-notation is used to highlight the dependence

on κ and time horizon T . The dependence on the horizon T matches that of the linear case, where
the Õ(

√
T ) rate is nearly optimal [Dani et al., 2008]. The bottleneck lies in its linear dependence on

the constant κ, which is defined by

κ ≜
1

cµ
=

1

infx∈X[T ],θ∈Θ µ′(x⊤θ)
and κ∗ ≜

1
1
T

∑T
t=1 µ

′(x⊤
t,∗θ∗)

,

where Θ = {θ ∈ Rd | ∥θ∥2 ≤ S} and X[T ] =
⋃

t∈[T ] Xt. In the above we also define κ∗ to
reflects the local curvature at the optimal actions. The linear dependence on κ in GLM-UCB is
generally undesirable, as κ can be prohibitively large in practice. Notable examples include the
Bernoulli distribution with µ(z) = 1/(1 + e−z) and the Poisson distribution with µ(z) = ez , for
which κ = O(eS), growing exponentially with the parameter-norm bound S.

2.2 New Progress with Self-Concordance

The undesirable linear dependence on κ has motivated the development of algorithms with improved
theoretical guarantees. By leveraging the self-concordance of the loss, rooted in convex optimization
and later used in the analysis of logistic regression [Bach, 2010], recent studies [Russac et al.,
2021, Lee et al., 2024, Sawarni et al., 2024] have derived regret bounds with substantially reduced
dependence on κ for GLB. Following this line, we also adopt the self-concordance assumption here.
Assumption 3 (Self-Concordance). The link function satisfies |µ′′(z)| ≤ R · µ′(z) for all z ∈ R.

Assumption 3 holds for many widely used GLMs. For GLMs where the reward is almost surely
bounded in [0, R], the link function satisfies Assumption 3 with coefficient R [Sawarni et al., 2024].
For example, the Bernoulli distribution is 1-self-concordant. Many unbounded GLMs also satisfy
self-concordance, including the Gaussian distribution (R = 0), Poisson distribution (R = 1), and
Exponential distribution (R = 0). Leveraging self-concordance, Lee et al. [2024] and Sawarni et al.
[2024] established improved regret bounds of order Õ(

√
T/κ∗). In these results, the potentially

large constant κ∗ appears at the denominator, which largely improves the Õ(κ
√
T ) bound by Filippi

et al. [2010]. However, their methods incur still O(t) time and space complexities per round. Our
goal is to design a method with low computation cost while maintaining strong regret guarantees.
Remark 1 (Unbounded GLMs). Our GLM assumptions are aligned with the recent work [Lee et al.,
2024], which are more general than the canonical GLM formulation introduced in Filippi et al. [2010]
and later adopted in Sawarni et al. [2024]. Besides Assumptions 1 and 2, Filippi et al. [2010] further
requires the rewards to be almost surely bounded, which automatically implies self-concordance
and thus satisfies Assumption 3 as shown by Sawarni et al. [2024, Lemma 2.2]. Beyond bounded
distributions, our GLM formulation accommodates unbounded ones, such as Gaussian or Poisson.◆

3 Proposed Method

This section presents our method for GLBs based on the principle of optimism in the face uncertainty
(OFU) [Agrawal, 1995]. The core of our approach is a tight confidence set built on an online estimator.
We begin with a review of the OFU principle and then introduce our method.

3.1 OFU Principle and Computational Challenge

OFU Principle. The OFU principle provides a principle way to balance exploration and exploitation
in bandits. At each iteration t, this approach maintains a confidence set Ct(δ) ⊂ Rd to account
for the uncertainty arising from the stochasticity of the historical data, ensuring it contains θ∗ with
high probability. Using the confidence set, one can construct a UCB for each action x ∈ Xt as
UCB(x) = maxθ∈Ct(δ) µ(x

⊤θ) and select the arm by Xt = argmaxx∈Xt
UCB(x). A key ingredient

of OFU-based methods is the design of the confidence set, as the regret bound typically scales with
the “radius” of the set. A tighter confidence set generally leads to a stronger regret guarantee.
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Computational Challenge. To the best of our knowledge, most existing OFU-based methods for
GLBs rely on maximum likelihood estimation (MLE) to estimate θ∗ and construct the confidence set.
Specifically, the estimator is computed as

θMLEt = argmin
θ∈Θ′

t−1∑
s=1

ℓs(θ) + λ∥θ∥22, (2)

where ℓt(θ) ≜ (m(X⊤
t θ)−rt ·X⊤

t θ)/g(τ) is the loss function and λ > 0 is the regularizer parameter.
The MLE was first used in the classical solution [Filippi et al., 2010], yet the regret bound exhibited
linear dependence on κ due to a loose analysis. Subsequent work [Lee et al., 2024, Sawarni et al.,
2024, Liu et al., 2024] provided refined analyses showing that MLE is statistically efficient, with its
estimation error relative to θ∗ being independent of κ. This property enables the construction of a
confidence set Ct(δ) with a κ-free diameter, yielding the improved regret bound.

However, despite the statistical efficiency of the MLE, it has high computation cost. The existing
methods mentioned above use different choices of the feasible domain Θ′, but in all cases, solving
the optimization problem requires access to the entire historical dataset, resulting in O(t) space
complexity. Moreover, there is generally no closed-form solution for (2); the problem is typically
solved using gradient-based methods such as projected gradient descent or Newton’s method, where
each gradient computation requires at least O(t) time per iteration [Filippi et al., 2010]. Consequently,
both the time and space complexities of the MLE grow linearly with the number of rounds t, making
it unfavorable for online settings. In addition, Sawarni et al. [2024] set Θ′ = Rd in (2) and required
an additional projection step to ensure that θ lies within the desired domain. This projection involves
solving a non-convex optimization problem, which is even more time-consuming.

3.2 Jointly Efficient Method

The main contribution of this paper is a statistically efficient confidence set COLt (δ) constructed based
on an online estimator θt, which has κ-free estimation error with respect to the true parameter θ∗ and
can be computed with O(1) time and space complexities per round.

Online Estimator. Drawing inspiration from the study for logistic bandits [Faury et al., 2022, Zhang
and Sugiyama, 2023], we use the online mirror descent to learn the parameter θ∗. For t = 1, we
initialize θ1 ∈ Θ as any point in Θ and set H1 = λId. For time t ≥ 1, we update the model by

θt+1 = argmin
θ∈Θ

ℓ̃t(θ) +
1

2η
∥θ − θt∥2Ht

, (3)

where Θ = {θ ∈ Rd | ∥θ∥2 ≤ S} is a d-dimensional ball with radius S. In the above, we defined

ℓ̃t(θ) ≜ ⟨∇ℓt(θt), θ − θt⟩+
1

2
∥θ − θt∥2∇2ℓt(θt)

and Ht ≜ λId +

t−1∑
s=1

∇2ℓs(θs+1). (4)

The above two components play important roles in achieving low computation cost while maintaining
statistical efficiency. The loss function ℓ̃t(θ) serves as a second-order approximation of the original
loss, which preserves the curvature information of the current loss function while ensures that the
resulting optimization problem can be solved efficiently. The local matrix can also be expressed as
Ht = λId +

∑t−1
s=1 µ

′(X⊤
s θs+1)/g(τ) ·XsX

⊤
s , where Xs ∈ Rd is the action selected by the learner.

The matrix explicitly captures the non-linearity of the link function by µ′(X⊤
s θs+1) and retains the

curvature information of historical loss functions until time t− 1. Since the optimization problem (3)
is quadratic optimization over an Euclidean ball, it can be solved with a computation cost of O(d3),
independent of time t. Further details on solving (3) are provided in Appendix A.3.

Confidence Set Construction. Then, we can construct a tight confidence set based on the online
estimator by carefully configuring the parameters as the following theorem.

Theorem 1. Let δ ∈ (0, 1]. Set the step size to η = 1 +RS and the regularization parameter to
λ = max{14dηR2, 6ηRSLµ/g(τ)}. For each t ∈ [T ], define the confidence set as

COLt (δ) ≜ {θ | ∥θ − θt∥Ht
≤ βt(δ)}, (5)

5



Algorithm 1 GLB-OMD

Input: Self-concordant constant R, Lipchitz constant Lµ, parameter radius S, confidence level δ.
1: Initialize θ1 ∈ Θ := {θ ∈ Rd | ∥θ∥2 ≤ S} and H1 = λId.
2: for t = 1 to T do
3: Construct the confidence set Ct(δ) according to (5).
4: Select the arm Xt according to rule (6) and receive the reward rt.
5: Update the online estimator θt+1 by (3) and set Ht+1 = Ht +∇2ℓt(θt+1).
6: end for

where θt is the online estimator (3) and the radius βt(δ) is given by

βt(δ) =

√
4λS2 + 2η ln

1

δ
+ d(6η2 + η) ln

(
1 +

Lµ

λg(τ)

)
= O

(
SR

√
d

(
S2R+ ln

t

δ

))
.

Then, under Assumptions 1, 2, and 3, we have Pr
[
∀t ≥ 1, θ∗ ∈ Ct(δ)

]
≥ 1− δ. Besides, the

time complexity for solving (3) is O(d3), and the space complexity is O(d2).

Theorem 1 shows that an ellipsoidal confidence set Ct(δ) can be constructed to quantify the uncertainty
of the online estimator θt with both statistical and computational efficiency. From a computational
perspective, constructing the confidence set relies only on the online estimator, which can be updated
with O(1) time and space complexities. From a statistical view, the radius of the confidence set is
independent of κ, which is crucial for achieving the improved regret bound, as detailed next.

Remark 2 (Comparison with Logistic Bandits Literature). We note that OMD has been used in
logistic bandits for constructing confidence sets [Faury et al., 2022, Zhang and Sugiyama, 2023,
Lee and Oh, 2024]. However, existing methods are not fully jointly efficient compared with our
result. Specifically, Faury et al. [2022] required optimization over the original loss at each round,
incurring an additional O(log t) computation cost and relying on a warm-up strategy to maintain
statistical efficiency. In later work, Zhang and Sugiyama [2023] and Lee and Oh [2024] achieved a
constant per-round cost but their regret bounds have an extra O(

√
log t) multiplicative factor. More

importantly, as we will discuss in detail in Section 4, the analyses in these works depend on the
specific structure of the logistic model and do not naturally extend to the GLB setting. Our key
contribution is to introduce mix-loss-based technique into the confidence set analysis, which not only
enables the application of OMD to the broader GLB framework but also improves both statistical and
computational efficiency over previous methods for logistic bandits. ◆

Arm Selection and Regret Bound. Based on the ellipsoidal confidence set, one can employ a
variety of exploration strategies, not limited to OFU-based methods but also including randomized
approaches such as Thompson sampling [Abeille and Lazaric, 2017] for action selection. Here,
we adopt the classical OFU-based strategy, where the action Xt is selected by solving the bilevel
optimization problem Xt = argmaxx∈Xt

maxθ∈Ct(δ) µ(x
⊤θ). Since µ is an increasing function and

Ct(δ) is an ellipsoid, the OFU-based action selection rule is equivalent to

Xt = argmax
x∈Xt

max
θ∈Ct(δ)

x⊤θ = argmax
x∈Xt

{x⊤θt + βt(δ)∥x∥H−1
t

}, (6)

which allows us to avoid solving the inner optimization problem explicitly. The overall implementa-
tion of the algorithm is summarized in Algorithm 1 and we have the following regret guarantee.

Theorem 2. Let δ ∈ (0, 1]. Under Assumptions 1, 2, and 3, with probability at least 1 − δ,
Algorithm 1 with parameter η = 1 +RS and λ = max{14dηR2, 6ηRSLµ/g(τ)} ensures

REGT ≲ dSR
√
S2R+ log T

√
T log T

κ∗
+ κd2S2R3 log T (S2R+ log T ),

where ≲ is used to hide constant independence of d, κ, S, R and T .
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Theorem 2 shows that our method achieves an Õ(d
√
T/κ∗) regret, greatly improving upon the

Õ(κd
√
T ) bound of Filippi et al. [2010]. From a computational perspective, our OMD estimator

can be updated in O(1) time and memory per round, in the same spirit as the least-squares estimator
in linear bandits. Consequently, the overall per-round computation cost of our algorithm matches
that of LinUCB [Abbasi-Yadkori et al., 2011], indicating that the nonlinearity of the link function
does not necessarily make GLBs more computationally demanding. In the finite-arm setting, our
algorithm enjoys a constant per-round computational cost of O(d3 + d2|Xt|), independent of T . In
the infinite-arm case, the arm-selection step (6) could become the main computational bottleneck
(once the computational issue of MLE is resolved). Our estimator remains broadly useful as a plug-in
component that can be integrated into a wide range of strategies beyond the UCB-based exploration,
e.g., it can also be incorporated into Thompson Sampling [Faury et al., 2022, Appendix D.2] where
the arm-selection step reduces to a convex optimization problem for convex arm sets.

Since logistic bandits are a special case of GLBs, Theorem 2 also advances state-of-the-art results of
logistic bandits by either reducing the O(log t) time complexity of Faury et al. [2022] to O(1), or
achieving an O(

√
log T ) improvement in the regret bound over Zhang and Sugiyama [2023].

Comparison with Sawarni et al. [2024]. We note that Sawarni et al. [2024] also pursued computa-
tional efficiency, but their approach is conceptually orthogonal to ours. They reduce the computation
cost by employing a rare-update strategy that limits the frequency of parameter updates. However,
their method remains MLE-based and requires storing all historical data, resulting in a memory cost
of O(t). Moreover, although the rare-update strategy yields an amortized per-round time complexity
of O((log t)2) over T rounds, it still incurs a worst-case time complexity of O(t) in certain rounds.
In contrast, our method performs a one-pass update at every iteration with O(1) time and space
complexities per round. A promising direction for future work is to combine online estimation with
rare-update techniques to further accelerate the algorithm.

Discussion with Lee and Oh [2025]. The concurrent work [Lee and Oh, 2025] builds on the
framework of Zhang and Sugiyama [2023] and also reports an O(

√
log T ) improvement in multi-

nomial logit (MNL) bandits, a different problem setting that nonetheless shares certain technical
connections with GLB. Notably, their technique could potentially be adapted to logistic bandits to
achieve an O(log T

√
T/κ∗) bound with O(1) cost. However, we identify potential technical issues

in their analysis. The argument crucially relies on a condition for the normalization factor of the
truncated Gaussian distribution (see Eq.(C.15) of their paper, as also restated in (43) of appendix), an
assumption that is unlikely to hold in general. A detailed discussion is provided in Appendix D.

3.3 More Discussions and Limitations

Dependence on T , κ and d. For the dominant term, our regret bound matches the best-known results
for GLBs using the MLE [Lee et al., 2024, Sawarni et al., 2024], with respect to its dependence on T ,
κ, and d. In terms of the non-leading term, Sawarni et al. [2024] achieved a slightly tighter bound, as
it scales with κX = 1/ infx∈∪T

t=1Xt
µ′(x⊤θ∗), a quantity that can be smaller than κ. In the logistic

bandit case, the non-leading term is further improved to be geometry-aware, adapting more precisely
to the structure of the action set [Abeille et al., 2021]. We conjecture that similar improvements in
the non-leading term, matching the κX dependence, might be achievable by incorporating a warm-up
strategy, such as Procedure 1 in [Faury et al., 2022] or Algorithm 2 in Sawarni et al. [2024]. These
methods allow shifting the curvature dependence from µ′(X⊤

t θt) to µ′(X⊤
t θ∗) at only an additional

constant cost, thereby attaining the refined κX scaling. However, it remains an open problem whether
a geometry-aware bound, similar to that achieved in the logistic bandit setting [Abeille et al., 2021],
can be obtained in the GLB setting without using MLE.

Dependence on S and R. The MLE-based method completely remove the dependence on S and
R in the leading term [Lee et al., 2024], whereas our method still exhibits an S2-dependence due
to the requirement of one-pass updates. For MNL bandits, Lee and Oh [2025] showed that one can
achieved improved dependence on S by incorporating an adaptive warm-up procedure. It may be
possible to extend their warm-up technique to GLBs for a similar improvement on S.

4 Analysis

This section sketches the proof of Theorem 1 and highlights the key technical contributions.
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4.1 A General Recipe for OMD

To prove Theorem 1, it suffices to show that the estimation error ∥θt+1−θ∗∥Ht ≤ βt(δ). The analysis
begins with the following lemma, which is commonly used for the convergence or regret analysis for
the OMD-type update [Chen and Teboulle, 1993, Orabona, 2019, Zhao et al., 2024]. Here, we show
it can serve as a general recipe for analyzing the estimation error of the OMD estimator.
Lemma 1. Let f : Θ → R be a convex function on a convex set Θ and A ∈ Rd×d be a symmetric
positive definite matrix. Then, the update θt+1 = argminθ∈Θ f(θ) + 1

2η∥θ − θt∥2A satisfies

∥θt+1 − u∥2A ≤ 2η⟨∇f(θt+1), u− θt+1⟩+ ∥θt − u∥2A − ∥θt − θt+1∥2A, for all u ∈ Θ. (7)

The above lemma provides a pathway to relate the estimation error to the so-called “inverse regret”.
In particular, under our configuration where f(θ) = ℓ̃t(θ), A = Ht, and u = θ∗, and with a suitable
choice of parameters, Lemma 4 in Appendix A shows that the estimator by (3) satisfies

∥θt − θ∗∥2Ht
≤ 2η

( t−1∑
s=1

ℓs(θ∗)−
t−1∑
s=1

ℓs(θs+1)

)
︸ ︷︷ ︸

inverse regret

−2

3

t−1∑
s=1

∥θs − θs+1∥2Hs
+ ∥θ1 − θ∗∥2H1

, (8)

We note that, although the above inequality has also been shown in the logistic bandits literature [Faury
et al., 2022, Zhang and Sugiyama, 2023, Lee and Oh, 2024], the proof of (8) via Lemma 7 has not
been explicitly discussed. We fill this gap by explicitly establishing the connection in our analysis.

4.2 Analysis for the Inverse Regret

Main Challenge. The main challenge and technical contribution of this paper lies in upper bounding
the inverse regret term. Although previous works [Faury et al., 2022, Zhang and Sugiyama, 2023]
have provided valuable insights, their techniques are challenging to extend to the GLB setting and
remain suboptimal even for logistic bandits. The main technical difficulty in bounding the inverse
regret is that θs+1 is itself a function of the past losses ℓs, which prevents the direct application of
standard martingale concentration inequalities. A common strategy in prior work is to introduce an
intermediate term by virtually running a full-information online learning algorithm, whose estimator
θ̃s only depends on information up to time s− 1, allowing the inverse regret to be decomposed as

inverse regret =

t−1∑
s=1

ℓs(θ∗)−
t−1∑
s=1

ℓs(θ̃s)︸ ︷︷ ︸
term (a)

+

t−1∑
s=1

ℓs(θ̃s)−
t−1∑
s=1

ℓs(θs+1)︸ ︷︷ ︸
term (b)

. (9)

Here, the intermediate term
∑t−1

s=1 ℓs(θ̃s) can be chosen as the cumulative loss of any online algorithm.
In the case of logistic bandits, it is natural to leverage algorithms developed for online logistic
regression, a well-studied problem with many established methods. For example, Faury et al. [2022]
adopted the ALLIO algorithm [Jézéquel et al., 2020], while Zhang and Sugiyama [2023] built on the
method proposed by Foster et al. [2018] and required the mixbaility property of the logistic loss. In
contrast, for the GLB setting, the structure of the link function µ varies significantly across models,
and it remains unclear how to design a unified intermediate algorithm. Moreover, even in the logistic
bandit setting, existing analyses remain suboptimal. Specifically, Faury et al. [2022, Eq. (7)] required
an online warm-up phase to shrink the feasible domain in order to bound term (b). Later, Zhang and
Sugiyama [2023] avoided this warm-up step but instead relies on clipping the online estimator (see
Eq. (35) in their paper), which incurs an additional O(

√
log T ) term in the estimation error bound.

Our Solution. Instead of introducing an intermediate term via virtually running an online algorithm,
we propose an alternative decomposition based on the mix loss, which is defined as

ms(Ps) = − ln
(
Eθ∼Ps

[
e−ℓs(θ)

])
, (10)

where Ps is a probability distribution over Rd whose specific form will be chosen later. In general,
several choices of Ps are possible, and we select the one that best fits our algorithmic design. The mix
loss has played a central role in the analysis of exponentially weighted methods in full-information
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online learning [Vovk, 2001, van der Hoeven et al., 2018]. In our analysis, the mix loss is instrumental
in analyzing the inverse regret defined in (9). In particular, the decomposition based on the mix loss
ms(Ps) offers a more general and analytically versatile formulation than ℓs(θ̃s) used in (9). The
former reduces to the latter when Ps is chosen as a Dirac distribution. We have the following lemma
to upper bound the inverse regret under this mix-loss–based decomposition.
Lemma 2 (informal). Let {Ps}∞s=1 be a stochastic process such that Ps is a distribution over Rd

and only relies on information collected until time s− 1. Then, for any δ ∈ (0, 1], we have

Pr

[
∀t ≥ 1,

t−1∑
s=1

ℓs(θ∗)−
t−1∑
s=1

ms(Ps) ≤ log
1

δ

]
≥ 1− δ.

Lemma 2 follows from Ville’s inequality [Ville, 1939], also known as “no-hypercompression” in-
equality [Grünwald, 2007, Chapter 3]. It implies that term (a) in (9) is upper-bounded by log(1/δ)
when the mix loss is used as an intermediate term, significantly smaller than the O((log t)3) bound
in Zhang and Sugiyama [2023, Lemma 12] that employs the online logistic regression method [Foster
et al., 2018]. Notably, Lemma 2 allows flexible choices of Ps, enabling us to tailor Ps to closely track
the OMD estimator’s behavior. The formal statement is provided in Lemma 5 of Appendix A.

To bound term (b), we need to select Ps = N (θs, 3ηH
−1
s /2) as a Gaussian distribution centered at

θs with covariance 3
2ηH

−1
s to approximate the OMD estimator (3). We have the following lemma.

Lemma 3 (informal). Under Assumptions 1, 2, and 3, and with a suitable choice of λ, we have
t∑

s=1

ms(Ps)−
t∑

s=1

ℓs(θs+1) ≤
1

3η

t∑
s=1

∥θs+1 − θs∥2Hs
+ d(3η +

1

2
) ln

(
1 +

Lµt

λg(τ)

)
,

where Ps = N (θs, 3ηH
−1
s /2) is a Gaussian distribution.

Lemma 3 establishes a connection between the mix loss and the the cumulative loss of the “look-
ahead” OMD estimator, where the loss of θs+1 is measured over the ℓs. A similar result for the
logistic loss can be extracted from the proof of Lemma 14 in Zhang and Sugiyama [2023]. Here, we
generalize this result to the GLB setting. Moreover, our proof simplifies the analysis in [Zhang and
Sugiyama, 2023] by noticing that the mix loss can be interpreted as the convex conjugate of the KL
divergence. The formal statement and complete proof are provided in Lemma 6 in Appendix A.

More Technical Comparisons. Our analysis of the inverse regret is closely connected to prior work
that bounds the cumulative negative log likelihood Lt(θ∗) =

∑t
s=1 ℓs(θ∗) using Ville’s inequality, a

technique that traces back to Robbins [1970]. Most existing approaches aim to bound Lt(θ∗) with the
loss of the MLE estimator, whereas our analysis focuses on the OMD estimator. This fundamental
difference leads to a distinct construction of the intermediate term used in the decomposition.

In the context of GLB, our Lemma 2 resembles Lemma 3.3 of Lee et al. [2024], as both apply Ville’s
inequality. However, their intermediate term Eθ∼Pt

[Lt(θ)] is built upon a distribution Pt that is fixed
across all individual functions {ℓs}t−1

s=1, making it naturally aligned with the MLE estimator but does
not readily adapt to changing estimator. In contrast, our OMD estimator evolves with each individual
function. Defining the intermediate term as the mix loss with time-varying Ps thus provides the
flexibility needed to track this changing comparator. Very recently, two concurrent works [Kirschner
et al., 2025, Clerico et al., 2025] have also employed the mix loss to derive confidence sets. Our
Lemma 2 corresponds to Proposition 2.1 of Clerico et al. [2025], and our mix loss aligns with the
sequential likelihood mixing technique of Kirschner et al. [2025]. The key distinction lies in the
choice of estimator – MLE versus OMD – which leads to a fundamentally different specification of
the mix loss and necessitates a tailored analysis. In their case, Ps is defined as the outcome of the
continuous Hedge algorithm, and the gap between the mix loss and the loss of any single comparator
(including the MLE) is bounded using a standard regret guarantee. In contrast, our analysis must
dynamically track the evolving OMD estimator, motivating our choice of Ps as a Gaussian distribution
with a time-varying mean {θs}ts=1. Lemma 3 is then used to quantify the resulting loss gap.

5 Experiment

This section evaluates the proposed method on two representative GLB problems: logistic bandits
(µ(z) = 1/(1 + e−z)) with bounded rewards, and Poisson bandits (µ(z) = ez), which pose a
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Figure 1: Regret and running time comparison of different algorithms on logistic bandits.
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Figure 2: Regret and running time comparison of different algorithms on Poisson bandits.

distinct challenge as an unbounded GLB setting. We also conduct experiments on real data from the
Covertype dataset [Blackard, 1998], with more detailed results provided in Appendix E.

Compared Methods. Four GLBs algorithms are compared, including GLM-UCB [Filippi et al., 2010],
GLOC [Jun et al., 2017], RS-GLinCB [Sawarni et al., 2024], and OFUGLB [Lee et al., 2024]. For logistic
bandits, we further include two specialized algorithms: an MLE-based method with nearly optimal
regret OFULog-r [Abeille et al., 2021], and a jointly efficient method ECOLog [Faury et al., 2022]. We
do not include OFUL-MLogB [Zhang and Sugiyama, 2023] since its confidence set is larger than that
of ours, hence has a larger regret bound. More details of the baselines are provided in Appendix E.
All experiments are conducted over 10 trials, and we report the average regret and running time.

Results on Logistic Bandits. We conduct experiments under different configurations of S. The under-
lying parameter θ∗ is sampled from a d-dimensional sphere with radius S = {3, 5, 7}, corresponding
to κ = 21, 137, and 963, respectively. Figure 1 reports the results. Among all methods, GLOC is
the fastest but exhibits relatively large regret. OFUGLB attains the lowest regret due to its improved
dependence on κ and S, but as an MLE-based method, it incurs the highest computation cost. Our
method strikes a favorable balance. Compared to OFUGLB, it achieves substantial cost savings with
only a modest degradation in regret. Compared with ECOLog and RS-GLinCB, our method achieves
comparable and even slightly better performance with improved computation cost. Moreover, it
maintains a constant per-round cost across all regimes of κ, whereas the cost of RS-GLinCB increases
with κ, as its rare-update strategy results in an update frequency that scales with κ.

Results on Poisson Bandits. We set the norm of the true parameter as S ∈ {3, 5, 7}, corresponding to
κ ≈ 18, 127 and 882. Poisson bandits have unbounded rewards, whereas GLM-UCB and RS-GLinCB
require a predefined upper bound on the maximum reward as a parameter. We set it as 100, assuming
rewards are effectively bounded with high probability. As shown in Figure 2, our method reduces the
computational cost of OFUGLB by roughly 1000 times, with only a modest increase in regret.

6 Conclusion

This paper proposed a new method for the GLB problem that achieves a nearly optimal regret bound of
O(log T

√
T/κ∗) with O(1) time and space complexities per round. Our approach builds on a novel

analysis of the OMD estimator using the mix loss, enabling a tight confidence set construction for
arm selection. A natural extension is to incorporate a warm-up strategy, as in prior work, to improve
the dependence on S and obtain κX -based bounds. It also remains open whether geometry-aware
bounds for GLBs can be achieved similar to those in logistic bandits [Abeille et al., 2021]. Other
directions include relaxing the self-concordance assumption toward weaker conditions [Liu et al.,
2024], or improving d-dependence in the finite-arm setting [Jun et al., 2021, Mason et al., 2022].
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A Proof of Theorem 1

This section presents the proof of Theorem 1. We first provide the main proof, followed by the key
lemmas used in the proof.

A.1 Main Proof

Proof of Theorem 1. This part provides the proof of Theorem 1. By Lemma 4, when setting η =
1 +RS, we can upper bound the estimation error of the online estimator by the “inverse regret”:

∥θt+1 − θ∗∥2Ht
≤ 2η

( t∑
s=1

ℓt(θ∗)−
t∑

s=1

ℓs(θs+1)︸ ︷︷ ︸
inverse regret

)
+ 4λS2

+
2ηRSLµ

g(τ)

t∑
s=1

∥θs − θs+1∥22 −
t∑

s=1

∥θs − θs+1∥2Hs
. (11)

Then, we can further decompose the “inverse regret term” into two parts:

t∑
s=t

ℓt(θ∗)−
t∑

s=1

ℓs(θs+1) =

t∑
s=1

ℓs(θ∗)−
t∑

s=1

ms(Ps)︸ ︷︷ ︸
term (a)

+

t∑
s=1

ms(Ps)−
t∑

s=1

ℓs(θs+1)︸ ︷︷ ︸
term (b)

. (12)

In the above, we define Ps = N (θs, αH
−1
s ) as a d-dimensional multivariate Gaussian distribution

with mean θs ∈ Rd and covariance matrix cH−1
s ∈ Rd×d, where α > 0 is a constant to be specified

latter. The function ms : P 7→ R that maps the distribution P to a real number value is defined by

ms(Ps) = − ln
(
Eθ∼Ps

[
exp

(
− ℓs(θ)

)])
.

We refer to the function ms as the “mix loss” because it mixes the loss with respect to the distribution
Ps. This mixing has been found useful for achieving fast rates in prediction with expert advice and
online optimization problems [Vovk, 2001]. Here, we show that the mix loss plays a crucial role in
obtaining a jointly efficient online confidence set.

Given Ps is a Gaussian distribution with mean θs and αH−1
s , it is Fs-measurable. Then, Lemma 5

implies that for any δ ∈ (0, 1], we have

term (a) ≤ log

(
1

δ

)
, (13)

with probability at least 1 − δ. Next, we proceed to analyze term (b). Under the condition that
λ ≥ 14dηR2, Lemma 6 with α = 3

2η shows that

term (b) ≤ 1

3η

t∑
s=1

∥θs+1 − θs∥2Hs
+ d(3η +

1

2
) ln

(
1 +

Lµt

λg(τ)

)
. (14)

Plugging (12), (13), (14) into (11), we obtain

∥θt+1 − θ∗∥2Ht
≤ 4λS2 + 2η log

(1
δ

)
+ dη(6η + 1) ln

(
1 +

Lµt

λg(τ)

)
+

2ηRSLµ

g(τ)

t∑
s=1

∥θs − θs+1∥22 −
1

3

t∑
s=1

∥θs − θs+1∥2Hs

≤ 4λS2 + 2η log
(1
δ

)
+ dη(6η + 1) ln

(
1 +

Lµt

λg(τ)

)
,

where the last inequality holds due to the condition λ ≥ 6ηRSLµ/g(τ).
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A.2 Useful Lemmas

This section presents several key lemmas used in the proof of Theorem 1.

Lemma 4. Under Assumption 1 and 3 and setting η = 1 + RS, then for any λ > 0, the online
estimator returned by (3) satisfies

∥θt+1 − θ∗∥2Ht+1
≤ (2 + 2RS)

(
t∑

s=1

ℓt(θ∗)−
t∑

s=1

ℓs(θs+1)

)
+ 4λS2

+
Lµ(2 + 2RS)

g(τ)

t∑
s=1

∥θs − θs+1∥22 −
t∑

s=1

∥θs − θs+1∥2Hs
.

Furthermore, if λ ≥ 6ηLµRS/g(τ), we can further have

∥θt+1 − θ∗∥2Ht+1
≤ (2 + 2RS)

(
t∑

s=1

ℓt(θ∗)−
t∑

s=1

ℓs(θs+1)

)
− 2

3

t∑
s=1

∥θs − θs+1∥2Hs
+ 4λS2.

Proof of Lemma 4. We begin by using the integral formulation of Taylor’s expansion. Since µ is
twice differentiable, we have

ℓs(θs+1)− ℓs(θ∗) = ⟨∇ℓs(θs+1), θs+1 − θ∗⟩ − ∥θs+1 − θ∗∥2h̃s
, (15)

where h̃s =
∫ 1

v=0
(1− v)∇2ℓs

(
θs+1 + v(θ∗ − θs+1)

)
dv. By the definition of the loss function in (4),

we can further express the Hessian as

h̃s =
α̃(θs+1, θ∗, Xs)

g(τ)
XsX

⊤
s ,

where α̃(θ1, θ2, Xs) =
∫ 1

0
(1− v)µ′

(
X⊤

s θ1 + v X⊤
s (θ2 − θ1)

)
dv.

Next, under Assumption 3, we have |µ′′(z)| ≤ R ·µ′(z) for all z ∈ [−S, S]. Consequently, Lemma 8
in Appendix C implies that for any θ∗ ∈ Θ ≜ {θ ∈ Rd | ∥θ∥2 ≤ S},

α̃(θs+1, θ∗, Xs) ≥
µ′(X⊤

s θs+1)

2 + 2RS
.

This inequality shows that

h̃s ≽
1

2 + 2RS
∇2ℓs(θs+1), (16)

indicating that the Hessian h̃s is bounded from below by 1
2+2RS∇

2ℓs(θs+1) in the positive semidefi-
nite order. Substituting (16) into (15) yields

ℓs(θs+1)− ℓs(θ∗) ≤ ⟨∇ℓs(θs+1), θs+1 − θ∗⟩ −
1

2 + 2RS
∥θs+1 − θ∗∥2∇2ℓs(θs+1)

(17)

Since θs+1 is the optimal solution of (3), Lemma 1 with u = θ∗ implies

⟨∇ℓs(θs+1), θs+1 − θ∗⟩

= ⟨∇ℓs(θs+1)−∇ℓ̃s(θs+1), θs+1 − θ∗⟩+ ⟨∇ℓ̃s(θs+1), θs+1 − θ∗⟩

≤ ⟨∇ℓs(θs+1)−∇ℓ̃s(θs+1), θs+1 − θ∗⟩

+
1

2η

(
∥θs − θ∗∥2Hs

− ∥θs+1 − θ∗∥2Hs
− ∥θs − θs+1∥2Hs

)
. (18)
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We can further express the first term on the right-hand side of (18) as

⟨∇ℓs(θs+1)−∇ℓ̃s(θs+1), θs+1 − θ∗⟩
= ⟨∇ℓs(θs+1)−∇ℓs(θs)−∇2ℓs(θs)(θs+1 − θs), θs+1 − θ∗⟩

=
1

g(τ)
⟨µ(X⊤

s θs+1) ·Xs − µ(X⊤
s θs) ·Xs − µ′(X⊤

s θs) ·XsX
⊤
s (θs+1 − θs), θs+1 − θ∗⟩

=
µ′′(X⊤

s ξs)

2g(τ)
· ∥θs − θs+1∥2XsX⊤

s
·X⊤

s (θs+1 − θ∗)

≤ R

2g(τ)
· ∥θs − θs+1∥2µ′(X⊤

s ξs)XsX⊤
s
·X⊤

s (θs+1 − θ∗)

≤ RS∥θs − θs+1∥2∇2ℓs(ξs)

≤ RSLµ

g(τ)
∥θs − θs+1∥22, (19)

where ξs ∈ Θ lies on the line connecting θs and θs+1. The first equality follows from the definition
of ∇ℓ̃s(θs+1) and the Taylor expansion with Lagrange’s remainder. The first inequality uses the
self-concordance property of the loss function, which ensures that µ′′(z) ≤ Rµ′(z) and µ′(z) ≤ Lµ

for all z ∈ [−S, S]. The last inequality is due to ∥Xs∥2 ≤ 1 and ∥θs − θs+1∥2 ≤ 2S.

Combining (18), (19) with (17), setting η = 1 +RS and taking the summation over t ∈ [T ] yield
t∑

s=1

ℓs(θs+1)−
t∑

s=1

ℓs(θ∗)

≤ 1

2 + 2RS

(
∥θ1 − θ∗∥2H1

− ∥θt+1 − θ∗∥2Ht+1
−

t∑
s=1

∥θs − θs+1∥2Hs

)
+

RSLµ

g(τ)
∥θs − θs+1∥22.

We complete the proof by rearranging the terms and noticing ∥θ1 − θ∗∥2H1
≤ 4λS2.

Lemma 5. Let {Ft}∞t=1 be a filtration defined by Ft = σ
(
{(Xs, rs)}t−1

s=1

)
. Let {Pt}∞t=1 be a

stochastic process such that the random variable Pt is a distribution over Rd and is Ft-measurable.
Moreover, assume that the loss function ℓt defined by (4) is Ft+1-measurable. For any t ≥ 1, define

Lt(θ∗) =

t∑
s=1

ℓs(θ∗) and Ft = −
t∑

s=1

ln
(
Eθ∼Ps

[
e−ℓs(θ)

])
.

Then, for any δ ∈ (0, 1], we have

Pr

[
∀t ≥ 1, Lt(θ∗) ≤ Ft + log

(1
δ

)]
≥ 1− δ.

Proof of Lemma 5. Let M0 = 1 and for any t ≥ 1, we define

Mt = exp(Lt(θ∗)− Ft).

To prove the lemma, it suffices to show that the sequence {Mt}∞t=1 is a non-negative (super)-
martingale; then, the maximum inequality Lattimore and Szepesvári [2020, Theorem 3.9] can be
applied to obtain the desired result. To verify that {Mt}∞t=1 is a (super)martingale, we begin by
defining the density function of the natural exponential family distribution as follows:

p(r|z) = exp

(
rz −m(z)

g(τ)
+ h(r, τ)

)
,

where the function m, g and h share the same formulation as those in (1). Then, for each time t ≥ 1,
we can rewrite the expression of Mt as

Mt =

∏t
s=1 Eθ∼Ps

[exp(−ℓs(θ))]∏t
s=1 exp (−ℓs(θ∗))

= Mt−1 ·
Eθ∼Pt

[exp(−ℓt(θ))]

exp (−ℓt(θ∗))
= Mt−1 ·

Eθ∼Pt
[p(rt|X⊤

t θ)]

p(rt|X⊤
t θ∗)

,

(20)
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where the final equality holds because the loss function in (4) is the negative log-likelihood of an
exponential family distribution; that is, for any θ ∈ Rd:

exp
(
− ℓt(θ)

)
= exp

(
rt ·X⊤

t θ −m(X⊤
t θ)

g(τ)

)
= p(rt|X⊤

t θ) · exp
(
− h(rt, τ)

)
.

Then, by taking the conditional expectation with respect to the randomness in rt given Ft on both
sides, we obtain:

E[Mt|Ft] = Mt−1 · E
[
Eθ∼Pt

[p(rt|X⊤
t θ)]

p(rt|X⊤
t θ∗)

∣∣∣ Ft

]
= Mt−1 ·

∫
Eθ∼Pt

[p(r|X⊤
t θ)]

p(r|X⊤
t θ∗)

· p(r|X⊤
t θ∗)dr

= Mt−1 ·
∫

Eθ∼Pt
[p(r|X⊤

t θ)]dr

= Mt−1 · Eθ∼Pt

[∫
p(r|X⊤

t θ)dr

]
= Mt−1,

where the first equality follows from the fact that Mt−1 is Ft-measurable. The second inequality
holds because the reward is sampled from the exponential family distribution (1). The final equality is
a consequence of the tower property of conditional expectation. We have thus shown that {Mt}∞t=1 is
a martingale, and therefore a super-martingale. Then, by applying the maximum inequality Lattimore
and Szepesvári [2020, Theorem 3.9], restating as Lemma 9 in Appendix C, we have

Pr

[
sup
t∈N

Lt(θ∗)− Ft ≥ log
1

δ

]
≤ δM0 = δ,

which completes the proof.

Lemma 6. Under Assumption 1, 2 and 3, let Ps = N (θs, αH
−1
s ) be a Gaussian distribution with

mean θs and covariance matrix αH−1
s , where Hs = λId +

∑s−1
τ=1 ∇2ℓτ (θτ+1) and α is any positive

constant. We denote by θs the model returned by (3). Then, setting λ ≥ 64dαR2/7 we have

t∑
s=1

ms(Ps) ≤
t∑

s=1

ℓs(θs+1) +
1

2α

t∑
s=1

∥θs+1 − θs∥2Hs
+ d(2α+

1

2
) ln

(
1 +

2Lµt

λg(τ)

)
,

where the mix loss is defined as ms(Ps) = − ln
(
Eθ∼Ps

[
exp

(
− ℓs(θ)

)])
.

Proof of Lemma 6. Our analysis begin with the observation that the mix loss is a convex conjugate
of the KL divergence function. Then Lemma 12 in Appendix C shows that

ms(Ps) = − log
(
Eθ∼Ps

[e−ℓs(θ)]
)
= Eθ∼Qs

[ℓs(θ)]︸ ︷︷ ︸
term (a)

+KL(Qs∥Ps)︸ ︷︷ ︸
term (b)

−KL(Qs∥P ∗
s ) (21)

for any distribution Qs defined over Rd, where P ∗
s (θ) ∝ Ps(θ) · e−ℓs(θ) for all θ ∈ Rd. Here, we

choose Qs = N (θs+1, αH
−1
s+1) as a Gaussian distribution with mean θs+1 and covariance αH−1

s+1.

Analysis of Term (a). Since Qs is symmetric around θs+1, we can express term (a) as

term (a) = Eθ∼Qs [ℓs(θs+1) + ⟨∇ℓs(θs+1), θ − θs+1⟩] + Eθ∼Qs [Dℓs(θ, θs+1)]

= ℓs(θs+1) + Eθ∼Qs [Dℓs(θ, θs+1)]

≤ ℓs(θs+1) + 2α
(
log det(Hs+1)− log det(Hs)

)
, (22)

where Dℓs(θ, θs+1) = ℓs(θ)− ℓs(θs+1)− ⟨∇ℓs(θs+1), θ − θs+1⟩ is the Bregman divergence of ℓs
between θ and θs+1. In the above, the second equality follows from the definition of Qs. The last line
follows from Lemma 7 in Appendix C, since ℓs is self-concordant and the condition λ ≥ 64dαR2/7
holds.
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Analysis of Term (b). Given Qs and Ps are both Gaussian distributions, Lemma 13 shows that

term (b) =
1

2

(
log det(Hs+1)− log det(Hs) + Tr

(
HsH

−1
s+1

)
+

∥θs − θs+1∥2Hs

α
− d

)
≤ 1

2
(log det(Hs+1)− log det(Hs)) +

1

2α
∥θs − θs+1∥2Hs

. (23)

Put All Together. Plugging (22) and (23) into (21) and summing over T rounds, we obtain

t∑
s=1

ms(Ps) ≤
t∑

s=1

ℓs(θs+1) +
1

2α

t∑
s=1

∥θs+1 − θs∥2Hs
+ (2α+

1

2
) ln

(
det(Ht+1)

det(λId)

)
.

The determinant of the matrix Ht+1 can be further bounded by

det(Ht+1) = det

(
λId +

t∑
s=1

∇2ℓs(θs+1)

)
≤ det

((
λ+ Lµt/g(τ)

)
Id

)
≤
(
λ+ Lµt/g(τ)

)d
.

Then, we obtain
t∑

s=1

ms(Ps) ≤
t∑

s=1

ℓs(θs+1) +
1

2α

t∑
s=1

∥θs+1 − θs∥2Hs
+ d(2α+

1

2
) ln
(
1 +

Lµt

λg(τ)

)
,

which completes the proof.

Lemma 7. Let ℓs(θ) be the loss function of the maximum likelihood estimator and Qs =
N (θs+1, αH

−1
s+1) be a Gaussian distribution with mean θs+1 and covariance matrix αH−1

s+1 with
Hs = λId +

∑s−1
τ=1 ∇2ℓτ (θτ+1). Under Assumption 1, 2 and 3 and setting λ ≥ 64dαR2/7, for any

constant α > 0, we have

Eθ∼Qs
[Dℓs(θ, θs+1)] ≤ 2α

(
log det(Hs+1)− log det(Hs)

)
,

Proof of Lemma 7. By the the integral formulation of Taylor’s expansion and the definition of ℓs
such that ∇2ℓs(θ) = µ′(X⊤

s θ)/g(τ) ·XsX
⊤
s for any θ ∈ Rd, we have

Eθ∼Qs [Dℓs(θ, θs+1)] = Eθ∼Qs

[
∥θ − θs+1∥2h̃s(θ)

]
,

where h̃s(θ) =
∫ 1

v=0
(1−v)µ′(X⊤

s θs+1+vX⊤
s (θ−θs+1)

)
dv ·XsX

⊤
s /g(τ). According to Lemma 8

in Appendix C and the condition ∥Xt∥2 ≤ 1 by Assumption 1, we can bound the Hessian h̃s(θ) by

h̃s(θ) ≤ exp(R2∥θ − θs+1∥22) · ∇2ℓs(θs+1). (24)

Then, the approximation error between the linearized loss gs(θ) and ℓs(θ) is bounded by

Eθ∼Qs
[Dℓs(θ, θs+1)] ≤ Eθ∼Qs

[
eR

2∥θ−θs+1∥2
2 · ∥θ − θs+1∥2∇2ℓs(θs+1)

]
≤

√
Eθ∼Qs

[
e2R

2∥θ−θs+1∥2
2

]
· Eθ∼Qs

[
∥θ − θs+1∥4∇2ℓs(θs+1)

]

≤

√
4

3
Eθ∼Qs

[∥∥∥(∇2ℓs(θs+1)
) 1

2 (θ − θs+1)
∥∥∥4
2

]
, (25)

The second inequality is due to the Cauchy-Schwarz inequality. The last inequality is due to Lemma 10
under the condition that Hs ≽ λId and the setting λ ≥ 64dαR2/7. For the last term on the right

hand side of (25), the random variable
(
∇2ℓs(θs+1)

) 1
2 (θ − θs+1) follows the same distribution as

d∑
i=1

√
αλiXiei and Xi

iid∼ N(0, 1), ∀i ∈ [d],
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where λi is the i-th largest eigenvalue of the matrix
(
∇2ℓs(θs+1)

) 1
2H−1

s+1

(
∇2ℓs(θs+1)

) 1
2 and ei is a

set of orthogonal basis. Then, we have√
Eθ∼Qs

[∥∥∥(∇2ℓs(θs+1)
) 1

2 (θ − θs+1)
∥∥∥4
2

]
=

√√√√EXi∼N (0,1)

[( d∑
i=1

αλiX2
i

)2]

=

√√√√ d∑
i=1

d∑
j=1

α2λiλjEXi,Xj∼N (0,1)[X
2
i X

2
j ]

=
√
3αTr

(
H−1

s+1

(
∇2ℓs(θs+1)

))
. (26)

where Tr(A) denotes the trace of matrix A. In the above, the last inequality is due to the fact
that EXi,Xj∼N (0,1)[XiXj ] = 3. The last inequality is due to trace(AB) = trace(BA) for matrix
A,B ∈ Rd×d. Recall that Hs+1 = λId +

∑s
τ=1 ∇2ℓτ (θτ+1).

Tr
(
H−1

s+1

(
∇2ℓs(θs+1)

))
≤ Tr

(
H−1

s+1(Hs+1 −Hs)
)
= Tr

(
I −HsH

−1
s+1

)
≤ log det(Hs+1)− log det(Hs). (27)

Combining (26) and (27) with (25) yields the desired result.

A.3 Computational Cost Discussion

This part discusses the time and space complexity of solving the optimization problem (3).

Proposition 1. The time complexity for solving (3) is O(d3), and the space complexity is O(d2).

Proof of Proposition 1. We begin with the analysis on the time complexity, followed by the discussion
on the space complexity.

Time Complexity. According to Theorem 6.23 of Orabona [2019], the update rule of online mirror
descent (3) can be equivalently expressed as

ζt+1 = θt − ηH̃−1
t ∇ℓt(θt), (28a)

θt+1 = argmin
θ∈Θ

∥θ − ζt+1∥2H̃t
, (28b)

where H̃t = Ht + η∇2ℓt(θt). In this formulation, the first step (28a) is a gradient update,
whose main computational cost lies in computing the inverse of the Hessian matrix. Since
∇2ℓt(θt) = µ′(X⊤

t θt)/g(τ) · XtX
⊤
t is a rank-1 matrix, the Sherman-Morrison formula can be

applied to efficiently compute the inverse of H̃t as

(H̃t + η∇2ℓt(θt))
−1 = H−1

t − H−1
t XtX

⊤
t H−1

t
g(τ)

ηµ′(X⊤
t θt)

+X⊤
t H−1

t Xt

,

which reduces the computational complexity to O(d2) per iteration, assuming H−1
t is available. Since

Ht = Ht−1 +∇2ℓt−1(θt), H−1
t can also be updated by the Sherman-Morrison formula in O(d2)

time per round based on H−1
t−1. Therefore, the total computational cost of (28a) is O(d2). In the

second step (28b), as H̃t is positive semi-definite, the optimization problem can be solved in O(d3)
time (see Section 4.1 of [Mhammedi et al., 2019] for details). Overall, the total time complexity for
solving (3) is O(d3).

Space Complexity. Regarding space complexity, it suffices to store the current model θt, the gradient
∇ℓt(θt), the inverse Hessian matrix H−1

t , and H̃−1
t throughout the optimization process, resulting in

a total space complexity of O(d2).

19



B Proof of Theorem 2

Proof of Theorem 2. Let (Xt, θ̃t) = argmaxx∈Xt,θ∈Ct(δ) µ(x
⊤θ). We can bound the regret by

REGT =

T∑
t=1

µ(x⊤
t,∗θ∗)−

T∑
t=1

µ(X⊤
t θ∗)

≤
T∑

t=1

µ(X⊤
t θ̃t)−

T∑
t=1

µ(X⊤
t θ∗)

=

T∑
t=1

µ′(X⊤
t θ∗)X

⊤
t (θ̃t − θ∗)︸ ︷︷ ︸

term (a)

+
1

2

T∑
t=1

α̃(θ∗, θ̃t, Xt)
(
X⊤

t (θ̃t − θ∗)
)2

︸ ︷︷ ︸
term (b)

, (29)

where α̃(θ1, θ2, Xs) =
∫ 1

0
(1−v)µ′′(X⊤

s θ1+v X⊤
s (θ2−θ1)

)
dv. In the above, the first inequality is

due to the arm selection rule (6) and the second equality is by the integral formulation of the Taylor’s
expansion. Then, we upper bound the terms respectively.

Analysis for term (a). For the first term, we have

term (a) =

T∑
t=1

µ′(X⊤
t θ∗) ·X⊤

t (θ̃t − θ∗)

≤
T∑

t=1

µ′(X⊤
t θ∗) · ∥Xt∥H−1

t
∥θ̃t − θ∗∥Ht

≤ 2

T∑
t=1

µ′(X⊤
t θ∗) · βt(δ)∥Xt∥H−1

t

≤ 2βT (δ)

T∑
t=1

µ′(X⊤
t θ∗) · ∥Xt∥H−1

t

≤ 2βT (δ)
∑
t∈T1

µ′(X⊤
t θ∗) · ∥Xt∥H−1

t︸ ︷︷ ︸
term (a1)

+2βT (δ)
∑
t∈T2

µ′(X⊤
t θ∗) · ∥Xt∥H−1

t︸ ︷︷ ︸
term (a2)

,

where the first inequality is due to the Hölder’s inequality and the second inequality is by the fact
∥θ̃t − θ∗∥Ht ≤ ∥θ̃t − θt∥Ht + ∥θt − θ∗∥Ht ≤ 2βt(δ). In the last inequality, we decompose the time
horizon into T1 = {t ∈ [T ] | µ′(X⊤

t θ∗) ≥ µ′(X⊤
t θt+1)} and T2 = [T ]/T1.

Analysis for Term (a1): For the time steps in t ∈ T1, the term µ′(X⊤
t θ∗) can be further bounded by

µ′(X⊤
t θ∗) = µ′(X⊤

t θt+1) +

∫ 1

v=0

µ′′(X⊤
t θt+1 + vX⊤

t (θ∗ − θt+1)
)
dv ·X⊤

t (θ∗ − θt+1)

≤ µ′(X⊤
t θt+1) +R

∫ 1

v=0

µ′(X⊤
t θt+1 + vX⊤

t (θ∗ − θt+1)
)
dv · |X⊤

t (θ∗ − θt+1)|

≤ µ′(X⊤
t θt+1) +RLµ · ∥Xt∥H−1

t+1
· ∥θ∗ − θt+1∥Ht+1

≤ µ′(X⊤
t θt+1) +RLµβt+1(δ) · ∥Xt∥H−1

t
(30)

where the first inequality is due the self-concordant property of µ. The second inequality is by
Assumption 2 such that µ′(z) ≤ Lµ for z ∈ [−S, S] and the Hölder’s inequality. The last inequality
is due to Theorem 1 and the fact Ht+1 ≽ Ht.
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Then, let H̃t := g(τ)Ht = λg(τ)Id +
∑t−1

s=1 µ
′(X⊤

s θs+1)XsX
⊤
s and Vt := λg(τ)Id +

1
κ

∑t−1
s=1 XsX

⊤
s . We can upper term (a1) by

term (a1) ≤ 2βT (δ)√
g(τ)

∑
t∈T1

µ′(X⊤
t θt+1)∥Xt∥H̃−1

t
+

2RLµβ
2
T+1(δ)

g(τ)

T∑
t=1

∥Xt∥2H̃−1
t

≤ 2βT (δ)√
g(τ)

∑
t∈T1

√
µ′(X⊤

t θ∗) ·
∥∥∥∥√µ′(X⊤

t θt+1)Xt

∥∥∥∥
H̃−1

t

+
2RLµβ

2
T+1(δ)

g(τ)

∑
t∈T1

∥Xt∥2H̃−1
t

≤ 2βT (δ)√
g(τ)

√∑
t∈T1

µ′(X⊤
t θ∗) ·

√√√√∑
t∈T1

∥∥∥∥√µ′(X⊤
t θt+1)Xt

∥∥∥∥2
H̃−1

t

+
2RLµβ

2
T+1(δ)

g(τ)

∑
t∈T1

∥Xt∥2V −1
t

,

(31)

where the first inequality is by the condition µ′(X⊤
t θt+1) ≤ µ′(X⊤

t θ∗) for t ∈ T1. The second
inequality is due to the Cauchy-Schwarz inequality and the fact that H̃t ≽ Vt. Then, we can further
bound (31) by elliptical potential lemma (Lemma 11 in Appendix C) as:

∑
t∈T1

∥∥∥∥√µ′(X⊤
t θt+1)Xt

∥∥∥∥2
H̃−1

t

≤
∑
t∈[T ]

∥∥∥∥√µ′(X⊤
t θt+1)Xt

∥∥∥∥2
H̃−1

t

≤ 2d(1 + Lµ) log

(
1 +

TLµ

g(τ)dλ

)
(32)

by taking zt =
√
µ′(X⊤

t θt+1)Xt in Lemma 11. The last term in (31) can also be bounded by∑
t∈T1

∥Xt∥2Vt
−1 ≤

∑
t∈[T ]

∥Xt∥2Vt
−1 ≤ 4d log

(
1 +

T

g(τ)κdλ

)
. (33)

For notational simplicity, we denote by
γ
(1)
T (δ) =

2βT (δ)
√

2d(1+Lµ)√
g(τ)

√
log
(
1 +

TLµ

g(τ)dλ

)
= O(βT (δ)

√
d log T ),

γ
(2)
T (δ) =

8κdRLµβ
2
T+1(δ)

g(τ) log

(
1 + T

g(τ)κdλ

)
= O

(
βT+1(δ)

2κdR log T
)
.

(34)

Then, plugging (32) and (33) into (31) yields

term (a1) ≤ γ
(1)
T (δ)

√∑
t∈T1

µ′(X⊤
t θ∗) + γ

(2)
T (δ) ≤ γ

(1)
T (δ)

√
T/κ∗ +R · REGT + γ

(2)
T (δ), (35)

where the last inequality can be obtained following the same arguments in the proof of [Abeille et al.,
2021, Theorem 1].

Analysis for Term (a2): As for the term (a2), we have

term (a2) ≤ βT (δ)
∑
t∈T2

µ′(X⊤
t θ∗) · ∥Xt∥H−1

t
≤ βT (δ)

∑
t∈T2

√
µ′(X⊤

t θ∗) ·
∥∥∥∥√µ′(X⊤

t θt+1)Xt

∥∥∥∥
H−1

t

,

where the last inequality holds due to the condition µ′(X⊤
t θ∗) ≤ µ′(X⊤

t θt+1). Following the same
arguments in bounding (31), we can obtain

term (a2) ≤ γ
(1)
T (δ)

√
T/κ∗ +R · REGT .

Combining the upper bound for term (a1) and term (a2), we have

term (a) ≤ 2γ
(1)
T (δ)

√
T/κ∗ +R · REGT + γ

(2)
T (δ).
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Analysis for term (b). As for the term by, we have

term (b) =
1

2

T∑
t=1

α̃(θ∗, θ̃t, Xt)
(
X⊤

t (θ̃t − θ∗)
)2

≤ R

2

T∑
t=1

∫ 1

0

µ′(X⊤
s θ∗ + v X⊤

s (θ̃t − θ∗)
)
dv
(
X⊤

t (θ̃t − θ∗)
)2

≤ RLµ

2

T∑
t=1

∥θ̃t − θ∗∥2Ht
· ∥Xt∥2H−1

t

≤ 2RLµβ
2
T (δ)

g(τ)

T∑
t=1

∥Xt∥2V −1
t

≤ γ
(2)
T (δ), (36)

where the first inequality is due to the self-concordant property of µ. The second inequality is
by Assumption 2 and Cauchy-Schwarz inequality. The third inequality is due to the fact ∥θ̃t −
θ∗∥2Ht

≤ 4β2
T (δ) and Ht ≽ g(τ)Vt. The last line can be obtained following the same arguments in

bounding (33).

Overall Regret Bound. Plugging (35) and (36) into (29) yields

REGT ≤ 2γ
(1)
T (δ)

√
T/κ∗ +R · REGT + 2γ

(2)
T (δ).

Removing the above inequality and rearranging the terms yields

REGT ≤ 2γ2 + 2γ2
1R+ 2γ1

√
γ2
1R

2 + 2γ2R+ T/κ∗

≤ 2γ2 + 2γ2
1R+ 2γ1

(
γ1R+

√
2γ2R+

√
T/κ∗

)
≤ 2γ2 + 4γ2

1R+ 2γ1
√

2γ2R+ 2γ1
√

T/κ∗

≤ O
(
βT (δ)

√
dT log T/κ∗ + κdR log Tβ2

T (δ)

)
≤ O

(
dSR

√
S2R+ log T

√
T log T

κ∗
+ κd2S2R3 log T (S2R+ log T )

)
,

where γ1 = γ
(1)
T (δ) and γ2 = γ

(2)
T (δ) is defined as (34). We have completed the proof of the regret.

Computational Complexity. As shown in Proposition 1 in Appendix A.3, the time complexity for
updating the online estimator θt is O(d3) (line 5 in Algorithm 1). Additionally, the inverse Hessian
matrix H−1

t can be updated in O(d2) time per round as shown in Appendix A.3. The remaining
computational cost arises from the arm selection (6), which solves the optimization problem

Xt = argmax
x∈Xt

{x⊤θt + βt(δ)∥x∥H−1
t

}.

Given θt and H−1
t , this optimization can be performed in O(d2|Xt|) time at round t. Therefore, the

total per-round computational complexity is O(d3 + d2|Xt|).

C Technical Lemmas

Lemma 8 (Lemma 9 of Faury et al. [2020]). Let µ : R → R be a strictly increasing function
satisfying |µ′′(z)| ≤ Rµ′(z) for all z ∈ Z , where R > 0 is a fixed positive constant and Z ⊂ R is a
bounded interval. Then, for any z1, z2 ∈ Z and z ∈ {z1, z2}, we have∫ 1

ν=0

µ′(z1 + ν(z2 − z1))dν ≥ µ′(z)

1 +R · |z1 − z2|
. (37)
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and the weighted integral

µ′(z)

2 +R · |z1 − z2|
≤
∫ 1

ν=0

(1− ν)µ′(z1 + ν(z2 − z1))dν ≤ exp
(
R2|z1 − z2|2

)
· µ′(z). (38)

We include the proof here for self-containedness.

Proof of Lemmas 8. Without loss of generality, assume z = z1. Let ϕ(ν) := µ′(z1 + ν(z2 − z1))
and ∆ := |z2 − z1|. From |µ′′(z)| ≤ Rµ′(z), we obtain the key differential inequality

|ϕ′(ν)| ≤ R∆ϕ(ν) ∀ν ∈ [0, 1] (39)

The solution to (39) yields the exponential bounds

µ′(z1)e
−R∆ν ≤ ϕ(ν) ≤ µ′(z1)e

R∆ν (40)

Proof of (37): Using the lower bound in (40), we have∫ 1

0

ϕ(ν)dν ≥ µ′(z1)

∫ 1

0

e−R∆νdν = µ′(z1)
1− e−R∆

R∆
≥ µ′(z1)

1 +R∆

where the last inequality uses 1− e−x ≥ x/(1 + x) for x ≥ 0.

Proof of LHS of (38): For the weighted integral, we have∫ 1

0

(1− ν)ϕ(ν)dν ≥ µ′(z1)

∫ 1

0

(1− ν)e−R∆νdν

= µ′(z1)

[
1

R∆
− 1− e−R∆

(R∆)2

]
≥ µ′(z1)

2 +R∆

The final inequality follows from the fact that

1

x
− 1− e−x

x2
≥ 1

2 + x
∀x ≥ 0.

Proof of RHS of (38): Using the upper bound in (40), we have∫ 1

0

(1− ν)ϕ(ν)dν ≤ µ′(z1)

∫ 1

0

(1− ν)eR∆νdν

=
eR∆ − 1−R∆

(R∆)2
µ′(z1)

≤ eR
2∆2

µ′(z1).

where we used ex − 1− x ≤ x2ex
2

for x ≥ 0.

The case for z = z2 follows by symmetry.

Lemma 9 (Ville [1939]). Let {Mt}∞t=0 be a supermartingale with Mt ≥ 0 almost surely for all
t ≥ 0. Then, for any ε > 0,

Pr

[
sup
t∈N

Mt ≥ ε

]
≤ E[X0]

ε
.

Lemma 10. Let P = N (0, ηH−1) be a Gaussian distribution with mean 0 ∈ Rd and covariance
ηH−1, where H ≽ λId is a positive definite matrix and η > 0 . Then, if λ ≥ 32dηc/7 we have

Eθ∼P

[
exp

(
c∥θ∥22

)]
≤ 4

3
.
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Proof of Lemma 10. Let θ ∈ Rd be a random variable sampled from P . One can verify that it also
follows the sample distribution as

d∑
i=1

√
ηλiXiei and Xi

i.i.d.∼ N (0, 1), ∀i ∈ [d],

where {ei}di=1 is a set of orthogonal base and λi is the i-th largest eigenvalue of H−1. Then, we have

Eθ∼P

[
exp

(
c∥θ∥22

)]
= EXi∼N (0,1)

[
d∏

i=1

exp
(
cηλiX

2
i

)]
≤
(
EX∼N (0,1)

[
exp

(
cηX2/λ

)])d

=

(
EZ∼χ2

[
exp

(cη
λ
Z
)])d

≤ EZ∼χ2

[
exp

(cηd
λ

Z
)]

≤ 4

3

where χ2 denotes the chi-squared distribution with degree of freedom 1. The first inequality is
because maxi∈[d] λi ≤ 1/λ due to the condition H ≽ λId. The last second equality is by the
Jensen’s inequality since xd is a convex function with respect to x. The last inequality is due to
the condition cηd/λ ≤ 7/32 and the fact that the moment-generating function of the chi-squared
distributionE[exp(tZ)] ≤ (1− 2t)−1/2 for t < 1/2.

Lemma 11 (Lemma 9 of Faury et al. [2022]). Let λ ≥ 1 and {zs}∞s=1 a sequence in Rd such that
∥zs∥2 ≤ Z for all s ∈ N. For t ≥ 2 define Vt :=

∑t−1
s=1 zsz

⊤
s + λId. The following inequality holds

T∑
t=1

∥zt∥2Vt
≤ 2d(1 + Z2) log

(
1 +

TZ2

dλ

)
.

Lemma 12. Let P be a probability distribution defined over Rd and ∆ be the set of all measurable
distributions. For any loss function ℓ : Rd → R, we have

− 1

α
log
(
Eθ∼P [e

−αℓ(θ)]
)
= Eθ∼P∗ [ℓ(θ)] +

1

α
KL(P∗∥P ), (41)

where P∗ = argminP ′∈∆ Eθ∼P ′ [ℓ(θ)] + 1
αKL(P ′∥P ) is the optimal solution. Furthermore, for any

distribution Q defined over Rd, we have

− 1

α
log
(
Eθ∼P [e

−αℓ(θ)]
)
= Eθ∼Q[ℓ(θ)] +

1

α
KL(Q∥P )− 1

α
KL(Q∥P∗). (42)

Proof of Lemma 12. To prove (41), one can check that the optimal solution to the optimization
problem on the right-hand side of (41) is given by

P∗(θ) =
P (θ)e−αℓ(θ)∫

θ∈Rd P (θ)e−αℓ(θ)dθ
.

Substituting P∗ back into the right-hand side yields the desired equality. Alternatively, (41) can be
shown by noting that the mix loss is the convex conjugate of the Kullback–Leibler divergence [Reid
et al., 2015]. By the definition of the convex conjugate, the equality holds.

To prove the second part of the lemma, namely (42), let Z =
∫
θ∈Rd P (θ)e−αℓ(θ)dθ. We then have

1

α
KL(Q∥P )− 1

α
KL(Q∥P∗)−

1

α
KL(P∗∥P )

=
1

α
Eθ∼Q

[
ln
(P∗(θ)

P (θ)

)]
− 1

α
Eθ∼P∗

[
ln
(P∗(θ)

P (θ)

)]
=

1

α
Eθ∼Q

[
ln
(e−αℓ(θ)

Z

)]
− 1

α
Eθ∼P∗

[
ln
(e−αℓ(θ)

Z

)]
= Eθ∼P∗ [ℓ(θ)]− Eθ∼Q[ℓ(θ)].

where the second equality is due to the fact that P∗(θ)/P (θ) = e−αℓ(θ)/Z for all θ ∈ Rd. Then,
rearranging the above displayed equation gives us

Eθ∼P∗ [ℓ(θ)] +
1

α
KL(P∗∥P ) = Eθ∼Q[ℓ(θ)] +

1

α
KL(Q∥P )− 1

α
KL(Q∥P∗),

which completes the proof by using (42).
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Lemma 13 (Theorem 1.8.2 of Ihara [1993]). The Kullback-Leibler divergence between two d-
dimensional Gaussian distributions P = N (up,ΣP ) and Q = N (uq,Σq) is given by

KL(Q∥P ) =
1

2

(
ln

(
|Σp|
|Σq|

)
+Tr(ΣqΣ

−1
p ) + ∥up − uq∥2Σ−1

p
− d

)
.

D More Discussions on Lee and Oh [2025]

For MNL bandits, the concurrent work [Lee and Oh, 2025] also claimed an O(
√
log T ) improve-

ment in the regret bound, which could potentially be applied to logistic bandits to achieve an
O(log T

√
T/κ∗) bound with O(1) computational cost. However, their analysis critically relies on

a specific upper bound on the normalization factor of a truncated Gaussian, which may not always
hold. We elaborate on the main technical issue below in the context of the logistic bandit problem.

With slight abuse of notation, we define the logistic loss as ℓs(θ) = rtX
⊤
t θ + log(1 + exp(X⊤

t θ)),
where Xt is the action selected by the learner and rt ∈ {0, 1} is the observed reward. Specifically,
building upon the framework of Zhang and Sugiyama [2023], the Lemma C.1 of Lee and Oh [2025]
shows that the estimation error of their estimator satisfies

∥θt+1 − θ∗∥2Ht+1
≲

t∑
s=1

ℓs(θ∗)−
t∑

s=1

ℓ̄s(z̃s)︸ ︷︷ ︸
term (a)

+

t∑
s=1

ℓ̄s(z̃s)−
t∑

s=1

ℓs(θs+1)︸ ︷︷ ︸
term (b)

,

where ℓ̄s(z) = rsz + log(1 + exp(z)). In Lee and Oh [2025], the intermediate term is chosen as
z̃s = σ+

(
Eθ∼Ps [σ(X

⊤
s θ)]

)
, where σ(z) = 1/(1 + e−z) and σ+(p) = log( p

1−p ).

A key step of their analysis lies in the choice of Ps, which ensures that term (a) and term (b) can be
bounded separately. In contrast to the Gaussian distribution used in Zhang and Sugiyama [2023], Lee
and Oh [2025] take Ps as a truncated Gaussian, thereby allowing the bound on term (a) to avoid
the additional O(

√
T ) factor incurred in Zhang and Sugiyama [2023]. However, when analyzing

term (b), their argument relies on a crucial condition for the normalization factor of the truncated
Gaussian distribution, which does not holds in general (see Eqn (C.15) in their paper).

For completeness, we restate it below: there exists a constant Cs ≥ 1 such that∫
∥θ∥Hs≤ 3

2γ

e−
1
2c∥θ∥

2
Hs dθ ≤

∫
∥θ∥Hs≤ 1

2γ

e−
Cs
2c ∥θ∥2

Hs dθ, (43)

where γ, c > 0 are certain constants and Hs is a symmetric positive-definite matrix. Condition (43)
plays an important role in ensuring that the term log(Zs/Ẑs+1) in Eq. (C.17) of the paper remains
non-positive and does not affect the final bound of term(b). However, it is not evident how to select
Cs ≥ 1 to guarantee this property holds throughout, as the left-hand side integrates over a strictly
larger region while the integrand decays more slowly.

E Additional Experimental Details

In this section, we provide additional experimental details and results.

E.1 Experimental Setup

Implementation Details. All the experiments were conducted on Intel Xeon Gold 6242R processors
(40 cores, 4.1GHz base frequency). The algorithms were implemented in Python, utilizing the scipy
library for numerical computations, such as solving non-linear optimization problems and calculating
vector norms, and employing np.linalg.pinv to compute the pseudo-inverse of matrices. The
running time was measured using the time library. The shaded regions in the regret plots represent
99% confidence intervals, computed from 10 independent runs with different random seeds.

Algorithm Configuration. Throughout our experiments, all algorithm parameters were configured
according to their theoretical derivations without additional fine-tuning, with the sole exception of the
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(a) d = 2, S = 3, T = 300. (b) d = 2, S = 5, T = 300. (c) d = 2, S = 7, T = 300.

Figure 3: Confidence Region of Parameter Estimation.
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(a) Logistic Bandit (S = 7)
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(b) Logistic Bandit (S = 9)
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Figure 4: Regret and Running Time Dependence on S.
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Figure 5: Performance comparison of different algorithms on Cover Type Data

regularization parameter λ. To ensure a fair comparison, we adopted a unified approach for setting
λ across different algorithm categories: we set λ = d for all efficient online algorithms (including
GLB-OMD, RS-GLinCB, ECOLog, and GLOC), while using λ = d log(1 + t) for offline algorithms that
require regularization. This distinction reflects the practical consideration that real-world scenarios
often exhibit more favorable conditions than the worst-case assumptions.

E.2 More results on Synthetic Data

To visualize the accuracy of parameter estimation of the algorithms, we plot the confidence region of
the parameter estimation for each algorithm in Figure 3. For illustration purposes, we only plot the
confidence regions of our algorithm GLB-OMD, the theoretically optimal OFUGLB, and the classical
GLM-UCB. We observe that both GLB-OMD and OFUGLB achieve a substantially smaller confidence
region than GLM-UCB, indicating that our algorithm achieves an accurate parameter estimation
comparable to the statistically optimal.

To further investigate the impact of parameter S on algorithm performance, we conduct additional
experiments on logistic bandit tasks with larger S values (Figures 4a and 4b) and analyze the
computational time scaling for Poisson bandits (Figure 4c).

The regret curves in Figures 4a and 4b consistently demonstrate that our algorithm maintains its
competitive performance regardless of S variations, aligning with the trends observed in our main
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results. Notably, the regret does not exhibit significant growth as S increases, suggesting the
robustness of our approach to parameter scaling. We also note that the performance of RS-GLinCB
is very sensitive to the parameter of S. This underperformance can be attributed to the fact that the
warm-up period of RS-GLinCB is heavily dependent on the constant S and κ [Sawarni et al., 2024,
Lemma 4.1].

The runtime curves in Figure 4c reveals two key findings: First, our algorithm’s running time remains
stable (under 1 second for T = 3000) across different S values in Poisson bandit tasks. Second,
in contrast to this consistent performance, OFUGLB exhibits a pronounced computational overhead
that scales with S (requiring 2783 seconds at S = 3 compared to 7568 seconds at S = 9). This
divergence can be attributed to the confidence radius construction in OFUGLB:

Ct(δ) :=
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(δ)

2
}
, (44)

where βt(δ)
2 = log 1

δ + infct∈(0,1]

{
d log 1

ct
+ 2SLtct

}
≤ log 1

δ + d log
(
e ∨ 2eSLt

d

)
. For Poisson

bandits specifically, Lt = eSt+ log(d/δ). This results in increasing cost in the optimization steps
during the arm selection Xt = argmaxx∈Xt

maxθ∈Ct(δ) x
⊤θ, as the algorithm needs to navigate a

rapidly expanding nonconvex confidence region.

Overall, our algorithm demonstrates comparable statistical performance to the theoretically optimal
OFUGLB while offering substantially improved computational efficiency.

E.3 Experiment on Forest Cover Type Data

In this experiment, we evaluate our proposed algorithm on the Forest Cover Type dataset from the UCI
Machine Learning repository [Blackard, 1998]. This dataset comprises 581,012 labeled observations
from different forest regions, with each label indicating the dominant tree species.

Following the preprocessing steps described in Filippi et al. [2010], we centered and standardized
the 10 non-categorical features and appended a constant covariate. To enhance the diversity of the
arm set and strengthen the experimental results, we partitioned the data into K = 60 clusters using
unsupervised K-means clustering, with the cluster centroids serving as the contexts for each arm.
For the logistic reward model, we binarized the rewards by assigning a reward of 1 to data points
labeled as the second class (“Lodgepole Pine”) and 0 otherwise. The reward for each arm was then
computed as the average reward of all data points within its corresponding cluster, yielding reward
values ranging from 0.103 to 0.881.

For this task, we set the horizon to T = 1000 and the confidence parameter to δ = 0.01. After
analyzing the data, we set S = 6 and κ = 200. We evaluated our algorithm against the same baselines
used in the logistic bandit simulation experiment, running each method over 10 independent trials and
averaging the results to report the regret and the running time. The error bars in the figures denote
99% confidence intervals for both regret and runtime.

Compared to synthetic data, real-world datasets exhibit higher noise and complexity, demanding
careful exploration-exploitation trade-offs. Thus, we shrank the estimated confidence set of all the
algorithms in a comparable way to achieve a better balance between exploration and exploitation in
this real-world dataset. Traditional GLB algorithms are particularly sensitive to noise, often leading
to excessive exploration and higher regret.

Figure 5a presents the regret progression of different algorithms over time, while Figure 5b compares
their computational efficiency. Figure 5c further illustrates the regret-time trade-off for our method.
The results demonstrate that our algorithm achieves significantly faster runtime without compromising
robustness or performance, even in noisy environments.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 3.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We stated the assumptions in Section 2 and provided the complete proof in
Appendix A and C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed discussion is done in Section 5 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: The code and data are not released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have shown the confidence intervals of the regret in the plots of various
experiments in Section 5 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the information on the computer resources needed to
reproduce the experiments in Section 5 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and we have followed it in the
paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper presents theoretical work to advance Machine Learning. As it does
not directly address applications, we do not identify specific societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data and the experiments are not related to the models that have a high
risk for misuse, but based on simulation and toy datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited the creators of all assets and explicitly mentioned
and respected their licenses and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not introduce any new assets in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve any human subjects in our research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use any LLMs as any important, original, or non-standard compo-
nents.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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