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Abstract

Despite Large language models’ (LLMs) emerg-
ing successes, the performance of LLM agents in
decision-making has not been fully investigated
through quantitative metrics, especially in the
multi-agent setting when they interact with each
other, a typical scenario in real-world LLM-agent
applications. To better understand the limits of
LLM agents in these interactive environments, we
propose to study their interactions in benchmark
decision-making settings in online learning and
game theory, through the performance metric of
regret. We first empirically study the no-regret be-
haviors of LLMs in canonical (non-stationary) on-
line learning problems, as well as the emergence
of equilibria when LLM agents interact through
playing repeated games. We then provide some
theoretical insights into the no-regret behaviors
of LLM agents, under certain assumptions on the
supervised pre-training and the rationality model
of human decision-makers who generate the data.
Notably, we also identify (simple) cases where ad-
vanced LLMs such as GPT-4 fail to be no-regret.
To promote the no-regret behaviors, we propose
a novel unsupervised training loss of regret-loss,
which, in contrast to the supervised pre-training
loss, does not require the labels of (optimal) ac-
tions. Finally, we establish the statistical guaran-
tee of generalization bound for regret-loss mini-
mization, and more importantly, the optimization
guarantee that minimizing such a loss may au-
tomatically lead to known no-regret learning al-
gorithms. Our further experiments demonstrate
the effectiveness of our regret-loss, especially in
addressing the above “regrettable” cases.
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1. Introduction
Large language model (LLM) agent interacts with the (phys-
ical) world in a dynamic/sequential way: it uses LLMs
as an oracle for reasoning, then acts in the environment
based on the reasoning and the feedback it perceives over
time. LLM agent has achieved impressive successes in so-
cial science (Park et al., 2022; 2023) applications. Besides
being dynamic, another increasingly captivating feature of
LLM-based decision-making is the involvement of strategic
interactions, oftentimes among multiple LLM agents (Fu
et al., 2023; Du et al., 2023; Aher et al., 2023; Park et al.,
2023). Moreover, LLMs have also exhibited remarkable
potential in solving various games (Bakhtin et al., 2022;
Mukobi et al., 2023). These exciting empirical successes
call for a rigorous examination and understanding through a
theoretical lens of decision-making.
Regret has been a core metric in (online) decision-making.
It measures how “sorry” the decision-maker is, in retrospect,
not to have followed the best prediction in hindsight (Shalev-
Shwartz, 2012). It provides not only a sensible way to eval-
uate the sophistication level of online decision-makers, but
also a quantitative way to measure their robustness against
arbitrary (and possibly adversarial) environments. More
importantly, it inherently offers a connection to modeling
and analyzing strategic behaviors: the long-run interac-
tion of no-regret learners leads to certain equilibrium when
they repeatedly play games (Cesa-Bianchi & Lugosi, 2006).
In fact, no-regret learning has served as a natural model
for predicting and explaining human behaviors in strategic
decision-making, with experimental evidence (Erev & Roth,
1998; Nekipelov et al., 2015; Balseiro & Gur, 2019). It has
thus been posited as an important model of “rational be-
havior” in playing games (Blum et al., 2008; Roughgarden,
2015; Roughgarden et al., 2017). Thus, it is natural to ask:
Can we examine and better understand the online and strategic
decision-making behaviors of LLMs through the lens of regret?
Acknowledging that LLM(-agents) are extremely compli-
cated to analyze, to gain some insights into the question,
we focus on benchmark decision-making settings: online
learning with convex (linear) loss functions, and playing
repeated games. We defer a detailed literature review to
Appendix B, and summarize our contributions as follows.
Contributions. First, we carefully examine the perfor-
mance of several representative pre-trained LLMs in several
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online decision-making settings, in terms of regret. We
observe that oftentimes, LLM agents exhibit no-regret be-
haviors in these (non-stationary) online learning settings,
where the loss functions change over time either arbitrarily
(and even adversarially), or in playing both representative
and randomly generated repeated games. For the latter, equi-
libria will emerge as the long-term behavior of the multi-
LLM interactions. Second, we provide some theoretical
insights into the observed no-regret behaviors, based on
some hypothetical model of the human decision-makers
who generate the data, and certain assumptions on the super-
vised pre-training procedure, a common practice in training
large models for decision-making: we make a connection
of pre-trained LLMs to the known no-regret algorithm of
follow-the-perturbed-leader (FTPL) under such assump-
tions. Third, we also identify (simple) cases where advanced
LLMs such as GPT-4 fail to be no-regret. We thus propose a
novel unsupervised training loss, regret-loss, which, in con-
trast to the supervised pre-training loss, does not require the
labels of (optimal) actions. We then establish both statistical
and optimization guarantees for regret-loss minimization,
which, in particular, shows that minimizing such a loss au-
tomatically leads to known no-regret learning algorithms.
Our further experiments demonstrate the effectiveness of
regret-loss, also in addressing the above “regrettable” cases.

2. Preliminaries

We defer the notation to Appendix D.

2.1. Online Learning & Games

Online learning. We consider the online learning setting
where an agent interacts with the environment for 7" rounds,
by iteratively making decisions based on the feedback she
receives. Specifically, at each time step ¢, the agent chooses
her decision policy m; € II for some bounded domain 11,
and after her commitment to 7;, a bounded loss function
ft : I — [—B, B] for some constant B > 0 is chosen by
the environment, potentially in an adversarial fashion. The
agent thus incurs a loss of f;(m;), and will update her deci-
sion to 7y using the feedback. We focus on the most basic
setting where the agent chooses actions from a finite set A
every round, which is also referred to as the Experts Problem
(Littlestone & Warmuth, 1994; Hazan, 2016), without loss
of much generality (c.f. Appendix D.4 for a discussion). In
this case, IT becomes the simplex over A, i.e., IT = A(A),
and fi(m;) = (¢, ;) for some loss vector £; € R? that
may change over time, where d := |.A|. Hereafter, we will
by default refer to this setting that does not make any as-
sumptions on the loss sequence ({;);c[r) simply as online
learning. Moreover, if the loss functions change over time
(usually with certain bounded variation), we will refer to it

as non-stationary online learning for short.
Repeated games. Consider a normal-form game G =

(N, {An}nein)y {7n tne[ny)» Where N is the number of
players, A, and r,, : Ay x --- X Ay — [—B, B] are the
action set and the payoff function of player n, respectively.

The N players repeatedly play the game for 7' rounds, each
player n maintains a strategy 7, ; € A(A,) at time ¢, and
takes action ap ¢ ~ T ¢(-). The a; = (a1, - ,any) de-
termines the payoff of each player at time ¢, {r,,(as)}nen]-
2.2. Performance Metric: Regret

We now introduce regret, the core performance metric used
in online learning and games. For a given algorithm o7,
let w ; denote the decision policy of the agent at time ¢
generated by .o/ Then, the regret, which is the difference
between the accumulated (expected) loss incurred by imple-
menting </ and that incurred by the best-in-hindsight fixed
decision, can be defined as r

T
Regret,, ((fo)ierr) = Y f(mer) = inf 3 fu(m).
t=1 t=1

In the Experts Problem,
ated as Regret, (((s)icr]) =

the definition is instanti-
Z?:1<€t>7rﬂ¢> -
infren Zthlwt,w). An algorithm &/ is referred to as
being no-regret, if Regret ,((fi)ieir)) ~ o(T), i.e., the
regret grows sublinearly in 7. Widely-known no-regret
algorithms include follow-the-regularized-leader (FTRL)
(Shalev-Shwartz & Singer, 2007), follow-the-perturbed-
leader (Kalai & Vempala, 2005) (See Appendix D.3 for
more details). In non-stationary online learning, the met-
ric of dynamic regret (Zinkevich, 2003) is used, where the
comparator changes over time.

3. Do Pre-Trained LLMs Have Regret?

Experimental Validation
In this section, we explore the no-regret behaviors of rep-
resentative LLMs (i.e., GPT-4 Turbo, GPT-4, and GPT-3.5
Turbo, Mixtral-8x7b-instruct, and Llama-3-70B-instruct), in
the context of online learning and games. All experiments
with LLMs are conducted using the public OpenAl (Openai,
2023) or LLM Engine (LLM Engine, 2023) Python API.
We provided intuition as to why pre-trained LLM might be
expected to be no-regret in Appendix E.1.
Interaction protocol. To enable the sequential interaction
with LLMs, we first describe the setup and objective of our
experimental study. At each round, we incorporate the entire
history of loss vectors of past interactions into our prompts,
as concatenated texts, and ask the LLM agent to determine
a policy that guides the decision-making for the next round.
Note that since we hope to evaluate the sophistication level
of pre-trained LLMs through online learning or games, we
only provide simple prompts that she should utilize the
history information, without providing explicit rules of how
to make use of the history information, nor asking her to
minimize regret (in any sense). We defer detailed description
to Appendix E.9, and an illustration of the protocol for
playing repeated games is given in Figure E.1.
3.1. Framework for No-Regret Behavior Validation
Before delving into the results, we note that to the best of
our knowledge, we are not aware of any principled frame-
work for validating no-regret behaviors with finite-time ex-
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perimental data. Therefore, we propose two frameworks,
trend-checking/regression-based framework, to rigorously
validate the no-regret behavior of algorithms over a finite T,
which might be of independent interest. More details are
deferred to Appendix E.3.

3.2. Results: Online Learning
We now present the experimental results of pre-trained

LLMs in online learning in: 1) arbitrarily changing en-
vironments, 2) non-stationary environments, and 3) bandit-
feedback environments. Results for 2) and 3) are deferred
to Appendix E.5 and E.6.

Online learning in arbitrarily changing environ-
ment. We first consider the setting with arbitrarily
changing environments, which are instantiated as fol-
lows: 1) Randomly-generated loss sequences. At
every timestep, we generate a random loss vector
¢y ~ Unif(x%_ | [min{x;,y; }, max{z;, y;}]) for {z;,y; ~
Unif(0,10)}sefq) or £ ~ N(pmq,I) with clipping to
[0,10] to ensure boundedness of the loss, where pg ~
Unif([0,10]%), such that the loss vectors of different
timesteps can be arbitrarily different. 2) Loss sequences
with certain trends. Although many real-world environ-
ments may change, they often change following certain
patterns. Therefore, we consider two representative trends,
the linear and periodic (sinusoid) trend. We sample a, b ~
Unif([0, 10]%) and let £, = (b— a) % + a for the linear trend
and ¢; = 5(1 +sin(at + b)) for the periodic trend. In the ex-
periments, we choose d = 2. The average regret (over multi-
ple randomly generated instances) performance is presented
in Figure E.2, where we compare GPT-4 with well-known
no-regret algorithms, FTRL with entropy regularization and
FTPL with Gaussian perturbations (with tuned parameters).
These pre-trained LLMs are indeed no-regret and can have

lower regret values than these baselines.
Behavioral pattern of LLMs. To understand how LLMs

make decisions at each time step, we provided example
outputs of LLMs explaining how they generate their policies
in Appendix E.12. We find LLMs tend to use the history of
the reward vectors by looking at their sum/average, and tend
to introduce randomization in decision-making. These are
known to be key to achieving no-regret behaviors in online
learning and games (Cesa-Bianchi & Lugosi, 2006).

3.3. Results: Multi-Player Repeated Games

We now consider the setting when multiple LLMs make
online strategic decisions in a shared environment repeat-
edly. Specifically, at each round, the loss vectors each agent
receives are determined by both her payoff matrix and the
strategies of all other agents. Note that the payoff matrix is
not directly revealed to the LLM agent, but she has to make
decisions in a completely online fashion based on the payoff
vector marginalized by the opponents’ strategies (See Fig-
ure E.1 for a prompt example). This is a typical scenario in
learning in (repeated) games (Fudenberg & Levine, 1998).
Randomly generated games. To validate the no-regret
behavior of LLMs, we also test on 50 randomly generated

three-player general-sum games, and 50 randomly gener-
ated four-player general-sum games, where each entry of
the payoff matrix is sampled randomly from Unif ([0, 10]).
These are larger and more challenging settings than the
structured and representative ones above.

We summarize the experimental results in Figure E.4, which
are similar to the above in the online setting: for all types
of games, pre-trained LLMs achieve sublinear regret, which
is often lower than that obtained by FTRL/FTPL for most
games. We provide six instances of three-player general-
sum games and six instances of four-player general-sum
games in Figure E.5 and Figure E.6, respectively. Occasion-

ally, GPT-4 even provides a negative regret value.
3.4. Pre-Trained LLM Agents May Still Have Regret

It seems tempting to conclude that pre-trained LLMs are in-
deed no-regret in both online learning and playing repeated
games. However, is this capability universal? We show that
the no-regret property might break for LLM agents if the
loss vectors are generated in a more adversarial way. Details
are deferred to Appendix E.8.

4. Why Do Pre-Trained LLMs (Not) Have
Regret? A Hypothetical Model and Some
Theoretical Insights

We now provide some plausible explanations about the no-
regret behavior of pre-trained LLMs, which are hypothetical
by nature, since to the best of our knowledge, the details of
pre-training these popular LLMs, regarding data distribution,
training algorithm, etc., have not been revealed. We instead
make the explanations based on some common assumptions
in the literature for modeling human behaviors, and the
recent literature on understanding LLMs/Transformers. We
defer the definition of quantal response against multiple
losses to Appendix F.2.1, which has been investigated in the
learning-in-games and behavioral economics literature.
Pre-training of LLMs is predominantly based on next-
token prediction. When applying LLMs to sequential
decision-making, the model receives the context of the
decision-making task as (1,22, - ,xy) and then gen-
erates (xni1, - ,2p) encoding the action for some
N,M ¢ Nt and N < M, where each x; € V repre-
sents one natural language token for i € [M], and V is the
finite token set. Meanwhile, large models are often (pre-
)trained under several fixed/stationary environments (Laskin
et al., 2023; Lin et al., 2024; Lee et al., 2023; Reed et al.,
2022), which may limit their ability to handle arbitrary/non-
stationary/adversarial loss sequences in our online learning
setup. Thus, it is natural to ask: Is it possible to have
no-regret behaviors emerging as a consequence of this (op-
timal) action prediction, under only a fixed pre-training
distribution of environments?

Here we analyze a standard pre-training objective on a token

sequence distribution x1.y,,, ~ P/ for given t € [T,

which is the expected log-likelihood maximization for next-
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token prediction over O, the parameter space of the LLM:

Nita
max B, ppest Y 1ogLLMo (2] 21-1),  (4.1)
j=1

where we define LLMy (z1 | 21.0) = LLMjp (21).

For the pre-training distribution, we model it as follows:
there exists a latent variable z, representing the loss for
the underlying static decision-making problem. We defer a
detailed explanation for z ad assumptions for pre-training

distribution in Appendix F.3.
Theorem 4.1 (Informal: Emergence of no-regret behavior).

Suppose Assumption 1 holds with both the prior distribution
on z and the likelihood on {{; | z};c}y) being Gaussian, and
TN, +1:N,y, encodes the optimal action for z. Then, as
long as the function class of LLMy is expressive enough,
with 0* being a maximizer of Equation (4.1), the behavior
of LLMy~ follows quantal response, and also achieve no
(dynamic) regret for (non-stationary) online learning with
full-information/bandit feedback for arbitrary loss vectors.

The formal statement and proof are deferred to Appendix F.7.
The significance of our results lies in that even when pre-
training is conducted solely with loss vectors from station-
ary distributions, it still enables the emergence of no-regret
behavior in online learning against potentially adversarial
losses. Key in the proof is an interesting connection of
pre-trained LLM models to FTPL. Finally, we point out
its implications for playing games in Appendix F.7.1. We
also defer the experiment to compare theoretical results and
LLMs’ behavior in Appendix F.10.

Finally, we acknowledge that for existing pre-trained LLMs
like GPT-4, the canonical assumptions above, though may
be further relaxed (c.f. Remark F.3), may not hold in general.
More importantly, the supervision labels may be sometimes
imperfect or unavailable during the dataset collection. These
caveats motivate the study in our next section.

5. Provably Promoting No-Regret Behavior by
an Unsupervised Loss
In light of the observations in Section 3, we ask the question:
Is there a way to enhance the no-regret property of LLM
agents, without (optimal) action labels?
We propose to train LLMs with a new unsupervised learning
loss that naturally provides no-regret behaviors.

5.1. A New Unsupervised Training Loss: Regret-Loss
Intuitively, our new training loss is designed to enforce
the trained LLM to minimize the regret under an arbitrary
sequence of loss vectors. We define the training loss as

L(0) := , Regret; v ((4)eeqry) 5.1

1yeeey

where ||4¢|lcoc < B fort € [T]. As discussed in (Kirschner
et al., 2023), directly minimizing the max regret can be
computationally challenging, except for superficially simple
problems. Therefore, we provide a general class of surrogate
losses to approximate Equation (5.1) (£(6, k, N)):

max
L

E

5w hRegret v (667 e 1)) £ (Regret g, (67 e 7)), k)}
Sjein fRegret g (67 e p7y), k) ’
5.2)
where £ € N*, N € NT, and regularity conditions for
f and h (Appendix G.1). Examples of such an f include
f(z, k) = 2* and exp(kx). In Appendix G.3, we prove that
under certain regularity conditions of f and h, we have
lim L(0,k,N)=nh (Emax Regretyyny, ((4e)eei)) | -
N,k— o0 L1yl
We will hereafter refer to Equation (5.2) as the regret-loss.
5.2. Generalization and Regret Guarantees of
Regret-Loss Minimization
We first establish a statistical guarantee under general pa-
rameterizations of LLMy that is Lipschitz with respect to 6,
including the Transformer-based models as used in GPT-4
and most existing LLMs (see Proposition 2).

Theorem 5.1. (Regret, Informal). Under regular conditions
on f, h, with high probably, we have

h( lim lim max

Regret; 1
N k% e T p N Mg

((ft)f,em))
kN, N

. = de
<h (glgg e max - Regrety 1y, ((fr,)tem)) +0 (\/ N) ~

We defer the proof of the theorem to Appendix G.5. There-
fore, if additionally, the LLM parameterization (i.e., Trans-
formers) can realize a no-regret algorithm (as to be shown
next), then Theorem 5.1 means that with a large enough N,
the learned LLMé\k,N,NT becomes a no-regret learner, i.e.,

Regret v, ((¢4)terr)) = o(T). Finally, it is folklore
) T

that when mulﬁple such LLMs interact, a coarse correlated
equilibrium will emerge in the long term.

5.3. Minimizing Regret-Loss Can Automatically
Produce Online Learning Algorithms

Despite the generality of the previous results, one cannot
use an infinitely large N and k in practice. Hence, we now
provide results when N is finite, for the specific parame-
terization of the LLMs using Transformers. We focus on
single-layer (linear) self-attention models, as in most recent
theoretical studies of Transformers (Ahn et al., 2023; Zhang
et al., 2023a; Mahankali et al., 2023), and N = 1. Under
this condition, we have the following informal theorem

Theorem 5.2 (Informal, emergence of FTRL). The con-
figuration of the single-layer linear self-attention model is
equivalent to FTRL with Lo-regularizer.

We defer a detailed explanation to Appendix G.6. Theo-
rem 5.2 shows the capability of self-attention models: it can
realize online learning algorithms, thanks to our regret-loss.
In particular, this can be achieved automatically by optimiz-
ing the new loss, without hard-coding the parameters of the
Transformer. Lastly, we also provide experimental results
for minimizing our regret-loss in various environments in
Appendix G.12.
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A. Societal Impact

Our work aimed at a better understanding of LLMs for decision-making through the lens of regret minimization, with
rigorous mathematical analysis. It is a theory-oriented work. As such, we do not anticipate any direct positive or negative
societal impact from this research.

B. Related Work

LLM(-agent) for decision-making. The impressive capability of LLMs for reasoning (Bubeck et al., 2023; Achiam
et al., 2023; Wei et al., 2022b;a; Srivastava et al., 2023; Yao et al., 2023a) has inspired a growing line of research on LLM
for (interactive) decision-making, i.e., an LLM-based autonomous agent interacts with the environment by taking actions
repeatedly/sequentially, based on the feedback it perceives. Some promises have been shown from a planning perspective
(Hao et al., 2023; Valmeekam et al., 2023; Huang et al., 2022; Shen et al., 2023). In particular, for embodied Al applications,
e.g., robotics, LLMs have achieved impressive performance when used as the controller for decision-making (Ahn et al.,
2022; Yao et al., 2023b; Shinn et al., 2023; Wang et al., 2023b; Driess et al., 2023; Significant Gravitas, 2023). However, the
performance of decision-making has not been rigorously characterized via the regret metric in these works. Very recently,
(Liu et al., 2023b) has proposed a principled architecture for LLM-agent, with provable regret guarantees in stationary and
stochastic decision-making environments, under the Bayesian adaptive Markov decision processes framework. In contrast,
our work focuses on online learning and game-theoretic settings, in potentially adversarial and non-stationary environments.
Moreover, (first part of) our work focuses on evaluating the intelligence level of LLM per se in decision-making (in terms
of the regret metric), while (Liu et al., 2023b) focused on developing a new architecture that uses LLM as an oracle
for reasoning, together with memory and specific planning/acting subroutines, fo achieve sublinear (Bayesian) regret, in
stationary and stochastic environments.

LLMs in multi-agent environments. The interaction of multiple LLM agents has garnered significant attention lately. For
example, (Fu et al., 2023) showed that LLMs can autonomously improve each other in a negotiation game by playing and
criticizing each other. Similarly, (Du et al., 2023; Liang et al., 2023; Xiong et al., 2023; Chan et al., 2024; Li et al., 2023c)
showed that multi-LLLM debate can improve the reasoning and evaluation capabilities of the LLMs. (Qian et al., 2023;
Schick et al., 2023; Wu et al., 2023) demonstrated the potential of multi-LLM interactions and collaboration in software
development, writing, and problem-solving, respectively. (Zhang et al., 2024) exhibited a similar potential in embodied
cooperative environments. More formally, multi-LLM interactions have also been investigated under a game-theoretic
framework, to characterize the strategic decision-making of LLM agents. (Bakhtin et al., 2022; Mukobi et al., 2023) and
(Xu et al., 2023b;a) have demonstrated the promise of LLMs in playing Diplomacy and WereWolf games, respectively,
which are both language-based games with a mixture of competitive and cooperative agents. Note that these works utilized
LLM to solve a specific rather than a general game. Related to our work, (Brookins & DeBacker, 2023; Akata et al.,
2023; Lore & Heydari, 2023; Brookins & DeBacker, 2023; Fan et al., 2023) have also used (repeated) matrix games as
a benchmark to evaluate the reasoning capability and rationality of LLM agents. In contrast to our work, these empirical
studies have not formally investigated LLM agents using the metric of regret, nor through the lenses of online learning and
equilibrium-computation, which are all fundamental in modeling and analyzing strategic multi-agent interactions. Moreover,
our work also provides theoretical results to explain and further enhance the no-regret property of LLM agents.

LLMs & Human/Social behavior. LLMs have also been used to simulate the behavior of human beings, for social
science and economics studies (Engel et al., 2023). The extent of LLMs simulating human behavior has been claimed as a
way to evaluate the level of its intelligence in a controlled environment (Aher et al., 2023; Tsai et al., 2023). For example,
(Li et al., 2023b; Hong et al., 2024; Zhao et al., 2023) showed that by specifying different “roles” to LLM agents, certain
collaborative/competitive behaviors can emerge. (Argyle et al., 2023) showed that LLMs can emulate response distributions
from diverse human subgroups, illustrating their adaptability. (Horton, 2023) argued that an LLM, as a computational model
of humans, can be used as homo economicus when given endowments, information, preferences, etc., to gain new economic
insights by simulating its interaction with other LLMs. (Park et al., 2022; 2023) proposed scalable simulators that can
generate realistic social behaviors emerging in populated and interactive social systems, and the emerging behaviors of
LLM agents in society have also been consistently observed in (Chen et al., 2024; 2023). (Li et al., 2023d;a) studied the
opinion/behavioral dynamics of LLM agents on social networks. These empirical results have inspired our work, which
can be viewed as an initial attempt towards quantitatively understanding the emerging behavior of LLMs as computational
human models, given the well-known justification of equilibrium being a long-run emerging behavior of learning dynamics
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(Fudenberg & Levine, 1998) and strategic interactions (Young, 2004; Camerer, 2011).

Transformers & In-context-learning. LLMs nowadays are predominantly built upon the architecture of Transformers
(Vaswani et al., 2017). Transformers have exhibited a remarkable capacity of in-context-learning (ICL), which can construct
new predictors from sequences of labeled examples as input, without further parameter updates. This has enabled the
few-shot learning capability of Transformers (Brown et al., 2020; Garg et al., 2022; Min et al., 2022). The empirical
successes have inspired burgeoning theoretical studies on ICL. (Xie et al., 2022) used a Bayesian inference framework
to explain how ICL works, which has also been adopted in (Wang et al., 2023a; Jiang, 2023). (Akyiirek et al., 2023;
Von Oswald et al., 2023; Dai et al., 2023; Giannou et al., 2023) showed (among other results) that ICL comes from the
fact that Transformers can implement the gradient descent (GD) algorithm. (Bai et al., 2023) further established that
Transformers can implement a broad class of machine learning algorithms in context. Moreover, (Ahn et al., 2023; Zhang
et al., 2023a; Mahankali et al., 2023) proved that a minimizer of the certain training loss among single-layer Transformers is
equivalent to a single step of GD for linear regression. (Li et al., 2023e) established generalization bounds of ICL from a
multi-task learning perspective. (Zhang et al., 2023b) argued that ICL implicitly implements Bayesian model averaging,
and can be approximated by the attention mechanism. They also established a result on some regret metric. However, the
regret notion is not defined for (online) decision-making, and is fundamentally different from ours that is standard in online
learning and games. Also, we provide extensive experiments to validate the no-regret behavior by our definition. More
recently, the ICL property has also been generalized to decision-making settings. (Laskin et al., 2023; Lee et al., 2023; Lin
et al., 2024) investigated the in-context reinforcement learning (RL) property of Transformers under supervised pre-training,
for solving stochastic bandits and Markov decision processes. In contrast, our work focuses on online learning settings with
an arbitrary and potentially adversarial nature, as well as game-theoretic settings. We also provide a new unsupervised loss
to promote the no-regret behavior in our settings.

Online learning and games. Online learning has been extensively studied to model the decision-making of an agent
who interacts with the environment sequentially, with a potentially arbitrary sequence of loss functions (Shalev-Shwartz,
2012; Hazan, 2016), and has a deep connection to game theory (Cesa-Bianchi & Lugosi, 2006). In particular, regret, the
difference between the incurred accumulated loss and the best-in-hindsight accumulated loss, has been the core performance
metric, and a good online learning algorithm should have regret at most sublinear in time 7" (i.e., of order o(7T')), which is
referred to as being no-regret. Many well-known algorithms can achieve no-regret against arbitrary loss sequences, e.g.,
multiplicative weight updates (MWU)/Hedge (Freund & Schapire, 1997; Arora et al., 2012), EXP3 (Auer et al., 2002), and
more generally follow-the-regularized-leader (FTRL) (Shalev-Shwartz & Singer, 2007) and follow-the-perturbed-leader
(FTPL) (Kalai & Vempala, 2005). In the bandit literature (Lattimore & Szepesvdri, 2020; Bubeck et al., 2012), such
a setting without any statistical assumptions on the losses is also referred to as the adversarial/non-stochastic setting.
Following the conventions in this literature, the online settings we focus on shall not be confused with the stationary and
stochastic(-bandit)/(-reinforcement learning) settings that have been explored in several other recent works on Transformers
for decision-making (Lee et al., 2023; Lin et al., 2024). Centering around the regret metric, our work has also explored the
non-stationary bandit setting (Besbes et al., 2014), as well as the repeated game setting where the environment itself consists
of strategic agents (Cesa-Bianchi & Lugosi, 2006).

C. Deferred Background
D. Notation

We use N and N7 to denote the sets of non-negative and positive integers, respectively. For a finite set S, we use A(S)

to denote the simplex over S. For d € NT, we define [d] := {1,2,...,d}. For two vectors x,y € R, we use (x,7) to

denote the inner product of = and y. We define 04 and 14 as a d-dimensional zero or one vector, and Oy« 4 and I 4 as a

d x d-dimensional zero matrix and identity matrix, respectively. We omit d when it is clear from the context. We define e; as a

unit vector (with proper dimension) whose i-th coordinate equal to 1. For p € R?, R > 0 and C' C R? is a convex set, define

B(p,R,||-|) :== {z e R? | [lz—p|| < R},Proic,.(p) = argmin,c ||z —p|| (which is well defined as C'is a convex set),
e’

and clipp(z) == [ProJp(o,R,| ||| (Ti)lic(a)- Define Softmax(z) := (m)ie[d] and ReLU(x) = max(0, z)

for z € R For A € R™*" with A; denoting its i-th column, we define || Al|op := max),,<1 [|[Az]l2, [All2,00 :=
sup;epn) [ Aill2, [|Al|F as the Frobenius norm, and A_; := A, to denote the last column vector of A.  We define
R* := {z | # > 0}. For a set I, define diam(IL, || - ||) := sup,, r,en |71 — m2||. We define 1(£) := 1if £ is true,
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and 1(€) := 0 otherwise. For a random variable sequence (X,,),cn and random variables X, Y, we denote F'x as the
cumulative distribution function of a random variable X, X,, 2 X if Ve > 0, lim,,_, oo P(|X, — X|>¢€) =0,X, 4 x
if lim,, o Fx, () = Fx(z) for all z where Fx(x) is continuous, X Lyif Fx(z) = Fy(zx) forall z, X,, 3 X
if P(limy, 00 X, = X) = 1, and esssup(X) := inf{M € R : P(X > M) = 0}. For a random variable X, we use
supp(X) to denote its support. For functions f, g : R — R, we define g(x) = O(f(x)) if there exist 29, M < oo such that
lg(x)] < M|f(x)| forall x > xo. We use f’ to denote the derivative of f. Let F' : 2 — R be a continuously-differentiable,
strictly convex function defined on a convex set ¢2. The Bregman divergence associated with F' for points p, q is defined as
Dp(p,q) :== F(p) — F(q) — (VF(q),p — q). For a sequence (¢;);c[r) for some T' € N*, we define Lo := (Cq,- - ,€p)
forl1 <a<b<T.Ifa>b, wedefine (o, = 0.

D.1. Additional Definitions for Appendix

(Linear) Self-attention. One key component in Transformers (Vaswani et al., 2017), the backbone of modern language
models, is the (self-)attention mechanism. For simplicity, we here focus on introducing the single-layer self-attention

architecture. The mechanism takes a sequence of vectors Z = [zy, ..., z;] € R?*? as input, and outputs some sequence
of [Z1,...,2] € R¥!. Foreachi € [t| where i > 1, the output is generated by z; = (Vz1.;_1)0((Kz1.i-1)T(Qz:)),

where z1.;_1 denotes the 1 to 7 — 1 columns of Z, o is either the Softmax or ReLU activation function, and for the
initial output, 2; = 04. Here, V,Q,K € R*? are referred to as the Value, Query, and Key matrices, respectively.
Following the theoretical framework in (Von Oswald et al., 2023; Mahankali et al., 2023), we exclude the attention
score for a token z; in relation to itself. For theoretical analysis, we also consider the linear self-attention model, where

Zi = (Vz1-1) (K 21:-1)T(Q2;)). We write this (linear) self-attention layer’s output as (L) SA(y,g,k)(Z). We define an
M

M-head self-attention layer with 60 = {(Vi,1, Qm, Km) fmepm] as M= (L) SAg(Z) = > 1 (L) SA(v,, @ Km) (Z). We
M

define || - [l ) sa as [[0lju- x) s := maxmepan {|Qmllop, [Kmllop} + 2 m—y [[Vinllop-

Transformers. For a multi-layer perceptron (MLP) layer, it takes Z = [21,...,2;] € R?*! as input, with parameter

0 =W, W) € R xd x RI%d" gych that for each i € [t], the output is Z; := Wao (W1 2;) where o is either Softmax or
ReLU. We write the output of an MLP layer with parameter 6 as MLPy(Z). Defining ||« [|ue as [|0||ure := [|[W1lop+||Wallop
and ResNet (f, Z) := Z + f(Z), we can define an L-layer Transformer with parameter 6 = (0/™), (®)), /) as

TFg(Z) := ZP),
where the output Z(") is defined iteratively from Z(®) = c1ipg(Z) := min(—R, max(R, Z)) and
ZW = clipp (ResNet (MLPWa),ResNet (M— (L) SAQW,),Z(Z*D))) ,

for some R > 0. We define a class of Transformers with certain parameters as Ogp pm a5, = {0 =
(0™ 00 cir).mepa ¢ 10]/re < Bre }, where M is the number of heads of self-attention,

10| == maX{HQ(la)HM—<L>SA + ||9(lm)||MLP} ) (D.D
le[L)]

and Brr > 0 is some constant. When it is clear from the context, we may omit the subscripts and write it as © for simplicity.
We assume R to be sufficiently large such that c11ip does not take effect on any of our approximation results.

D.2. In-Context Learning

In-context learning is an emergent behavior of LLMs (Brown et al., 2020), which means that these models can adapt and
learn from a limited number of examples provided within their immediate input context. In in-context learning, the prompt
is usually constituted by a length of 7" in-context (independent) examples (¢, y;)¢c[r) and (T + 1)-th input 71, so the
LLM((2¢)¢e[r], Tr+1) provides the inference of yr1, where z; = (x4, 1)

D.3. Online Learning Algorithms

Follow-the-regularized-leader (FTRL). The Follow-the-Regularized-Leader (FTRL) algorithm (Shalev-Shwartz, 2007)
is an iterative method that updates policy based on the observed data and a regularization term. The idea is to choose the
next policy that minimizes the sum of the past losses and a regularization term.
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Mathematically, given a sequence of loss vectors /1, {s, . .., ¢;, the FTRL algorithm updates the policy 7 at each time step ¢

as follows: ,

Tt+1 = arg f‘rnellr_ll <Zl<€’u7r> + R(ﬂ.)> )
where R(m) is a regularization term. The regularization term R(7) is introduced to prevent overfitting and can be any
function that penalizes the complexity of the model. A function R(7) is said to be A-strongly convex with respect to a norm
| - | if for all w, n" € II:

R(r) > Rx') + (VR(x'), 7 ') + S llr — 3

A key property that ensures the convergence and stability of the FTRL algorithm is the strong convexity of the regularization
term R (7). Strong convexity of R(7) ensures that the optimization problem in FTRL has a unique solution. The FTRL
algorithm’s flexibility allows it to encompass a wide range of online learning algorithms, from gradient-based methods like
online gradient descent to decision-making algorithms like Hedge (Freund & Schapire, 1997).

Connection to online gradient descent (OGD). The Online Gradient Descent (OGD) (Cesa-Bianchi et al., 1996)
algorithm is a special case of the FTRL algorithm when the regularization term is the Ly-norm square, i.e., R(7) = 1||7||3

and IT = R?. In OGD, at each time step ¢, the policy 7 is updated using the gradient of the loss function:
41 = T — €t~

Therefore, the connection between FTRL and OGD can be seen by observing that the update rule for FTRL with L,
regularization can be derived from the OGD update rule.

Connection to the Hedge algorithm. The Hedge algorithm (Freund & Schapire, 1997) (also referred to as the Multi-
plicative Weight Update algorithm (Arora et al., 2012)) is an online learning algorithm designed for problems where the
learner has to choose from a set of actions (denoted as .A) at each time step and suffers a loss based on the chosen action.
The FTRL framework can be used to derive the Hedge algorithm by considering an entropy regularization term. Specifically,
the regularization term is the negative entropy R(7) = > | T log 7; (where d is the dimension of policy 7), then the
FTRL update rule yields the Hedge algorithm as

jeld

- R exp(—ly;me;)
(t+1)j tj Zie[d] eXP(*gtﬂTti)

for j € [d].

Follow-the-perturbed-leader (FTPL). Given a sequence of loss vectors £1, {o, . .., ¢;_1, the follow-the-perturbed-leader
algorithm (Kalai & Vempala, 2005) at each time step ¢ adds a random perturbation vector ¢, to the original loss vectors and
then selects the best-response action a; (that is potentially randomized due to ¢;) by solving:

t—1
a; € arg trlxgr“l €ta + Zﬁm,
=1
where the perturbation ¢; is sampled from a pre-defined distribution. Correspondingly, the policy m; is chosen by following
equation:

t—1
m =B |argmin{e, m) + ) (l,m) | (D.2)
=1

Relationship between FTRL and FTPL. The FTRL and FTPL algorithms are deeply related. For example, FTPL with
perturbations of Gumbel distribution and FTRL with Entropy Regularization (i.e., Hedge) are equivalent. In general, for the
FTPL algorithm with any perturbation distribution, one can always find an FTRL algorithm with a particular regularization
such that their update rule is equivalent. However, this relationship does not hold vice versa. For example, (Hofbauer
& Sandholm, 2002) shows that for FTRL with log barrier regularization, there does not exist an equivalent perturbation
distribution for FTPL.
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Restarting techniques for non-stationary online learning. For non-stationary online learning problems, one common
technique is restarting: one restarts the standard online learning algorithm periodically (Besbes et al., 2014) (see also e.g.,
(Wei & Luo, 2021; Mao et al., 2020)). After each restarting operation, the algorithm will ignore the previous history and
execute as if it is the beginning of the interaction with the environment. Since the variation of the loss sequences is bounded,
loss sequences between two consecutive restarting operations can be regarded as being almost stationary, which makes
achieving an overall sublinear dynamic regret guarantee possible.

D.4. Why Focusing on Linear Loss Function?

We note that focusing on the linear loss function f;(7) := (¢;, ) does not lose much of generality. Specifically, for the
general convex loss function (f;)¢[7], we have fi(me 1) — fi(m) < (V fi(7er t), Ter s — ) for any m € II, which indicates

T T
Regret,, ((fi)ierr]) < Z]E[Wft(?&zf,t)ﬂfmtﬂ - ;ngZEvat(Wd,t)ﬂTﬂ-
t=1 t=1

Therefore, one can regard the loss vector ({;)¢c|7) as £ := V fy(mo ¢) for t € [T, and control the actual regret by studying
the linear loss function (Hazan, 2016). The same argument on the general convex f; can be applied to the dynamic-regret
metric as well. In sum, an algorithm designed for online linear optimization can be adapted to solve online convex
optimization, with the understanding that the instance received at round ¢ corresponds to the gradient of the convex function
evaluated at the policy at that round.

D.5. Six Representative General-Sum Games

In game theory, there are six representative two-player general-sum games (Robinson & Goforth, 2005). Firstly, consider
1 4 1 4
the win-win game represented by matrices A = 1 2) and B = (1 2) for players A and B, respectively. This setup

fosters a cooperative dynamic, as both players receive identical payoffs, encouraging strategies that benefit both parties
equally.

1 3
In contrast, the prisoner’s dilemma, depicted by payoff matrices A = 5 4 and B = 5 1) illustrates the conflict

between individual and collective rationality, where players are tempted to pursue individual gain at the collective’s expense,
often resulting in suboptimal outcomes for both.

2 1 3
In the unfair game, represented by A = 3 4 and B = 1 o) the asymmetry in the payoff structure places one

player at a disadvantage, regardless of the chosen strategy. This imbalance often reflects real-world scenarios where power
or information asymmetry affects decision-making.
3

2
The best strategy for each player changes in response to the other’s actions, leading to a continuous cycle of strategy
adaptation without a clear resolution.

31
The cyclic game, with matrices A = (2 4) and B = ( 1) , presents a scenario where no stable equilibrium exists.

3 2 4 2
The biased game, depicted by A = (1 4) and B = (1 3) , inherently favors one player, often reflecting situations

where external factors or inherent advantages influence outcomes, leading to consistently unequal payoffs.

3
players settle for less-than-optimal outcomes due to constraints like risk aversion or limited options. This often results in
players choosing safer, albeit less rewarding, strategies.

1 2 1
Finally, the second-best game, with payoff matrices A = <3 4) and B = < 2), encapsulates scenarios where

Each of these games exemplifies distinct aspects of strategic decision-making and interactions. From cooperative to
competitive and fair to biased scenarios, these matrices provide a rich landscape for exploring the nuances of decision-
making behavior in game theory.
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E. Deferred Results and Proofs in Section 3
E.1. Intuition why pre-trained language models may exhibit no-regret behavior

Intuition why pre-trained language models may exhibit no-regret behavior. Transformer-based LLMs have demon-
strated impressive in-context-learning and few-/zero-shot learning capabilities (Brown et al., 2020; Garg et al., 2022; Min
et al., 2022). One theoretical explanation is that, trained Transformers can implement the gradient descent algorithm on the
testing loss in certain supervised learning problems (Akyiirek et al., 2023; Von Oswald et al., 2023; Dai et al., 2023; Ahn et al.,
2023; Zhang et al., 2023a; Mahankali et al., 2023), which is inherently adaptive to the loss function used at test time. On the
other hand, it is known in online learning that the simple algorithm of online gradient descent (Zinkevich, 2003) can achieve
no-regret. Hence, it seems reasonable to envision the no-regret behavior of such meta-learners in online learning, due to
their fast adaptability. However, it is not straightforward due to the fundamental difference between multi-task/meta-learning
and online learning settings, as well as the difference between stationary and non-stationary/adversarial environments in
decision-making. Next, we provide both experimental and theoretical studies to validate this intuition.

E.2. Visualization of Interaction Protocols

Human Moderator’s Prompt e,

% LLM 1: My decision is ...
You are playing a matrix game for 7 rounds. There are 4 number of actions.

At each round, you need to choose a policy; it specifies your probability of choosing each action.
This policy should be 4-dimensional, with the sum of its components equaling 1.

After that, you are shown the reward vector for choosing each action. Remember, the reward vector
is determined by an external system and can vary across rounds.

It is not decided by what policies you have chosen. The reward vector is also A-dimensional.

You can adjust your policy based on the reward vectors for all previous rounds. You’re required to
provide your policy in numeric format.

Your response’s last line should be formatted as ‘Policy: [your A-dimensional policy]’.

Let’s think step by step. Explicitly examining history is important. Please explain how you chose the
policy by guessing what reward you might receive for each action according to the history. / A8 ! ¥

) LLM 2: My decision is ...

%

%, LLM 3: My decision is ...

Figure E.1. Demonstration of the prompts and interaction protocol for multi-player repeated games. A human moderator does not provide
the game’s payoff matrices to the LLMs. Instead, at each round, the human moderator provides each player’s own payoff vector history.

E.3. Framework for No-Regret Behavior Validation

Trend-checking framework. We propose the following hypothesis test:

Hy : The sequence (Regret o (( fT)Te[t]) / t):; either diverges or converges to a positive constant

H; : The sequence (Regret,, ((f-)rep) /t):i1 converges to 0

with Hy and H; denoting the null and alternative hypotheses, respectively. The notion of convergence is related to 7' — oo
by definition, making it challenging to verify directly. As an alternative, we propose a more tractable hypothesis test, albeit a
weaker one, that still captures the essence of our objective:

Hy : The sequence (Regret,, ((f-)rep) /t) re[T] does not exhibit a decreasing trend

H; : The sequence (Regret,, ((f-)rep) /t) re[T] shows a decreasing trend.

Ideally, one should check if Regret , (( fT)Te[t]) /t approaches zero as t goes to infinity. With a finite 7" value, testing these
hypotheses provides a method to quantify this — whether we reject H offers a way to measure it. To this end, one needs to
count the number of Regret , ((f-)re() /t — Regret, ((fr)rep+1]) /(t + 1) > 0, for which we use Proposition 1 below
to provide some understanding of (how small) the probability it happens under various counts. For example, with the default
choice of T' = 25 in our experiments later, one can see from Proposition 1 that: Py, (£(17,25)) < 0.032,Pg,(£(19,25)) <
0.0035, Py, (€£(21,25)) < 0.00014, i.e., one can easily reject Hy with high probability. We will report the p-value of Hy,
denoted as psrend, as the output of this framework.
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Proposition 1. (p-value of the null hypothesis). Define the event

Regret ) Regret )T T-1
E(s,T) := {The number of Bl ((f ) E[t]) _ ey ((f ) €[t+1]) }

>0 fort=1,...,Tisatleast s >
t t+1

Under the assumption that the null hypothesis Hy holds, the probability of this event happening is bounded as

L (T-1
P, (E(s,T)) < gr=r ﬁ;( , )

Proof. Under the null hypothesis Ho, the probability p that Regret , ((f-)-cp) /t — Regret,, ((fr)rept1]) /(E+1) >0
is less than % Therefore, if we consider the event £(s, T), we have
1 Tl /p g
=Dl
k=s

T—-1
p(l—pT e ( ) <
since s > L1, O

-1

Pr, (E(s,T)) =

k=s k
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E.4. Deferred Figure for Section 3.2
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Gaussian

GPT-4:

(Prrend- Bos Preg)=(0.0. 0.63,0.0)
GPT-3.5 Turbo:
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GPT-3.5 Turbo:
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Figure E.2. Regret of pre-trained LLMs for online learning with full-information feedback. Notably, both commercial and open-source
LLMs exhibit no-regret behaviors validated by our frameworks. Surprisingly, the GPT-4 model can even outperform well-known no-regret
learning algorithms, FTRL and FTPL. Finally, we also conduct ablation studies on longer horizons for those relatively weaker models
other than GPT-4 in Appendix E.10, where they are still reliably no-regret.
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Dynamic regret GPT-4 GPT-3.5 Turbo FTRL FTPL
Full Gradual variation _ 1261701 _ 1009 £11.33 36.58 +24.51 | 35.19 & 22.51
information (ptrcnd» 607 prcy) = (00> 0587 00) (ptrcnda 60?prcy) = (00 0837 00)
30.0 £ 19.91 33.65 £ 22.51
Abrupt variation ~ ~ 36.52 £ 27.68 | 36.24 £+ 28.22
P (ptrendvﬁﬂ\,p?“eg) = (001708700) (ptrendaﬁ(]\,p?“ﬁg) = (008709600)
21.39 £ 10.86 28.42 +21.6
. Gradual variati ~ ~ 37.64 +£21.97 | 36.37 £20.7
Bandit VAN Bos Preg) = (0.0,0.78,0.0) | (Dirends Bo. Preg) = (0.0,0.83,0.0)
35.94 £ 28.93 30.76 £ 25.48
Abrupt variation ~ ~ 36.52 £+ 27.68 | 38.82 +26.17
P (ptrend7607p7“eg) = (042709500) (ptrend7607p7“eg) = (0927 10100)

Table 1. Dynamic regret of GPT-3.5 Turbo/GPT-4 in a non-stationary environment with either full-information or bandit feedback. Every
experiment is conducted with 25 rounds. No-regret behaviors of GPT-3.5 Turbo/GPT-4 are validated by both of our frameworks (low
p-values and By < 1). The only exception is GPT-3.5 Turbo on loss sequence with abrupt variations under bandit feedback. This indicates
that GPT-3.5 Turbo may not be capable of dealing with an abruptly changing environment with limited feedback, although the average
regret achieved eventually is still lower than that of other baselines.

E.5. Deferred Experiments for Non-stationary Environments in Section 3.2

We experiment on the setting where the losses are still changing over time, but their total variations across time are bounded,
more concretely, sublinear in T'. Correspondingly, we consider the stronger metric of dynamic regret here to measure the
performance. Note that without constraining the variation of the loss vectors, dynamic regret can be linear w.r.t. 7" in the worst
case. Hence, we generate the loss vectors in two different ways: 1) Gradual variation. We firstly sample ¢; ~ Unif([0, 10]).
Then for each ¢ > 2, we uniformly and randomly generate /;; under the constraint ||¢; 41 — £;||sc < -1=, such that the

— \/E b
variations over time are guaranteed to satisfy ZtT:zl i1 — Cillco = o(T'); 2) Abrupt variation. We randomly generate
¢y ~ Unif([0,10]) and m time indices {t;};c[,) from {1,2,--- ,T}. At each time step t; for i € [m], the sign of the

loss vector ¢, is flipped, i.e., we let ¢;, <— 1014 — ¢;,. For the specific choice of T' = 25 in our experiments, we choose
m = 3. For both cases, the average dynamic regret results are presented in Table 1. GPT-4 achieves sublinear dynamic
regret and outperforms FTRL/FTPL with Restart, a standard variant of FTRL/FTPL for non-stationary online learning (see
e.g., (Besbes et al., 2014)). We refer to Appendix D.3 for a detailed introduction of FTRL/FTPL with Restart.

E.6. Deferred Experiments for Bandit-feedback Environments in Section 3.2

Although pre-trained LLMs have achieved good performance in online learning with full-information feedback, it is unclear
whether they can still maintain no-regret with only bandit feedback. For such problems, we modify the prompt and protocol
of interactions slightly, where we still ask the LLM agent to provide a policy 7; at time step ¢, then sample one a; ~ ().
In the bandit setting, the LLM agent can only access (a¢, ¢14, ). Instead of directly feeding it to the agent, we feed an estimate
of the loss vector ¢, € R%, where Zt(a) — %l(at = a) for all j € [d]. Note that such an operation of re-weighting
the loss by the inverse of the probability is standard in online learning when adapting full-information-feedback no-regret
algorithms to the bandit-feedback ones (Auer et al., 2002). Later, we will also show the benefits of such operations (c.f.
Section 4). We compare the performance of pre-trained LLMs with that of the counterparts of FTRL with bandit feedback,
e.g., EXP3 (Auer et al., 2002) and the bandit-version of FTPL (Abernethy et al., 2015), in both Figure E.3 and Table 1,

where GPT-4 consistently achieves lower regret.
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Figure E.3. Regret of GPT-3.5 Turbo/GPT-4 for online learning with bandit feedback in 4 different settings. It performs comparably and
sometimes even better than well-known no-regret learning algorithms, variants of FTRL and FTPL with bandit-feedback.
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E.7. Deferred Figures for Section 3.3
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Figure E.4. Regret of pre-trained LLMs for repeated games of different sizes, where sublinear regret is validated by both of our frameworks.
‘We report the regret of one agent for ease of presentation.
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Figure E.5. Regret of GPT-4 and the FTRL algorithm in 6 randomly generated three-player general-sum games. GPT-4 has comparable
(even better) no-regret properties when compared with the FTRL algorithm.
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Figure E.6. Regret of GPT-4 and the FTRL algorithm in 6 randomly generated four-player general-sum games. GPT-4 has comparable
(even better) no-regret properties when compared with the FTRL algorithm, according to the frameworks in Section 3.1 and the graphic

trends.
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E.8. Deferred Explanation and Details for Section 3.4

Canonical counterexample for follow-the-leader. To begin with, we consider a well-known example that follow-the-
leader (FTL) algorithm (Shalev-Shwartz, 2012) suffers from linear regret (Hazan, 2016, Chapter 5), where ¢1(1) =
5,01(2) = 0 and 4;(2 — t%2) = 10, 4:(1 + t%2) = 0 for t > 2, where % is the modulo operation. Interestingly, GPT-4
agent can easily identify the pattern for the loss sequence that the optimal action alternates, thus accurately predicting the
loss it will receive and achieving nearly zero regret in Figure E.7. In other words, GPT-4 agent seems to not fail in the same
way as FTL, which is known to be due to the lack of randomness in prediction.

Noisy alternating loss sequence. Inspired by the above, we design a new loss sequence that is similar but less predictable
by adding some noise to the canonical counterexample. Specifically, we construct the following (simple) loss sequence with
2 actions such that £;(1 + t%2) = min(25/t, 10), £¢(2 — t%2) ~ Unif([9, 10]) for ¢ € [25].

Adaptive loss sequence. We also develop a simpler but more adaptive loss sequence that takes the full power of the
adversary in the online learning setup. After the GPT-4 agent provides 7, we choose ¢; such that ¢; (argmax; m4;) = 10 and
0(3 — argmax; m;) = 0.

We also report the average regret over 20 repeated experiments for the later two settings using GPT-4 and more advanced
GPT-4 Turbo in Figure E.7, where we cannot reject the hypothesis that GPT-4 (Turbo) has linear-regret by either our
trend-checking or regression-based framework. These observations have thus motivated us to design new approaches to
further promote the no-regret property of LLM agents, with additional training, as to be detailed in Section 5. Before it, we
first provide some theoretical insights into the observed no-regret behaviors in many cases.

Alternating loss Noisy alternating loss Adaptive loss
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Figure E.7. (left) Regret of both GPT-4 and GPT-4 Turbo under the canonical counterexample for FTL (Hazan, 2016, Chapter 5). (mid,
right) Failure of GPT-4 and GPT-4 Turbo on two scenarios with regrettable behaviors, while Transformers trained by our regret-loss
provide no-regret behaviors.
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E.9. Ablation Study on Prompts

Ablation study on online learning. To systematically understand the effects of our prompt on the final performance of the
LLM agent, we create three different variants of our prompt and report the regret by using different prompts in Figure E.8.
Specifically, for Ablationl, we remove examples to illustrate the game rules. For Ablation2, we remove the number of
iterations. For Ablation3, we incorporate some hints for the LLM for decision-making, including the hints to suggest it
to pay attention to the loss history, to behave more greedily at the end of an episode, and also to explain the reason of
its decision step-by-step. The latter hint is a popular technique in prompt engineering known as the Chain-of-Thought
prompting (Wei et al., 2022b). Finally, we recall that d is the number of actions in all prompts.

Uniform Gaussian Linear-trend Sine-trend
10— Original prompt T Original prompt —— Original prompt —— Original prompt
Ablation 1 Ablation 1 Ablation 1 Ablation 1

3 30 10

8  —— Ablation 2 —— Ablation 2 —— Ablation 2 —— Ablation 2
—— Ablation 3 //\j\ ,  — Ablation3 —— Ablation 3 —— Ablation 3

6 J 20 5
. 1
0
0 10

Figure E.8. Ablation study on our prompt design.
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Original prompt

You are solving a decision-making problem for 25 rounds.
There are $d$ number of action (which is 0 to $d-135).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be $d$-dimensional, and the sum of its components should equal 1.
After that, you will be shown the reward vector for choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also $d$-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

For example, a reward vector of [0.8, 3.2] means reward for action_0 is 0.8
and the reward for action_1 is 3.2.

Then your reward for this round will be calculated according to the reward of
each action and your probability of choosing each action.

For example, if you choose the policy [0.2, 0.8] and get the reward vector [1, 2],
then your expected reward is 0.2x1 + 0.8%2=1.8

Your goal is to maximize your accumulative expected reward.
You can adjust your policy based on the reward vectors for all previous rounds.
You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
"Policy: [your S$d$-dimensional policy]’.

Ablationl: no examples

You are solving a decision-making problem for 25 rounds.
There are $d$ number of action (which is 0 to $d-19%).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be $d$-dimensional, and the sum of its components should equal 1.
After that, you will be shown the reward vector for choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also $d$-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

Then your reward for this round will be calculated according to the reward of
each action and your probability of choosing each action.

Your goal is to maximize your accumulative expected reward.

You can adjust your policy based on the reward vectors for all previous rounds.
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You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
"Policy: [your $d$-dimensional policyl’.

Ablation2: no round information

You are solving a decision-making problem.
There are $dS$ number of action (which is 0 to $d-19).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be $d$-dimensional, and the sum of its components should equal 1.
After that, you will be shown the reward vector for choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also $d$-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

For example, a reward vector of [0.8, 3.2] means reward for action_0 is 0.8
and the reward for action_1 is 3.2.

Then your reward for this round will be calculated according to the reward of
each action and your probability of choosing each action.

For example, if you choose the policy [0.2, 0.8] and get the reward vector [1, 2],
then your expected reward is 0.2x1 + 0.8%2=1.8

Your goal is to maximize your accumulative expected reward.
You can adjust your policy based on the reward vectors for all previous rounds.
You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
"Policy: [your $d$-dimensional policyl’.

Ablation3: adding hints

You are solving a decision-making problem for 25 rounds.
There are $d$ number of action (which is 0 to $d-13).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be $d$-dimensional, and the sum of its components should equal 1.
After that, you will be shown the reward vector for choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also $d$-dimensional.

It represents the reward of choosing action from 0 to $d-1$.
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For example, a reward vector of [0.8, 3.2] means reward for action_0 is 0.8
and the reward for action_1 is 3.2.

Then your reward for this round will be calculated according to the reward of
each action and your probability of choosing each action.

For example, if you choose the policy [0.2, 0.8] and get the reward vector [1, 2],
then your expected reward is 0.2x1 + 0.8%2=1.8

Your goal is to maximize your accumulative expected reward.
You can adjust your policy based on the reward vectors for all previous rounds.
You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
"Policy: [your S$d$-dimensional policy]’.

Let’s think step by step. Explicitly examining history is important.

Please explain how you chose the policy by guessing
what reward you might receive for each action according to the history.

You should explore for first several rounds and behave greedily for later rounds,
for example, choosing one action with probability more than 0.99.

Please also explain whether you are behaving more greedily and less greedily
by explicitly considering the policy you just used for last round.

We can see in Figure E.8 that the performances of LLM agents are consistent under different variants of the prompts.
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Ablation study on repeated games. For the game setting, we also investigate whether explicitly informing LLM agents

that they are ‘‘playing a repeated matrix game with some other opponents’’ would affect the
performance. Therefore, we evaluate three different prompts by informing LLM agents that they are playing a matrix
game, solving multi-arm bandit, or solving general decision-making problems, in the first line of the
prompt. We show the performance of such three prompts in Figure E.9, where it is seen that LLM agents’ performance on
repeated games is consistent among these variants of the prompts.

17.5 ~—— Multi-arm bandit
Matrix game
— Decision making

75 e -

0 5 10 15 20 25

Iterations

Figure E.9. Regret of GPT-4 for repeated games under 3 different prompt ablations. Its performance is consistent among three different
prompts.
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E.10. Ablation Study on Horizon Length

Considering the prevailing empirical evidence that LLMs start to struggle as the context length increases, we are interested
in understanding whether LLMs can still exhibit no-regret behaviors reliably as in Figure E.2, when the interaction horizon
is longer. Therefore, we conduct the experiments in Figure E.2 with 50 iterations for the relatively weaker LLMs, GPT-3.5

Turbo and Llama-3-70b. The results are shown in Figure E.10, where GPT-3.5 Turbo and Llama-3-70b can still be reliably
no-regret.
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Figure E.10. Regret of GPT-3.5 Turbo, Llama-3-70b, Mixtral-8x7b with longer horizons.

E.11. Results for GPT-4 Turbo

When preparing our paper, we are aware of a more advanced version of GPT-4, GPT-4 Turbo. Although GPT-4 has
successfully exhibited no-regret behaviors in most problems, we also evaluate and report the performance of its more
advanced version here. Specifically, we compare GPT-4 and GPT-4 Turbo for the repeated game scenario in Figure E.11,
where we validate that GPT-4 Turbo performs either comparably with or better than GPT-4.

E.12. LLM Agents’ Explanation on Their Output Policies

We here present two examples of LLMs’ explanations of their output policies, showing how they reason in their decision-
making.

Output Example 1

Looking at the history of the reward vectors, it is clear to see that the reward
for choosing action 0 is consistently higher than that for choosing action 1.
This pattern is evident across all 5 rounds of the game.

In the first round, the difference in rewards is 3.52, this remained relatively
stable with the difference in the last round being 3.52 as well.
It’s indicative that action 0 consistently brings a higher return than action 1.

Therefore, I’11 lean more towards selecting action 0 in my policy.

However, acting deterministically, that is always choosing action 0,
would introduce the risk of becoming too predictable and letting the opponent
exploit this predictability

So, in order to maintain some unpredictability while still capitalizing on the
higher average return of action 0, I’'"11l set my policy as follows: select action 0
with a probability of 0.8 and action 1 with a probability of 0.2.

This way, the majority of the time I’'m choosing the action that gives a higher
reward, but I’'m also occasionally choosing the other action to keep the
opponent guessing, and avoid any predictable patterns that can be exploited

So, my policy is as follows: Policy: [0.8, 0.2]
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Figure E.11. Comparisons of GPT-4 Turbo with GPT-4 and GPT-3.5 Turbo. Due to the symmetry of agents in randomly generated games,
we report the regret of one agent for ease of presentation. We can see that GPT-4 Turbo performs on par with or better than GPT-4.

Output Example 2
The total reward from action_1 is 130.92 and the average reward is around 10.07.

On the other hand, the total reward from action_0 is 33.418 and the average
reward is around 8.354.

Although action_0 has a less average reward, its highest reward is 26.977,
which is considerably high and shows its potential.

For this round, I want to continue to explore action_0 but also significantly exploit
action 1 as it reliably gives higher reward.

So, I'd like to decrease the probability of selecting action_0 compared to last time
but still keep it in the policy as a possible option.

The policy for the previous round was not provided but assuming
it was more balanced,I’m now going to lean more towards action_1.

So, the policy will be: [0.3, 0.7]. Here, I'm behaving more greedily compared
to earlier rounds, as we are choosing the action which has been giving us
higher rewards with more probability.

As observed from the output, the LLM tends to use the history of the reward vectors by looking at the “sum/average of
the accumulated rewards”, and tends to introduce randomization in decision-making, in order to be “less predictable and
exploitable”. These are several key components in achieving no-regret in online learning and games (Cesa-Bianchi & Lugosi,
20006), explaining the empirical evidence we had in Section 3.

F. Deferred Results and Proofs in Section 4
F.1. Pre-Trained LLLMs Have Similar Regret as Humans (Who Generate Data)

We first provide a direct observation based on some existing speculation on the capability of Transformer-based LLMs.
Recently, a growing literature has evidenced that the intelligence level of LLM agents are determined by, and in fact mimic,
those of human beings who generate the data for pre-training the models (Park et al., 2022; Argyle et al., 2023; Horton,
2023). The key rationale was that, LLMs (with Transformer parameterization) can approximate the pre-training data
distribution very well (Xie et al., 2022; Zhang et al., 2023b; Lee et al., 2023). In such a context, one can expect that LLM
agents can achieve similar regret as human decision-makers who generate the pre-training data, as we formally state below.

Observation 1. An LLM agent is said to be pre-trained with an e-decision error if, for any arbitrary t and loss sequences
(€3)ie[s), the following condition holds:

sug ’Pdaza(ﬂ (€i)ier)) — Prom(m| (fz‘)ie[t])‘ <k,
T
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where Py, and Pppy are the pre-training data distribution and the decision policy distribution of the pre-trained LLM,
respectively. Then, the regret of an LLM agent with e-decision error is bounded as:

(D-)Regret;; ((4t)ier)) € |(D-)Regret g, ((€e)rerr)) £ €|l SUE 7|l
mE

where [a £ b] := [a — b,a + D]

Observation | shows that the pre-trained LLM-agent’s regret can be controlled by that of the pre-training dataset and the
decision error €. A small € can be achieved if LLM is constructed by a rich function class, e.g., the Transformer architecture
(Zhang et al., 2023b; Lin et al., 2024).

Proof of Observation 1. For given ({4)ic[71s

T

Z/ Pom(ms | (Le)iefe—1)) (Lo, me)dmy < Z/ (Paaa (e | (€)icfe—1)) + €) (b, me)dmy
=1 e €I €I
holds, where we use the convention of Py (7 | (€o)) := Prim(7t) and Pyaa (¢ | (bo)) := Pyaa (7). Hence,
T T
Regretyy()err) = Y | Pium(me | (ie—y){bs, mi)dme — in >~ (6o,
t=1 7 m€ll et
T T
< / (Paaa(me | (€3)iepe—1)) + €) (by, m)dmy — lﬂf Z g, )
t=1 7/ m€ll
T
= Z/ (Pdata(ﬂ't | (€i)iepe— 1])) (be, m)dmy — 1nf Z (b, m) + Z/ (b, eme)dm
t—1 Jm€Ell e €11

< Regrety,, ((¢)eer)) + €ll€llpllmlloT

1

where 1% + 5 = land p,¢ = 1. Similarly, we can establish the lower bound for Regret;; \;((¢:):e[7)). To prove

the result for the dynamic-regret case, we can simply change the term inf, <y Zthl (£, ) in the above derivation to
T .
Yoo infren(l, ). O

F.2. Background and Motivations for (Generalized) Quantal Response

Formally, the quantal response is defined as follows:

Definition F.1 (Quantal response). Given a loss vector { € RY, a noise distribution € ~ Py, and n > 0, the quantal
response is defined as

P ntal (a]l) = (a € aigénjn z(a’)) ) where z = {4+ ne.

In essence, this implies that humans are rational but with respect to (w.r.t.) the latent variable z, a perturbed version of
¢, instead of { per se. This addition of noise to the actual loss vector characterizes the bounded rationality of humans in
decision-making.

F.2.1. A (HUMAN) DECISION-MAKING MODEL: QUANTAL RESPONSE

A seminal model for human decision-making behavior is the quantal response model, which assumes that humans are often
imperfect decision-makers, and their bounded rationality can be modeled through unseen latent variables that influence
the decision-making process (McFadden, 1976; McKelvey & Palfrey, 1995), for which we refer the formal definition and
introduction to Appendix F.2. However, the traditional quantal response formulation primarily focused on scenarios with a
single loss vector. In online decision-making, given the history information, the decision-maker at each time ¢ is faced with
multiple loss vectors. Hence, we adopt the following generalization to model the decision-making behavior in this setting.
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Definition F.2 (Quantal response against multiple losses). Given a set of losses (E,;)ie[t], a noise distribution € ~ P,,;., and
nt > 0, the generalized quantal response against ({;);c[y is defined as

. t
Z&) =P (a € argmin Z(a/)> , where z = e+ ) i,
i=1

PqZZmul (a' } (El)le[t]) = F,qnuimtal <CL

a’eA i—1
In simpler terms, the generalized quantal response is defined as the standard quantal response against the summation of the
losses. Such a model has been investigated in the learning-in-games and behavioral economics literature (see Appendix F.2
for more details). Such a definition is also aligned with our empirical findings on LLMs’ behavioral patterns in Section 3.2:
1) evaluating the summation/average; ii) introducing randomization in decision-making. To gain more insights into these
empirical findings, we next analyze a case where pre-training under certain canonical assumptions provably leads to the
quantal response behaviors and further yields no-regret guarantees.

Further motivations for generalized quantal response. Note that a dynamic version of quantal response in Definition F.2
also has implications from behavior economics, and has been recently used to model human behaviors in sequential
decision-making (Ding et al., 2022) (in stochastic and stationary environments). Indeed, such a response against multiple
loss vectors is believed to be natural, and has also been widely adopted in well-known no-regret learning algorithms of
smooth/stochastic fictitious play (Fudenberg & Kreps, 1993) and follow-the-perturbed-leader (Kalai & Vempala, 2005),
whose formal definitions can be found in Appendix D.3. Finally, note that the response model in Definition F.2 does not
necessarily involve a sequential decision-making process, i.e., the set of losses may not come from the history of an online
learning process.

F.3. Detailed Explanation for the Meaning of ~ and Assumptions on Pre-training Distribution

The pre-training dataset, however, only contains partial observations x1.n, (a natural language representation of ¢;.;) of
z due to imperfect data collection, which could be attributed to the fact that z is private to the data-generator (human),
representing the actual intention of the human/data-generator. Hence, LLM will only be pre-trained with partial and
noisy information about z. Meanwhile, we assume that some high-quality action label z, y1.n,,, (a natural language
representation of a) w.r.t. the underlying loss vector z is also available in the dataset, which could come from user surveys,
personal blogs, or data annotation. We formalize such an assumption:

Assumption 1 (Pre-training distribution). Given T € N*, t € [T], Nyy1 € NT¥, there are latent variables
(2,41:¢), N1,-++, Ny € [Neya], No = 0, such that P(z, 4., 71.n,,,) = P(2,l1.0)P(x1:N, [ l1:)P(¥N, 4 1:8,4, | 2), and
Pl (zin,,,) = Prun,,) = [, fél-t P(z, 014, 21:N, ., )dl14dz. Intuitively, tokens {xn,_,41:N, }ic|y) encode the con-
text, i.e., information for {1.;, and the user will decode action a from TN, 41:Nyys-

To further understand our assumption, we provide an example in Appendix F.4, showing how a natural text corpus may
satisfy it. Similar assumptions that suppose the existence of such latent variables in generating the pre-training datasets
have also been made recently in (Lee et al., 2023; Lin et al., 2024; Liu et al., 2023b), for understanding the in-context
decision-making behaviors of LLMs/Transformers through posterior sampling, for which we defer a detailed comparison to
Appendix F.9. In particular, we show in Theorem 4.1 that if the noise, i.e., £; — z is modeled as Gaussian distributions and
TN, +1:N,,, encodes the optimal action for z, the pre-trained LLM provably recovers the prominent human behavior model
in Appendix F.2.1, the quantal response model.

F.4. The Example Instantiating Assumption 1

Example 1 (An example instantiating Assumption 1). We consider a common decision-making task that may generate the
training data, recommender systems. An instance of the text data could be: “On September 29, 2023, user X clicked movie
A three times, movie B eight times, and movie C five times”. This sentence corresponds to xn, ,+1:N, for some i € [t]
and serves as a natural language depiction of the numerical {;. The corresponding label v, 1.n,,, can be obtained by
some user survey: “User X's favorite movie is movie B”. Meanwhile, z represents user X’s latent, genuine preference for
each movie — information that is private to the user, and cannot be observed or collected in the pre-training dataset. In
this example, Assumption 1 suggests that x1.n,, which records the frequency of interactions with each movie, serves as
an imperfect estimate of the user’s latent, genuine preference for the movies, while the text xn, 1.n,,, depicts the user’s
favorite movie only based on her latent z.
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F.5. Alignment of Assumption 1 with Quantal Response

Before presenting the technical lemma, based on Assumption 1, we denote the (potentially unkown) mappings that decode
semantic information in Assumption 1 into numeric values as f, g, such that f(zn, ,+1.n,) = £; € R? for each i € [t] and
g(th+1:Nt+1) =ac A

Lemma 1. Fixt € [T], 0 > 0. If we model the noise of data collection to be i.i.d. Gaussian distribution in the numeric
value space, i.e.,

X z 2
O(Hexp( l|f(zn,_ 1;;21\/) ||2),

the prior distribution of the latent variable z is also Gaussian, i.e., z ~ ./\/(Od7 02]), and the text labels satisfy that
Plg(xnN,+1:N 0 ) | 2) = 1 (g(th+13Nt+l) € argmin, ¢ 4 za), then we have

({f TN, 1+1:N;) ) HP (TN, +1:N;)

P (g(INt+1:N,,+1) | xl:N,,) Pgu%l (g(th+1:Nt+l) | {f(INL'71+11N11)}¢€M) )

with Ppoise = N (04, I) in Definition F.2, i.e., the action a = g(Tn,+1:N,., ) extracted from the text Ty, y1.n,, is a quantal
response w.rt. the loss vectors (f(xN7,—1+1:Ni))ie[t]'

Proof. Note that
Ple o) = [ Plautulonn ) = [ Bllr |01 B 21w, fua)devs
Zl;t Zl:t
For P(¢1.+ | 21.n, ), since we have assumed the existence of function f to decode ¢;.; from x1.y,, it holds that

t

Pl |21w,) = [[ 6 (6 = flan,_,1m,))

i=1
where we use § to denote the d-dimensional Dirac-delta function. For P(z | 21.n,, £1.¢), by Assumption 1, it holds that
P(z, 21N, l1:0) = P(2, 01.0)P(2 1N, [ £1:4),

which leads to P(x1.n, | ¢1.t) = P(z1.n, | 1.4, 2) by Bayes rule. This implies that the random variable x;.y, and z are
independent conditioned on ¢;.;. Therefore, it holds that P(z | z1.n,, £1.t) = P(z| £1.+). Finally, we can compute

(z|z1:N,) / (2,014 | T1.N, Al = / H5 F@n,_+1:n,))P(2 | £r:0)dly
1

ltZ 1

( (i = f(xn, 1, ))z‘e[t]>'

Based on this, we conclude that

P(g(eNys1ves) | 21,) = / P(g(@ne 1) | 2 1 Bz | 21,1, )z

z

- / P(g(enps1vns) | 2Bz | {6 = F(@n, s o1m) bici)dz

=P (g(th+1:Nt+1) | (Ei = f(xNiﬂ-‘rl:Ni))ie[t])

where the first equality is by the independence between x, 1., , and z1.n, conditioned on z, due to Assumption 1.
Therefore, it suffices to consider the probability of P(a | ¢;.;) only, in order to analyze P(g(xn,+1:n,,,) | #1:n, ), Where we
recall the definition that a = g(z N, 41:n,,, ). Since z ~ N (04, 0%1), and ¢; | z ~ N (z,0%I), we have

2

~J —_— 75 5 F.l
2| by ~ N —t %;]E ! (E1)
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by the posterior distribution of Gaussian distribution. Now we conclude that

Pla|ty.) = /]P’(a |2, 1.4)P(2 | 1.4)dz = /P(a | 2)P(z ] 41.4)dz

z

o 1
= ]laEarminza/]P’zézdz:/]l a € argmin [ ——€e + —— l; P(e)de
[ 1t € arguin )P s = [ 10 € anguin | 2 2D ©

a’

:/]l a € argmin Ux/t—i—le—&—z& P(e)de =P | a € argmin ax/t—i—le—&—z&

a'€A ieft] a'€A ieft]

a’ a’

- PU frl (a|€1:t)7

quantal

where P(e) = N (04, I). This completes the proof. O

F.6. Relationship between FTPL and Definition F.2

Fact 1. Performing generalized quantal response of Definition F.2 at every iteration t € [T| w.r.t. history loss vectors {1.1—1
is essentially executing an FTPL algorithm.

Proof. Before we move to the proof, we will define the random variable which has distribution Pgise as Zpoise- NoOte that at
round ¢ > 2 (as the policy at round ¢ = 1 is fixed), we have

a’€A

t—1
P(;Zfa;tlal(a [l1.4-1) =P <a € argmin (Z 4+ ’I7t_16> (a’)) (F2)
i=1

which is exactly the case when ¢; in Equation (D.2) satisfies €, 4 Nt—1€. O

F.7. Formal Statement and Proof of Theorem 4.1

Theorem F.1. (Emergence of no-regret behavior). Under the assumptions of Lemma 1, suppose the function class
of LLMy is expressive enough such that for all t € [T], maxgeo E Zjv:ﬁl log LLMy (x| z1.j-1) =
t+1

MAX (g, (Vi1 AWM, a1 IEILNHlNme Z;.V:l log q; (x| 1:j—1), where we define qi(x1 | x1.0) = qi(z1), and
0* maximizes Equation (4.1). Then, there exist (simple) algorithms using LLMy+ to achieve no (dynamic) regret for
(non-stationary) online learning with full-information/bandit feedback. To be specific, for (2) and (4), by defining the
variation bound ZtT:_ll i1 — Le|loo < Vi such that Vi < T and Vi = O(T?) for some p € (0, 1), it holds that for large
enough T, d:

text
1N, g VPO

(1) For online learning with full-information feedback, Regret;;, . ((Et)te[T]) <O (\/Tlog d) ;
(2) For non-stationary online learning with full-information feedback, D-Regret; ;. ((¢)ierr) < O ((logd Vip)Y/3T2/3) ;
(3) For online learning with bandit feedback, I [Regret; ;.. ((€1)ieir)] < O ((log d)1/2dT/2+ 1/ 108 T 00 T)

IN

(4) For non-stationary online learning with bandit feedback, E[D—RegretLLMe* ((Et)te[T])}
O ((T2d?Vr)/3(log d)V/2TV/ e T log T') .
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Proof. Note that
Niy1
Epyn,, ~pieet Y log g (2] 21-1)

max
{q_7~G{Vj’lﬂA(V)}}je[Nt+1] j=1

= max [E, ~ptext 10g q(x1. N
qu(th+1) :cl_Nt+1 Pt g ( t+1)

_ _ text tomt text )
- quIg?f?’iH) KL(Pt | | (]) + EIl;Nt+1NPt [Pt (x1~Nt+1)]7

where KL (¢ | | p) denotes the Kullback-Leibler divergence between two distributions p, . Now we define LLMy(21.n,,,) =

i\lfl LLMg(z; | z1.j—1). Itis easy to verify that LLMg(z1.n,,,) € A(VNt+1), i.e., it also defines a valid joint distribution
over tokens. Therefore, we have
Nty
I;lélé(]EIl:NH_lNPttezt Zl log LLMg (z; | z1.j—1) = %1€a®xEI1:NH1NPtnm log LLMg(21:n,,,)-
j:
Now, due to our assumption that
Ny
?Eaé(EthHlNPf”t Z log LLMyg (z; | x1:j—1)
=1
Nty
= ~ max E, o plest logq; (x| x1.5-1)
{(Ijé{vjfl—)A(V)}}je[Nfﬂ_l] T1:Nyyq t j; J J J ’
we conclude that
min KL(P/*""| [LLMy) = min  KL(P/*""| |q) =0,
[4SS) qeA(VNt+1)

which implies that LLMg~ = Ptt”t. Correspondingly, if we define LLMg« (z N, +1:N, o | 21.,) to be the distribution
induced by the joint distribution LLMg+ (1., , ), it holds that

LLMQ" (th+1iNt+1 |$15Nt) = P(th+1iNt+1 |$15Nt)'

In other words, intuitively, LLMy+ has learned the corresponding pre-training distribution perfectly. Note that this
has been a common assumption in the Bayesian perspective of ICL (Xie et al., 2022; Lee et al., 2023; Zhang et al.,
2023b). Therefore, to analyze the actions taken by LLMg-, it suffices to consider P(g(xn,+1:n,,,) | #1:n, ), Which is
P(r\/t+1

equal to uantal

(g(thH;NHI) ] {f(xNi—l"Fl:Ni)}ie[t]) by Lemma 1. Therefore, we proved that LLMy- is essentially

mimicking the well-known no-regret algorithm, FTPL with perturbation distribution as A'(04, 02tI) for round t € [T7,
according to Equation (F.2) of Fact 1, for which we can establish the corresponding regret guarantee for each case:

(1) Combining the above result with Lemma 2, we can derive the regret bound for online learning with full-information
feedback.

(2) Combining the above result with Lemma 2 and Lemma 4, we get that

2T
D-Regret; ;. ((4i)ierry) < min —C+\/Arlogd + 2ArVr,
o Are[T) Ap

for some constant C'. We firstly consider the following problem
2T
m>i{)1 —Cv/ulogd+ 2uVr,
u u

C?*T2%logd

1/3
vz ) . Therefore, if we have u* € [1,T], we can choose Ap = [u*], which

where the optimal solution is u* = (
results in a regret bound of

2T
D-Regrety; y,, ((4i)ic[ry) < ﬁC\/logd +4u V=0 ((logd VT)1/3T2/3> .
U
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Now we check the conditions for u* € [1, T. It is direct to see that since V;r < T, w* > 1 holds as long as d is sufficiently

large. To ensure u* < T', we get the condition Vi > C l'de, which holds as long as T’ is large enough.

(3) Combining the above result with Lemma 3, we can prove a regret guarantee for online learning with bandit feedback.

(4) Combining this result with Lemma 3 and Lemma 4, it holds that

2T 1, 1
E[D-Regretyy,,. ((£:)icpry)] < min ~—C(logd)*dAZ" ™7 log Ag + 2A7 Vi,
Are[T] Ar

. - . 22\ 1/3
for some constant C'. By adopting a similar analysis as that of (2), we choose u* = (C 32‘1 ) for some constant C’. If
T

u* € [1,T], we choose Ap = [u*] and derive the following regret:
E[D-Regrety . ((£:)seir)] < O ((TdeVT)1/3(log )27V 18T |og T) .

Now we check the condition of u* € [1,T]. Note that since Vi < T, u* > 1 holds as long as d is sufficiently large. For

uw* < T, we have Vp > 0;12’ which holds as long as 7' is large enough.

Now, we present Lemma 2 - Lemma 4. Before proceeding, we assume ||¢;|| < B = 1 for simplicity of presentations
hereafter. The results and proof are not affected by the constant bound B.

Lemma 2 (Regret guarantee of FTPL with full-information feedback). Suppose the noise distribution of FTPL satisfies that
€t ~ N(04, 1) in Equation (D.2) and (; = o+/t, then for online learning with full-information feedback,

1
Regretirp ((4i)icir)) < 4 (0’ + a) VTlogd = O(y/Tlogd).

Proof. By Theorem 8 of (Abernethy et al., 2014), we have

Regretprpy ((£i)ierr)) < /2 V2logd <77T + Z *HEtHQ )

Therefore, plugging ¢; = o/t and ||£;]|%, < 1 provides

Regretprpy ((£i)ierr)) < /21logd (J\F+ Z \[> <J + 1> VT logd,

completing the proof. O

Lemma 3 (Regret guarantee of FTPL with bandit feedback). Suppose the noise distribution of FTPL satisfies that €; ~
N(04,C2I) in Equation (D.2) and (; = o+\/1, then for online learning with bandit feedback,

E[Regretrrp; ((£i)icrr))] < O((log d)%dT%‘L@ logT).

Proof. The proof of the bandit problem is more complex. We first define the following notation. We denote G; =
Zi,zl —ly, Gy = 21':1 —ly, ®(G) = max,(m, G), ®1(G) = Ecupno,,1P(G + (t€), and Dy, to be the Bregman
divergence with respect to ®;, where we recall the construction of the empirical estimator E/ of ¢4 in Section 3.2. By (Li &
Tewari, 2017), 7y = V®;(G}). Now due to the convexity of ®,

o(Gr) = ®(E[Gr]) < E[®(Gr)).

Therefore,

T
Z Wt,*gt

t=1

E[RegretFTPL((gi)iE[T])] =®(G

T
—E Z<7Tt,zt>] <E|®
=1
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By recalling the definition of the Bregman divergence, we have

T T T
=N =) = =Y (V(G), —l) = =Y (V8(Gy), Gy — Gia)
t=1 t=1 t=1
T ~
ZD@ G, Gir) + 0u(Gra) — 4(Gy).

Therefore,

E [RegretFTPL ((6i)ie [T] )]

T
<E lZD@ Gi,Gra)

t=1

T

+E Z Gt 1) (I)t—l(ét—l)

+E [@(GT) — 3,(Gr)).

4! e o

(i7) < 0 due to the convexity of ®. For (i), we use Lemma 10 of (Abernethy et al., 2014) to obtain

E Y 0(Gio1) — ®1-1(Gi1) | < CrE[®(e)] < O(1/2T log d).

For (i), by Theorem 8 of (Li & Tewari, 2017), for any « € (0, 1), the following holds:

E[S" Dy (@G T < M o
Z @ (G, Go-) Z 1—a)_a(1—a) ( )
t=1 =1
By tuning o = %, we proved that E[Regretgrp; ((£i)icir))] < O((log d)%dT%-F@ log T). O
Lemma 4. Denote the variation of loss vectors as Ly = Zt Y1[i41 — ]| so. Suppose there exists an algorithm < for

online learning with full-information feedback with regret guarantee that Regret ., ((¢;)icir)) < f(T),d) for some function f,
where T denotes the horizon and d denotes the policy dimension. Then, there exists another algorithm /' that can achieve

T
D-Regret 4. ((¢;); < i —+1 Ar,d) +2ArLy.
egret ., (( )e[T]) A?é?T](AT—i— )f( 7,d) + 2A7 Ly

Similarly, suppose there exists an algorithm % for online learning with bandit feedback with regret guarantee that
E [Regret5(((:)icir))] < 9(T,d) for some function g; then there exists another algorithm %' that can achieve

. T
E[D—Regret%,((&)ie[;p])} < AI;lell[lT (AT + 1) g(AT, d) + 2ATLT.

Proof. We denote 7’ as the algorithm that restarts </ every A iterations. We break the time index [T] into m batches
T1.m of size Ar (except for, possibly the last batch). Denote £ := min ¢ [q) £;;. By Equation (6) of (Besbes et al., 2014), it
holds that for each k € [m]

min I 0 < 2ArLy,
je[d](z t) 2 <2k

teTx j €Tk

where we define Ly, = >, [|€i+1 — £¢]|c- Therefore, we have

D-Regret ., ((£;)icr]) < I_nifll Z 4 Z o+ Z Regret , ((4i)ic[7,,) (E3)
geld] te[T] j te[T]
<2A7( Y Li) + (T/Ar + 1)g (AT,d).
ke[m]

40



Do LLM Agents Have Regret?

By Equation (4) of (Besbes et al., 2014) that | ye(m] Lk < Lt and this inequality holds for any Ar € [T, we proved
D-Regretd,((&)ie[T]) < mina e[y (ALT + 1) f(Ar,d)+2ArLy.

Similarly, if we take the expectation for Equation (F.3), it holds that

E[D-Regret 4 ((£;)icir))] < I_Ielin Z 4 Z ;+ Z [Regret g ((4i)ic[T:))]
te[T] j te(T] ke[m

&

T
in (— +1)g(Ar,d)+2A7Ly,
< iy (g 1) otar )+ 2000

thus completing the proof. O
Combining the results above completes the proof for Theorem 4.1. O

F.7.1. IMPLICATIONS OF THEOREM 4.1 FOR REPEATED GAMES

Remark F.1 (Implication for playing repeated games). First, we note that the no-regret guarantee in the online setting is
stronger than and thus implies that in the game setting, since regret by definition handles arbitrary/adversarial environments,
while in playing games the opponents are not necessarily as adversarial. Second, it is folklore that if all players in the
repeated game follow no-regret learning algorithms, then the time-average policies of all players during learning constitute
an approximate coarse correlated equilibrium of the game (Cesa-Bianchi & Lugosi, 2006). Hence, the results (1) and (2) in
Theorem 4.1 imply that a coarse correlated equilibrium will emerge in the long run from the interactions of the LLM agents
(under certain assumptions as in the theorem).

F.8. Extending Theorem 4.1 with Relaxed Assumptions
F.8.1. RELAXATION UNDER MORE GENERAL DATA DISTRIBUTIONS

We first remark on the possibility of relaxing the Gaussian assumptions on the data distributions.

Remark F.2 (Relaxing the Gaussian distribution assumption). In the proof of Lemma 1, to obtain the result that the action
is a quantal response w.r.t. {1.7, one does not necessarily require both the prior distribution of z and the conditional
distribution of {; given z to be Gaussian. Instead, for any joint distribution P(z, {1.1), as long as its posterior distribution
satisfies Equation (F.1), it would suffice. It is a combined effect of both the prior and the conditional distributions.

More formally, we can extend Theorem 4.1 to the case with a much more general prior task distribution than the Gaussian
one, where the key is that Equation (F.1) only needs to hold approximately.

Theorem F.2. In Theorem 4.1, we can relax the assumption on P(z) to one where we only require P(z) to be i.i.d for each
coordinate of z and 0 < P(z;) < oo, (zj)| < oo forany j € [d], z; € R, and the bounds for (1) and (2) of Theorem 4.1
still hold, with only a degradation of O(d*logT).

The key idea of the proof is that when ¢ is large enough, the prior distribution does not affect the posterior distribution,
which is also referred to as the Bernstein—von Mises theorem (Van der Vaart, 2000).

Proof. Since we extend Theorem 4.1 to settings with general task prior distribution only requiring the coordinates to be i.i.d,
from now on, we consider the j-th coordinate only. To begin with, fix ¢ € [T], we define the log-likelihood of the posterior
as

¢
1 . t 1
Li(25) : logH We —ar i) = —tlogo — 3 log 27 — E ﬁ(&j - 2)%

(2m) =

Then, the MLE estimator Z; ; is defined as
Z. Li(z;) ! E 14
4 i= arg max ) = — i
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We also define jt :R — Ras:

~ 2 .
Ti(sy) = - Ez) L

t o

For Assumption 1 of (Kasprzak et al., 2022) to hold, any 6 > 0, M, > 0 suffices.

For Assumption 2 of (Kasprzak et al., 2022) to hold, we can choose ]/\4\1 = MAax,, c[6,1+6] ﬁzj)
For Assumption 7 of (Kasprzak et al., 2022) to hold, we choose § to be o.

For Assumption 8 of (Kasprzak et al., 2022) to hold, one can choose My = £

For Assumption 9 of (Kasprzak et al., 2022) to hold, we have

t

Li(2) — Li(Z54) 1 SR , 1
k< — sup = — sup (i —Zj0)° — (bij — 25)° = —.
(Zj_gj)zz(g t 202t (Zj—gj,t)zzéi:; J 7 7 J 4o
For Assumption 10 of (Kasprzak et al., 2022) to hold, we choose M; = sup, c[_s14] ’M . M, =

SUp ¢[—s,1+4) [P(2;)| since we have assumed that 0 < P(z;) < oo, [VP(2;)| < oc.

By Theorem 6.1 of (Kasprzak et al., 2022), we have
~ _1_,2
/ IP(2;/VEt+ 2 | (Lij)iep) — Ce™ 2277 |dz;
2 o~
= \/i/ |P(ZJ ‘ (glj)’LG[t]) — N(/Z’\j, %)\dz] S Dlt_1/2 + D2t1/26_tﬁ + 2D(t,5),

where C is the normalization constant and

\/Mj\//f 302
D, = - \/>U Ms + M,

_ 2MLJP(3,9)
©(2m)1/2(1 — Dr(t,5))
D(t,6) = e 3 (Vim1)?
1 6M,
o2 3

HEBE

2

Therefore, we conclude that the TV distance between z (conditioned on (£;);c[4) and N (3, %) satisfies that

2
/ P(z; | (Lij)ier) —N<3jagt)

due to the independence of (z;),c[q conditioned on £;.;. Now we denote algorithm FTPL to be the FTPL algorithm w.r.t.

the noise distribution P(z | (¢;);c[y)), and FTPL to be the algorithm w.r.t. the noise distribution N (Z, ‘772) Therefore, we
have

de < O(d/t),

B(z| (£)iery) —N(z )

}RegretFTPL((g)ie[T]) RegretFTpL )ic T] Z dl|me — 7| oo
~ U 2
<dZ/|]P’ i)ielt)) N(Z,T)|dz:(9(d logT).
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In other words, using P(z | (£;);c[) as the noise distribution only increases the regret by O(d? log T'). Similarly, it is easy
to see that

|D'RegretFTPL((€)i€[T]) - D'Regret]:/'rﬁ_((e)ié[T]” < O(d2 logT),

which completes the proof. O

F.8.2. RELAXATION UNDER DECISION-IRRELEVANT PRE-TRAINING DATA

We then remark on the possible relaxation when the training data may not all come from decision-making tasks.

Remark F.3 (Pre-training with relaxed data assumptions). Note that the pre-training (text) data are so far assumed to
be related to decision-making problems (though not necessarily sequential ones), see Assumption 1 and Example 1 for
instance. It can also be generalized to the text datasets involving Question-Answering (Q-A), a typical task in natural
language processing, where the true/fact answer, sampled answers from different human users (with possibly wrong or
biased answers), correspond to the latent z (and associated maximizer a) and (1.1, respectively. Moreover, in practice, the
pre-training data may also involve non-decision-making/Q-A texts, given the diversity of the datasets. For such scenarios,
we will make the assumptions on the data distribution conditioned on the prompt for decision-making. Specifically, when
interacting with the LLM, human users will provide prompts (see e.g., our Figure E.1), to induce it to make decisions. This
will query the conditional distribution of

P (9(2N,4+1:Nes1 ) | #1:n, , decision-making prompt)
to generate the control action. Correspondingly, Assumption 1 will thus only need to be made on
P (z, ly:t,21:N, ., » decision-making prompt) ,
while we do not need to make such assumptions on other prompts, e.g., corpora that are not related to decision-making.

F.9. Comparison with (Lee et al., 2023; Lin et al., 2024; Liu et al., 2023b)

Intriguingly, similar assumptions and pre-training objectives have also been considered in the very recent work of (Lee et al.,
2023; Lin et al., 2024; Liu et al., 2023b) for studying in-context reinforcement learning property of Transformers/LLM-
agents under supervised pre-training. (Lee et al., 2023) established its equivalence to posterior sampling (Osband et al.,
2013), an important RL algorithm with provable regret guarantees when the environments are stationary, and (Lin et al.,
2024) generalized the study to the setting of algorithm distillation as in (Laskin et al., 2023). (Liu et al., 2023b) adopted the
similar data generation assumption as (Lee et al., 2023) without assuming optimal labels are available in the pre-training
datasets, but leverages external oracles for planning. Consequently, the resulting LLM agent would still perform the posterior
sampling algorithm. However, these results cannot directly imply the no-regret guarantee in our online learning setting, due
to the known fact that posterior sampling can perform poorly under potentially adversarial or non-stationary environments
(Zimmert & Seldin, 2021; Liu et al., 2023a). In contrast, we here establish the equivalence of the pre-trained LLM to
the FTPL algorithm (under different pre-training data distribution specifications), with the ability to handle arbitrary loss
sequences, even though the LLMs are only trained on a fixed/stationary distribution of texts (tasks).

F.10. How Well Can Cur Hypothetical Model Predict Actual LLMs’ Behaviors?

To further verify our theoretically-justified model in Theorem 4.1, we propose to estimate the parameters of {nt};jr:_ol in
Definition F.2 using the interaction data with actual LL.Ms, and use the estimated model to predict LLMs’ behaviors on
some test set. In Figure F.1, we show the averaged regret for the LLMs and our estimated model, where the generalized
quantal response can very well capture the behavior of the LLM agent for all problem instances in Section 3.2, on which the
LLMs are oftentimes no-regret, justifying the applicability of our hypothetical model and assumptions.

F.10.1. DETAILS OF ESTIMATING THE PARAMETERS OF OUR HYPOTHETICAL MODEL

To further validate our model and data distribution assumptions, we also propose to estimate the parameter {7; };c[7—1) in
Definition F.2, using data from interacting with LLMs (following the same protocol as before), with P,,;s. being a standard
normal distribution (note that we do not need to estimate 779 by Definition F.2). Specifically, given n episodes of the LLM
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Examples in Sec. 3.2

GPT-4 regret:

0TI prans Bo Preg) (0.0, 0.46, 0.0)
GPT-4 dynamic regret:

30 (Prrends> Bos Preg)=(0.0, 0.89, 0.0)

Generalized QR regret: ’.X"‘

—.— A
20 (Prrends; Bo, Preg)=(0.0, 051, 0.0)
Generalized QR dynamic regret:

—— -
10 (Prrends Bos Preg)=(0.0, 0.92, 0.0)

10 15 20 25

[terations

Regret/Dynamic regret

w

Figure F.1. Comparison of GPT-4 with the generalized QR model, where the model can very well capture the behavior of the GPT-4 agent
for examples in Section 3.2.

agent’s behavior {(Egj ), w,ﬁj ))tE[T] }je[n)» motivated by our Lemma 1 and Theorem 4.1, we estimate {7; };c[7—1) by solving

the following problem

. j VEFT
or € arg min Z Z Hﬂ-t(i)l - P;uantal ( )
te[T—1] j€[n]

G

, ny =ocVt+1, Vtel[T-1].

We solve this single-variable optimization problem by grid search over [0, 10]. We then run the generalized quantal response
model with the estimated {7 };c[7—1] on another unseen test set, and compare it with the behavior of the actual LLM agents.
We use all the interaction data from Section 3.2 and split it in half for training and testing.

We also use the same framework to understand the regrettable behaviors in Section 3.4. This analysis uses all the data from
Section 3.4. We first find that such fitting procedures do not yield good predictions for LLMs on those counter-examples.
Therefore, we resort to a more expressive model by directly fitting each 7, as

() Tt
Tey1 — Pquantal :

)

. .
€ ar
i € argmin 3 | ,
J€[n]

separately for each ¢ € [T' — 1]. Even under the expressive model, LLM:s fail to follow the generalized quantal response
for the counter-examples with noisy alternating or adaptive loss sequences, as Figure F.1 shows the gap between GPT-4
(dynamic) regret and the our model’s (dynamic) regret.
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G. Deferred Results and Proofs in Section 5
G.1. Regularity Conditions on f and h

h : R — R™T is a continuous function, with continuous derivative A/, and f (k) :R— R™ is a continuous function for
each k € NT, satisfying limy,_, oo ;Egig =00 1(R; > Rs) + 1(R; = Ry), where we use the convention of co - 0 = 0.

These conditions on &, f will be assumed throughout the paper. Examples of such an f include f(xz, k) = x* and exp(kx).

Additional regularity conditions for Theorem 5.1. For any k € N7, h, f(-, k) are non-decreasing, and log f is a
supermodular function (i.e., log f(R1, k1) — log f(R1,k2) > log f(Ra, k1) — log f(R2, k2) for Ry > Ry and k1 > k2)

G.2. Basic Lemmas

Lemma 5 (Double iterated limit). For a sequence (amn)m,n@w, suppose that lim,, p—yec Gmn = L. Then the following
are equivalent:

e For each m, lim,,_y oo Gy, €XiStS;
o lim,, oo My, —soo Qrmn = L.

Lemma 6 (Hoeffding’s inequality). Let X1, Xo, ..., X, be independent random variables bounded by the intervals [ai, b;),
respectively. Define X = 237" | X; and let u = E[X] be the expected value of X. Then, for any t > 0,

- 2n2¢?
P(|X — p| > 1) < 2exp <_W) :
=10 = @i

Lemma 7 (Uniform convergence = Interchanging limit and infimum). If (f,, : X — R),en+ is a sequence of continuous
functions that uniformly converge to a function f : X — R on the domain X, then lim,,_, o, inf,cx fn(z) = infrex f(2)
holds.

G.3. Deferred Proof for the Arguments in Section 5.1

In this section, we prove some properties of £(6, k, N) under certain regularity conditions of f, h. Throughout this
subsection, we will assume the following condition holds.

Condition 1. Forh: R — R" and f : R x Nt — R™, suppose h(-) and f(-, k) are both continuous and non-decreasing
functions for any k € N¥t. The derivative h' : R — R is also a continuous function. Moreover, f satisfies that
log f(Ry,k1) — log f(R1,k2) > log f(Ra, k1) — log f(Ra, ko) for Ry > R and ky > ko, i.e., log f is supermodular.
Lastly, f is a function such that limy_, o, ;Eg;:g =00 1(Ry > Ry) + 1(Ry1 = Rs), with the convention of co - 0 = 0.

TxN

Lastly, (Egj ))tE[T] je[N] are continuous random variables supported on [—B, B]

Claim 1 (Tterated limit of £(6, k, N) is the same as double limit of £(6, k, N)). It holds that:

N—00 k—o0 k—o00 N—o0 l1,..., b

lim lim £(0,k,N) = Nl}im L(0,k,N)= lim lim £(0,k,N)= h( max RegretLLMs((ﬁt)tE[T1)> .
,k—o00

Proof. Step 1. Proving limy_, o limy 0o £(0,k, N) = h (max, ... ¢, Regrety v, (€)ieiry))-

Firstly, as both /2 and f are non-negative (Condition 1), and E, €9 e rr s ) [h(maxje[ N Regrety; . ((ggj ), G[T]))} exists,

we have by dominated convergence theorem that

lim £(0,k,N) =E lim

k—o0 k—o0

[Zjem h(Ruo, (67 )eepr) F R, (G )ee i) k)]
> ey S (B, (6 eeiry), k)

= (4)
o E(Eij))te[T],]e[N] [h(;ré%vx] Riim, ((Ktj )te[T]))}
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where Ripm, denotes an abbreviation of RegretLLMe. By (?)Chapter 11]ahsanullah2013introduction, we have

h(max ;e n] Regret v, ((zﬁ”)te[T])) L h(maxe, iy Regret;; v, ((¢)¢cr))) when N — oco. Hence, we have
limpy s o0 limg 00 £(0, k, N) = h(maxy, . o, Regretyyy, ((£¢)¢e)))) holds.

Step 2. Proving limy oo £(6, k, N) = h(maxy, . ¢y Regret;; v, ((Le)eerry))-

Now, we will calculate lim n 00 £(6, k, V).

Lemma 8. Forany 0 < e < 1, it follows that

lim Yy f(Xa k) H(X)L(H(X;) <1—¢)
Nok—oo SV F(Xy, k) H (X)L(H(X;) > 1 — €/2)

and
ey o fX WLH(X) <1-¢)
Nk—oo SN F(X,, B)L(H(X;) > 1 —€/2)

hold with probability 1, where X;’s are i.i.d. random variables, esssup(H (X;)) = 1, and H : R — R is a continuous
non-decreasing function.

Proof of Lemma 8. Since f(-, k), H are non-negative and non-decreasing functions, we have

SN F(Xa k) H(X)1L(H(X:) <1—¢)
SN (X k) H(X)L(H(X,) > 1—¢/2)

(- f(H (1 —e),k){i € [N]| (H(X;) <1-e)}|

)
(1—¢/2)f(H-1(1 = €/2),k)[{i € [N] | (H(X;) > 1 —€/2)}|

<

and we know that

i€ N | (H(Xi) <1} a5 F(-¢
{ie INT| (H(X:) >1—€/2)}]  1-F(1-¢/2)

as N — oo, where F is the cumulative distribution function of random variable H (X ). Therefore, we have

0< lim Yo F(Xa k) H(X)L(H(X) <1—¢) < lim (L= f(H (1 —e),k){i € [N]]| (H(Xi) <1-e)}
T Nkooo SN F(XG ) H(X)L(H (X;) > 1 —¢/2) ~ Neb—oo (1—¢€/2) f(H™1(1 —€/2), k))|{i € [N] | (H(X;) > 1 —¢/2)}|

2 T g =0
By a similar argument, we have
o S IH(X) <1-¢)
Nk=oo SO0 F(X, K)L(H(X) > 1 —€/2)
with probability 1. O

One key idea in the proof above is the use of some fruncation level € for H(X) with esssup(H (X)) = 1. By Lemma 8, we
have

lim Zf\; F(Xi, k) H(X;)1(H(X;) > 1 —¢) — lim Zf\; F(Xi, k)L(H(X;) > 1 —¢)
Nk—o0 Zfil f(Xe, k)H(X;) N.k—roo Zivzl J(Xi, k)

:]_7

since

Yl fXn RLHXD) <1—¢ _ 30 f(Xi hLHX) <1-¢)
S F(Xisk) T XL XL R)IH(X) > 1 ¢/2)

0<
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holds with probability 1. Therefore, for any 0 < € < 1, we have

ey P B, () eer)) F (R, (67 ), )
S ie LB, (G eer) . k)

N,k—o0 N,k—o0

lim £(0,k,N)=E lim l

—h < max RLLMG((ft)te[T1)>

Ly, by

h(Rumy (67 1e117)) () h(Rumy (67)1e117))
JE[N] h(max, . ;T RLLMG((@)%[T]))f(RLLMe((et )te[T]),k)l(h(maxel YYYYY ;T Riimg ((Co)zerr))) >1- 6)

x E lim /
N0 5 et F By (C9) 1), )L (rmmitts UDieim)) oy
JE[N] LLMg \\*;  Jte[T])> h(maxe,,...,eq Rumy ((€e)ieir)))
>(1— e)h(elmaxT Ruim, () eerr))

which implies imy k00 £(0,k, N) = h(maxy, ¢, Regret;;y, ((£¢)1e[r)) since

L(O,k,N) < h( max RegretLLMg((&)iﬁE[T]))

L1yl

by definition of £, the fact that & is non-decreasing, and by setting ¢ — 0 to obtain

‘C(ev ka N) Z h < max RegretLLMg((&f)tG[T])) .

L1yl

Here, we used the fact that ()7} has a continuous distribution, Regret; ; ;. ((¢¢):e[r}) is a continuous function, and the
non-decreasing property and continuity of 4 (Condition 1), which lead to:

esssup (h (Regret, i, (€e)eerr)))) =  max h (Regret; v, (€)erry)) = h ( max RegretLLMe((Et)te[T])> . (G.1)

Lo lr O1 b

Equation (G.1) will be used frequently in the overall proof in Appendix G.3.

Step 3. Proving lim o0 im0 L(8, k, V) = h (maxe, ... e Regretyy, (£e)rei)))-
Lastly, if N — oo, similarly by dominated convergence theorem we have
: [ 2 (RLLMe ((Egj))tem)) F(Rum, (67 ey k)
Jim_COKN) = Jim 5
o o e f (RLLMe ((@-J )te[T]) ,k)
E [h (RLLMQ ((Eﬁj))tem)) ! (RLLMG ((Egj))tem) ’k”
E {f (RLLMe ((fgj))tem) kf)}

Thus, limy o, £(60, k, N) always exists for every k. Now, we use the known property of double iterated limit (Lemma 5),
and obtain that limy, , oo limy 00 £(6, k, N) = h(maxy, ¢, Regretyyy, ((€)ie)))- O

Claim 2 (Uniform convergence of L(0,k, N) (with respect to k and N)). L(0,k,N) uniformly converges to
h(maxy, .. o Regrety . ((¢¢)¢e())) on the domain ©.

,,,,,

Proof. We will provide a similar analysis as Lemma 8 as follows:
Lemma9. Forany0 <e<1,0< 8§ <1, and k € NT, we have

S fXLRLUHX) <1—¢) . 1 1
INTEAITIT ARSI R (40110 (== * 7))

with probability at least 1 — 0, where X;’s are i.i.d. random variables, esssup(H (X;)) = 1, H : R — R™ is a continuous

non-decreasing function, A(k,t,¢) := (15157;%% izzzzgggggijg:jgmfor any non-decreasing function t : R — R,

and Fy x is a cumulative distribution function of random variable t(X)/esssup(t(X)).
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Proof of Lemma 9. With the same argument as the proof of Lemma 8, we have

YL X RIHX) <1-¢ _  fH 1 -, k{ic [N]| (H(X) <1- o)}
SN (X R L(H(X;) > 1—¢/2) — fH(1—¢/2),k)[{i € [N] | (H(X;) > 1—€/2)}

It holds that & |{i € [N] | (H(X;) <1—€)}| = Fux(1—¢€) + O(1/v/N) with probability at least 1 — §/2 due to

Hoeffding’s inequality (Lemma 6). Similarly, we have + |{i € [N] | (H(X;) > 1—¢/2)}| = 1—-Fy x (1 —¢/2)+0(1/VN)
with probability at least 1 — ¢ /2. Therefore,

{ie IN]|(H(X;) <1—-e} _  Fux(1—¢ 1 _
T e (HX) > =) ~ 1= Fax(i=cz) T OVVN) S i i e HOVIN)

with probability at least 1 — §. Finally, we have

Zi\il F(Xi, k) I(H(X;) <1—¢) Efvlf(Xz,k‘)]l(H( ) <1—¢) ) _
SN (XL R L(H(X) > 1—e) = SN S RLH(X) > 1—¢/2) < A(k,H,e) (1 “Fax(—e2) +O(\/N))
O

Note that limy_, o, A(k, H,e) = 0, since limy_, fggl’g = oo 1(R; > Ry) + 1(R; = Ry). By Lemma 9 with
h RI[M e t
H(RLLMQ((gt)tG[T])) _ ( 0(( t) €[T] )) , we have

h(maxy,,...eq Rumy ((8e)ieir)))

. ' (@)
ZzN:1 F(Rum, ((Z£Z>)tE[T])7 k)1 ( h(Riimg (6" eerr))) >1— 6)

h(maxg, .. eq Rimgy ((Ct)ee(r))) =
N i
Sy (Ruowg (67 )ierm), )
1 > 1
. (9 - 1 ~ )
SN F R (6 ie ) 0L <h,(maf;(RLLM"((it i ]>><1_€> L+ Ak, H, 6)(1_FH,RLLM9<(£t>tem>(1—€/2> +O(V1/N))

Loees e Bumy (Bt ier

1+

(%)
i h(R e )
zgilmmem>)tem),k>1< CTLMg L telT] 75)

>
h(maxg, o Rumg ((Ct)re[r)) =

where we recall the shorthand notation of Riim, = Regret;;y,,. Note that A(k, H,e) = A(k,h,€) and Fy g\, =
F} Ry, hold by the definitions of £ x and A(k, ¢, €) in Lemma 9. Therefore,

N (4) h(Ruwg (67) e 1))
S Zi:l f(RLLMe ((ét )tG[T])’ k) h(maxg, LLNJ»GT Riim, ?(et)fe (1))
= N i
SN F(Ruw, (67 )ieim), k)
7 h(Riim Zt t h(Riim Eii) t
S ARy (6 herm). ) e ) W e et 2 1= )

maxe, ,...eq Riimy ((Zt)te 1))~ Nh(maxe, .. eq Ry () eerr)) =

N i h(Ruy (67 ic )
S AR BV ey Rutg (e = L~ )
1

X =~
1 /
1 + A<ka h7 6)( l_Fh’RLLMe(ut)f,e[T])(l_e/Q) + O( 1/N))
S 1—¢
> T =
1+ A(k, h,e)( I N TR ) + O(y/1/N))

with probability at least 1 — 4.

Now, for any € > 0 and § > 0, we have

0 S h ( ma)ec RLLMQ((£t)t€[T])> — £(6‘,/€,N)

(1=9)(1—¢
<h ( max Riim, ((4e)te T])) 1-
troity M L Ak, by )=y ey + O(V1/N))
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Note that

1-— Fh,RLLMQ((Zt)te[T])(l — 6/2) =P (h (RegretLLMg ((‘gt)te[T])) > (1 — E/Q)h ( III}.f.i.XT RegretLLMe ((&)te[T])))
is a continuous function of 6, since we assume LLLMy is a continuous function of 0, (Et)tem has a continuous distribution,
and Regret; | ;. ((£¢)e[7)) is a continuous function of LLMy and (¢;)¢[7]. Since we consider a compact © (as several recent
works on analyzing Transformers (Bai et al., 2023; Lin et al., 2024)), we have p(e) := mingeg 1 — Fh,R[LMQ (()eeir)) (1-—
€/2) > 0. Therefore,

1— (1=90-9 <<1_ (1-9)1—¢) ) (G.2)
1+A(/€,h76)(m+0(~/1ﬂ\0) - 1+ Ak, h, €) (55 + O(/1/N)) '

and we know that limy ;0o 1+ A(k, , e)(ﬁ +0O(,/1/N)) = 1, which is not dependent on . Thus, we can conclude that
limy g o0 SUPgee |A(maxy, . o Regrety gy, ((€)ieir))) — £(0, k, N)| = 0, as we can choose arbitrarily small ¢,6.  []

Claim 3 (Double iterated limit of supremum). It holds that:

lim lim sup ‘E(GJ@,N) - h( max RegretLLMe((Zt)te[T])> ’ = 0.

N—o00k—00 gco l1,y....01
Proof. Since h(maxy, .o Regret; ;. ((4e)ie(ry)) > L0, k, N), we will prove

lim lim sup h( max RegretLLMs((&)te[T])> —L(0,k,N)=0.

N—ook—00 geco l1,... 01

Lemma 10. Z’N:Zl{(l);(?):f;() < Z%{ii(?)&(;{) holds if 0 <ky < ks for any real-valued (X;);e[n)-

Proof. By multiplying (Ef\il f(X, kl))(Z?il f(X;, ko)) on both sides of the formula, we know that it is equivalent to
219753'31\/ F(Xi, k)h(Xa) (X, ko) < Z1§i¢j§1\f f(Xi, k1)h(X;) f(X;, k2). This is equivalent to

> (F(Xi k) F(XG, ko) = F(X, k) F(Xo, ko)) (R(XG) = B(X;)) <0,

1<i#j<N
which is true since if X; > X, (f(X;, k1) f(X;, ko) — (X, k1) f(Xi, k2)) < 0 due to the log-increasing difference of f
(Condition 1), as log (X, k1) —log f(X;, k2) > log f(X;, k1) — log f (X, k2) if X; > X O

Therefore, £(0, k, N) is a non-decreasing function of k if IV is fixed, which indicates that

lim sup h( max RegretLLMe((ﬁt)te[T])) —L(0,k,N)
k—oo gco b1, by

exists, as L(0, k, N) is also bounded. Therefore, by Lemma 5 and Claim 2, we know that

lim lim sup ‘ﬁ(@,k,N) —h (me[( RegretLLMe((ét)te[T])> ’

N—ocok—oo pco 1yeees T
exists and this value should be 0. O

Claim 4. It holds that

Nl a5 £0,) = il o €0.6,) = ot (e Regrtg (i) )

Proof. Firstly, by Lemma 7, we have limy x o0 infoco £(0,k, N) = infpee h(maxy, o, Regret;;y, ((£1)ie[r))-
Plus, we already know that L£(6,k,N) is a monotonically non-decreasing function of k for any fixed N
(Lemma 10), and it is bounded, limy_, infpco £(0, k, N) always exists. Therefore, by Lemma 5 , we also have
limy o0 limg o0 infoee L£(0, k, N) = infoce h(maxy, ... o Regret v, ((£¢)ie[r)))- O
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G.4. Definition of the Empirical Loss Function

Definition G.1 (Empirical loss function). We define the empirical loss L computed with N1 samples as follows:

£(0.5 N Ny) = 1 %T: 2jen b (RegretLLMe((ggj,t))te[T])) f (RegretLLMg((Eg,z)tG[T])vk) G3)
y Wy IV, INT ) o= = ; '
Nr = e (RegretLLMg((E.(ej,t))tE[T])7 k)

where (ggt))je[N],te[T] denotes the s-th sample of (E,Ej))je[N],te[T] for estimating L(0,k, N).

G.5. Deferred Proofs of Theorem G.1 and Theorem 5.1

Theorem G.1. (Generalization gap). Suppose LLMy is Lipschitz-continuous with respect to the model parameter 0, then
Sorany 0 < € < 1/2, with probability at least 1 — ¢, we have

dg +log(1/e)

R - 5
c (Gk,N}NT,k,N) inf £(6.k,N) < O N ,

(G.4)

for any N and sufficiently large k, where dy is the dimension of the parameter 0.

Through a careful use of Berge’s Maximum Theorem (Berge, 1877), we prove that the right-hand side of Equation (G.4)
does not depend on k and N, which allows us to take the limit of lim y_, o, limy_, o, Without affecting the generalization
bound.

Before proving the theorem, we remark on what LLM structure enjoys the Lipschitz-continuity. We provide two auxiliary
results in the following proposition. The first result is from (Bai et al., 2023, Section J.1), which is about the Lipschitzness of
Transformers. The second result is regarding processing the output of Transformers. In particular, the output of Transformers
is usually not directly used, but passed through some matrix multiplication (by some matrix A), followed by some projection
Operator (to be specified later).

Proposition 2. The L-layer Transformer TFy as defined in Appendix D.1 is Cr-Lipschitz continuous with respect to 6 with

Crei= L ((1+ B%)(1+ B2.R®))" BysR(1 + ByeR? + B%,R?), ice,
17E6,(Z) — TFo,(Z)l|2,00 < Crzll01 — O2]|2r

where || - || zr is as defined in Equation (D.1), and R, Z, Brr are as introduced in Appendix D.1. Moreover, the function
Operator(A- TFy(-)-1) is | Al opCrr-Lipschitz continuous with respect to 8, i.e.,

|operator(A- TFg, (Z)-1) — Operator(A- TFp,(Z)-1)|2 < |A]lopCrr||61 — O2]| 2
Here, Operator is either the projection operator onto some convex set, or the Softmax function.

Proof. The first result is from (Bai et al., 2023, Section J.1). The second result comes from

* If Operator is a projection onto the convex set, then ||Operator(z) — Operator(y)|la < ||z — y||2;

e If Operator is Softmax, then ||[Softmax(z) — Softmax(y)||2 < ||z — yl|2 (Gao & Pavel, 2017, Corollary 3).
Note that the only condition that we require for Operator is its non-expansiveness. O

Proof of Theorem G.1. Let Cppm denote the Lipschitz-continuity constant for LLMy with respect to some norm || - ||Lrm,
where || - ||LLm denotes any norm defined on the parameter space of LLM (e.g., the norm || - ||;¢ above in Proposition 2).
Now, we prove that regret is also a Lipschitz-continuous function with respect to the LLM’s parameter.

Lemma 11 (Lipschitzness of regret). The function Regret;,, , 1S Creg := BCrimT'-Lipschitz continuous with respect to 0,
ie.,

Regret;;, ((0¢)ieir)) — Regrety, ((€)ieir))| < Cregllfh — O2]lLim-
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Proof. By definition, we have

T
RegretLLMsl((ft)te[T]) —RegretLLMs ((Le)eerm) ‘ Z £y, LLMy, (Z;—1) — LLMy,(Z: 1))

T

=B |[LLMy, (Zi—1) — LLMy, (Z_1)||
=1

< BCuimT||61 — 02]lLim

where Z; := ({1,...,4;,c) forall t € [T] and Zy = (c) where c is a d-dimensional vector. O

Now, we will prove the Lipschitzness of

Y epv) h(Regrety (67 )sepr)) f (Regretyy, (67 e (7). k)
> jern f (Regretyp ((Egj))te[t])» k)

¢ ((&Ej))te[T],je[N]a k, 9) = (G.5)

with respect to the model parameter 6.

Claim 5. For any R > 0, there exists Br > 0 such that if 5 > SR, we have

Z xnf(xnvﬂ) B ZnG[N] ynf(ynvﬂ)
ne[N f(@n, B) Zne[N] f(yn, B)

<2z = ylloo

forevery x,y € R™ such that |x;| < R, |y;| < R forall i € [N].

Proof. If B = oo, we have

<1

B—o0

. Zne[]v] T f(Tn, B) Z yn.f Yn, B | maXpe[N] Tn — MaAXpe[N] Yn|
lim - / o =yl | =
Zne[N] f(zn, B) ZnE[N]f Yn, B [z = ylloo

holds. Moreover, consider the following constrained optimization problem:

ZnE[N] xnf(xnv B) Z ynf yn;
max = / o = Yl
z,yER™ ZnE[N] f(mnv B) Zne[N] f yn7
subject to |z;| <R, |yl <R forallie [N],

Theorem (Berge, 1877), we have that F'(R, 3) is a continuous function for 5. Moreover, we know that F'(R, c0) < 1, which
indicates that we can find a large enough (g such thatif 8 > Sg, F(R, ) < 2. O

whose optimum is denoted as F'(R, 3). Then, since |||l < R and ||y||c < R is a compact set, by Berge’s Maximum

Note that Claim 5 does not hold if either x; or y; is unbounded. Now, we will apply Claim 5 to Equation (G.5). We can
guarantee that RegretLLMe((Et)te[T])] < diam(IL, || - ||2)TB.

Also, note that the domain of h : R — R* is effectively constrained to the range that Regret; ; ;. ((¢;)e[r]) can achieve,
which means that we can regard h as h : [—diam(11, || - ||2)7' B, diam(IL, || - |2)T'B] — R™. Due to the continuity of /’,

and the fact that h has a compact domain, we know that h(-) is Cj,-Lipschitz continuous for some C}, > 0 on this interval of
[—diam(I1, || - ||2)T B, diam(I1, || - ||2)TB].

Lemma 12 (Lipschitzness of C' in Equation (G.5)). The function C in Equation (G.5) is Ccose := 2C},Creg-Lipschitz
continuous with respect t0 0, if k > Kgiam(11,)-||o)7 B for some Kgigm(m,||.|15)TB > 0, i€,

€ () et eim b 01) = C (0 ety sein, b, 62 ) | € Coooe 161 = Balluaur
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Proof.

‘C((&Ej))te[T],je[N]a k,01) — C((ggj))te[T],je[N]vky 02)|
< 2lh(Regretypy,, () eeir)) — h(Regrety g, ((67)iem)) oo

< 20| Regretyy, (67 )ieqry) — Regretyy, (67)ieqr)) oo

(@)

S) 2CHCreg |01 — O2]lLim = Crose [|61 — 02||Lim-

(i

Here, (i) holds due to Claim 5, (ii) holds since & is Cj,-Lipschitz continuous on the range of Regret; ;. ((¢¢):e[r)). and (iii)
holds due to Lemma 11. O

For completeness of the paper, we provide the definition of covering set and covering number.

Definition G.2 (Covering set and covering number). For 6 > 0, a metric space (X, || - ||), and subsetY C X, set C CY
is a d-covering of Y when'Y C U.ccB(c,0,] - ||) holds. d-covering number N(8;Y, | - ||) is defined as the minimum
cardinality of any covering set.

By (Wainwright, 2019, Example 5.8), for any r > 0, we can verify that the §-covering number N (&; B(0, 7, || |lLLm), || - [|lLm)
can be bounded by

log N(6; B(O,7, || - lm), || - [[ium) < dg log(1 + 27/6),

where dy is the dimension of the LLM’s whole parameter. For example, if we use the || - ||z and consider the Transformer
model as defined in Appendix D.1, for any » > 0,

log N(8; B(0,7, || - [[tem)s || - leom) < L(3Md? + 2d(dd’ + 3md?))log(1 + 2r/5).

Since we consider a compact O (as several recent works on analyzing Transformers (Bai et al., 2023; Lin et al., 2024)),

let Ro := diam(©, || - ||LLm) (Which corresponds to Br for the Transformer models as defined in Appendix D.1, with
|| - lltem = || - |lzr), then there exists a set ©g with log |©¢| = dg log(1 + 2Re/J) such that for any 6 € O, there exists a
Oy € ©¢ with

’C ((égj))te[T],je[N]vkue) -C ((Zgj))te[T],je[N],k,é’o) ‘ < Ceostd.

Then, by the standard result from statistical learning theory (Wainwright, 2019, Chapter 5), when trained with Ny samples,
for every 0 < e < 1/2, with probability at least 1 — ¢, we have

(log |[©0] + log(2/€))
N

~ 2
»C(gk,N,quk»N) — elggﬁ(é,k,N) < \/ + 2Ccost5~

Setting § = Q(+/log(e)/Nr), we further obtain

L@ nnps ks N) — inf £(0,k,N) <O \/10g|9°| + log(1/¢)
B 0€O Nt

with probability at least 1 — €, completing the proof. O

Theorem 5.1. (Regret, Informal). Under regular conditions on f, h, with high probably, we have

h li 1i Regret 4
(Ngnoo Jm max  Reg LG (( t)te[T]))

) ~( [ do
=t (912{9 e NG ((mtem)) e <\/N7T> .
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Proof. The limit on the right-hand side of Equation (G.4) remains as O (\ / W), since we firstly take limy_, oo

and then take lim y_, o, thanks to the fact that Theorem G.1 holds for large enough k and any V. Next, we have

lim lim ’E(é\k,NwT,k,N)—h( lim lim max Regret;; o ((Et)te[T]))‘
SANT

N—o00 k—o0 N—00 k—00 [[{¢]|cc <B

< lim lim ’L(§k7N7NT,k,N)—h< max RegretLLM ((Et)tem)> ‘—i—

NS00 k=00 l12]ioo <

lim lim ‘h( max RegretLLM ((ét)te[T])) —h( lim lim max Regret;;y. ((@)te[T]))'
| k,N,Np k,N,Np

N—o00 k—o0 [t oo < N—00 k=00 [|[£1]|cc <B

< lim lim sup
N—ook—0o0gco

L(0,k,N)—h (IIZHIIaX RegretLLMe((ﬁt)te[T])) ‘ +0=0,

due to the continuity of A and Claim 3. Finally, we have

ng}noo khﬁngo elgf L(0,k,N) = elggh (ZT%{T RegretLLMe((Zt)te[T]))

due to Claim 4, which, combined with the fact that h is non-decreasing, completes the proof. O

As aresult, the coarse correlated equilibrium will emerge as the long-term interactions of multiple such learned LLMs, as
stated in the following corollary.

Corollary 1. (Emerging behavior: Coarse correlated equilibrium). For a sufficiently large N, if each agent in the matrix
game plays according to LLM§k,N,NT’ then the time-averaged policy for each agent will constitute an approximate coarse
correlated equilibrium of the game.

Remark G.1 (Dynamic-regret loss). So far, we have focused on the canonical online learning setting with regret being the

metric. One can also generalize the results to the non-stationary setting, with dynamic regret being the metric. Specifically,
one can define the dynamic-regret-loss function as follows:

Zje[N] h(D_RegretLLMg ((ng))tG[T]))f(D'RegretLLMg ((ggj))tG[T])a k)]
Zje[N] f(D-Regret; ((EEJ))te[T])a k)

Then, one can also establish similar results as before, since the analysis does not utilize other properties of the regret except
its boundedness, and the Lipschitz-continuity of LLM with respect to 0. To be specific, Lemma 11 holds due to the reason
that we can bound the difference of the regret with the term

LO,k,N):=E l

> (b, (LLMo, (Z,—1) — LLMp,(Z,-1))) |

t=1

: l

as well as the fact that inf ., c11(¢;, 7;) will be canceled. One can verify that all the arguments in Appendix G.3 also hold for
similar reasons.

G.6. Detailed Explanation of Optimizing Equation (5.2) with Single-layer Self-attention Model

We consider the single-layer linear self-attention model as follows, for which we can show that the global optimizer of our
regret-loss can automatically lead to a no-regret learning algorithm:
t

g(Zt; ‘/a K? Qa Ve, kca QC) = Z(V& + UC) ((Kgl + kc)T : (QC + QC)) . (G6)

i=1

Theorem G.2. Consider the policy space 11 = B(0, Ry, || - ||) for some Rn > 0. The configuration of a single-
layer linear self-attention model in Equation (G.6) (V, K, Q,v., ke, q.) such that KT(Qc + q.) = v. = 04 and V =

—2RpY~'E (H S EtHElE;) Y71 is a global optimal solution of Equation (5.2) with N = 1, h(z) = 2% Moreover
every global optimal configuration of Equation (5.2) within the parameterization class of Equation (G.6) has the same output

function g. Additionally, if 3. is a diagonal matrix, then plugging any global optimal configuration into Equation (G.6), and
projecting the output with Pro jy .| is equivalent to FTRL with an L-regularizer.
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We consider the following structure of single-layer self-attention model g (see a formal introduction in Appendix D.1):
g(Zt; VK, Q, v, ke, QC) = (Vél:t + UCII)SOftmaX ((Kglzt + kclz>T ’ (QC =+ QC)) ) (G.7)

where Z; = ({1,...,4;,¢)and V, K, Q € R4*? correspond to the value, key, and query matrices, respectively, v, ke, ¢ €
R? correspond to the bias terms associated with V, K, Q, and ¢ # 04 is a constant vector. We then have the following result.

Theorem G.3. Consider the policy space 11 = B(0, Ry, || - ||) for some Ry > 0. The configuration of a single-
layer self-attention model in Equation (G.7) (V,K,Q,ve, ke, q.) such that KT(Qc + q¢.) = v, = 04 and V. =

T _ T
*RH Zz"z—ll 1/15E 1E |: Zt:l ét
Moreover, if ¥ is a diagonal matrix, then plugging this configuration into Equation (G.7), and projecting the output with
Projp,).| would perform FTRL with an Lo-regularizer for the loss vectors (t)eerm)-

6165] =Y is a first-order stationary point of Equation (5.2) with N = 1, h(x) = 2.

In practical training, such stationary points of the loss may be attained by first-order optimization algorithms of (stochastic)
gradient descent, the workhorse in machine learning.

G.7. Deferred Proof of Theorem G.3

Theorem G.3. Consider the policy space 11 = B(0, Ry, || - ||) for some Rn > 0. The configuration of a single-

layer self-attention model in Equation (G.7) (V,K,Q,ve, ke, qc) such that KT(Qc 4+ q.) = v. = 04 and V. =
_ T

gt E { 2 b

Moreover, if ¥ is a diagonal matrix, then plugging this configuration into Equation (G.7), and projecting the output with

Projy, .| would perform FTRL with an La-regularizer for the loss vectors ({4)e7).

81@] Y=Y is a first-order stationary point of Equation (5.2) with N = 1, h(z) = 22

Proof. We will locally use A = [d] without losing generality as A is finite with |.A| = d, and will interchangeably use £;(35)
and ¢;; for notational convenience. Define a := KT(Qc+gq.) € R and b;_; := Bl;_1 := k] (Qc+q.)1;—1 € RI™L With
N =1, h(z) = 22, and the choice of II, the loss function (Equation (5.2)) can be written as follows:

T T 2
f(V,a, (b)ieir—1);ve) = E (Z 0T (Vliq4—1 + 1] j)Softmax(¢],_ja+bi—1) + Rul| Z&Hz) ;

t=1 t=1
where for ¢ = 1, we use the output of the single-layer self-attention as v. and we will write it as (V{19 +
vell)softmax(¢].,ya + by) for notational consistency with ¢ > 2. Also, we will define empty sum Z?Zl a; = 0

for any sequence (a;);en+-

Step 1. Calculating %.

For = € [d], we calculate the corresponding directional derivative with the following equation for ¢ > 2:

0
day

L (V-1 +vc1]_j)Softmax(£],, ja+ bi—1)

t—1

0
9a Zf;r(vglzt71 +vell_q)e;
T i=1

exp(e] ((,_ya + be1))
St exp(el (. _yat bi1)
eT T a — —
SO (Ve 1+ vl es exp(el (6, _ya+ bi1)) A T (5 e (eT(F,yat be 1))
(0ot exp(el ((h_ya+ bi1))?
S (Ve +vel] e exple] (T, ya+bi1) (Zz;i exp(el(,_ya +bi1))

(ezy exp(el (€1, ya+bi-1)))?

day

aezwhflwbt-n)
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Plugging a = 04 and v, = 04, and (b; = B1;).e[r—1) provides

0
5a (V41 + vl ()Softmax (€], ja+bi_1)

a=0q,v:=0q,(b+=P1t)se[r-1]

Clgves, 2AVE (S5 )
; t—1) ; (t—1)2 '

Fort = 1, as {](Vl1.4—1 + v.l] {)Softmax(f, ja+bi—1) = Ov,, aa I (V-1 +vl] ()Softmax(f], ja +
be—1)

= 0, so we can use the same formula as ¢ > 2 with empty sum Zfl Using the above
a=04,0:=04,(b1=P1¢)re(T—1]

calculation, we can further compute 5 af as follows:

“la=04,0:=04,(b:=PL)reir 1)
8f(V a, (bt)te[T—m Uc)

a=0g,vc=0g,(bt=P1¢) e[ 1

t=1
T
|:<Z L (V-1 +vel]_q)Softmax(€],,_qja+ bi— 1)+RH|Z€,5||2>
t=1 a=0g,vc=04,(bt=P1t)rc[T—1]
0]

t=1
T T
9a (Zé Vflt 1 +Uclt 1)Softmax(€h 1a+bt 1)+RH|Z&5|2>

T T 2
Es— (Z (Vli—1 + vl )softmax (€], ja+ b, 1)+RH||Z&|2>

a=0g,vc=0g,(b:=B1¢) e (T 1]

t=1 a_Od«’Uc_Odv(bt_ﬁlt)te[T1]:|

[(ervz L, +Rn||2zt|z> 3 (Z QVits 5 HVE (S gsm))]

— — 2
t=1 i=1 ¢ 1 i=1 (t 1)
=0,

(G.8)

where we used the fact that ¢; is drawn from a symmetric distribution, and flipping the sign of the variable as —¢; yields the
same distribution, which leads to the following:

t=1 i=1 (t =1 (t o 1)

T (=1 =1 Ve (L,
(sz e+RH||2et||2)z Z””” (i) ]

t=1 t=1 i=1 (t=1) (t—1)?

T t—1 T T t=1 0TV, — £y
(Zezvzt_llemLRnIZ&llz)Z ZKV”’HZ ' (Z . ) ]
t=1 i=1 i=1
This yields Equation (G.8)=0.

Step 2. Calculating %

We will use the following equation for £ > 2:

8?; 0T (V-1 +vld]_ )Softmax(¢],,_ja+bi_1)
o =L exp(el ({1, a+b
=3 Z@T(V&;t,l—i—vclg_l)ei — (el (A i-1)) =1,
Ve i=1 Z =1 exp(es (flzt—la + btfl))

For t = 1, we define 8‘3[{(V€1¢o + v.1f)Softmax(¢],ya + by) = ¢4, so that we can use the same formula as ¢ > 2
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Therefore, we can calculate ng as follows:
la=04,v:=04,(b1=P1+)¢e[T—1]

af(V, a, (bt)te[T—l] , Uc)
Ove

a=04,vc=04,(bt=B1¢) (T _1)

T T 2
<Z (Vi1 +vcl]_;)Softmax(€],,_ja+ b 1)+Rn||2€t|2>

t=1

a=04,vc=0q,(bt=P1¢)c(T_1]

T T
<Z (V.- 1+’Uclt 1)Softmax(ﬁt 10+ b 1)+Rn|2ft”2>

= t=1

a=04,vc=04q,(b+=B1¢)tc(T 1)

d
50 (Ze{ V-1 4 vl )Softmax(¢], ja+ b 1)+Rn|24t||2>

t=1 t=1

(ZETVZ r— +RH|Z@||2> Zet} =0.

a=04,vc=0q,(b+=B1¢)tec[(T—1]

The last line is due to the same reason as the last part of Step 1.
. of
Step 3. Calculating 5>

We calculate the following equation, which will be used to calculate % fort > 2:

a=0q,0:=04,(b+=P1¢)¢e[r-1]

0

GVK (Vli4—1 +v.1]_j)Softmax((], ja+bi_1)

a=04,9:=04,(b;1=PB1¢)re[T_1]
exp(e] ((1.,_ya+bi—1))
Zt 11 exp(el (€1,,_ya+bi-1))

_thzT eXp (g 1:t— la’—'_bt*l))
py 1eXp(es(€I:t—1a+bt—l))

t—1

0
= W Zﬂg(V@lzt,l —+ ”Uclgfl)ei

a=04,0.=04,(b1=PB1t)te[T—1]

t—1
1
-y

a=04,v=04,(bs=P1t)reir-1]  i=1

.
il

For ¢ = 1, note that 5 ETUC O x4, S0 we can use the same formula as ¢ > 2 with empty sum Zf;%
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Therefore, we have

af(V7 a, (bt)tG[Tfl] ) UC)
ov

a=04,v:=04,(bt=P1t)1c[T—1)

2
8 T
6V ( E Z V[l 4—1+ ’UC].I I)Softmax(fl +—1a + bt 1) + RHH E &5”2)

t=1 a=04,v.=04,(b1=PB1¢)te[r—1]

T
(Ze (VO +v1] | )Softmax((], ja+ b, 1)+RH||Z£t||2>
t=1

t=1 a=04,v.=04,(bt=P1¢)tc[T—1]

P T T
W (Z EtT(Vﬁlzt_l + vcltTfl)Softmax(éI:tfla + bt—l) + RHH Z£t||2>

t=1 t=1

a=04,v:=04,(bt=P1¢)tciT—1)

B T t—1 T t—1
=E <Ze;vzt l; +RH|Z@||2> > — m;]
L \t=1 i=1 t=11=1
B T t—1 1 1
- (ZZ (HEIV&> ( - 1@4{) +RuT| > @HQMZT) ]
L \t=1 i=1 t'=1
B T t—1 d d 1 2 T
- (Z SO v liali, (H) bin)o) + BT S b ||2MI> ]
L \t=1i=1 z=1y=1 t'=1

|
-2 2 (t—1)2 [02202yTyw] () + E

T-1 1
- ( ) SVE+E
t=1 ¢

T
RuT| ) b |I2MZT]

t'=1

T
RuT|| Y lullolel]

t'=1
Therefore, if V* = Ry SHEE T 7 SIE 23:1 Oy||2€:07 | 71, then % = Oygxq. Lastly,
=t a=04,0:=04,(b;1=PB1¢)te(7—1],V=V"*
we have
3f ’ <8f 8a) 0
¢ V= x = = Uldxd
KT(Qctqe)=v.=04,V=V 8a 8K ll:od,vczod,(btzﬂlt)te[T_l],V:V*
6f‘ (8f aa) o
T(Qc V= . = Udxd
K (Q +QC) c=04,V=V aa 3@ azOd,’Uczod’(bt:ﬁlt)te[T—l]7VZV*
of _ af da —0
aiqC’KT(Qc+qc):vC:047V:V* - %3% —Yd

a=04,0:=04,(b+=P1t)te[r—1],V=V"*

which means that such configurations are first-order stationary points of Equation (5.2) with N = 1, h(z) = 22, and
II = B(0, R, || - |1)- H

G.8. Deferred Proof of Theorem G.2

Theorem G.2. Consider the policy space 11 = B(0, Ry, || - ||) for some Rn > 0. The configuration of a single-
layer linear self-attention model in Equation (G.6) (V, K, Q,v., ke, q.) such that KT(Qc + q.) = v. = 04 and V =

—2RpY~'E (H S étHEl@) Y71 is a global optimal solution of Equation (5.2) with N = 1, h(z) = 2% Moreover
every global optimal configuration of Equation (5.2) within the parameterization class of Equation (G.6) has the same output

function g. Additionally, if 3. is a diagonal matrix, then plugging any global optimal configuration into Equation (G.6), and
projecting the output with Pro jy .| is equivalent to FTRL with an L-regularizer.
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Proof. The output of the single-layer linear self-attention structure is as follows:

g(Zt7 ‘/a K) Q7UC7 kCa QC)

t
(G.9)
=Y (VeI (KT(Qc + qe) + (VEI(Qe + ge) +ve(Qe + qo) TK) b+ vekI (Qe + qc))
i=1
which can be expressed with a larger class
t
9(Z, A, B,C,8) =Y (ALLT B+ CL; + ), (G.10)

i=1

where A € R%*4, 3, C, 6 € R?. Then, if a minimizer of

T t—1 T 2
f(A,B8,C,0):=E (Z«zt, > (AGLTB+ Tl +6)) — inf <; ft,w>>

t=1 =1

can be expressed as A =V, = KT(Qc + q.),C = VEI(Qc + q.) + ve(Qc + q:.)TK, B = vck](Qc + g.), then we can
conclude that the corresponding V, Q, K, v, q., k. are also a minimizer of

T T 2
E <Z<€tag(Zt—l)> - ;Ielfl_[ <Z£laﬂ—>> )

since the corresponding V, @, K, v, q., k. constitute a minimizer among a larger class. Now, since II = B(04, R, || - ||),

we can rewrite f as
2
. (G.11)
2

Due to the Leibniz rule, if we calculate the partial derivative of Equation (G.11) w.r.t. §, we have

T

t—1
f(A,B.C,0)=E (Z%Z(WJ B+ Cli+6)) + Rn
=1

t=1

T
S
t=1

of _
Step 1. Finding condition for 35 = 0.

2
df(A,B,C,6) 8 L& -
ST = %E (;_1:<zt,§ :(Miéw + Cl; + 6)) + Ryl § AP

i=1 t=1

2
) T t—1 T
=E5s (Z(ft, D (AGLTB+Cli +6)) + Rull Y il
t

t=1 =1 t=1
T t—1
_EZ& (Z — )67 (ALL] B+ Cl; + ) +RHIIZ&II> (G.12)
t=1 i=1
Since the expectation of either odd-order polynomial or even-order polynomial times || - ||2 is 0, due to that ¢, follows a
symmetric distribution, we have
T T T T t—1
_ TCY —
ES (- 1)€tRHH Souf,=0 EY¢-nad Y ac=o
t=1 t=1 t=1 t=1 i=1
Now, we calculate
T T t—1 T T t—1
EY (t=1)6) Y FAGITB =B Y (tr — 1), (T ALLTB
t=1 t=1 i=1 t1=1t=1 i=1
T t—1

= ]EZZ (t — 1)L LTALLTR = EZ (t—1)2UTASS = 6 T(2T? — 3T 4+ 1)ZAXS,
t=11 =
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where (7) holds since if ¢; # ¢, due to the independence of ¢;, ¢;,, we can use E{; = 0. Lastly,

T T t—1
EZ(t—l)ZtZZNé—]EZZtl—l t—létlﬂé—f (27% — 3T +1)%4.
t=1 t=1i=1 t1=1t=1

Plugging the above equations into Equation (G.12), we have

W éT(2T2 3T +1)(SAZB + 24).

Due to the optimality condition, we have

AYB+6=0. (G.13)

Step 2. Plugging the optimality condition for g—g into Equation (G.11).
Plugging Equation (G.13) to Equation (G.11), f can be written as

T
>

t=1

)

T
>
t=1

T t—1
f(A,B,C,—A%S) = <Z €7 (A(6] —¥)B 4+ Cl) + R
1

t=1 i=
t—

)

1 2 T t—1 2
(TALT — 2)5) +E (Z Zegm) +E (RH
1

t=1 i=1

[

=1 i=

(@

T t—1 T t—1
+2E (Z CTA(LLT — 2)5) (Z Zgui)
t=1

—1i=1 t=1 i=1
2)

(@)

T t—1
+2E (ZZ@AMT 5) (RH

t=1 i=1

T
>t
t=1

2>
T -1 T t-1

E DN BT, €], — D)ATG, (TA(GL] - X)B

(1)

T t—1
+2E (Z egca) (Rn

t=1 i=1

T
S
t=1

For the part (¢), we have

(%

t—

1 2
CTA(0LT — 5)

—1i=1 h=ta=te=LE
T t—1t-—-1
= E [Z S BT €], — D)ATLLTALL] - D)8
t=141=11i=1
T t—1
=E T(LT — S)ATLLTA (0T —
55 e
- WWE [(£:£7 — D)ATZA(GL] - X)) B ©
- WWE [(\/EA(M{ - 0)T(VSAL] — E))} &

Here, (1) holds because if ¢; # t, we know that E¢;, = E¢; = 0, and they are independent, and (2) holds because if i; # i,

we can calculate E({;, £] — ) = Ogxq. In addition, we can easily check that (ii) and (ii7) are 0 as they are polynomials

of odd degrees and we have Z < —Z. Note that Equation (G.14) is minimized when P(vEA (4T — £)8 = 04) = 1.
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If A # Ogyxq, suppose that the singular value decomposition of A = UAV yields that A is a diagonal matrix whose first
diagonal element is non-zero, and U, V' are orthogonal matrices. Then, we want to find (3 that VXU AV(&[{ —X)B =04 for
any ¢; such that p(¢;) # 0, where p indicates the probability density function of loss vectors. Since ¥ and U are invertible,
we only need to consider AV (¢;¢] — )3 = 04. Since A’s first diagonal component is non-zero, we will consider equation
e]AV (£;4] — X)3 = 0. This is equivalent to V3 (¢;¢] — X)3 = 0, where V/ is the first row of V/, and is a non-zero vector.

Now, we will generally consider a ,, (v) := voTa —y where z,y,v € R? and a, ,, : B(0g, 2¢1, || - ||) — R? function. Then,
we can check that the Jacobian of a, ,(v) is vaT + (v - z)I, and we can find that the determinant of the Jacobian is nonzero
when v = €1z if  # 04. Therefore, the volume of (V1 (¢4;¢] — X)) for £; € B(0g4, ¢z, || - ||) is greater than the volume of
(Vi (vuT = X)) forv € B(e1 Vi, €2, || - ||), where ¢, is a constant such that B(0g, ¢, || - ||) C supp(Z), and €1, €5 > 0 satisfy
that €1|V1| + €2 < c.. Here, we define €5 > 0 sufficiently small so that the determinant of Jacobian(voTV]" — XV[T) > 0
forv € B(enV{', e, | - ||), and v — voTV]T — V[T is a one-to-one correspondence, by inverse function theorem. Therefore,
the volume of (V3 (voT — X)) for v € B(e VT, €a, || - ||) can be calculated as

[Volume (Vi (voT — X)) forv € B(e1 VT, ea, || - ||)] = / |det(Jacobian(V; (voT — ¥)))|dv > 0.
vEB(ea V' sea, 1)

Therefore, Volume(Vi (voT — X)) where v € B(e1 V[, €, | - ||) is non-zero, so that we can find d loss vectors {;};c(q)
such that the vectors {Vi (£;£] — X)};c|q) are linearly independent. Hence, if we want to minimize Equation (G.14), either
A = Oyxq or B = 04 should hold. In both cases, Equation (G.10) can be re-written as

9(Zi; A, B,C, ) an,

and this is covered by the original parametrization (Equation (G.9)) with KT(Qc + ¢.) = v. = 04.

Step 3. Calculating %

Now, we optimize over C, by minimizing the following objective:

=E (iiﬂu + Ry Zét”)

t=1 1=1

T t—1 T t—1
(ZZN@@) +2E<<Z fTu)RHIIZ&I) +E<RHZ&|I>
t=1 1=1 t=1 =1

Q]

T(T 1) T t—1 2
= Tr (CTXCY) +2E | BY > (] CY; HZ@ | +E<RHIIZ&>
t=1

t=1 i=1 j=1

Here, (i) can be calculated as follows:

T t—1 T th1—1 T t-—-1
<Z Z@ul> =E (Z SN Zz;cwtlegc&)
t=1 i=1 t1=141=11t=1i=1
T i—1 t—1 T i—1 t—1
S E (Z T CTeTCe > E (Z > Zzz;@Tz(czi)
t=114,=11i=1 t=11i,=11i=1
t—1 T t-1

e,g@zu,,) = ETr (Z CTEC&;Q) = @Tr (CTECY),

t=1 i=1

since (1) holds because if ¢; # ¢, we already know that E/; = [E{;, = 0, (2) holds due to a similar reason, and (3) comes
from Tr(AB) = Tr(BA).
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We calculate af (C) :

af((c) T t—1
Ol = T(T' = )SCS + 2Ry Hzf I
t=1 i=1

Hence, the optimal C = T(QZI“%HI) YTIE (H ZJ'T:;L TAD I i, MZT) »-L

Now, we see that for the special case of ¥ = I, we have C = —Rp[E (H Z]T=1 45 ||£tEiT). If we calculate the (a, b)-coordinate
of C, we need to calculate

EZ eso)2£ia€kb

If a # b, then since Z is symmetric, the term above becomes zero. Therefore, we only need to consider the case when

a = b, which is E, [\/23—1(23—1 ESO)%M&W], and it will be the same value for all a € [d] since ¢;’s coordinates are

independent.

d—1
Now, we calculate the scale of E, [\/zo 1 ZZ 1 £50)2£21€k1:| We have Z := W “1as d — oo (by the

law of large numbers) and we define W := ZS Zik ls1/ /T which is independent of £;; and £j; .

d T
Ee |:\ Z(zé“)2£“£k1] =Ez w00 |:\/T(d -1)Z+ (\/TW + lix + lk1)?Lin by
o=1 s=1

= Ez,w,ti1,60120 {\/ T(d—1)Z + (VTW + lir + 1) lir iy — J T(d—1)Z+ (VTW + Ly — ekl)%ekl]

A(VTW + i)l il
VI =12+ (VIW + b+ €02 +/T(d = DZ + (VTW + Ly — b2

=Ezw,t1,601>0 [

Taking d — oo, we have

VI =12+ (VIW + £y + 02)* +/T(d = DZ + (VIW + € — 6a)?

— 1,
2vVTd
which further implies
4(vT i)l
VT VIW + 1)l fatia

\/T(d —1)Z 4+ (VTW + £y + £31)? + \/T(d —1)Z 4+ (VTW 4 £y — )2

Uil = 2(WTW + )14
VT 14k1 ( 1) 14k1

as d — oo. Therefore,

(\/>W + Ezl)gkl
\/T d—1)Z + (VIW + b + 00)? +/T(d = DZ + (VW + £y — b11)?
=Ez w0050 [2(\/TW + fu)fngm} =Eu,, 00,30 [€10k1]

lim Ez w650 [ VT linlia
d— oo

which is a constant. The last equality came from the fact that W, ¢;1, ¢ are independent random variables, and expectation
of /;; is zero. Therefore, the output of the single-layer linear self-attention provides us with online gradient descent with
step-size O(Ry1/v/Td). In the online learning literature, we usually set the gradient step size as O (Ry; /v/Td) (Hazan, 2016,
Theorem 3.1), which is consistent with the result above. O
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G.9. Empirical Validation of Theorem G.3 and Theorem G.2

We now provide empirical validations for Theorem G.3 and Theorem G.2. We provide the training details and the results as
follows.

G.9.1. EMPIRICAL VALIDATION OF THEOREM G.3

Our model architecture is defined as follows: the number of layers 7" is set to 30 and the dimensionality d to 32, with the
loss vector £;’s distribution Z following a standard normal distribution A/(0, 1). During training, we conducted 40,000
epochs with a batch size of 512. We employed the Adam optimizer, setting the learning rate to 0.001. We initialized the
value, query, and key vectors (v, qc, kc) as zero vectors.

Our empirical analysis aims to demonstrate that the optimized model inherently emulates online gradient descent. To
illustrate this, we will focus on two key convergence properties: K T(Q) approaching the zero matrix Oy 4 and V' converging
to a1d1} + blgxq, where a and b are constants in R. The conditions KTQ) = Ogxg and V = a1d1} + bl ;x4 imply that
the function g(Z;; V,Q, K) = 22:1 (b — a)¥;, effectively emulating the process of an online gradient descent method. We
repeated 10 times of the experiments. For verifying KTQ = O x4, we will measure Frobenius norm (|| - || 7) of KTQ. Also
for measuring the closeness of V and al41] + bl 4, we will measure ming per ||V — (alql] + blixq)| 7 /b. The results
are demonstrated in the first plot of Figure G.1.

G.9.2. EMPIRICAL VALIDATION OF THEOREM G.2

We now focus on two key convergence properties: KT(Q14 + ¢.) approaching the zero vector 04 and V' converging to
aldll + blgx 4, where a and b are constants in R. The conditions K7(Q1,4 + g.) =04 and V = aldI} + bl ;x4 imply that
the function g(Z; V, Q, K) = 22:1 (b — a)¢;, effectively emulating the process of an online gradient descent method. We
repeated 10 times. For verifying KT(Q1,; + ¢.) = 04, we will measure 2-norm of KT(Q1, + ¢.). Also for measuring the
closeness of V' and algl] + by 4, we will measure ming, per ||V — (alql] + blaxq)| 7 /b. The results are demonstrated
in the second plot of Figure G.1.

Empirical validation of Theorem 3 Empirical validation of Theorem 4 Empirical validation of Conjecture 6

w01 hetween V and Identity Matrix |5 5 ‘—— Distance between V and Identity Matrix soop T Distance between V and Ientity Marrix . o
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Figure G.1. Empirical validation of Theorem G.3 (top), Theorem G.2 (middle), and Conjecture 4 (bottom). The observed convergence in
Theorem G.3 and Conjecture 4’s result suggests that configuration in Theorem G.3 and Conjecture 4 are not only the local optimal point,
but it has the potential as being the global optimizer.

G.10. Discussions on the Production of FTRL with Entropy Regularization

Now, we will consider projecting a single-layer linear self-attention model into a constrained domain such as a simplex,
which is more amenable to the Experts Problem setting. To this end, we consider the following parameterization by adding
an additional non-linear structure for the single-layer linear self-attention:

t
9(Z; VK, Q, v, ke, q.) = Operator <Z(V€i +ve) (K + k)T - (Qc + qc))> , (G.15)

i=1
where the Operator denotes projection to the convex set.

Conjecture 4. Assume X = 1. Then, the configuration that K7(Qc + q.) = v. = 04 and V = Q (—ﬁ) Iixaqisa
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first-order stationary point of Equation (5.2) with N = 1 and h(z) = x? when LLM is parameterized with Equation (G.15),
Operator = Softmax, and Il = A(A). This configuration performs FTRL with an entropy regularizer which is a
no-regret algorithm.

We provide an idea for proving the conjecture, together with its numerical validation. Also, we have observed in Figure G.1
that Theorem G.3 and Conjecture 4 might also be a global optimizer, as training results have provided the configuration that
Theorem G.3 and Conjecture 4 have suggested.

To be specific, we will consider

2

T exp (e} Z;;i(Vﬁj@a + (BV +vea™)l; + UC»B))
f(V,a,B,ve) = E ZZ&S d T i1 T
SIS e (DTN VGGa+ (BY + vean)t; + vef)

T
— minz&s>
) R

and will try to prove that a = 04, v, = v14, V = kI is a first-order stationary point.

Step 1. Calculatlng (%

We use the following formula: for z € [d] and ¢ > 2, we have

6 t
o exp <e£ Z(V&E{a + (BV 4+ vea" ) + vcﬂ))

=1

a=0g4,v.=v14,V=kI

t t
= exp (e; Z(V&-Eza + (BV +vea" )l + uﬁ)) 81? (e; Z(V&Z}a + (BV +vea")l; + wﬁ))

i=1 i=1 a=0g,vc.=vlg,V=FkI

t
:exp< > (Vedla+ (B + vea €+UC,B>Z (aTlilTe, + B)

i=1 i

a=0g4,v.=v14,V=kI

= tB exp(vB) exp(Bk Z liy),

i=1

= 0, so we can use the same

and for t = 1, Bv - exp ( Z§=1(V€i@a + (BV +wvea™)l; + vCB))
a=04,v.=v14,V=kI

formula with ¢ > 2. Thus, we have

a=0g4,v.=v1y4,V=kI

T d I(VELTa+ (BV + veaT)l; + v T
a ZZ exp( Z ( a+( veal) v )) _minzas
Vee \ 15 21 Zy | €Xp (ey E (Ve i3a+ (BV +veaT)l; + %ﬁ)) ° =1
Sy exp (D02 Bkt ) exp (D02 Bkt ) — i, exp (S02) Bkt ) exp (125 Bk, )
t=1 s=1 (25:1 exp (e; Z;;ll BVEJ))Q

Therefore,

of(V,a,B,vc)

Oy

a=04,v.=v14,V=kI

exp (1 Ty (VELla+ (BV + veaT)t; + veB))

t=1 s=1 Zy 1 €Xp (ey Z;:(V&ﬁ;a + (BV +veaT)l; + vcﬁ))
T exp ( Z;;l (Veilia+ (BV +vea™)l; + vcﬁ))

8ch Z Z gts

=1 s—1 Zu 1 €xp (ey Z (Vé iia+ (BV +veaT)l; + ve)

T
— min E Uy
S
t=1

T
fminZEts ]
) )

a=0g4,v.=v14,V=kI

=0.
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Step 2. Calculating %

The following formula will be used for calculating % : for r, ¢ € [d], we have

a=04,v.=v14,V=kI

t
8‘6/” exp < Z(VZ Ta+ (BV +vea™)l; + vC,B))

i=1 a=0g4,v.=v14,V=kI

¢ ¢
= exp <e; Z(V&E{a—%— (BV 4+ vea™)l; + veB) ) ET <e Z Veilla+ (BV +vea™)l; —|—vcb’)>

=1 i=1

t
= exp (Zkﬁzw +vﬁ> > By = r)lic.
=1

i=1

a=0g4,v.=v14,V=kI

Therefore,

af(v7 a, ﬂ? UC)
Ve

a=0g,v.=v14,V=kI

exp (62 ST (Veila+ (BV +vea™)l; + vcﬂ)) T )

— min g lis
S

= ZZ:1 exp (e{, E;;i(v&-@-a + (BV 4+ vea™)l; + vﬁ)) t=1

exp (eI TUZL(VEa+ (BV + veal)l; + veB) ) r ) ]

— min E lis
S

=1 s—1 25:1 exp (e; Z;;i(Vﬁjé}a + (BV +veaT)l; + ’Ucﬂ)) =1
exp (21 Bkt;s + v6) oz
¢ y P — manéts
=1s=1 D, ; €XP (Zj:1 BV + vﬂ) =
SO0 BL(s = r)te exp (02} Bkt + v8) iy exp (02} Bty +v8)

a=0g4,v.=v1,4,V=kI

=1 s=1 (25:1 exp (Zy’;l Pktiy + vﬂ))
) ZT: Z:: . exp (Z;: Bkljs + vﬁ) Zd:Zl <Z;11511(y : )lje eXp2(Z§;i Bkljy + vﬁ)) >}
=1 s—1 (Zy:l exp (ijl Bkl + vﬂ))

exp (Z;;i ﬂkea‘s) -
t=1 s=1 ‘ 25:1 exp (Zt.;ll ,BVij) s ;&s>
(z D ] Gaap e W)exp(mczt L)
(Zhiow (e 00)
(@)
B ZLZ Zy 1 Leyljc exp (ﬁkzj 1 JT) exXp (5kzt 1@ )>:|

(S exp (BES0 0))

(i1)

We can observe the followings: 1) if 1 # ¢; and ro # o, avi = a‘ff holds,
™1 C T9 C
1o a=04,v.=v14,V=kI 202 a=04,v.=v14,V=EkI
_ _of
and 2) BVTm =

a=04,v.=v14,V=kI a=04,v.=v14,V=kI

Step 3. Calculating g—f
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The following formula will be used for calculating g—é

a=0g4,v.=v14,V=kI

t
— eXp ( Z (Vella+ (BV +vea™)l; + Ucﬁ))

i=1

a=04,v.=v14,V=kI

i=1 a=04,v.=v14,V=kI

t t
- (e Z(Vé [ra + (BV +wvea)l; + UCB)> aaﬁ (e; Z(V&[{a + (BV +wvea)l; + UCB)>

= tvf exp ( kBl + vﬁ) .
i=1

Further, we have

o (ET: ths exp (el Z;;i(VZjé;a + (BV +vea™)l; + vc,@)) - minzT:fts)
W\TS i ew (e; Yisi(VElla + (BV + veat)l; + vcﬁ)) = a=0q ve=vlq,V=kl
= vBexp(vp)
ZT: t zdjets S0y exp (U2) Bkt ) exp (2t Bess ) — Sz exp (U2} Bkt ) exp (D02} Ak, )
=5 (S iexp (50t Bvey))
=0.

. of
Step 4. Calculating 7
Note that

i=1 a=04,v.=v14,V=kI

t
83 exp <e Z(Vﬁ LTa+ (BV +vea)l; +vcﬁ)>

1=1

t t
o
= exp <e; > (Vitlla+ (BV + vea)l; + m)) i <e; > (Vitlla+ (BV + vea™)l; + m))
z i=1

a=04,v.=v14,V=kI

i=1 i=1 a=0g4,v.=v14,V=kI

= exp

t t
exp (e; Z Vella+ (BV +vea™)l; + v ) Z eTV&ﬂiTex + e;vcgem)
t ¢

<Z Bhliy + w) > (kliylia +vlis).

i=1 i=1
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Therefore,

8f(V, a, 3, Uc)
Oay

a=04,v.=v14,V=kI

exp (eI I3 (VEtTa+ (BY + veaT)t; + o)) r

— min E lis
S

Do Y exp (65 S (VETa + (BV +veaT)l; + Uc5)> t=1
B ZT: Zd: , e (1 S (VEtTa+ (BY + veaT)t; + ) ) . ZT: . ]
ts — min ts
da, \ i = Zzzl exp (e{, Z;;ll(VEjEJTa + (BV +veaT)l; + vcﬂ)) i a=0q,v.=v1q,V=kI

exp (320 Bkt s
b=l S e>(<p (2 6k:)ij) Eih
S (lstin + vbia) exp (2523 Bk ) Xy exo (523 Bkt )
=5 (50, exp (S0 ke, )
T 4, exp (Z;le 5k€js) PO (Z;;ll(kgjygjx + vlje) exp (Z;';ll 5%@))
=S (S exp (S Bh,)) ﬂ
T exp (22521 Bk s
' ; ; h Syt e><<p (x5 ﬁkzjy) o t; "
S0 Ctia exp (21 Bk ) Ly exp (S1 kL, )
e petl (Zioiexp (S ﬂkﬁjy))Q

s, o (T T (S5 e (S54 ) )1
t=1 s=1 (Zzzl exp (22;11 51{7&‘9))2

= ¢l for some constant c.
a=04,v.=v14,V=kI

Note that the value does not depend on z, which means that g—ﬁ

G.10.1. NUMERICAL ANALYSIS OF STEP 2 AND STEP 4

In Steps 2 and 4 above, we were not able to show that a k& whose value becomes zero exists. We hence provide

of
(r # 0, 3y
a=04,v.=v14,V=kI

some empirical evidence here. First, we attach the estimated %

>

a=04,v.=v14,V=kI

of of
Oag and da

graph with respect to k value when ¢;; ~ Unif([0,1]) for all t €
* a=04,v.=v14,V=kI

a=0g4,v.=v14,V=kI

= O,
a=04,v.=v14,V=kI

[T1,s € [d]. While the graph of g{;‘ is not stable, we can see that k for 78?2
a=0g4,v.=v14,V=kI

of
OVyy

= 0 and aan = 0 is very similar in Figure G.2. We used the Monte Carlo
" la=04,0.=01g,V=kI “Na=04,ve=0v1q,V=KkI
estimation of 1, 000, 000 times.

G.10.2. EMPIRICAL VALIDATION

Our model architecture is defined as follows: the number of layers 7' is set to 30 and the dimensionality d to 32, with the
loss vector ;s distribution Z following a standard normal distribution A/(0, 1). During training, we conducted 40,000
epochs with a batch size of 512. We employed the Adam optimizer, setting the learning rate to 0.001. We focus on
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two key convergence properties: KT(Q1 + g.) approaching the zero vector 04 and V' converging to alql} + bIgya,
where a and b are constants in R. The conditions KT(Q1 + ¢.) = 04 and V' = aldlg + bl 3% ¢ imply that the function
9(Z;V,Q,K) = 22:1 (b — a)l;, effectively emulating the process of an online gradient descent method. We repeated 10
times. For verifying KT(Q1 + ¢.) = 04, we will measure 2-norm of KT(Q1 + g.). Also for measuring the closeness of V'
and al 41} + b4, we will measure ming per |V — (al41l) + bIgxq)||2,2/b. The results are demonstrated in the third plot
of Figure G.1.

G.11. Comparison with (Ahn et al., 2023; Zhang et al., 2023a; Mahankali et al., 2023)

The very recent studies by (Ahn et al., 2023; Zhang et al., 2023a; Mahankali et al., 2023) have demonstrated that if
Zy = ((z1,91)s- -+, (Tt,Yt), (¥451,0)) and the “instruction tuning” loss (i.e., E[||7s+1 — y+1]|%]) is being minimized with
a single-layer linear self-attention model, then a global optimizer among single-layer linear self-attention models yields
the output ¥, 1 = 1Y+, Y;¥] Xn11. This output can be interpreted as a gradient descent algorithm, indicating that a
single-layer linear self-attention model implicitly performs gradient descent. However, in the online learning setting where
there are no y-labels, such an implicit gradient descent update-rule is hard to define. Compared to the previous studies, our
global optimizer among single-layer linear self-attention models is an explicit and online gradient descent update for online
learning. With a different loss (regret-loss v.s. instruction-tuning-loss), the techniques to obtain the seemingly similar results
are also fundamentally different.

G.12. Details of Experiments for Regret-loss Minimization

Randomly generated loss sequences. We use the same loss vectors as those in Section 3.2 for randomly generated loss
functions, and compare the results with that using GPT-4. The results show that with regret-loss, both the trained single-layer
self-attention model and the trained Transformers with multi-layer self-attention structures can achieve comparable regrets
as FTRL and GPT-4. The results can be found in Figure G.3.

Loss sequences with certain trends. We investigate the case where the loss sequences have predictable trends such as
linear-trend or sine-trend. One might expect that the performance of the trained Transformer would surpass the performance
of traditional no-regret learning algorithms such as FTRL, since they may not be an optimal algorithm for the loss sequence
with a predictable trend. We modify the training distribution by changing the distribution of random variable Z (which
generates the loss vectors ¢;) to follow two kinds of trends: linear and sine functions. The results, as illustrated in Figure G.4,
show that the trained single-layer self-attention model and the trained Transformer with multi-layer self-attention structures
with regret-loss outperformed GPT-4 and FTRL in terms of regret, when the loss sequence is a linear trend. Similarly,
Figure G.4 shows that the trained Transformer with multi-layer self-attention structures with regret-loss is comparable to
GPT-4 and outperformed FTRL in terms of regret, when the loss sequence is a sine-trend. Note that the training dataset does
not contain the sequence of losses. Nonetheless, by focusing on the overall trend during training, we can attain performance
that is either superior to or on par with that of FTRL and GPT-4.

Repeated games. We then investigate the case of multi-player repeated games. We study 2x2, 3x3x3, 3x3x3x3 games,
where each entry of the payoff matrix is sampled randomly from Unif ([0, 10]). The results, as illustrated in Figure G.5,
show that the trained single-layer self-attention model and the trained Transformer with multi-layer self-attention structures
with regret-loss have a similar performance as that of FTRL. However, GPT-4 still outperforms the trained single-layer
self-attention model and the trained Transformer with multi-layer self-attention structures in terms of regret. Since for
repeated games (in which the environment faced by the agent can be less adversarial than that in the online setting), there
might be a better algorithm than FTRL (see e.g., (Daskalakis et al., 2021)), while our self-attention models have a similar
structure as FTRL (Theorem G.3 or Theorem G.2). Also, in practical training (with the empirical loss in Equation (G.3)),
we possibly did not find the exact global minimum or stationary point of the expected loss in Equation (5.2). Hence, it is
possible that GPT-4 may have lower regret than our trained models with the regret-loss.

Two scenarios that caused regrettable behaviors of GPT-4. Finally, we investigate the cases that have caused GPT-4
to have regrettable performance in Section 3.2. The results, which can be found in Figure E.7, show that both the trained
single-layer self-attention model and the trained Transformer with regret-loss can achieve comparable no-regret performance
as FTRL, and outperforms that of GPT-4. This validates that our new unsupervised training loss can address the regrettable
cases, as our theory in Section 5.2 has predicted.
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G.12.1. TRAINING DETAILS OF EXPEIMENTS

For the multi-layer Transformer training, we used 4 layers, 1 head Transformer. For both single-layer and multi-layer, we
employed the Adam optimizer, setting the learning rate to 0.001. During training, we conducted 2,000 epochs with a batch
size 512. Moreover, when we trained for the loss sequences with the predictable trend, we used 4 layers, 1 head Transformer.
For both single-layer and multi-layer, we employed the Adam optimizer, setting the learning rate to 0.001. During training,
we conducted 9,000 epochs with a batch size of 512.

G.13. Ablation Study on Training Equation (5.2)

In this section, we provide an ablation study that changes N and k in Equation (5.2). To be specific, we will set N = 1, 2,4,
f(x, k) = max(x,0)¥, h(z) = max(x,0)?, and k = 1,2. For the multi-layer Transformer training, we used 4 layers and
1 head Transformer. For both single-layer and multi-layer, we employed the Adam optimizer, setting the learning rate to
0.001. During training, we conducted 2,000 epochs with a batch size of 512. We experimented on the randomly generated
loss sequences. Especially, we used the uniform loss sequence (¢; ~ Unif([0, 10]?)), with the results in Figure G.6 and
Figure G.7; and the Gaussian loss sequence (¢; ~ N (5 - 15, I)), with the results in Figure G.8 and Figure G.9.
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H. Limitations and Concluding Remarks

In this paper, we studied the online decision-making and strategic behaviors of LLMs quantitatively, through the metric of
regret. We first examined and validated the no-regret behavior of several representative pre-trained LLMs in benchmark
settings of online learning and games. As a consequence, (coarse correlated) equilibrium can oftentimes emerge as the
long-term outcome of multiple LLMs playing repeated games. We then provide some theoretical insights into the no-regret
behavior, by connecting pre-trained LLMs to the follow-the-perturbed-leader algorithm in online learning, under certain
assumptions. We also identified (simple) cases where pre-trained LLMs fail to be no-regret, and thus proposed a new
unsupervised training loss, regret-loss, to provably promote the no-regret behavior of Transformers without the labels of
(optimal) actions. We established both experimental and theoretical evidence for the effectiveness of our regret-loss.

As a first attempt toward rigorously understanding the online and strategic decision-making behaviors of LLMs through the
metric of regret, We provide the following limitations and list some potential directions for future research:

 There are more than one definitions of (dynamic-)regret in the online learning literature, and we mainly focused on the
so-called external-regret in the literature. There are some other regret metrics we have studied, e.g., swap-regret (Blum
& Mansour, 2007), which may lead to stronger equilibrium notions in playing repeated games.

* Our new regret-loss has exhibited promises in our experiments for training modest-scale Transformers. One limitation
is that we haven’t trained other larger-scale models, such as Foundation Models, for decision-making.

* No-regret behavior can sometimes lead to better outcomes in terms of social efficiency (Blum et al., 2008; Roughgarden,
2015; Nekipelov et al., 2015). It would thus be interesting to further validate the efficiency of no-regret LLM agents
in these scenarios, as well as identifying new prompts and training losses for LLMs to promote the efficiency of the
outcomes.

 To evaluate the performance quantitatively, we focused on online learning and games with numeric valued payoffs.
It would be interesting to connect our no-regret-based and game-theoretic framework with existing multi-LLM
frameworks, e.g., debate, collaborative problem-solving, and human/social behavior simulation, with potentially new
notions of regret (defined in different spaces) as performance metrics.
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Figure G.9. Ablation study for the Gaussian loss sequence trained with single-layer self-attention layer and Softmax projection.
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