
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Do LLM Agents Have Regret?
A Case Study in Online Learning and Games

Anonymous Authors1

Abstract

Despite Large language models’ (LLMs) emerg-
ing successes, the performance of LLM agents in
decision-making has not been fully investigated
through quantitative metrics, especially in the
multi-agent setting when they interact with each
other, a typical scenario in real-world LLM-agent
applications. To better understand the limits of
LLM agents in these interactive environments, we
propose to study their interactions in benchmark
decision-making settings in online learning and
game theory, through the performance metric of
regret. We first empirically study the no-regret be-
haviors of LLMs in canonical (non-stationary) on-
line learning problems, as well as the emergence
of equilibria when LLM agents interact through
playing repeated games. We then provide some
theoretical insights into the no-regret behaviors
of LLM agents, under certain assumptions on the
supervised pre-training and the rationality model
of human decision-makers who generate the data.
Notably, we also identify (simple) cases where ad-
vanced LLMs such as GPT-4 fail to be no-regret.
To promote the no-regret behaviors, we propose
a novel unsupervised training loss of regret-loss,
which, in contrast to the supervised pre-training
loss, does not require the labels of (optimal) ac-
tions. Finally, we establish the statistical guaran-
tee of generalization bound for regret-loss mini-
mization, and more importantly, the optimization
guarantee that minimizing such a loss may au-
tomatically lead to known no-regret learning al-
gorithms. Our further experiments demonstrate
the effectiveness of our regret-loss, especially in
addressing the above “regrettable” cases.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Large language model (LLM) agent interacts with the (phys-
ical) world in a dynamic/sequential way: it uses LLMs
as an oracle for reasoning, then acts in the environment
based on the reasoning and the feedback it perceives over
time. LLM agent has achieved impressive successes in so-
cial science (Park et al., 2022; 2023) applications. Besides
being dynamic, another increasingly captivating feature of
LLM-based decision-making is the involvement of strategic
interactions, oftentimes among multiple LLM agents (Fu
et al., 2023; Du et al., 2023; Aher et al., 2023; Park et al.,
2023). Moreover, LLMs have also exhibited remarkable
potential in solving various games (Bakhtin et al., 2022;
Mukobi et al., 2023). These exciting empirical successes
call for a rigorous examination and understanding through a
theoretical lens of decision-making.
Regret has been a core metric in (online) decision-making.
It measures how “sorry” the decision-maker is, in retrospect,
not to have followed the best prediction in hindsight (Shalev-
Shwartz, 2012). It provides not only a sensible way to eval-
uate the sophistication level of online decision-makers, but
also a quantitative way to measure their robustness against
arbitrary (and possibly adversarial) environments. More
importantly, it inherently offers a connection to modeling
and analyzing strategic behaviors: the long-run interac-
tion of no-regret learners leads to certain equilibrium when
they repeatedly play games (Cesa-Bianchi & Lugosi, 2006).
In fact, no-regret learning has served as a natural model
for predicting and explaining human behaviors in strategic
decision-making, with experimental evidence (Erev & Roth,
1998; Nekipelov et al., 2015; Balseiro & Gur, 2019). It has
thus been posited as an important model of “rational be-
havior” in playing games (Blum et al., 2008; Roughgarden,
2015; Roughgarden et al., 2017). Thus, it is natural to ask:
Can we examine and better understand the online and strategic
decision-making behaviors of LLMs through the lens of regret?

Acknowledging that LLM(-agents) are extremely compli-
cated to analyze, to gain some insights into the question,
we focus on benchmark decision-making settings: online
learning with convex (linear) loss functions, and playing
repeated games. We defer a detailed literature review to
Appendix B, and summarize our contributions as follows.
Contributions. First, we carefully examine the perfor-
mance of several representative pre-trained LLMs in several

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Do LLM Agents Have Regret?

online decision-making settings, in terms of regret. We
observe that oftentimes, LLM agents exhibit no-regret be-
haviors in these (non-stationary) online learning settings,
where the loss functions change over time either arbitrarily
(and even adversarially), or in playing both representative
and randomly generated repeated games. For the latter, equi-
libria will emerge as the long-term behavior of the multi-
LLM interactions. Second, we provide some theoretical
insights into the observed no-regret behaviors, based on
some hypothetical model of the human decision-makers
who generate the data, and certain assumptions on the super-
vised pre-training procedure, a common practice in training
large models for decision-making: we make a connection
of pre-trained LLMs to the known no-regret algorithm of
follow-the-perturbed-leader (FTPL) under such assump-
tions. Third, we also identify (simple) cases where advanced
LLMs such as GPT-4 fail to be no-regret. We thus propose a
novel unsupervised training loss, regret-loss, which, in con-
trast to the supervised pre-training loss, does not require the
labels of (optimal) actions. We then establish both statistical
and optimization guarantees for regret-loss minimization,
which, in particular, shows that minimizing such a loss au-
tomatically leads to known no-regret learning algorithms.
Our further experiments demonstrate the effectiveness of
regret-loss, also in addressing the above “regrettable” cases.

2. Preliminaries
We defer the notation to Appendix D.
2.1. Online Learning & Games
Online learning. We consider the online learning setting
where an agent interacts with the environment for T rounds,
by iteratively making decisions based on the feedback she
receives. Specifically, at each time step t, the agent chooses
her decision policy πt ∈ Π for some bounded domain Π,
and after her commitment to πt, a bounded loss function
ft : Π → [−B,B] for some constant B > 0 is chosen by
the environment, potentially in an adversarial fashion. The
agent thus incurs a loss of ft(πt), and will update her deci-
sion to πt+1 using the feedback. We focus on the most basic
setting where the agent chooses actions from a finite set A
every round, which is also referred to as the Experts Problem
(Littlestone & Warmuth, 1994; Hazan, 2016), without loss
of much generality (c.f. Appendix D.4 for a discussion). In
this case, Π becomes the simplex over A, i.e., Π = ∆(A),
and ft(πt) = ⟨ℓt, πt⟩ for some loss vector ℓt ∈ Rd that
may change over time, where d := |A|. Hereafter, we will
by default refer to this setting that does not make any as-
sumptions on the loss sequence (ℓt)t∈[T] simply as online
learning. Moreover, if the loss functions change over time
(usually with certain bounded variation), we will refer to it
as non-stationary online learning for short.
Repeated games. Consider a normal-form game G =
⟨N, {An}n∈[N], {rn}n∈[N]⟩, where N is the number of
players, An and rn : A1 × · · · × AN → [−B,B] are the
action set and the payoff function of player n, respectively.

The N players repeatedly play the game for T rounds, each
player n maintains a strategy πn,t ∈ ∆(An) at time t, and
takes action an,t ∼ πn,t(·). The at = (a1,t, · · · , aN,t) de-
termines the payoff of each player at time t, {rn(at)}n∈[N].
2.2. Performance Metric: Regret
We now introduce regret, the core performance metric used
in online learning and games. For a given algorithm A ,
let πA ,t denote the decision policy of the agent at time t
generated by A . Then, the regret, which is the difference
between the accumulated (expected) loss incurred by imple-
menting A and that incurred by the best-in-hindsight fixed
decision, can be defined as

RegretA
(
(ft)t∈[T]

)
:=

T∑
t=1

ft(πA ,t)− inf
π∈Π

T∑
t=1

ft(π).

In the Experts Problem, the definition is instanti-
ated as RegretA ((ℓt)t∈[T]) :=

∑T
t=1⟨ℓt, πA ,t⟩ −

infπ∈Π

∑T
t=1⟨ℓt, π⟩. An algorithm A is referred to as

being no-regret, if RegretA ((ft)t∈[T]) ∼ o(T), i.e., the
regret grows sublinearly in T . Widely-known no-regret
algorithms include follow-the-regularized-leader (FTRL)
(Shalev-Shwartz & Singer, 2007), follow-the-perturbed-
leader (Kalai & Vempala, 2005) (See Appendix D.3 for
more details). In non-stationary online learning, the met-
ric of dynamic regret (Zinkevich, 2003) is used, where the
comparator changes over time.

3. Do Pre-Trained LLMs Have Regret?
Experimental Validation

In this section, we explore the no-regret behaviors of rep-
resentative LLMs (i.e., GPT-4 Turbo, GPT-4, and GPT-3.5
Turbo, Mixtral-8x7b-instruct, and Llama-3-70B-instruct), in
the context of online learning and games. All experiments
with LLMs are conducted using the public OpenAI (Openai,
2023) or LLM Engine (LLM Engine, 2023) Python API.
We provided intuition as to why pre-trained LLM might be
expected to be no-regret in Appendix E.1.
Interaction protocol. To enable the sequential interaction
with LLMs, we first describe the setup and objective of our
experimental study. At each round, we incorporate the entire
history of loss vectors of past interactions into our prompts,
as concatenated texts, and ask the LLM agent to determine
a policy that guides the decision-making for the next round.
Note that since we hope to evaluate the sophistication level
of pre-trained LLMs through online learning or games, we
only provide simple prompts that she should utilize the
history information, without providing explicit rules of how
to make use of the history information, nor asking her to
minimize regret (in any sense). We defer detailed description
to Appendix E.9, and an illustration of the protocol for
playing repeated games is given in Figure E.1.

3.1. Framework for No-Regret Behavior Validation
Before delving into the results, we note that to the best of
our knowledge, we are not aware of any principled frame-
work for validating no-regret behaviors with finite-time ex-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Do LLM Agents Have Regret?

perimental data. Therefore, we propose two frameworks,
trend-checking/regression-based framework, to rigorously
validate the no-regret behavior of algorithms over a finite T ,
which might be of independent interest. More details are
deferred to Appendix E.3.
3.2. Results: Online Learning
We now present the experimental results of pre-trained
LLMs in online learning in: 1) arbitrarily changing en-
vironments, 2) non-stationary environments, and 3) bandit-
feedback environments. Results for 2) and 3) are deferred
to Appendix E.5 and E.6.
Online learning in arbitrarily changing environ-
ment. We first consider the setting with arbitrarily
changing environments, which are instantiated as fol-
lows: 1) Randomly-generated loss sequences. At
every timestep, we generate a random loss vector
ℓt ∼ Unif(×d

i=1[min{xi, yi},max{xi, yi}]) for {xi, yi ∼
Unif(0, 10)}i∈[d] or ℓt ∼ N (µµµd, I) with clipping to
[0, 10] to ensure boundedness of the loss, where µµµd ∼
Unif([0, 10]d), such that the loss vectors of different
timesteps can be arbitrarily different. 2) Loss sequences
with certain trends. Although many real-world environ-
ments may change, they often change following certain
patterns. Therefore, we consider two representative trends,
the linear and periodic (sinusoid) trend. We sample a, b ∼
Unif([0, 10]d) and let ℓt = (b−a) t

T +a for the linear trend
and ℓt = 5(1+sin(at+ b)) for the periodic trend. In the ex-
periments, we choose d = 2. The average regret (over multi-
ple randomly generated instances) performance is presented
in Figure E.2, where we compare GPT-4 with well-known
no-regret algorithms, FTRL with entropy regularization and
FTPL with Gaussian perturbations (with tuned parameters).
These pre-trained LLMs are indeed no-regret and can have
lower regret values than these baselines.
Behavioral pattern of LLMs. To understand how LLMs
make decisions at each time step, we provided example
outputs of LLMs explaining how they generate their policies
in Appendix E.12. We find LLMs tend to use the history of
the reward vectors by looking at their sum/average, and tend
to introduce randomization in decision-making. These are
known to be key to achieving no-regret behaviors in online
learning and games (Cesa-Bianchi & Lugosi, 2006).
3.3. Results: Multi-Player Repeated Games
We now consider the setting when multiple LLMs make
online strategic decisions in a shared environment repeat-
edly. Specifically, at each round, the loss vectors each agent
receives are determined by both her payoff matrix and the
strategies of all other agents. Note that the payoff matrix is
not directly revealed to the LLM agent, but she has to make
decisions in a completely online fashion based on the payoff
vector marginalized by the opponents’ strategies (See Fig-
ure E.1 for a prompt example). This is a typical scenario in
learning in (repeated) games (Fudenberg & Levine, 1998).
Randomly generated games. To validate the no-regret
behavior of LLMs, we also test on 50 randomly generated

three-player general-sum games, and 50 randomly gener-
ated four-player general-sum games, where each entry of
the payoff matrix is sampled randomly from Unif([0, 10]).
These are larger and more challenging settings than the
structured and representative ones above.
We summarize the experimental results in Figure E.4, which
are similar to the above in the online setting: for all types
of games, pre-trained LLMs achieve sublinear regret, which
is often lower than that obtained by FTRL/FTPL for most
games. We provide six instances of three-player general-
sum games and six instances of four-player general-sum
games in Figure E.5 and Figure E.6, respectively. Occasion-
ally, GPT-4 even provides a negative regret value.
3.4. Pre-Trained LLM Agents May Still Have Regret
It seems tempting to conclude that pre-trained LLMs are in-
deed no-regret in both online learning and playing repeated
games. However, is this capability universal? We show that
the no-regret property might break for LLM agents if the
loss vectors are generated in a more adversarial way. Details
are deferred to Appendix E.8.

4. Why Do Pre-Trained LLMs (Not) Have
Regret? A Hypothetical Model and Some
Theoretical Insights

We now provide some plausible explanations about the no-
regret behavior of pre-trained LLMs, which are hypothetical
by nature, since to the best of our knowledge, the details of
pre-training these popular LLMs, regarding data distribution,
training algorithm, etc., have not been revealed. We instead
make the explanations based on some common assumptions
in the literature for modeling human behaviors, and the
recent literature on understanding LLMs/Transformers. We
defer the definition of quantal response against multiple
losses to Appendix F.2.1, which has been investigated in the
learning-in-games and behavioral economics literature.
Pre-training of LLMs is predominantly based on next-
token prediction. When applying LLMs to sequential
decision-making, the model receives the context of the
decision-making task as (x1, x2, · · · , xN) and then gen-
erates (xN+1, · · · , xM) encoding the action for some
N,M ∈ N+ and N < M , where each xi ∈ V repre-
sents one natural language token for i ∈ [M], and V is the
finite token set. Meanwhile, large models are often (pre-
)trained under several fixed/stationary environments (Laskin
et al., 2023; Lin et al., 2024; Lee et al., 2023; Reed et al.,
2022), which may limit their ability to handle arbitrary/non-
stationary/adversarial loss sequences in our online learning
setup. Thus, it is natural to ask: Is it possible to have
no-regret behaviors emerging as a consequence of this (op-
timal) action prediction, under only a fixed pre-training
distribution of environments?
Here we analyze a standard pre-training objective on a token
sequence distribution x1:Nt+1 ∼ P text

t for given t ∈ [T],
which is the expected log-likelihood maximization for next-

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Do LLM Agents Have Regret?

token prediction over Θ, the parameter space of the LLM:

max
θ∈Θ

Ex1:Nt+1
∼P text

t

Nt+1∑
j=1

log LLMθ (xj |x1:j−1) , (4.1)

where we define LLMθ (x1 |x1:0) = LLMθ (x1).
For the pre-training distribution, we model it as follows:
there exists a latent variable z, representing the loss for
the underlying static decision-making problem. We defer a
detailed explanation for z ad assumptions for pre-training
distribution in Appendix F.3.
Theorem 4.1 (Informal: Emergence of no-regret behavior).
Suppose Assumption 1 holds with both the prior distribution
on z and the likelihood on {ℓi | z}i∈[t] being Gaussian, and
xNt+1:Nt+1

encodes the optimal action for z. Then, as
long as the function class of LLMθ is expressive enough,
with θ⋆ being a maximizer of Equation (4.1), the behavior
of LLMθ⋆ follows quantal response, and also achieve no
(dynamic) regret for (non-stationary) online learning with
full-information/bandit feedback for arbitrary loss vectors.

The formal statement and proof are deferred to Appendix F.7.
The significance of our results lies in that even when pre-
training is conducted solely with loss vectors from station-
ary distributions, it still enables the emergence of no-regret
behavior in online learning against potentially adversarial
losses. Key in the proof is an interesting connection of
pre-trained LLM models to FTPL. Finally, we point out
its implications for playing games in Appendix F.7.1. We
also defer the experiment to compare theoretical results and
LLMs’ behavior in Appendix F.10.
Finally, we acknowledge that for existing pre-trained LLMs
like GPT-4, the canonical assumptions above, though may
be further relaxed (c.f. Remark F.3), may not hold in general.
More importantly, the supervision labels may be sometimes
imperfect or unavailable during the dataset collection. These
caveats motivate the study in our next section.

5. Provably Promoting No-Regret Behavior by
an Unsupervised Loss

In light of the observations in Section 3, we ask the question:
Is there a way to enhance the no-regret property of LLM

agents, without (optimal) action labels?
We propose to train LLMs with a new unsupervised learning
loss that naturally provides no-regret behaviors.

5.1. A New Unsupervised Training Loss: Regret-Loss
Intuitively, our new training loss is designed to enforce
the trained LLM to minimize the regret under an arbitrary
sequence of loss vectors. We define the training loss as

L(θ) := max
ℓ1,...,ℓT

RegretLLMθ

(
(ℓt)t∈[T]

)
(5.1)

where ∥ℓt∥∞ ≤ B for t ∈ [T]. As discussed in (Kirschner
et al., 2023), directly minimizing the max regret can be
computationally challenging, except for superficially simple
problems. Therefore, we provide a general class of surrogate
losses to approximate Equation (5.1) (L(θ, k,N)):

E

∑j∈[N] h(RegretLLMθ
((ℓ

(j)
t)t∈[T]))f(RegretLLMθ

((ℓ
(j)
t)t∈[T]), k)∑

j∈[N] f(RegretLLMθ
((ℓ

(j)
t)t∈[T]), k)

 ,

(5.2)
where k ∈ N+, N ∈ N+, and regularity conditions for
f and h (Appendix G.1). Examples of such an f include
f(x, k) = xk and exp(kx). In Appendix G.3, we prove that
under certain regularity conditions of f and h, we have
lim

N,k→∞
L(θ, k,N) = h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

)
.

We will hereafter refer to Equation (5.2) as the regret-loss.
5.2. Generalization and Regret Guarantees of

Regret-Loss Minimization
We first establish a statistical guarantee under general pa-
rameterizations of LLMθ that is Lipschitz with respect to θ,
including the Transformer-based models as used in GPT-4
and most existing LLMs (see Proposition 2).
Theorem 5.1. (Regret, Informal). Under regular conditions
on f, h, with high probably, we have

h

(
lim

N→∞
lim

k→∞
max

∥ℓt∥∞≤B
RegretLLM

θ̂k,N,NT

(
(ℓt)t∈[T]

))

≤ h

(
inf
θ∈Θ

max
∥ℓt∥∞≤B

RegretLLMθ

(
(ℓt)t∈[T]

))
+ Õ

√ dθ

NT

 .

We defer the proof of the theorem to Appendix G.5. There-
fore, if additionally, the LLM parameterization (i.e., Trans-
formers) can realize a no-regret algorithm (as to be shown
next), then Theorem 5.1 means that with a large enough NT ,
the learned LLMθ̂k,N,NT

becomes a no-regret learner, i.e.,

RegretLLM
θ̂k,N,NT

(
(ℓt)t∈[T]

)
= o(T). Finally, it is folklore

that when multiple such LLMs interact, a coarse correlated
equilibrium will emerge in the long term.

5.3. Minimizing Regret-Loss Can Automatically
Produce Online Learning Algorithms

Despite the generality of the previous results, one cannot
use an infinitely large N and k in practice. Hence, we now
provide results when N is finite, for the specific parame-
terization of the LLMs using Transformers. We focus on
single-layer (linear) self-attention models, as in most recent
theoretical studies of Transformers (Ahn et al., 2023; Zhang
et al., 2023a; Mahankali et al., 2023), and N = 1. Under
this condition, we have the following informal theorem
Theorem 5.2 (Informal, emergence of FTRL). The con-
figuration of the single-layer linear self-attention model is
equivalent to FTRL with L2-regularizer.

We defer a detailed explanation to Appendix G.6. Theo-
rem 5.2 shows the capability of self-attention models: it can
realize online learning algorithms, thanks to our regret-loss.
In particular, this can be achieved automatically by optimiz-
ing the new loss, without hard-coding the parameters of the
Transformer. Lastly, we also provide experimental results
for minimizing our regret-loss in various environments in
Appendix G.12.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Do LLM Agents Have Regret?

References
Abernethy, J., Lee, C., Sinha, A., and Tewari, A. Online

linear optimization via smoothing. In Conference on
Learning Theory, pp. 807–823. PMLR, 2014.

Abernethy, J. D., Lee, C., and Tewari, A. Fighting bandits
with a new kind of smoothness. Advances in Neural
Information Processing Systems, 28, 2015.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Aher, G. V., Arriaga, R. I., and Kalai, A. T. Using large lan-
guage models to simulate multiple humans and replicate
human subject studies. In International Conference on
Machine Learning, pp. 337–371. PMLR, 2023.

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-
formers learn to implement preconditioned gradient de-
scent for in-context learning. Advanced in Neural Infor-
mation Processing Systems, 2023.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,
David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman,
K., et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

Akata, E., Schulz, L., Coda-Forno, J., Oh, S. J., Bethge, M.,
and Schulz, E. Playing repeated games with large lan-
guage models. arXiv preprint arXiv:2305.16867, 2023.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and Zhou,
D. What learning algorithm is in-context learning? inves-
tigations with linear models. International Conference
on Learning Representations, 2023.

Argyle, L. P., Busby, E. C., Fulda, N., Gubler, J. R., Rytting,
C., and Wingate, D. Out of one, many: Using language
models to simulate human samples. Political Analysis, 31
(3):337–351, 2023.

Arora, S., Hazan, E., and Kale, S. The multiplicative
weights update method: a meta-algorithm and applica-
tions. Theory of computing, 8(1):121–164, 2012.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM
journal on computing, 32(1):48–77, 2002.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection. Advanced in Neural Infor-
mation Processing Systems, 2023.

Bakhtin, A., Brown, N., Dinan, E., Farina, G., Flaherty, C.,
Fried, D., Goff, A., Gray, J., Hu, H., et al. Human-level
play in the game of diplomacy by combining language
models with strategic reasoning. Science, 378(6624):
1067–1074, 2022.

Balseiro, S. R. and Gur, Y. Learning in repeated auctions
with budgets: Regret minimization and equilibrium. Man-
agement Science, 65(9):3952–3968, 2019.

Berge, C. Topological spaces: Including a treatment
of multi-valued functions, vector spaces and convexity.
Oliver & Boyd, 1877.

Besbes, O., Gur, Y., and Zeevi, A. Stochastic multi-armed-
bandit problem with non-stationary rewards. Advances in
neural information processing systems, 27, 2014.

Blum, A. and Mansour, Y. From external to internal regret.
Journal of Machine Learning Research, 8(6), 2007.

Blum, A., Hajiaghayi, M., Ligett, K., and Roth, A. Regret
minimization and the price of total anarchy. In Proceed-
ings of the fortieth annual ACM symposium on Theory of
computing, pp. 373–382, 2008.

Brookins, P. and DeBacker, J. M. Playing games with GPT:
What can we learn about a large language model from
canonical strategic games? Available at SSRN 4493398,
2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bubeck, S., Cesa-Bianchi, N., et al. Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems. Foundations and Trends® in Machine Learning, 5
(1):1–122, 2012.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Camerer, C. F. Behavioral game theory: Experiments in
strategic interaction. Princeton University Press, 2011.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and
Games. Cambridge University Press, 2006.

Cesa-Bianchi, N., Long, P. M., and Warmuth, M. K. Worst-
case quadratic loss bounds for prediction using linear
functions and gradient descent. IEEE Transactions on
Neural Networks, 7(3):604–619, 1996.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Do LLM Agents Have Regret?

Chan, C.-M., Chen, W., Su, Y., Yu, J., Xue, W., Zhang, S.,
Fu, J., and Liu, Z. Chateval: Towards better llm-based
evaluators through multi-agent debate. International Con-
ference on Learning Representations, 2024.

Chen, W., Su, Y., Zuo, J., Yang, C., Yuan, C., Qian, C.,
Chan, C.-M., Qin, Y., Lu, Y., Xie, R., et al. Agentverse:
Facilitating multi-agent collaboration and exploring emer-
gent behaviors in agents. International Conference on
Learning Representations, 2024.

Chen, Y., Liu, T. X., Shan, Y., and Zhong, S. The emer-
gence of economic rationality of gpt. Proceedings of the
National Academy of Sciences, 120(51):e2316205120,
2023.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z.,
and Wei, F. Why can GPT learn in-context? lan-
guage models secretly perform gradient descent as
meta-optimizers. In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, pp. 4005–4019,
Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.
247. URL https://aclanthology.org/2023.
findings-acl.247.

Daskalakis, C., Fishelson, M., and Golowich, N. Near-
optimal no-regret learning in general games. Advances
in Neural Information Processing Systems, 34:27604–
27616, 2021.

Ding, J., Feng, Y., and Rong, Y. Myopic quantal response
policy: Thompson sampling meets behavioral economics.
arXiv preprint arXiv:2207.01028, 2022.

Driess, D., Xia, F., Sajjadi, M. S., Lynch, C., Chowdhery,
A., Ichter, B., Wahid, A., Tompson, J., Vuong, Q., Yu, T.,
et al. Palm-e: An embodied multimodal language model.
International Conference on Machine Learning, 2023.

Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., and Mor-
datch, I. Improving factuality and reasoning in lan-
guage models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

Engel, C., Grossmann, M. R., and Ockenfels, A. Integrating
machine behavior into human subject experiments: A
user-friendly toolkit and illustrations. Available at SSRN,
2023.

Erev, I. and Roth, A. E. Predicting how people play
games: Reinforcement learning in experimental games
with unique, mixed strategy equilibria. American Eco-
nomic Review, pp. 848–881, 1998.

Fan, C., Chen, J., Jin, Y., and He, H. Can large language
models serve as rational players in game theory? a sys-
tematic analysis. arXiv preprint arXiv:2312.05488, 2023.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1):119–139,
1997.

Fu, Y., Peng, H., Khot, T., and Lapata, M. Improv-
ing language model negotiation with self-play and in-
context learning from ai feedback. arXiv preprint
arXiv:2305.10142, 2023.

Fudenberg, D. and Kreps, D. M. Learning mixed equilibria.
Games and Economic Behavior, 5(3):320–367, 1993.

Fudenberg, D. and Levine, D. K. The theory of learning in
games, volume 2. MIT Press, 1998.

Gao, B. and Pavel, L. On the properties of the softmax func-
tion with application in game theory and reinforcement
learning. arXiv preprint arXiv:1704.00805, 2017.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers. International Conference on Ma-
chine Learning, 2023.

Hao, S., Gu, Y., Ma, H., Hong, J., Wang, Z., Wang, D., and
Hu, Z. Reasoning with language model is planning with
world model. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 8154–8173,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
507. URL https://aclanthology.org/2023.
emnlp-main.507.

Hazan, E. Introduction to online convex optimization. Foun-
dations and Trends® in Optimization, 2(3-4):157–325,
2016.

Hofbauer, J. and Sandholm, W. H. On the global conver-
gence of stochastic fictitious play. Econometrica, 70(6):
2265–2294, 2002.

Hong, S., Zheng, X., Chen, J., Cheng, Y., Zhang, C., Wang,
Z., Yau, S. K. S., Lin, Z., Zhou, L., Ran, C., et al. Metagpt:
Meta programming for multi-agent collaborative frame-
work. nternational Conference on Learning Representa-
tions, 2024.

Horton, J. J. Large language models as simulated economic
agents: What can we learn from homo silicus? Technical
report, National Bureau of Economic Research, 2023.

6

https://aclanthology.org/2023.findings-acl.247
https://aclanthology.org/2023.findings-acl.247
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Do LLM Agents Have Regret?

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y., et al.
Inner monologue: Embodied reasoning through planning
with language models. arXiv preprint arXiv:2207.05608,
2022.

Jiang, H. A latent space theory for emergent abilities in
large language models. arXiv preprint arXiv:2304.09960,
2023.

Kalai, A. and Vempala, S. Efficient algorithms for online
decision problems. Journal of Computer and System
Sciences, 71(3):291–307, 2005.

Kasprzak, M. J., Giordano, R., and Broderick, T. How good
is your gaussian approximation of the posterior? finite-
sample computable error bounds for a variety of useful
divergences. arXiv preprint arXiv:2209.14992, 2022.

Kirschner, J., Bakhtiari, A., Chandak, K., Tkachuk, V., and
Szepesvari, C. Regret minimization via saddle point
optimization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S., Filos, A.,
Brooks, E., et al. In-context reinforcement learning with
algorithm distillation. International Conference on Learn-
ing Representations, 2023.

Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn, C.,
Nachum, O., and Brunskill, E. Supervised pretraining
can learn in-context reinforcement learning. Neural In-
formation Processing Systems, 2023.

Li, C., Su, X., Fan, C., Han, H., Xue, C., and Zheng,
C. Quantifying the impact of large language mod-
els on collective opinion dynamics. arXiv preprint
arXiv:2308.03313, 2023a.

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and
Ghanem, B. Camel: Communicative agents for” mind”
exploration of large scale language model society. Neural
Information Processing Systems, 2023b.

Li, R., Patel, T., and Du, X. Prd: Peer rank and discussion
improve large language model based evaluations. arXiv
preprint arXiv:2307.02762, 2023c.

Li, S., Yang, J., and Zhao, K. Are you in a masquer-
ade? exploring the behavior and impact of large language
model driven social bots in online social networks. arXiv
preprint arXiv:2307.10337, 2023d.

Li, Y., Ildiz, M. E., Papailiopoulos, D., and Oymak, S. Trans-
formers as algorithms: Generalization and stability in in-
context learning. International Conference on Machine
Learning, 2023e.

Li, Z. and Tewari, A. Beyond the hazard rate: More pertur-
bation algorithms for adversarial multi-armed bandits. J.
Mach. Learn. Res., 18:183–1, 2017.

Liang, T., He, Z., Jiao, W., Wang, X., Wang, Y., Wang,
R., Yang, Y., Tu, Z., and Shi, S. Encouraging divergent
thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Lin, L., Bai, Y., and Mei, S. Transformers as decision mak-
ers: Provable in-context reinforcement learning via super-
vised pretraining. International Conference on Learning
Representations, 2024.

Littlestone, N. and Warmuth, M. K. The weighted majority
algorithm. Information and computation, 108(2):212–
261, 1994.

Liu, Y., Van Roy, B., and Xu, K. Nonstationary bandit learn-
ing via predictive sampling. In International Conference
on Artificial Intelligence and Statistics, pp. 6215–6244.
PMLR, 2023a.

Liu, Z., Hu, H., Zhang, S., Guo, H., Ke, S., Liu, B., and
Wang, Z. Reason for future, act for now: A principled
architecture for autonomous llm agents. In NeurIPS
2023 Foundation Models for Decision Making Workshop,
2023b.

LLM Engine. Llm engine, 2023. URL https://
llm-engine.scale.com.

Lorè, N. and Heydari, B. Strategic behavior of large lan-
guage models: Game structure vs. contextual framing.
arXiv preprint arXiv:2309.05898, 2023.

Mahankali, A., Hashimoto, T. B., and Ma, T. One step
of gradient descent is provably the optimal in-context
learner with one layer of linear self-attention. Interna-
tional Conference on Learning Representations, 2023.

Mao, W., Zhang, K., Zhu, R., Simchi-Levi, D., and Başar,
T. Model-free non-stationary RL: Near-optimal regret
and applications in multi-agent RL and inventory control.
arXiv preprint arXiv:2010.03161, 2020.

McFadden, D. L. Quantal choice analaysis: A survey. An-
nals of Economic and Social Measurement, Volume 5,
number 4, pp. 363–390, 1976.

McKelvey, R. D. and Palfrey, T. R. Quantal response equi-
libria for normal form games. Games and economic
behavior, 10(1):6–38, 1995.

7

https://llm-engine.scale.com
https://llm-engine.scale.com

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Do LLM Agents Have Regret?

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the
role of demonstrations: What makes in-context learn-
ing work? In Goldberg, Y., Kozareva, Z., and Zhang, Y.
(eds.), Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 11048–
11064, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.emnlp-main.759. URL https://
aclanthology.org/2022.emnlp-main.759.

Mukobi, G., Erlebach, H., Lauffer, N., Hammond, L.,
Chan, A., and Clifton, J. Welfare diplomacy: Bench-
marking language model cooperation. arXiv preprint
arXiv:2310.08901, 2023.

Nekipelov, D., Syrgkanis, V., and Tardos, E. Econometrics
for learning agents. In ACM Conference on Economics
and Computation, pp. 1–18, 2015.

Openai. Gpt-4 technical report. 2023.

Osband, I., Russo, D., and Van Roy, B. (more) efficient
reinforcement learning via posterior sampling. Advances
in Neural Information Processing Systems, 26, 2013.

Park, J. S., Popowski, L., Cai, C., Morris, M. R., Liang, P.,
and Bernstein, M. S. Social simulacra: Creating popu-
lated prototypes for social computing systems. In Pro-
ceedings of the 35th Annual ACM Symposium on User
Interface Software and Technology, pp. 1–18, 2022.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and
Technology, UIST ’23, New York, NY, USA, 2023. Asso-
ciation for Computing Machinery. ISBN 9798400701320.
doi: 10.1145/3586183.3606763. URL https://doi.
org/10.1145/3586183.3606763.

Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J.,
Liu, Z., and Sun, M. Communicative agents for software
development. arXiv preprint arXiv:2307.07924, 2023.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-maron, G., Giménez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J.,
Razavi, A., Edwards, A., Heess, N., Chen, Y., Had-
sell, R., Vinyals, O., Bordbar, M., and de Freitas, N.
A generalist agent. Transactions on Machine Learning
Research, 2022. ISSN 2835-8856. URL https://
openreview.net/forum?id=1ikK0kHjvj. Fea-
tured Certification, Outstanding Certification.

Robinson, D. and Goforth, D. The topology of the 2x2
games: a new periodic table, volume 3. Psychology
Press, 2005.

Roughgarden, T. Intrinsic robustness of the price of anarchy.
Journal of the ACM (JACM), 62(5):1–42, 2015.

Roughgarden, T., Syrgkanis, V., and Tardos, E. The price
of anarchy in auctions. Journal of Artificial Intelligence
Research, 59:59–101, 2017.

Schick, T., Dwivedi-Yu, J., Jiang, Z., Petroni, F., Lewis,
P., Izacard, G., You, Q., Nalmpantis, C., Grave, E., and
Riedel, S. Peer: A collaborative language model. Inter-
national Conference on Learning Representations, 2023.

Shalev-Shwartz, S. Online learning: Theory, algorithms,
and applications. Hebrew University, 2007.

Shalev-Shwartz, S. Online learning and online convex opti-
mization. Foundations and Trends® in Machine Learning,
4(2):107–194, 2012.

Shalev-Shwartz, S. and Singer, Y. A primal-dual perspective
of online learning algorithms. Machine Learning, 69:115–
142, 2007.

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., and Zhuang,
Y. Hugginggpt: Solving AI tasks with chatgpt and its
friends in huggingface. Neural Information Processing
Systems, 2023.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K. R.,
and Yao, S. Reflexion: Language agents with verbal
reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Significant Gravitas. Autogpt, 2023. URL https:
//github.com/Significant-Gravitas/
AutoGPT.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language
models. Transactions on Machine Learning Research,
2023.

Tsai, C. F., Zhou, X., Liu, S. S., Li, J., Yu, M., and Mei,
H. Can large language models play text games well?
current state-of-the-art and open questions. arXiv preprint
arXiv:2304.02868, 2023.

Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S.,
and Kambhampati, S. Planbench: An extensible bench-
mark for evaluating large language models on planning
and reasoning about change. In Thirty-seventh Confer-
ence on Neural Information Processing Systems Datasets
and Benchmarks Track, 2023.

Van der Vaart, A. W. Asymptotic statistics, volume 3. Cam-
bridge university press, 2000.

8

https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Do LLM Agents Have Regret?

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge university
press, 2019.

Wang, X., Zhu, W., and Wang, W. Y. Large language models
are implicitly topic models: Explaining and finding good
demonstrations for in-context learning. International
Conference on Machine Learning 2023 Workshop ES-
FoMO, 2023a.

Wang, Z., Cai, S., Liu, A., Ma, X., and Liang, Y. De-
scribe, explain, plan and select: Interactive planning with
large language models enables open-world multi-task
agents. Advances in neural information processing sys-
tems, 2023b.

Wei, C.-Y. and Luo, H. Non-stationary reinforcement learn-
ing without prior knowledge: An optimal black-box ap-
proach. In Conference on learning theory, pp. 4300–4354.
PMLR, 2021.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022a.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022b.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Zhang, S., Zhu, E., Li,
B., Jiang, L., Zhang, X., and Wang, C. Autogen: Enabling
next-gen llm applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 2023.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. International Conference on Learning Repre-
sentations, 2022.

Xiong, K., Ding, X., Cao, Y., Liu, T., and Qin,
B. Examining inter-consistency of large language
models collaboration: An in-depth analysis via de-
bate. In Bouamor, H., Pino, J., and Bali, K.
(eds.), Findings of the Association for Computational

Linguistics: EMNLP 2023, pp. 7572–7590, Singa-
pore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
508. URL https://aclanthology.org/2023.
findings-emnlp.508.

Xu, Y., Wang, S., Li, P., Luo, F., Wang, X., Liu, W., and Liu,
Y. Exploring large language models for communication
games: An empirical study on werewolf. arXiv preprint
arXiv:2309.04658, 2023a.

Xu, Z., Yu, C., Fang, F., Wang, Y., and Wu, Y. Language
agents with reinforcement learning for strategic play in
the werewolf game. arXiv preprint arXiv:2310.18940,
2023b.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. Tree of thoughts: Deliberate
problem solving with large language models. Advances
in Neural Information Processing Systems, 2023a.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and act-
ing in language models. International Conference on
Learning Representations, 2023b.

Young, H. P. Strategic learning and its limits. OUP Oxford,
2004.

Zhang, H., Du, W., Shan, J., Zhou, Q., Du, Y., Tenenbaum,
J. B., Shu, T., and Gan, C. Building cooperative embodied
agents modularly with large language models. Interna-
tional Conference on Learning Representations, 2024.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023a.

Zhang, Y., Zhang, F., Yang, Z., and Wang, Z. What and how
does in-context learning learn? bayesian model averag-
ing, parameterization, and generalization. arXiv preprint
arXiv:2305.19420, 2023b.

Zhao, Q., Wang, J., Zhang, Y., Jin, Y., Zhu, K., Chen, H.,
and Xie, X. Competeai: Understanding the competition
behaviors in large language model-based agents. arXiv
preprint arXiv:2310.17512, 2023.

Zimmert, J. and Seldin, Y. Tsallis-inf: An optimal algorithm
for stochastic and adversarial bandits. The Journal of
Machine Learning Research, 22(1):1310–1358, 2021.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In International Conference
on Machine Learning, pp. 928–936, 2003.

9

https://aclanthology.org/2023.findings-emnlp.508
https://aclanthology.org/2023.findings-emnlp.508

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Do LLM Agents Have Regret?

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Do LLM Agents Have Regret?

Supplementary Materials for
“Do LLM Agents Have Regret? A Case Study in Online Learning and Games”

Contents

1 Introduction 1

2 Preliminaries 2

2.1 Online Learning & Games . 2

2.2 Performance Metric: Regret . 2

3 Do Pre-Trained LLMs Have Regret? Experimental Validation 2

3.1 Framework for No-Regret Behavior Validation . 2

3.2 Results: Online Learning . 3

3.3 Results: Multi-Player Repeated Games . 3

3.4 Pre-Trained LLM Agents May Still Have Regret . 3

4 Why Do Pre-Trained LLMs (Not) Have Regret? A Hypothetical Model and Some Theoretical Insights 3

5 Provably Promoting No-Regret Behavior by an Unsupervised Loss 4

5.1 A New Unsupervised Training Loss: Regret-Loss . 4

5.2 Generalization and Regret Guarantees of Regret-Loss Minimization . 4

5.3 Minimizing Regret-Loss Can Automatically Produce Online Learning Algorithms 4

A Societal Impact 14

B Related Work 14

C Deferred Background 15

D Notation 15

D.1 Additional Definitions for Appendix . 16

D.2 In-Context Learning . 16

D.3 Online Learning Algorithms . 16

D.4 Why Focusing on Linear Loss Function? . 18

D.5 Six Representative General-Sum Games . 18

E Deferred Results and Proofs in Section 3 19

E.1 Intuition why pre-trained language models may exhibit no-regret behavior 19

E.2 Visualization of Interaction Protocols . 19

E.3 Framework for No-Regret Behavior Validation . 19

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Do LLM Agents Have Regret?

E.4 Deferred Figure for Section 3.2 . 21

E.5 Deferred Experiments for Non-stationary Environments in Section 3.2 22

E.6 Deferred Experiments for Bandit-feedback Environments in Section 3.2 22

E.7 Deferred Figures for Section 3.3 . 24

E.8 Deferred Explanation and Details for Section 3.4 . 26

E.9 Ablation Study on Prompts . 27

E.10 Ablation Study on Horizon Length . 32

E.11 Results for GPT-4 Turbo . 32

E.12 LLM Agents’ Explanation on Their Output Policies . 32

F Deferred Results and Proofs in Section 4 33

F.1 Pre-Trained LLMs Have Similar Regret as Humans (Who Generate Data) 33

F.2 Background and Motivations for (Generalized) Quantal Response . 34

F.2.1 A (Human) Decision-Making Model: Quantal Response . 34

F.3 Detailed Explanation for the Meaning of z and Assumptions on Pre-training Distribution 35

F.4 The Example Instantiating Assumption 1 . 35

F.5 Alignment of Assumption 1 with Quantal Response . 36

F.6 Relationship between FTPL and Definition F.2 . 37

F.7 Formal Statement and Proof of Theorem 4.1 . 37

F.7.1 Implications of Theorem 4.1 for Repeated Games . 41

F.8 Extending Theorem 4.1 with Relaxed Assumptions . 41

F.8.1 Relaxation under More General Data Distributions . 41

F.8.2 Relaxation under Decision-Irrelevant Pre-Training Data . 43

F.9 Comparison with (Lee et al., 2023; Lin et al., 2024; Liu et al., 2023b) 43

F.10 How Well Can Cur Hypothetical Model Predict Actual LLMs’ Behaviors? 43

F.10.1 Details of Estimating the Parameters of Our Hypothetical Model 43

G Deferred Results and Proofs in Section 5 45

G.1 Regularity Conditions on f and h . 45

G.2 Basic Lemmas . 45

G.3 Deferred Proof for the Arguments in Section 5.1 . 45

G.4 Definition of the Empirical Loss Function . 50

G.5 Deferred Proofs of Theorem G.1 and Theorem 5.1 . 50

G.6 Detailed Explanation of Optimizing Equation (5.2) with Single-layer Self-attention Model 53

G.7 Deferred Proof of Theorem G.3 . 54

G.8 Deferred Proof of Theorem G.2 . 57

G.9 Empirical Validation of Theorem G.3 and Theorem G.2 . 62

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Do LLM Agents Have Regret?

G.9.1 Empirical Validation of Theorem G.3 . 62

G.9.2 Empirical Validation of Theorem G.2 . 62

G.10 Discussions on the Production of FTRL with Entropy Regularization . 62

G.10.1 Numerical Analysis of Step 2 and Step 4 . 66

G.10.2 Empirical Validation . 66

G.11 Comparison with (Ahn et al., 2023; Zhang et al., 2023a; Mahankali et al., 2023) 67

G.12 Details of Experiments for Regret-loss Minimization . 67

G.12.1 Training Details of Expeiments . 68

G.13 Ablation Study on Training Equation (5.2) . 68

H Limitations and Concluding Remarks 69

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Do LLM Agents Have Regret?

A. Societal Impact
Our work aimed at a better understanding of LLMs for decision-making through the lens of regret minimization, with
rigorous mathematical analysis. It is a theory-oriented work. As such, we do not anticipate any direct positive or negative
societal impact from this research.

B. Related Work
LLM(-agent) for decision-making. The impressive capability of LLMs for reasoning (Bubeck et al., 2023; Achiam
et al., 2023; Wei et al., 2022b;a; Srivastava et al., 2023; Yao et al., 2023a) has inspired a growing line of research on LLM
for (interactive) decision-making, i.e., an LLM-based autonomous agent interacts with the environment by taking actions
repeatedly/sequentially, based on the feedback it perceives. Some promises have been shown from a planning perspective
(Hao et al., 2023; Valmeekam et al., 2023; Huang et al., 2022; Shen et al., 2023). In particular, for embodied AI applications,
e.g., robotics, LLMs have achieved impressive performance when used as the controller for decision-making (Ahn et al.,
2022; Yao et al., 2023b; Shinn et al., 2023; Wang et al., 2023b; Driess et al., 2023; Significant Gravitas, 2023). However, the
performance of decision-making has not been rigorously characterized via the regret metric in these works. Very recently,
(Liu et al., 2023b) has proposed a principled architecture for LLM-agent, with provable regret guarantees in stationary and
stochastic decision-making environments, under the Bayesian adaptive Markov decision processes framework. In contrast,
our work focuses on online learning and game-theoretic settings, in potentially adversarial and non-stationary environments.
Moreover, (first part of) our work focuses on evaluating the intelligence level of LLM per se in decision-making (in terms
of the regret metric), while (Liu et al., 2023b) focused on developing a new architecture that uses LLM as an oracle
for reasoning, together with memory and specific planning/acting subroutines, to achieve sublinear (Bayesian) regret, in
stationary and stochastic environments.

LLMs in multi-agent environments. The interaction of multiple LLM agents has garnered significant attention lately. For
example, (Fu et al., 2023) showed that LLMs can autonomously improve each other in a negotiation game by playing and
criticizing each other. Similarly, (Du et al., 2023; Liang et al., 2023; Xiong et al., 2023; Chan et al., 2024; Li et al., 2023c)
showed that multi-LLM debate can improve the reasoning and evaluation capabilities of the LLMs. (Qian et al., 2023;
Schick et al., 2023; Wu et al., 2023) demonstrated the potential of multi-LLM interactions and collaboration in software
development, writing, and problem-solving, respectively. (Zhang et al., 2024) exhibited a similar potential in embodied
cooperative environments. More formally, multi-LLM interactions have also been investigated under a game-theoretic
framework, to characterize the strategic decision-making of LLM agents. (Bakhtin et al., 2022; Mukobi et al., 2023) and
(Xu et al., 2023b;a) have demonstrated the promise of LLMs in playing Diplomacy and WereWolf games, respectively,
which are both language-based games with a mixture of competitive and cooperative agents. Note that these works utilized
LLM to solve a specific rather than a general game. Related to our work, (Brookins & DeBacker, 2023; Akata et al.,
2023; Lorè & Heydari, 2023; Brookins & DeBacker, 2023; Fan et al., 2023) have also used (repeated) matrix games as
a benchmark to evaluate the reasoning capability and rationality of LLM agents. In contrast to our work, these empirical
studies have not formally investigated LLM agents using the metric of regret, nor through the lenses of online learning and
equilibrium-computation, which are all fundamental in modeling and analyzing strategic multi-agent interactions. Moreover,
our work also provides theoretical results to explain and further enhance the no-regret property of LLM agents.

LLMs & Human/Social behavior. LLMs have also been used to simulate the behavior of human beings, for social
science and economics studies (Engel et al., 2023). The extent of LLMs simulating human behavior has been claimed as a
way to evaluate the level of its intelligence in a controlled environment (Aher et al., 2023; Tsai et al., 2023). For example,
(Li et al., 2023b; Hong et al., 2024; Zhao et al., 2023) showed that by specifying different “roles” to LLM agents, certain
collaborative/competitive behaviors can emerge. (Argyle et al., 2023) showed that LLMs can emulate response distributions
from diverse human subgroups, illustrating their adaptability. (Horton, 2023) argued that an LLM, as a computational model
of humans, can be used as homo economicus when given endowments, information, preferences, etc., to gain new economic
insights by simulating its interaction with other LLMs. (Park et al., 2022; 2023) proposed scalable simulators that can
generate realistic social behaviors emerging in populated and interactive social systems, and the emerging behaviors of
LLM agents in society have also been consistently observed in (Chen et al., 2024; 2023). (Li et al., 2023d;a) studied the
opinion/behavioral dynamics of LLM agents on social networks. These empirical results have inspired our work, which
can be viewed as an initial attempt towards quantitatively understanding the emerging behavior of LLMs as computational
human models, given the well-known justification of equilibrium being a long-run emerging behavior of learning dynamics

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Do LLM Agents Have Regret?

(Fudenberg & Levine, 1998) and strategic interactions (Young, 2004; Camerer, 2011).

Transformers & In-context-learning. LLMs nowadays are predominantly built upon the architecture of Transformers
(Vaswani et al., 2017). Transformers have exhibited a remarkable capacity of in-context-learning (ICL), which can construct
new predictors from sequences of labeled examples as input, without further parameter updates. This has enabled the
few-shot learning capability of Transformers (Brown et al., 2020; Garg et al., 2022; Min et al., 2022). The empirical
successes have inspired burgeoning theoretical studies on ICL. (Xie et al., 2022) used a Bayesian inference framework
to explain how ICL works, which has also been adopted in (Wang et al., 2023a; Jiang, 2023). (Akyürek et al., 2023;
Von Oswald et al., 2023; Dai et al., 2023; Giannou et al., 2023) showed (among other results) that ICL comes from the
fact that Transformers can implement the gradient descent (GD) algorithm. (Bai et al., 2023) further established that
Transformers can implement a broad class of machine learning algorithms in context. Moreover, (Ahn et al., 2023; Zhang
et al., 2023a; Mahankali et al., 2023) proved that a minimizer of the certain training loss among single-layer Transformers is
equivalent to a single step of GD for linear regression. (Li et al., 2023e) established generalization bounds of ICL from a
multi-task learning perspective. (Zhang et al., 2023b) argued that ICL implicitly implements Bayesian model averaging,
and can be approximated by the attention mechanism. They also established a result on some regret metric. However, the
regret notion is not defined for (online) decision-making, and is fundamentally different from ours that is standard in online
learning and games. Also, we provide extensive experiments to validate the no-regret behavior by our definition. More
recently, the ICL property has also been generalized to decision-making settings. (Laskin et al., 2023; Lee et al., 2023; Lin
et al., 2024) investigated the in-context reinforcement learning (RL) property of Transformers under supervised pre-training,
for solving stochastic bandits and Markov decision processes. In contrast, our work focuses on online learning settings with
an arbitrary and potentially adversarial nature, as well as game-theoretic settings. We also provide a new unsupervised loss
to promote the no-regret behavior in our settings.

Online learning and games. Online learning has been extensively studied to model the decision-making of an agent
who interacts with the environment sequentially, with a potentially arbitrary sequence of loss functions (Shalev-Shwartz,
2012; Hazan, 2016), and has a deep connection to game theory (Cesa-Bianchi & Lugosi, 2006). In particular, regret, the
difference between the incurred accumulated loss and the best-in-hindsight accumulated loss, has been the core performance
metric, and a good online learning algorithm should have regret at most sublinear in time T (i.e., of order o(T)), which is
referred to as being no-regret. Many well-known algorithms can achieve no-regret against arbitrary loss sequences, e.g.,
multiplicative weight updates (MWU)/Hedge (Freund & Schapire, 1997; Arora et al., 2012), EXP3 (Auer et al., 2002), and
more generally follow-the-regularized-leader (FTRL) (Shalev-Shwartz & Singer, 2007) and follow-the-perturbed-leader
(FTPL) (Kalai & Vempala, 2005). In the bandit literature (Lattimore & Szepesvári, 2020; Bubeck et al., 2012), such
a setting without any statistical assumptions on the losses is also referred to as the adversarial/non-stochastic setting.
Following the conventions in this literature, the online settings we focus on shall not be confused with the stationary and
stochastic(-bandit)/(-reinforcement learning) settings that have been explored in several other recent works on Transformers
for decision-making (Lee et al., 2023; Lin et al., 2024). Centering around the regret metric, our work has also explored the
non-stationary bandit setting (Besbes et al., 2014), as well as the repeated game setting where the environment itself consists
of strategic agents (Cesa-Bianchi & Lugosi, 2006).

C. Deferred Background

D. Notation
We use N and N+ to denote the sets of non-negative and positive integers, respectively. For a finite set S, we use ∆(S)
to denote the simplex over S. For d ∈ N+, we define [d] := {1, 2, . . . , d}. For two vectors x, y ∈ Rd, we use ⟨x, y⟩ to
denote the inner product of x and y. We define 000d and 111d as a d-dimensional zero or one vector, and OOOd×d and Id×d as a
d×d-dimensional zero matrix and identity matrix, respectively. We omit d when it is clear from the context. We define ei as a
unit vector (with proper dimension) whose i-th coordinate equal to 1. For p ∈ Rd, R > 0 and C ⊆ Rd is a convex set, define
B(p,R, ∥·∥) := {x ∈ Rd | ∥x−p∥ ≤ R}, ProjC,∥·∥(p) = argminx∈C ∥x−p∥ (which is well defined as C is a convex set),

and clipR(x) := [ProjB(0,R,∥·∥2),∥·∥2
(xi)]i∈[d]. Define Softmax(x) :=

(
exi∑

i∈[d] e
xi

)
i∈[d]

and ReLU(x) = max(0, x)

for x ∈ Rd. For A ∈ Rm×n with Ai denoting its i-th column, we define ∥A∥op := max∥x∥2≤1 ∥Ax∥2, ∥A∥2,∞ :=
supi∈[n] ∥Ai∥2, ∥A∥F as the Frobenius norm, and A−1 := An to denote the last column vector of A. We define
R+ := {x | x ≥ 0}. For a set Π, define diam(Π, ∥ · ∥) := supπ1,π2∈Π ∥π1 − π2∥. We define 1(E) := 1 if E is true,

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Do LLM Agents Have Regret?

and 1(E) := 0 otherwise. For a random variable sequence (Xn)n∈N and random variables X,Y , we denote FX as the
cumulative distribution function of a random variable X , Xn

p→ X if ∀ϵ > 0, limn→∞ P(|Xn −X| > ϵ) = 0, Xn
d→ X

if limn→∞ FXn(x) = FX(x) for all x where FX(x) is continuous, X d
= Y if FX(x) = FY (x) for all x, Xn

a.s.→ X
if P(limn→∞ Xn = X) = 1, and esssup(X) := inf{M ∈ R : P(X > M) = 0}. For a random variable X , we use
supp(X) to denote its support. For functions f, g : R→ R, we define g(x) = O(f(x)) if there exist x0,M <∞ such that
|g(x)| ≤M |f(x)| for all x > x0. We use f ′ to denote the derivative of f . Let F : Ω→ R be a continuously-differentiable,
strictly convex function defined on a convex set Ω. The Bregman divergence associated with F for points p, q is defined as
DF (p, q) := F (p)− F (q)− ⟨∇F (q), p− q⟩. For a sequence (ℓt)t∈[T] for some T ∈ N+, we define ℓa:b := (ℓa, · · · , ℓb)
for 1 ≤ a ≤ b ≤ T . If a > b, we define ℓa:b = ∅.

D.1. Additional Definitions for Appendix

(Linear) Self-attention. One key component in Transformers (Vaswani et al., 2017), the backbone of modern language
models, is the (self-)attention mechanism. For simplicity, we here focus on introducing the single-layer self-attention
architecture. The mechanism takes a sequence of vectors Z = [z1, . . . , zt] ∈ Rd×t as input, and outputs some sequence
of [ẑ1, . . . , ẑt] ∈ Rd×t. For each i ∈ [t] where i > 1, the output is generated by ẑi = (V z1:i−1)σ((Kz1:i−1)

⊺(Qzi)),
where z1:i−1 denotes the 1 to i − 1 columns of Z, σ is either the Softmax or ReLU activation function, and for the
initial output, ẑ1 = 000d. Here, V,Q,K ∈ Rd×d are referred to as the Value, Query, and Key matrices, respectively.
Following the theoretical framework in (Von Oswald et al., 2023; Mahankali et al., 2023), we exclude the attention
score for a token zi in relation to itself. For theoretical analysis, we also consider the linear self-attention model, where
ẑi = (V z1:i−1)((Kz1:i−1)

⊺(Qzi)). We write this (linear) self-attention layer’s output as (L)SA(V,Q,K)(Z). We define an
M -head self-attention layer with θ = {(Vm, Qm,Km)}m∈[M] as M-(L)SAθ(Z) :=

∑M
m=1 (L)SA(Vm,Qm,Km)(Z). We

define ∥ · ∥M-(L)SA as ∥θ∥M-(L)SA := maxm∈[M] {∥Qm∥op, ∥Km∥op}+
∑M

m=1 ∥Vm∥op.

Transformers. For a multi-layer perceptron (MLP) layer, it takes Z = [z1, . . . , zt] ∈ Rd×t as input, with parameter
θ = (W1,W2) ∈ Rd′×d × Rd×d′

such that for each i ∈ [t], the output is ẑi := W2σ(W1zi) where σ is either Softmax or
ReLU. We write the output of an MLP layer with parameter θ as MLPθ(Z). Defining ∥·∥MLP as ∥θ∥MLP := ∥W1∥op+∥W2∥op
and ResNet(f, Z) := Z + f(Z), we can define an L-layer Transformer with parameter θ = (θ(lm), θ(la))l∈[L] as

TFθ(Z) := Z(L),

where the output Z(L) is defined iteratively from Z(0) = clipR(Z) := min(−R,max(R,Z)) and

Z(l) = clipR

(
ResNet

(
MLPθ(la) ,ResNet

(
M-(L)SAθ(lm) , Z(l−1)

)))
,

for some R > 0. We define a class of Transformers with certain parameters as Θd,L,M,d′,BTF := {θ =
(θ(lm), θ(la))l∈[L],m∈[M] : ∥θ∥TF ≤ BTF}, where M is the number of heads of self-attention,

∥θ∥TF := max
l∈[L]

{
∥θ(la)∥M-(L)SA + ∥θ(lm)∥MLP

}
, (D.1)

and BTF > 0 is some constant. When it is clear from the context, we may omit the subscripts and write it as Θ for simplicity.
We assume R to be sufficiently large such that clip does not take effect on any of our approximation results.

D.2. In-Context Learning

In-context learning is an emergent behavior of LLMs (Brown et al., 2020), which means that these models can adapt and
learn from a limited number of examples provided within their immediate input context. In in-context learning, the prompt
is usually constituted by a length of T in-context (independent) examples (xt, yt)t∈[T] and (T + 1)-th input xT+1, so the
LLM((zt)t∈[T], xT+1) provides the inference of yT+1, where zt = (xt, yt).

D.3. Online Learning Algorithms

Follow-the-regularized-leader (FTRL). The Follow-the-Regularized-Leader (FTRL) algorithm (Shalev-Shwartz, 2007)
is an iterative method that updates policy based on the observed data and a regularization term. The idea is to choose the
next policy that minimizes the sum of the past losses and a regularization term.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Do LLM Agents Have Regret?

Mathematically, given a sequence of loss vectors ℓ1, ℓ2, . . . , ℓt, the FTRL algorithm updates the policy π at each time step t
as follows:

πt+1 = argmin
π∈Π

(
t∑

i=1

⟨ℓi, π⟩+R(π)

)
,

where R(π) is a regularization term. The regularization term R(π) is introduced to prevent overfitting and can be any
function that penalizes the complexity of the model. A function R(π) is said to be λ-strongly convex with respect to a norm
∥ · ∥ if for all π, π′ ∈ Π:

R(π) ≥ R(π′) + ⟨∇R(π′), π − π′⟩+ λ

2
∥π − π′∥22.

A key property that ensures the convergence and stability of the FTRL algorithm is the strong convexity of the regularization
term R(π). Strong convexity of R(π) ensures that the optimization problem in FTRL has a unique solution. The FTRL
algorithm’s flexibility allows it to encompass a wide range of online learning algorithms, from gradient-based methods like
online gradient descent to decision-making algorithms like Hedge (Freund & Schapire, 1997).

Connection to online gradient descent (OGD). The Online Gradient Descent (OGD) (Cesa-Bianchi et al., 1996)
algorithm is a special case of the FTRL algorithm when the regularization term is the L2-norm square, i.e., R(π) = 1

2∥π∥22
and Π = Rd. In OGD, at each time step t, the policy π is updated using the gradient of the loss function:

πt+1 = πt − ℓt.

Therefore, the connection between FTRL and OGD can be seen by observing that the update rule for FTRL with L2

regularization can be derived from the OGD update rule.

Connection to the Hedge algorithm. The Hedge algorithm (Freund & Schapire, 1997) (also referred to as the Multi-
plicative Weight Update algorithm (Arora et al., 2012)) is an online learning algorithm designed for problems where the
learner has to choose from a set of actions (denoted as A) at each time step and suffers a loss based on the chosen action.
The FTRL framework can be used to derive the Hedge algorithm by considering an entropy regularization term. Specifically,
the regularization term is the negative entropy R(π) =

∑
j∈[d] πj log πj (where d is the dimension of policy π), then the

FTRL update rule yields the Hedge algorithm as

π(t+1)j = πtj
exp(−ℓtjπtj)∑
i∈[d] exp(−ℓtiπti)

for j ∈ [d].

Follow-the-perturbed-leader (FTPL). Given a sequence of loss vectors ℓ1, ℓ2, . . . , ℓt−1, the follow-the-perturbed-leader
algorithm (Kalai & Vempala, 2005) at each time step t adds a random perturbation vector ϵt to the original loss vectors and
then selects the best-response action at (that is potentially randomized due to ϵt) by solving:

at ∈ argmin
a∈A

ϵta +

t−1∑
i=1

ℓia,

where the perturbation ϵt is sampled from a pre-defined distribution. Correspondingly, the policy πt is chosen by following
equation:

πt = E

[
argmin

π∈Π
⟨ϵt, π⟩+

t−1∑
i=1

⟨ℓi, π⟩
]
. (D.2)

Relationship between FTRL and FTPL. The FTRL and FTPL algorithms are deeply related. For example, FTPL with
perturbations of Gumbel distribution and FTRL with Entropy Regularization (i.e., Hedge) are equivalent. In general, for the
FTPL algorithm with any perturbation distribution, one can always find an FTRL algorithm with a particular regularization
such that their update rule is equivalent. However, this relationship does not hold vice versa. For example, (Hofbauer
& Sandholm, 2002) shows that for FTRL with log barrier regularization, there does not exist an equivalent perturbation
distribution for FTPL.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Do LLM Agents Have Regret?

Restarting techniques for non-stationary online learning. For non-stationary online learning problems, one common
technique is restarting: one restarts the standard online learning algorithm periodically (Besbes et al., 2014) (see also e.g.,
(Wei & Luo, 2021; Mao et al., 2020)). After each restarting operation, the algorithm will ignore the previous history and
execute as if it is the beginning of the interaction with the environment. Since the variation of the loss sequences is bounded,
loss sequences between two consecutive restarting operations can be regarded as being almost stationary, which makes
achieving an overall sublinear dynamic regret guarantee possible.

D.4. Why Focusing on Linear Loss Function?

We note that focusing on the linear loss function ft(π) := ⟨ℓt, π⟩ does not lose much of generality. Specifically, for the
general convex loss function (ft)t∈[T], we have ft(πA ,t)− ft(π) ≤ ⟨∇ft(πA ,t), πA ,t−π⟩ for any π ∈ Π, which indicates

RegretA
(
(ft)t∈[T]

)
≤

T∑
t=1

E[⟨∇ft(πA ,t), πA ,t⟩]− inf
π∈Π

T∑
t=1

E[⟨∇ft(πA ,t), π⟩].

Therefore, one can regard the loss vector (ℓt)t∈[T] as ℓt := ∇ft(πA ,t) for t ∈ [T], and control the actual regret by studying
the linear loss function (Hazan, 2016). The same argument on the general convex ft can be applied to the dynamic-regret
metric as well. In sum, an algorithm designed for online linear optimization can be adapted to solve online convex
optimization, with the understanding that the instance received at round t corresponds to the gradient of the convex function
evaluated at the policy at that round.

D.5. Six Representative General-Sum Games

In game theory, there are six representative two-player general-sum games (Robinson & Goforth, 2005). Firstly, consider

the win-win game represented by matrices A =

(
1 4

1 2

)
and B =

(
1 4

1 2

)
for players A and B, respectively. This setup

fosters a cooperative dynamic, as both players receive identical payoffs, encouraging strategies that benefit both parties
equally.

In contrast, the prisoner’s dilemma, depicted by payoff matrices A =

(
1 3

2 4

)
and B =

(
4 3

2 1

)
, illustrates the conflict

between individual and collective rationality, where players are tempted to pursue individual gain at the collective’s expense,
often resulting in suboptimal outcomes for both.

In the unfair game, represented by A =

(
2 1

3 4

)
and B =

(
4 3

1 2

)
, the asymmetry in the payoff structure places one

player at a disadvantage, regardless of the chosen strategy. This imbalance often reflects real-world scenarios where power
or information asymmetry affects decision-making.

The cyclic game, with matrices A =

(
3 1

2 4

)
and B =

(
3 4

2 1

)
, presents a scenario where no stable equilibrium exists.

The best strategy for each player changes in response to the other’s actions, leading to a continuous cycle of strategy
adaptation without a clear resolution.

The biased game, depicted by A =

(
3 2

1 4

)
and B =

(
4 2

1 3

)
, inherently favors one player, often reflecting situations

where external factors or inherent advantages influence outcomes, leading to consistently unequal payoffs.

Finally, the second-best game, with payoff matrices A =

(
1 2

3 4

)
and B =

(
1 4

3 2

)
, encapsulates scenarios where

players settle for less-than-optimal outcomes due to constraints like risk aversion or limited options. This often results in
players choosing safer, albeit less rewarding, strategies.

Each of these games exemplifies distinct aspects of strategic decision-making and interactions. From cooperative to
competitive and fair to biased scenarios, these matrices provide a rich landscape for exploring the nuances of decision-
making behavior in game theory.

18

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Do LLM Agents Have Regret?

E. Deferred Results and Proofs in Section 3
E.1. Intuition why pre-trained language models may exhibit no-regret behavior

Intuition why pre-trained language models may exhibit no-regret behavior. Transformer-based LLMs have demon-
strated impressive in-context-learning and few-/zero-shot learning capabilities (Brown et al., 2020; Garg et al., 2022; Min
et al., 2022). One theoretical explanation is that, trained Transformers can implement the gradient descent algorithm on the
testing loss in certain supervised learning problems (Akyürek et al., 2023; Von Oswald et al., 2023; Dai et al., 2023; Ahn et al.,
2023; Zhang et al., 2023a; Mahankali et al., 2023), which is inherently adaptive to the loss function used at test time. On the
other hand, it is known in online learning that the simple algorithm of online gradient descent (Zinkevich, 2003) can achieve
no-regret. Hence, it seems reasonable to envision the no-regret behavior of such meta-learners in online learning, due to
their fast adaptability. However, it is not straightforward due to the fundamental difference between multi-task/meta-learning
and online learning settings, as well as the difference between stationary and non-stationary/adversarial environments in
decision-making. Next, we provide both experimental and theoretical studies to validate this intuition.

E.2. Visualization of Interaction Protocols

𝒕 = 𝟏
You are playing a matrix game for T rounds. There are A number of actions..

Human Moderator’s Prompt

You are playing a matrix game for T rounds. There are A number of actions.
At each round, you need to choose a policy; it specifies your probability of choosing each action.
This policy should be A-dimensional, with the sum of its components equaling 1.
After that, you are shown the reward vector for choosing each action. Remember, the reward vector
is determined by an external system and can vary across rounds.
It is not decided by what policies you have chosen. The reward vector is also A-dimensional.
You can adjust your policy based on the reward vectors for all previous rounds. You’re required to
provide your policy in numeric format.
Your response’s last line should be formatted as ‘Policy: [your A-dimensional policy]’.
Let’s think step by step. Explicitly examining history is important. Please explain how you chose the
policy by guessing what reward you might receive for each action according to the history.

𝒕 = 𝟎

LLM 3: My decision is ...LLM 3: My decision is ...
LLM 3: My decision is ...

LLM 3: My decision is ...LLM 2: My decision is ...
LLM 2: My decision is ...

LLM 3: My decision is ...LLM 1: My decision is ...
LLM 1: My decision is ...𝒕 = 𝑻

Figure E.1. Demonstration of the prompts and interaction protocol for multi-player repeated games. A human moderator does not provide
the game’s payoff matrices to the LLMs. Instead, at each round, the human moderator provides each player’s own payoff vector history.

E.3. Framework for No-Regret Behavior Validation

Trend-checking framework. We propose the following hypothesis test:

H0 : The sequence
(
RegretA

(
(fτ)τ∈[t]

)
/t
)∞
t=1

either diverges or converges to a positive constant

H1 : The sequence
(
RegretA

(
(fτ)τ∈[t]

)
/t
)∞
t=1

converges to 0

with H0 and H1 denoting the null and alternative hypotheses, respectively. The notion of convergence is related to T →∞
by definition, making it challenging to verify directly. As an alternative, we propose a more tractable hypothesis test, albeit a
weaker one, that still captures the essence of our objective:

H0 : The sequence
(
RegretA

(
(fτ)τ∈[t]

)
/t
)
t∈[T]

does not exhibit a decreasing trend

H1 : The sequence
(
RegretA

(
(fτ)τ∈[t]

)
/t
)
t∈[T]

shows a decreasing trend.

Ideally, one should check if RegretA
(
(fτ)τ∈[t]

)
/t approaches zero as t goes to infinity. With a finite T value, testing these

hypotheses provides a method to quantify this – whether we reject H0 offers a way to measure it. To this end, one needs to
count the number of RegretA

(
(fτ)τ∈[t]

)
/t− RegretA

(
(fτ)τ∈[t+1]

)
/(t+ 1) > 0, for which we use Proposition 1 below

to provide some understanding of (how small) the probability it happens under various counts. For example, with the default
choice of T = 25 in our experiments later, one can see from Proposition 1 that: PH0

(E(17, 25)) < 0.032,PH0
(E(19, 25)) <

0.0035,PH0(E(21, 25)) < 0.00014, i.e., one can easily reject H0 with high probability. We will report the p-value of H0,
denoted as ptrend, as the output of this framework.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Do LLM Agents Have Regret?

Proposition 1. (p-value of the null hypothesis). Define the event

E(s, T) :=

{
The number of

RegretA
(
(fτ)τ∈[t]

)
t

−
RegretA

(
(fτ)τ∈[t+1]

)
t + 1

> 0 for t = 1, . . . , T is at least s ≥
T − 1

2

}
.

Under the assumption that the null hypothesis H0 holds, the probability of this event happening is bounded as

PH0
(E(s, T)) ≤ 1

2T−1

∑T−1
t=s

(
T − 1

t

)
.

Proof. Under the null hypothesis H0, the probability p that RegretA
(
(fτ)τ∈[t]

)
/t− RegretA

(
(fτ)τ∈[t+1]

)
/(t+ 1) > 0

is less than 1
2 . Therefore, if we consider the event E(s, T), we have

PH0(E(s, T)) =
T−1∑
k=s

ps(1− p)T−1−s

(
T − 1

k

)
≤ 1

2T−1

T−1∑
k=s

(
T − 1

k

)

since s ≥ T−1
2 .

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Do LLM Agents Have Regret?

E.4. Deferred Figure for Section 3.2

0 5 10 15 20 25

Iterations

0

10

20

30

40

50

R
eg

re
t

Uniform
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.65, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.01, 0.92, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.58, 0.97, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.94, 0.0)
FTRL
FTPL

0 5 10 15 20 25

Iterations

0

10

20

30

40

50

60

70

80

R
eg

re
t

Gaussian
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.63, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.01, 0.92, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.01, 0.95, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.91, 0.0)
FTRL
FTPL

0 5 10 15 20 25

Iterations

0

20

40

60

80

R
eg

re
t

Linear-trend
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.55, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.72, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.08, 0.99, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.89, 0.0)
FTRL
FTPL

0 5 10 15 20 25

Iterations

−10

0

10

20

30

R
eg

re
t

Sine-trend
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.35, 0.03)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.95, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.27, 0.84, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.99, 0.0)
FTRL
FTPL

Figure E.2. Regret of pre-trained LLMs for online learning with full-information feedback. Notably, both commercial and open-source
LLMs exhibit no-regret behaviors validated by our frameworks. Surprisingly, the GPT-4 model can even outperform well-known no-regret
learning algorithms, FTRL and FTPL. Finally, we also conduct ablation studies on longer horizons for those relatively weaker models
other than GPT-4 in Appendix E.10, where they are still reliably no-regret.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Do LLM Agents Have Regret?

Dynamic regret GPT-4 GPT-3.5 Turbo FTRL FTPL

Full
information

Gradual variation
12.61± 7.01

(ptrend, β̂0, preg) = (0.0, 0.58, 0.0)

19.09± 11.33

(ptrend, β̂0, preg) = (0.0, 0.83, 0.0)
36.58± 24.51 35.19± 22.51

Abrupt variation
30.0± 19.91

(ptrend, β̂0, preg) = (0.01, 0.87, 0.0)

33.65± 22.51

(ptrend, β̂0, preg) = (0.08, 0.96, 0.0)
36.52± 27.68 36.24± 28.22

Bandit Gradual variation
21.39± 10.86

(ptrend, β̂0, preg) = (0.0, 0.78, 0.0)

28.42± 21.6

(ptrend, β̂0, preg) = (0.0, 0.83, 0.0)
37.64± 21.97 36.37± 20.7

Abrupt variation
35.94± 28.93

(ptrend, β̂0, preg) = (0.42, 0.95, 0.0)

30.76± 25.48

(ptrend, β̂0, preg) = (0.92, 1.01, 0.0)
36.52± 27.68 38.82± 26.17

Table 1. Dynamic regret of GPT-3.5 Turbo/GPT-4 in a non-stationary environment with either full-information or bandit feedback. Every
experiment is conducted with 25 rounds. No-regret behaviors of GPT-3.5 Turbo/GPT-4 are validated by both of our frameworks (low
p-values and β̂0 < 1). The only exception is GPT-3.5 Turbo on loss sequence with abrupt variations under bandit feedback. This indicates
that GPT-3.5 Turbo may not be capable of dealing with an abruptly changing environment with limited feedback, although the average
regret achieved eventually is still lower than that of other baselines.

E.5. Deferred Experiments for Non-stationary Environments in Section 3.2

We experiment on the setting where the losses are still changing over time, but their total variations across time are bounded,
more concretely, sublinear in T . Correspondingly, we consider the stronger metric of dynamic regret here to measure the
performance. Note that without constraining the variation of the loss vectors, dynamic regret can be linear w.r.t. T in the worst
case. Hence, we generate the loss vectors in two different ways: 1) Gradual variation. We firstly sample ℓ1 ∼ Unif([0, 10]d).
Then for each t ≥ 2, we uniformly and randomly generate ℓt+1 under the constraint ∥ℓt+1 − ℓt∥∞ ≤ 1√

t
, such that the

variations over time are guaranteed to satisfy
∑T−1

t=1 ∥ℓt+1 − ℓt∥∞ = o(T); 2) Abrupt variation. We randomly generate
ℓ1 ∼ Unif([0, 10]d) and m time indices {ti}i∈[m] from {1, 2, · · · , T}. At each time step ti for i ∈ [m], the sign of the
loss vector ℓti is flipped, i.e., we let ℓti ← 10111d − ℓti . For the specific choice of T = 25 in our experiments, we choose
m = 3. For both cases, the average dynamic regret results are presented in Table 1. GPT-4 achieves sublinear dynamic
regret and outperforms FTRL/FTPL with Restart, a standard variant of FTRL/FTPL for non-stationary online learning (see
e.g., (Besbes et al., 2014)). We refer to Appendix D.3 for a detailed introduction of FTRL/FTPL with Restart.

E.6. Deferred Experiments for Bandit-feedback Environments in Section 3.2

Although pre-trained LLMs have achieved good performance in online learning with full-information feedback, it is unclear
whether they can still maintain no-regret with only bandit feedback. For such problems, we modify the prompt and protocol
of interactions slightly, where we still ask the LLM agent to provide a policy πt at time step t, then sample one at ∼ πt(·).
In the bandit setting, the LLM agent can only access (at, ℓtat). Instead of directly feeding it to the agent, we feed an estimate
of the loss vector ℓ̂t ∈ Rd, where ℓ̂t(a) ← ℓt(a)

πt(a)
1(at = a) for all j ∈ [d]. Note that such an operation of re-weighting

the loss by the inverse of the probability is standard in online learning when adapting full-information-feedback no-regret
algorithms to the bandit-feedback ones (Auer et al., 2002). Later, we will also show the benefits of such operations (c.f.
Section 4). We compare the performance of pre-trained LLMs with that of the counterparts of FTRL with bandit feedback,
e.g., EXP3 (Auer et al., 2002) and the bandit-version of FTPL (Abernethy et al., 2015), in both Figure E.3 and Table 1,
where GPT-4 consistently achieves lower regret.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Do LLM Agents Have Regret?

0 5 10 15 20 25

Iterations

0

10

20

30

40

R
eg

re
t

Uniform
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.76, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.89, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.0, 0.9, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.81, 0.0)
FTRL
FTPL

0 5 10 15 20 25

Iterations

0

10

20

30

40

50

60

70

R
eg

re
t

Gaussian
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.76, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.92, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.0, 0.87, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.71, 0.0)
FTRL
FTPL

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

30

35

R
eg

re
t

Linear-trend
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.56, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.55, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.0, 0.86, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.69, 0.0)
FTRL
FTPL

0 5 10 15 20 25

Iterations

0

10

20

30

R
eg

re
t

Sine-trend
GPT-4:
(ptrend, β̂0, preg)=(0.15, 0.9, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.58, 0.99, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.42, 0.96, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.03, 0.89, 0.0)
FTRL
FTPL

Figure E.3. Regret of GPT-3.5 Turbo/GPT-4 for online learning with bandit feedback in 4 different settings. It performs comparably and
sometimes even better than well-known no-regret learning algorithms, variants of FTRL and FTPL with bandit-feedback.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Do LLM Agents Have Regret?

E.7. Deferred Figures for Section 3.3

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

30

R
eg

re
t

Two-player games
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.63, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.9, 0.0)
FTRL
FTPL

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

R
eg

re
t

Three-player games
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.69, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.9, 0.0)
FTRL
FTPL

0 5 10 15 20 25

Iterations

0

5

10

15

20

R
eg

re
t

Four-player games
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.8, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.93, 0.0)
FTRL
FTPL

Figure E.4. Regret of pre-trained LLMs for repeated games of different sizes, where sublinear regret is validated by both of our frameworks.
We report the regret of one agent for ease of presentation.

0 5 10 15 20 25

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.0, 0.74, 0.0)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.0, 0.9, 0.0)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.0, 0.86, 0.0)
FTRL 3

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.0, 0.72, 0.0)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.01, 0.78, 0.0)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.15, 0.94, 0.0)
FTRL 3

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

30

35

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.0, 0.76, 0.0)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.0, 0.72, 0.0)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.15, 0.34, 0.35)
FTRL 3

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

30

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.42, 0.0, 1.0)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.01, 0.7, 0.0)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.0, 0.43, 0.0)
FTRL 3

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

30

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.0, 0.82, 0.0)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.0, 0.93, 0.0)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.0, 0.81, 0.0)
FTRL 3

0 5 10 15 20 25

Iterations

0

5

10

15

20
R

eg
re

t
GPT-4 1: (ptrend , β̂0, preg)=(0.0, 0.71, 0.0)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.0, 0.72, 0.0)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.0, 0.75, 0.0)
FTRL 3

Figure E.5. Regret of GPT-4 and the FTRL algorithm in 6 randomly generated three-player general-sum games. GPT-4 has comparable
(even better) no-regret properties when compared with the FTRL algorithm.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Do LLM Agents Have Regret?

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.0, 0.18, 0.01)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.0, 0.56, 0.19)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.03, 0.98, 0.0)
FTRL 3

GPT-4 4: (ptrend , β̂0, preg)=(0.03, 0.92, 0.0)
FTRL 4

0 5 10 15 20 25

Iterations

0

2

4

6

8

10

12

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.03, 0.67, 0.01)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.03, 0.91, 0.0)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.03, 0.8, 0.0)
FTRL 3

GPT-4 4: (ptrend , β̂0, preg)=(0.27, -0.12, 0.78)
FTRL 4

0 5 10 15 20 25

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.0, 0.81, 0.0)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.01, 0.83, 0.0)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.0, 0.48, 0.01)
FTRL 3

GPT-4 4: (ptrend , β̂0, preg)=(0.27, 0.05, 0.96)
FTRL 4

0 5 10 15 20 25

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.03, 0.03, 0.73)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.08, 0.53, 0.0)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.0, 0.78, 0.0)
FTRL 3

GPT-4 4: (ptrend , β̂0, preg)=(0.03, -1.0, 0.16)
FTRL 4

0 5 10 15 20 25

Iterations

0

5

10

15

20

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.0, 0.83, 0.0)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.08, -1.48, 0.01)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.0, 0.5, 0.0)
FTRL 3

GPT-4 4: (ptrend , β̂0, preg)=(0.08, 0.66, 0.0)
FTRL 4

0 5 10 15 20 25

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
eg

re
t

GPT-4 1: (ptrend , β̂0, preg)=(0.0, 0.67, 0.0)
FTRL 1

GPT-4 2: (ptrend , β̂0, preg)=(0.01, 0.96, 0.0)
FTRL 2

GPT-4 3: (ptrend , β̂0, preg)=(0.0, 0.76, 0.0)
FTRL 3

GPT-4 4: (ptrend , β̂0, preg)=(0.42, -1.95, 0.01)
FTRL 4

Figure E.6. Regret of GPT-4 and the FTRL algorithm in 6 randomly generated four-player general-sum games. GPT-4 has comparable
(even better) no-regret properties when compared with the FTRL algorithm, according to the frameworks in Section 3.1 and the graphic
trends.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Do LLM Agents Have Regret?

E.8. Deferred Explanation and Details for Section 3.4

Canonical counterexample for follow-the-leader. To begin with, we consider a well-known example that follow-the-
leader (FTL) algorithm (Shalev-Shwartz, 2012) suffers from linear regret (Hazan, 2016, Chapter 5), where ℓ1(1) =
5, ℓ1(2) = 0 and ℓt(2 − t%2) = 10, ℓt(1 + t%2) = 0 for t ≥ 2, where % is the modulo operation. Interestingly, GPT-4
agent can easily identify the pattern for the loss sequence that the optimal action alternates, thus accurately predicting the
loss it will receive and achieving nearly zero regret in Figure E.7. In other words, GPT-4 agent seems to not fail in the same
way as FTL, which is known to be due to the lack of randomness in prediction.
Noisy alternating loss sequence. Inspired by the above, we design a new loss sequence that is similar but less predictable
by adding some noise to the canonical counterexample. Specifically, we construct the following (simple) loss sequence with
2 actions such that ℓt(1 + t%2) = min(25/t, 10), ℓt(2− t%2) ∼ Unif([9, 10]) for t ∈ [25].
Adaptive loss sequence. We also develop a simpler but more adaptive loss sequence that takes the full power of the
adversary in the online learning setup. After the GPT-4 agent provides πt, we choose ℓt such that ℓt(argmaxi πti) = 10 and
ℓt(3− argmaxi πti) = 0.

We also report the average regret over 20 repeated experiments for the later two settings using GPT-4 and more advanced
GPT-4 Turbo in Figure E.7, where we cannot reject the hypothesis that GPT-4 (Turbo) has linear-regret by either our
trend-checking or regression-based framework. These observations have thus motivated us to design new approaches to
further promote the no-regret property of LLM agents, with additional training, as to be detailed in Section 5. Before it, we
first provide some theoretical insights into the observed no-regret behaviors in many cases.

0 5 10 15 20 25

Iterations

−20

−10

0

10

20

R
eg

re
t

Alternating loss
GPT-4:
(ptrend, β̂0, preg)=(0.0, -2.89, 0.0)
GPT-4-Turbo:
(ptrend, β̂0, preg)=(0.0, -3.86, 0.0)

0 5 10 15 20 25

Iterations

0

20

40

60

80

100

120

R
eg

re
t

Noisy alternating loss
Single-layer:
(ptrend, β̂0, preg)=(0.27, 0.75, 0.0)
Multi-layer:
(ptrend, β̂0, preg)=(0.27, 0.55, 0.0)
FTRL:
(ptrend, β̂0, preg)=(0.42, 0.98, 0.0)
GPT-4:
(ptrend, β̂0, preg)=(1.0, 1.96, 0.0)
GPT-4 Turbo:
(ptrend, β̂0, preg)=(1.0, 2.0, 0.0)

0 5 10 15 20 25

Iterations

0

50

100

150

200

R
eg

re
t

Adaptive loss
Single-layer:
(ptrend, β̂0, preg)=(0.27, 0.75, 0.0)
Multi-layer:
(ptrend, β̂0, preg)=(0.08, 0.03, 0.68)
FTRL:
(ptrend, β̂0, preg)=(0.42, 0.51, 0.0)
GPT-4:
(ptrend, β̂0, preg)=(1.0, 1.13, 0.0)
GPT-4 Turbo:
(ptrend, β̂0, preg)=(0.97, 1.08, 0.0)

Figure E.7. (left) Regret of both GPT-4 and GPT-4 Turbo under the canonical counterexample for FTL (Hazan, 2016, Chapter 5). (mid,
right) Failure of GPT-4 and GPT-4 Turbo on two scenarios with regrettable behaviors, while Transformers trained by our regret-loss
provide no-regret behaviors.

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Do LLM Agents Have Regret?

E.9. Ablation Study on Prompts

Ablation study on online learning. To systematically understand the effects of our prompt on the final performance of the
LLM agent, we create three different variants of our prompt and report the regret by using different prompts in Figure E.8.
Specifically, for Ablation1, we remove examples to illustrate the game rules. For Ablation2, we remove the number of
iterations. For Ablation3, we incorporate some hints for the LLM for decision-making, including the hints to suggest it
to pay attention to the loss history, to behave more greedily at the end of an episode, and also to explain the reason of
its decision step-by-step. The latter hint is a popular technique in prompt engineering known as the Chain-of-Thought
prompting (Wei et al., 2022b). Finally, we recall that d is the number of actions in all prompts.

0 10 20

0

2

4

6

8

10

Uniform

Original prompt
Ablation 1
Ablation 2
Ablation 3

0 10 20

−1

0

1

2

3

4

Gaussian

Original prompt
Ablation 1
Ablation 2
Ablation 3

0 10 20

0

10

20

30

Linear-trend

Original prompt
Ablation 1
Ablation 2
Ablation 3

0 10 20

−5

0

5

10

Sine-trend

Original prompt
Ablation 1
Ablation 2
Ablation 3

Figure E.8. Ablation study on our prompt design.

27

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

Do LLM Agents Have Regret?

Original prompt
You are solving a decision-making problem for 25 rounds.

There are d number of action (which is 0 to $d-1$).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be d-dimensional, and the sum of its components should equal 1.
After that, you will be shown the reward vector for choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also d-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

For example, a reward vector of [0.8, 3.2] means reward for action_0 is 0.8
and the reward for action_1 is 3.2.

Then your reward for this round will be calculated according to the reward of
each action and your probability of choosing each action.

For example, if you choose the policy [0.2, 0.8] and get the reward vector [1, 2],
then your expected reward is 0.2*1 + 0.8*2=1.8

Your goal is to maximize your accumulative expected reward.

You can adjust your policy based on the reward vectors for all previous rounds.

You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
’Policy: [your d-dimensional policy]’.

Ablation1: no examples

You are solving a decision-making problem for 25 rounds.

There are d number of action (which is 0 to $d-1$).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be d-dimensional, and the sum of its components should equal 1.
After that, you will be shown the reward vector for choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also d-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

Then your reward for this round will be calculated according to the reward of
each action and your probability of choosing each action.

Your goal is to maximize your accumulative expected reward.

You can adjust your policy based on the reward vectors for all previous rounds.

28

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

Do LLM Agents Have Regret?

You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
’Policy: [your d-dimensional policy]’.

Ablation2: no round information
You are solving a decision-making problem.

There are d number of action (which is 0 to $d-1$).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be d-dimensional, and the sum of its components should equal 1.
After that, you will be shown the reward vector for choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also d-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

For example, a reward vector of [0.8, 3.2] means reward for action_0 is 0.8
and the reward for action_1 is 3.2.

Then your reward for this round will be calculated according to the reward of
each action and your probability of choosing each action.

For example, if you choose the policy [0.2, 0.8] and get the reward vector [1, 2],
then your expected reward is 0.2*1 + 0.8*2=1.8

Your goal is to maximize your accumulative expected reward.

You can adjust your policy based on the reward vectors for all previous rounds.

You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
’Policy: [your d-dimensional policy]’.

Ablation3: adding hints

You are solving a decision-making problem for 25 rounds.

There are d number of action (which is 0 to $d-1$).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be d-dimensional, and the sum of its components should equal 1.
After that, you will be shown the reward vector for choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also d-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Do LLM Agents Have Regret?

For example, a reward vector of [0.8, 3.2] means reward for action_0 is 0.8
and the reward for action_1 is 3.2.

Then your reward for this round will be calculated according to the reward of
each action and your probability of choosing each action.

For example, if you choose the policy [0.2, 0.8] and get the reward vector [1, 2],
then your expected reward is 0.2*1 + 0.8*2=1.8

Your goal is to maximize your accumulative expected reward.

You can adjust your policy based on the reward vectors for all previous rounds.

You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
’Policy: [your d-dimensional policy]’.

Let’s think step by step. Explicitly examining history is important.

Please explain how you chose the policy by guessing
what reward you might receive for each action according to the history.

You should explore for first several rounds and behave greedily for later rounds,
for example, choosing one action with probability more than 0.99.

Please also explain whether you are behaving more greedily and less greedily
by explicitly considering the policy you just used for last round.

We can see in Figure E.8 that the performances of LLM agents are consistent under different variants of the prompts.

30

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

Do LLM Agents Have Regret?

Ablation study on repeated games. For the game setting, we also investigate whether explicitly informing LLM agents
that they are ‘‘playing a repeated matrix game with some other opponents’’ would affect the
performance. Therefore, we evaluate three different prompts by informing LLM agents that they are playing a matrix
game, solving multi-arm bandit, or solving general decision-making problems, in the first line of the
prompt. We show the performance of such three prompts in Figure E.9, where it is seen that LLM agents’ performance on
repeated games is consistent among these variants of the prompts.

0 5 10 15 20 25

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
eg

re
t

Multi-arm bandit
Matrix game
Decision making

Figure E.9. Regret of GPT-4 for repeated games under 3 different prompt ablations. Its performance is consistent among three different
prompts.

31

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

Do LLM Agents Have Regret?

E.10. Ablation Study on Horizon Length

Considering the prevailing empirical evidence that LLMs start to struggle as the context length increases, we are interested
in understanding whether LLMs can still exhibit no-regret behaviors reliably as in Figure E.2, when the interaction horizon
is longer. Therefore, we conduct the experiments in Figure E.2 with 50 iterations for the relatively weaker LLMs, GPT-3.5
Turbo and Llama-3-70b. The results are shown in Figure E.10, where GPT-3.5 Turbo and Llama-3-70b can still be reliably
no-regret.

0 10 20 30 40 50

Iterations

0

20

40

60

80

R
eg

re
t

Uniform
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.02, 0.95, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.0, 0.96, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.86, 0.0)
FTRL
FTPL

0 10 20 30 40 50

Iterations

0

10

20

30

40

50

60

R
eg

re
t

Gaussian
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.89, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.0, 0.85, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.82, 0.0)
FTRL
FTPL

0 10 20 30 40 50

Iterations

0

20

40

60

80

100

120

140

R
eg

re
t

Linear-trend
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.86, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.0, 0.91, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.89, 0.0)
FTRL
FTPL

0 10 20 30 40 50

Iterations

−20

−10

0

10

20

30

40

R
eg

re
t

Sine-trend
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.58, 0.0)
Mixtral-8x7b:
(ptrend, β̂0, preg)=(0.0, 0.59, 0.0)
Llama-3-70b:
(ptrend, β̂0, preg)=(0.0, 0.48, 0.0)
FTRL
FTPL

Figure E.10. Regret of GPT-3.5 Turbo, Llama-3-70b, Mixtral-8x7b with longer horizons.

E.11. Results for GPT-4 Turbo

When preparing our paper, we are aware of a more advanced version of GPT-4, GPT-4 Turbo. Although GPT-4 has
successfully exhibited no-regret behaviors in most problems, we also evaluate and report the performance of its more
advanced version here. Specifically, we compare GPT-4 and GPT-4 Turbo for the repeated game scenario in Figure E.11,
where we validate that GPT-4 Turbo performs either comparably with or better than GPT-4.

E.12. LLM Agents’ Explanation on Their Output Policies

We here present two examples of LLMs’ explanations of their output policies, showing how they reason in their decision-
making.

Output Example 1
Looking at the history of the reward vectors, it is clear to see that the reward
for choosing action 0 is consistently higher than that for choosing action 1.
This pattern is evident across all 5 rounds of the game.

In the first round, the difference in rewards is 3.52, this remained relatively
stable with the difference in the last round being 3.52 as well.
It’s indicative that action 0 consistently brings a higher return than action 1.

Therefore, I’ll lean more towards selecting action 0 in my policy.

However, acting deterministically, that is always choosing action 0,
would introduce the risk of becoming too predictable and letting the opponent
exploit this predictability

So, in order to maintain some unpredictability while still capitalizing on the
higher average return of action 0, I’ll set my policy as follows: select action 0
with a probability of 0.8 and action 1 with a probability of 0.2.

This way, the majority of the time I’m choosing the action that gives a higher
reward, but I’m also occasionally choosing the other action to keep the
opponent guessing, and avoid any predictable patterns that can be exploited

So, my policy is as follows: Policy: [0.8, 0.2]

32

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Do LLM Agents Have Regret?

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

30

R
eg

re
t

Two-player games
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.63, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.9, 0.0)
GPT-4 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.49, 0.0)
FTRL
FTPL

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

R
eg

re
t

Three-player games
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.69, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.9, 0.0)
GPT-4 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.69, 0.0)
FTRL
FTPL

0 5 10 15 20 25

Iterations

0

5

10

15

20

R
eg

re
t

Four-player games
GPT-4:
(ptrend, β̂0, preg)=(0.0, 0.8, 0.0)
GPT-3.5 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.93, 0.0)
GPT-4 Turbo:
(ptrend, β̂0, preg)=(0.0, 0.79, 0.0)
FTRL
FTPL

Figure E.11. Comparisons of GPT-4 Turbo with GPT-4 and GPT-3.5 Turbo. Due to the symmetry of agents in randomly generated games,
we report the regret of one agent for ease of presentation. We can see that GPT-4 Turbo performs on par with or better than GPT-4.

Output Example 2
The total reward from action_1 is 130.92 and the average reward is around 10.07.

On the other hand, the total reward from action_0 is 33.418 and the average
reward is around 8.354.

Although action_0 has a less average reward, its highest reward is 26.977,
which is considerably high and shows its potential.

For this round, I want to continue to explore action_0 but also significantly exploit
action 1 as it reliably gives higher reward.

So, I’d like to decrease the probability of selecting action_0 compared to last time
but still keep it in the policy as a possible option.

The policy for the previous round was not provided but assuming
it was more balanced,I’m now going to lean more towards action_1.

So, the policy will be: [0.3, 0.7]. Here, I’m behaving more greedily compared
to earlier rounds, as we are choosing the action which has been giving us
higher rewards with more probability.

As observed from the output, the LLM tends to use the history of the reward vectors by looking at the “sum/average of
the accumulated rewards”, and tends to introduce randomization in decision-making, in order to be “less predictable and
exploitable”. These are several key components in achieving no-regret in online learning and games (Cesa-Bianchi & Lugosi,
2006), explaining the empirical evidence we had in Section 3.

F. Deferred Results and Proofs in Section 4
F.1. Pre-Trained LLMs Have Similar Regret as Humans (Who Generate Data)

We first provide a direct observation based on some existing speculation on the capability of Transformer-based LLMs.
Recently, a growing literature has evidenced that the intelligence level of LLM agents are determined by, and in fact mimic,
those of human beings who generate the data for pre-training the models (Park et al., 2022; Argyle et al., 2023; Horton,
2023). The key rationale was that, LLMs (with Transformer parameterization) can approximate the pre-training data
distribution very well (Xie et al., 2022; Zhang et al., 2023b; Lee et al., 2023). In such a context, one can expect that LLM
agents can achieve similar regret as human decision-makers who generate the pre-training data, as we formally state below.

Observation 1. An LLM agent is said to be pre-trained with an ϵ-decision error if, for any arbitrary t and loss sequences
(ℓi)i∈[t], the following condition holds:

sup
π∈Π

∣∣Pdata(π | (ℓi)i∈[t])− PLLM(π | (ℓi)i∈[t])
∣∣ ≤ ϵ,

33

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

Do LLM Agents Have Regret?

where Pdata and PLLM are the pre-training data distribution and the decision policy distribution of the pre-trained LLM,
respectively. Then, the regret of an LLM agent with ϵ-decision error is bounded as:

(D-)RegretLLM

(
(ℓt)t∈[T]

)
∈
[

(D-)Regretdata

(
(ℓt)t∈[T]

)
± ϵ∥ℓt∥ sup

π∈Π
∥π∥

]
,

where [a± b] := [a− b, a+ b].

Observation 1 shows that the pre-trained LLM-agent’s regret can be controlled by that of the pre-training dataset and the
decision error ϵ. A small ϵ can be achieved if LLM is constructed by a rich function class, e.g., the Transformer architecture
(Zhang et al., 2023b; Lin et al., 2024).

Proof of Observation 1. For given (ℓt)t∈[T],

T∑
t=1

∫
πt∈Π

PLLM(πt | (ℓi)i∈[t−1])⟨ℓt, πt⟩dπt ≤
T∑

t=1

∫
πt∈Π

(
Pdata(πt | (ℓi)i∈[t−1]) + ϵ

)
⟨ℓt, πt⟩dπt

holds, where we use the convention of PLLM(πt | (ℓ0)) := PLLM(πt) and Pdata(πt | (ℓ0)) := Pdata(πt). Hence,

RegretLLM((ℓt)t∈[T]) =

T∑
t=1

∫
πt∈Π

PLLM(πt | (ℓi)i∈[t−1])⟨ℓt, πt⟩dπt − inf
π∈Π

T∑
t=1

⟨ℓt, π⟩

≤
T∑

t=1

∫
πt∈Π

(
Pdata(πt | (ℓi)i∈[t−1]) + ϵ

)
⟨ℓt, πt⟩dπt − inf

π∈Π

T∑
t=1

⟨ℓt, π⟩

=

T∑
t=1

∫
πt∈Π

(
Pdata(πt | (ℓi)i∈[t−1])

)
⟨ℓt, πt⟩dπt − inf

π∈Π

T∑
t=1

⟨ℓt, π⟩+
T∑

t=1

∫
πt∈Π

⟨ℓt, ϵπt⟩dπt

≤ Regretdata((ℓt)t∈[T]) + ϵ∥ℓ∥p∥π∥qT

where 1
p + 1

q = 1 and p, q ≥ 1. Similarly, we can establish the lower bound for RegretLLM((ℓt)t∈[T]). To prove

the result for the dynamic-regret case, we can simply change the term infπ∈Π

∑T
t=1⟨ℓt, π⟩ in the above derivation to∑T

t=1 infπ∈Π⟨ℓt, π⟩.

F.2. Background and Motivations for (Generalized) Quantal Response

Formally, the quantal response is defined as follows:

Definition F.1 (Quantal response). Given a loss vector ℓ ∈ Rd, a noise distribution ϵ ∼ Pnoise, and η > 0, the quantal
response is defined as

P η
quantal

(
a
∣∣ ℓ) = P

(
a ∈ argmin

a′∈A
z(a′)

)
, where z = ℓ+ ηϵ.

In essence, this implies that humans are rational but with respect to (w.r.t.) the latent variable z, a perturbed version of
ℓ, instead of ℓ per se. This addition of noise to the actual loss vector characterizes the bounded rationality of humans in
decision-making.

F.2.1. A (HUMAN) DECISION-MAKING MODEL: QUANTAL RESPONSE

A seminal model for human decision-making behavior is the quantal response model, which assumes that humans are often
imperfect decision-makers, and their bounded rationality can be modeled through unseen latent variables that influence
the decision-making process (McFadden, 1976; McKelvey & Palfrey, 1995), for which we refer the formal definition and
introduction to Appendix F.2. However, the traditional quantal response formulation primarily focused on scenarios with a
single loss vector. In online decision-making, given the history information, the decision-maker at each time t is faced with
multiple loss vectors. Hence, we adopt the following generalization to model the decision-making behavior in this setting.

34

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

Do LLM Agents Have Regret?

Definition F.2 (Quantal response against multiple losses). Given a set of losses (ℓi)i∈[t], a noise distribution ϵ ∼ Pnoise, and
ηt > 0, the generalized quantal response against (ℓi)i∈[t] is defined as

P ηt
quantal

(
a
∣∣ (ℓi)i∈[t]

)
:= P ηt

quantal

(
a

∣∣∣∣ t∑
i=1

ℓi

)
= P

(
a ∈ argmin

a′∈A
z(a′)

)
, where z = ηtϵ+

t∑
i=1

ℓi.

In simpler terms, the generalized quantal response is defined as the standard quantal response against the summation of the
losses. Such a model has been investigated in the learning-in-games and behavioral economics literature (see Appendix F.2
for more details). Such a definition is also aligned with our empirical findings on LLMs’ behavioral patterns in Section 3.2:
i) evaluating the summation/average; ii) introducing randomization in decision-making. To gain more insights into these
empirical findings, we next analyze a case where pre-training under certain canonical assumptions provably leads to the
quantal response behaviors and further yields no-regret guarantees.

Further motivations for generalized quantal response. Note that a dynamic version of quantal response in Definition F.2
also has implications from behavior economics, and has been recently used to model human behaviors in sequential
decision-making (Ding et al., 2022) (in stochastic and stationary environments). Indeed, such a response against multiple
loss vectors is believed to be natural, and has also been widely adopted in well-known no-regret learning algorithms of
smooth/stochastic fictitious play (Fudenberg & Kreps, 1993) and follow-the-perturbed-leader (Kalai & Vempala, 2005),
whose formal definitions can be found in Appendix D.3. Finally, note that the response model in Definition F.2 does not
necessarily involve a sequential decision-making process, i.e., the set of losses may not come from the history of an online
learning process.

F.3. Detailed Explanation for the Meaning of z and Assumptions on Pre-training Distribution

The pre-training dataset, however, only contains partial observations x1:Nt
(a natural language representation of ℓ1:t) of

z due to imperfect data collection, which could be attributed to the fact that z is private to the data-generator (human),
representing the actual intention of the human/data-generator. Hence, LLM will only be pre-trained with partial and
noisy information about z. Meanwhile, we assume that some high-quality action label xNt+1:Nt+1

(a natural language
representation of a) w.r.t. the underlying loss vector z is also available in the dataset, which could come from user surveys,
personal blogs, or data annotation. We formalize such an assumption:

Assumption 1 (Pre-training distribution). Given T ∈ N+, t ∈ [T], Nt+1 ∈ N+, there are latent variables
(z, ℓ1:t), N1, · · · , Nt ∈ [Nt+1], N0 = 0, such that P(z, ℓ1:t, x1:Nt+1) = P(z, ℓ1:t)P(x1:Nt | ℓ1:t)P(xNt+1:Nt+1 | z), and
P text
t (x1:Nt+1) := P(x1:Nt+1) =

∫
z

∫
ℓ1:t

P(z, ℓ1:t, x1:Nt+1)dℓ1:tdz. Intuitively, tokens {xNi−1+1:Ni}i∈[t] encode the con-
text, i.e., information for ℓ1:t, and the user will decode action a from xNt+1:Nt+1

.

To further understand our assumption, we provide an example in Appendix F.4, showing how a natural text corpus may
satisfy it. Similar assumptions that suppose the existence of such latent variables in generating the pre-training datasets
have also been made recently in (Lee et al., 2023; Lin et al., 2024; Liu et al., 2023b), for understanding the in-context
decision-making behaviors of LLMs/Transformers through posterior sampling, for which we defer a detailed comparison to
Appendix F.9. In particular, we show in Theorem 4.1 that if the noise, i.e., ℓi − z is modeled as Gaussian distributions and
xNt+1:Nt+1 encodes the optimal action for z, the pre-trained LLM provably recovers the prominent human behavior model
in Appendix F.2.1, the quantal response model.

F.4. The Example Instantiating Assumption 1

Example 1 (An example instantiating Assumption 1). We consider a common decision-making task that may generate the
training data, recommender systems. An instance of the text data could be: “On September 29, 2023, user X clicked movie
A three times, movie B eight times, and movie C five times”. This sentence corresponds to xNi−1+1:Ni for some i ∈ [t]
and serves as a natural language depiction of the numerical ℓi. The corresponding label xNt+1:Nt+1

can be obtained by
some user survey: “User X’s favorite movie is movie B”. Meanwhile, z represents user X’s latent, genuine preference for
each movie – information that is private to the user, and cannot be observed or collected in the pre-training dataset. In
this example, Assumption 1 suggests that x1:Nt

, which records the frequency of interactions with each movie, serves as
an imperfect estimate of the user’s latent, genuine preference for the movies, while the text xNt+1:Nt+1 depicts the user’s
favorite movie only based on her latent z.

35

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

Do LLM Agents Have Regret?

F.5. Alignment of Assumption 1 with Quantal Response

Before presenting the technical lemma, based on Assumption 1, we denote the (potentially unkown) mappings that decode
semantic information in Assumption 1 into numeric values as f , g, such that f(xNi−1+1:Ni

) = ℓi ∈ Rd for each i ∈ [t] and
g(xNt+1:Nt+1

) = a ∈ A.

Lemma 1. Fix t ∈ [T], σ > 0. If we model the noise of data collection to be i.i.d. Gaussian distribution in the numeric
value space, i.e.,

P
({

f(xNi−1+1:Ni
)
}
i∈[t]

∣∣ z) =

t∏
i=1

P
(
f(xNi−1+1:Ni

)
∣∣ z) ∝ t∏

i=1

exp

(
−∥f(xNi−1+1:Ni

)− z∥22
2σ2

)
,

the prior distribution of the latent variable z is also Gaussian, i.e., z ∼ N (000d, σ
2I), and the text labels satisfy that

P(g(xNt+1:Nt+1
) | z) = 1

(
g(xNt+1:Nt+1

) ∈ argmina∈A za
)
, then we have

P
(
g(xNt+1:Nt+1

)
∣∣x1:Nt

)
= Pσ

√
t+1

quantal

(
g(xNt+1:Nt+1

)
∣∣ {f(xNi−1+1:Ni

)
}
i∈[t]

)
,

with Pnoise = N (000d, I) in Definition F.2, i.e., the action a = g(xNt+1:Nt+1) extracted from the text xNt+1:Nt+1 is a quantal
response w.r.t. the loss vectors

(
f(xNi−1+1:Ni

)
)
i∈[t]

.

Proof. Note that

P(z |x1:Nt) =

∫
ℓ1:t

P(z, ℓ1:t |x1:Nt)dℓ1:t =

∫
ℓ1:t

P(ℓ1:t |x1:Nt)P(z |x1:Nt , ℓ1:t)dℓ1:t.

For P(ℓ1:t |x1:Nt), since we have assumed the existence of function f to decode ℓ1:t from x1:Nt , it holds that

P(ℓ1:t |x1:Nt
) =

t∏
i=1

δ
(
ℓi − f(xNi−1+1:Ni

)
)
,

where we use δ to denote the d-dimensional Dirac-delta function. For P(z |x1:Nt , ℓ1:t), by Assumption 1, it holds that

P(z, x1:Nt
, ℓ1:t) = P(z, ℓ1:t)P(x1:Nt

| ℓ1:t),

which leads to P(x1:Nt | ℓ1:t) = P(x1:Nt | ℓ1:t, z) by Bayes rule. This implies that the random variable x1:Nt and z are
independent conditioned on ℓ1:t. Therefore, it holds that P(z |x1:Nt

, ℓ1:t) = P(z | ℓ1:t). Finally, we can compute

P(z |x1:Nt
) =

∫
ℓ1:t

P(z, ℓ1:t |x1:Nt
)dℓ1:t =

∫
ℓ1:t

t∏
i=1

δ(ℓi − f(xNi−1+1:Ni
))P(z | ℓ1:t)dℓ1:t

= P
(
z |
(
ℓi = f(xNi−1+1:Ni

)
)
i∈[t]

)
.

Based on this, we conclude that

P(g(xNt+1:Nt+1
) |x1:Nt

) =

∫
z

P(g(xNt+1:Nt+1
) | z, x1:Nt

)P(z |x1:Nt
)dz

=

∫
z

P(g(xNt+1:Nt+1) | z)P(z | {ℓi = f(xNi−1+1:Ni)}i∈[t])dz

= P
(
g(xNt+1:Nt+1

) |
(
ℓi = f(xNi−1+1:Ni

)
)
i∈[t]

)
where the first equality is by the independence between xNt+1:Nt+1

and x1:Nt
conditioned on z, due to Assumption 1.

Therefore, it suffices to consider the probability of P(a | ℓ1:t) only, in order to analyze P(g(xNt+1:Nt+1
) |x1:Nt

), where we
recall the definition that a = g(xNt+1:Nt+1

). Since z ∼ N (000d, σ
2I), and ℓi | z ∼ N (z, σ2I), we have

z | ℓ1:t ∼ N

 1

t+ 1

∑
i∈[t]

ℓi,
σ2

t+ 1
I

 , (F.1)

36

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

Do LLM Agents Have Regret?

by the posterior distribution of Gaussian distribution. Now we conclude that

P(a | ℓ1:t) =
∫
z

P(a | z, ℓ1:t)P(z | ℓ1:t)dz =

∫
z

P(a | z)P(z | ℓ1:t)dz

=

∫
z

1(a ∈ argmin
a′∈A

za′)P(z | ℓ1:t)dz =

∫
z

1

a ∈ argmin
a′∈A

 σ√
t+ 1

ϵ+
1

t+ 1

∑
i∈[t]

ℓi

a′

P(ϵ)dϵ

=

∫
z

1

a ∈ argmin
a′∈A

σ
√
t+ 1ϵ+

∑
i∈[t]

ℓi

a′

P(ϵ)dϵ = P

a ∈ argmin
a′∈A

σ
√
t+ 1ϵ+

∑
i∈[t]

ℓi

a′

= Pσ

√
t+1

quantal(a | ℓ1:t),

where P(ϵ) = N (000d, I). This completes the proof.

F.6. Relationship between FTPL and Definition F.2

Fact 1. Performing generalized quantal response of Definition F.2 at every iteration t ∈ [T] w.r.t. history loss vectors ℓ1:t−1

is essentially executing an FTPL algorithm.

Proof. Before we move to the proof, we will define the random variable which has distribution Pnoise as Znoise. Note that at
round t ≥ 2 (as the policy at round t = 1 is fixed), we have

P
ηt−1

quantal(a | ℓ1:t−1) := P

(
a ∈ argmin

a′∈A

(
t−1∑
i=1

ℓi + ηt−1ϵ

)
(a′)

)
(F.2)

which is exactly the case when ϵt in Equation (D.2) satisfies ϵt
d
= ηt−1ϵ.

F.7. Formal Statement and Proof of Theorem 4.1

Theorem F.1. (Emergence of no-regret behavior). Under the assumptions of Lemma 1, suppose the function class
of LLMθ is expressive enough such that for all t ∈ [T], maxθ∈Θ Ex1:Nt+1

∼P text
t

∑Nt+1

j=1 log LLMθ (xj |x1:j−1) =

max{qj∈{Vj−1→∆(V)}}j∈[Nt+1]
Ex1:Nt+1

∼P text
t

∑Nt+1

j=1 log qj (xj |x1:j−1), where we define q1(x1 |x1:0) := q1(x1), and
θ⋆ maximizes Equation (4.1). Then, there exist (simple) algorithms using LLMθ⋆ to achieve no (dynamic) regret for
(non-stationary) online learning with full-information/bandit feedback. To be specific, for (2) and (4), by defining the
variation bound

∑T−1
t=1 ∥ℓt+1 − ℓt∥∞ ≤ VT such that VT ≤ T and VT = Θ(T ρ) for some ρ ∈ (0, 1), it holds that for large

enough T , d:

(1) For online learning with full-information feedback, RegretLLMθ⋆

(
(ℓt)t∈[T]

)
≤ O

(√
T log d

)
;

(2) For non-stationary online learning with full-information feedback, D-RegretLLMθ⋆

(
(ℓt)t∈[T]

)
≤ O

(
(log d VT)

1/3T 2/3
)
;

(3) For online learning with bandit feedback, E
[
RegretLLMθ⋆

(
(ℓt)t∈[T]

)]
≤ O

(
(log d)1/2dT 1/2+1/ log T log T

)
;

(4) For non-stationary online learning with bandit feedback, E
[
D-RegretLLMθ⋆

(
(ℓt)t∈[T]

)]
≤

O
(
(T 2d2VT)

1/3(log d)1/2T 1/ log T log T
)
.

37

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089

Do LLM Agents Have Regret?

Proof. Note that

max
{qj∈{Vj−1→∆(V)}}j∈[Nt+1]

Ex1:Nt+1
∼P text

t

Nt+1∑
j=1

log qj (xj |x1:j−1)

= max
q∈∆(VNt+1)

Ex1:Nt+1
∼P text

t
log q(x1:Nt+1)

= max
q∈∆(VNt+1)

−KL(P text
t | | q) + Ex1:Nt+1

∼P text
t

[P text
t (x1:Nt+1)],

where KL(q | | p) denotes the Kullback–Leibler divergence between two distributions p, q. Now we define LLMθ(x1:Nt+1
) =∏Nt+1

t=1 LLMθ(xj |x1:j−1). It is easy to verify that LLMθ(x1:Nt+1
) ∈ ∆(VNt+1), i.e., it also defines a valid joint distribution

over tokens. Therefore, we have

max
θ∈Θ

Ex1:Nt+1
∼P text

t

Nt+1∑
j=1

logLLMθ (xj |x1:j−1) = max
θ∈Θ

Ex1:Nt+1
∼P text

t
logLLMθ(x1:Nt+1

).

Now, due to our assumption that

max
θ∈Θ

Ex1:Nt+1
∼P text

t

Nt+1∑
j=1

logLLMθ (xj |x1:j−1)

= max
{qj∈{Vj−1→∆(V)}}j∈[Nt+1]

Ex1:Nt+1
∼P text

t

Nt+1∑
j=1

log qj (xj |x1:j−1) ,

we conclude that

min
θ∈Θ

KL(P text
t | |LLMθ) = min

q∈∆(VNt+1)
KL(P text

t | | q) = 0,

which implies that LLMθ⋆ = P text
t . Correspondingly, if we define LLMθ⋆(xNt+1:Nt+1 |x1:Nt) to be the distribution

induced by the joint distribution LLMθ⋆(x1:Nt+1
), it holds that

LLMθ⋆(xNt+1:Nt+1
|x1:Nt

) = P(xNt+1:Nt+1
|x1:Nt

).

In other words, intuitively, LLMθ⋆ has learned the corresponding pre-training distribution perfectly. Note that this
has been a common assumption in the Bayesian perspective of ICL (Xie et al., 2022; Lee et al., 2023; Zhang et al.,
2023b). Therefore, to analyze the actions taken by LLMθ⋆ , it suffices to consider P(g(xNt+1:Nt+1

) |x1:Nt
), which is

equal to Pσ
√
t+1

quantal

(
g(xNt+1:Nt+1

)
∣∣ {f(xNi−1+1:Ni

)
}
i∈[t]

)
by Lemma 1. Therefore, we proved that LLMθ⋆ is essentially

mimicking the well-known no-regret algorithm, FTPL with perturbation distribution as N (000d, σ
2tI) for round t ∈ [T],

according to Equation (F.2) of Fact 1, for which we can establish the corresponding regret guarantee for each case:

(1) Combining the above result with Lemma 2, we can derive the regret bound for online learning with full-information
feedback.

(2) Combining the above result with Lemma 2 and Lemma 4, we get that

D-RegretLLMθ⋆
((ℓi)i∈[T]) ≤ min

∆T∈[T]

2T

∆T
C
√
∆T log d+ 2∆TVT ,

for some constant C. We firstly consider the following problem

min
u>0

2T

u
C
√

u log d+ 2uVT ,

where the optimal solution is u⋆ =
(

C2T 2 log d
4V 2

T

)1/3
. Therefore, if we have u⋆ ∈ [1, T], we can choose ∆T = ⌈u⋆⌉, which

results in a regret bound of

D-RegretLLMθ⋆
((ℓi)i∈[T]) ≤

2T√
u⋆

C
√
log d+ 4u⋆VT = O

(
(log d VT)

1/3T 2/3
)
.

38

2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144

Do LLM Agents Have Regret?

Now we check the conditions for u⋆ ∈ [1, T]. It is direct to see that since VT ≤ T , u⋆ ≥ 1 holds as long as d is sufficiently

large. To ensure u⋆ ≤ T , we get the condition VT ≥ C
√

log d
4T , which holds as long as T is large enough.

(3) Combining the above result with Lemma 3, we can prove a regret guarantee for online learning with bandit feedback.

(4) Combining this result with Lemma 3 and Lemma 4, it holds that

E[D-RegretLLMθ⋆
((ℓi)i∈[T])] ≤ min

∆T∈[T]

2T

∆T
C(log d)

1
2 d∆

1
2+

1
log T

T log∆T + 2∆TVT ,

for some constant C. By adopting a similar analysis as that of (2), we choose u⋆ =
(

C′T 2d2

V 2
T

)1/3
for some constant C ′. If

u⋆ ∈ [1, T], we choose ∆T = ⌈u⋆⌉ and derive the following regret:

E[D-RegretLLMθ⋆
((ℓi)i∈[T])] ≤ O

(
(T 2d2VT)

1/3(log d)1/2T 1/ log T log T
)
.

Now we check the condition of u⋆ ∈ [1, T]. Note that since VT ≤ T , u⋆ ≥ 1 holds as long as d is sufficiently large. For

u⋆ ≤ T , we have VT ≥
√

C′d2

T , which holds as long as T is large enough.

Now, we present Lemma 2 - Lemma 4. Before proceeding, we assume ∥ℓt∥∞ ≤ B = 1 for simplicity of presentations
hereafter. The results and proof are not affected by the constant bound B.

Lemma 2 (Regret guarantee of FTPL with full-information feedback). Suppose the noise distribution of FTPL satisfies that
ϵt ∼ N (000d, ζ

2
t I) in Equation (D.2) and ζt = σ

√
t, then for online learning with full-information feedback,

RegretFTPL((ℓi)i∈[T]) ≤ 4

(
σ +

1

σ

)√
T log d = O(

√
T log d).

Proof. By Theorem 8 of (Abernethy et al., 2014), we have

RegretFTPL((ℓi)i∈[T]) ≤
√

2 log d

(
ηT +

T∑
t=1

1

ηt
∥ℓt∥2∞

)
.

Therefore, plugging ζt = σ
√
t and ∥ℓt∥2∞ ≤ 1 provides

RegretFTPL((ℓi)i∈[T]) ≤
√
2 log d

(
σ
√
T +

T∑
t=1

1

σ
√
t

)
≤ 4

(
σ +

1

σ

)√
T log d,

completing the proof.

Lemma 3 (Regret guarantee of FTPL with bandit feedback). Suppose the noise distribution of FTPL satisfies that ϵt ∼
N (000d, ζ

2
t I) in Equation (D.2) and ζt = σ

√
t, then for online learning with bandit feedback,

E[RegretFTPL((ℓi)i∈[T])] ≤ O((log d)
1
2 dT

1
2+

1
log T log T).

Proof. The proof of the bandit problem is more complex. We first define the following notation. We denote Gt =∑t
t′=1−ℓt′ , Ĝt =

∑t
t′=1−ℓ̂t′ , Φ(G) = maxπ⟨π,G⟩, Φt(G) = Eϵ∼N (000d,I)Φ(G + ζtϵ), and DΦt to be the Bregman

divergence with respect to Φt, where we recall the construction of the empirical estimator ℓ̂t′ of ℓt′ in Section 3.2. By (Li &
Tewari, 2017), πt = ∇Φt(Ĝt). Now due to the convexity of Φ,

Φ(GT) = Φ(E[ĜT]) ≤ E[Φ(ĜT)].

Therefore,

E[RegretFTPL((ℓi)i∈[T])] = Φ(GT)− E

[
T∑

t=1

⟨πt,−ℓ̂t⟩
]
≤ E

[
Φ(ĜT)−

T∑
t=1

⟨πt,−ℓ̂t⟩
]
.

39

2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199

Do LLM Agents Have Regret?

By recalling the definition of the Bregman divergence, we have

−
T∑

t=1

⟨πt,−ℓ̂t⟩ = −
T∑

t=1

⟨∇Φt(Ĝt),−ℓ̂t⟩ = −
T∑

t=1

⟨∇Φt(Ĝt), Ĝt − Ĝt−1⟩

=

T∑
t=1

DΦt
(Ĝt, Ĝt−1) + Φt(Ĝt−1)− Φt(Ĝt).

Therefore,

E
[
RegretFTPL((ℓi)i∈[T])

]
≤ E

[
T∑

t=1

DΦt
(Ĝt, Ĝt−1)

]
︸ ︷︷ ︸

(i)

+E

[
T∑

t=1

Φt(Ĝt−1)− Φt−1(Ĝt−1)

]
︸ ︷︷ ︸

(ii)

+E
[
Φ(ĜT)− ΦT (ĜT)

]
︸ ︷︷ ︸

(iii)

.

(iii) ≤ 0 due to the convexity of Φ. For (ii), we use Lemma 10 of (Abernethy et al., 2014) to obtain

E

[
T∑

t=1

Φt(Ĝt−1)− Φt−1(Ĝt−1)

]
≤ ζTEϵ[Φ(ϵ)] ≤ O(

√
2T log d).

For (i), by Theorem 8 of (Li & Tewari, 2017), for any α ∈ (0, 1), the following holds:

E

[
T∑

t=1

DΦt
(Ĝt, Ĝt−1)

]
≤

T∑
t=1

ζα−1
t

4d

α(1− α)
≤ 4d

α(1− α)
O(T 1+α

2).

By tuning α = 2
log T , we proved that E[RegretFTPL((ℓi)i∈[T])] ≤ O((log d)

1
2 dT

1
2+

1
log T log T).

Lemma 4. Denote the variation of loss vectors as LT =
∑T−1

t=1 ∥ℓt+1 − ℓt∥∞. Suppose there exists an algorithm A for
online learning with full-information feedback with regret guarantee that RegretA ((ℓi)i∈[T]) ≤ f(T, d) for some function f ,
where T denotes the horizon and d denotes the policy dimension. Then, there exists another algorithm A ′ that can achieve

D-RegretA ′((ℓi)i∈[T]) ≤ min
∆T∈[T]

(
T

∆T
+ 1

)
f(∆T , d) + 2∆TLT .

Similarly, suppose there exists an algorithm B for online learning with bandit feedback with regret guarantee that
E
[
RegretB((ℓi)i∈[T])

]
≤ g(T, d) for some function g; then there exists another algorithm B′ that can achieve

E[D-RegretB′((ℓi)i∈[T])] ≤ min
∆T∈[T]

(
T

∆T
+ 1

)
g(∆T , d) + 2∆TLT .

Proof. We denote A ′ as the algorithm that restarts A every ∆T iterations. We break the time index [T] into m batches
T1:m of size ∆T (except for, possibly the last batch). Denote ℓ⋆i := minj∈[d] ℓij . By Equation (6) of (Besbes et al., 2014), it
holds that for each k ∈ [m]

min
j∈[d]

(∑
t∈Tk

ℓt

)
j

−
∑
t∈Tk

ℓ⋆t ≤ 2∆TLk,

where we define Lk =
∑

t∈Tk
∥ℓt+1 − ℓt∥∞. Therefore, we have

D-RegretA ′((ℓi)i∈[T]) ≤ min
j∈[d]

∑
t∈[T]

ℓt

j

−
∑
t∈[T]

ℓ⋆t +
∑
k∈[m]

RegretA ((ℓi)i∈[Tk]) (F.3)

≤ 2∆T (
∑
k∈[m]

Lk) + (T/∆T + 1)g(∆T , d).

40

2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

Do LLM Agents Have Regret?

By Equation (4) of (Besbes et al., 2014) that
∑

k∈[m] Lk ≤ LT and this inequality holds for any ∆T ∈ [T], we proved

D-RegretA ′((ℓi)i∈[T]) ≤ min∆T∈[T]

(
T
∆T

+ 1
)
f(∆T , d) + 2∆TLT .

Similarly, if we take the expectation for Equation (F.3), it holds that

E[D-RegretB′((ℓi)i∈[T])] ≤ min
j∈[d]

∑
t∈[T]

ℓt

j

−
∑
t∈[T]

ℓ⋆t +
∑
k∈[m]

E[RegretB((ℓi)i∈[Tk])]

≤ min
∆T∈[T]

(
T

∆T
+ 1

)
g(∆T , d) + 2∆TLT ,

thus completing the proof.

Combining the results above completes the proof for Theorem 4.1.

F.7.1. IMPLICATIONS OF THEOREM 4.1 FOR REPEATED GAMES

Remark F.1 (Implication for playing repeated games). First, we note that the no-regret guarantee in the online setting is
stronger than and thus implies that in the game setting, since regret by definition handles arbitrary/adversarial environments,
while in playing games the opponents are not necessarily as adversarial. Second, it is folklore that if all players in the
repeated game follow no-regret learning algorithms, then the time-average policies of all players during learning constitute
an approximate coarse correlated equilibrium of the game (Cesa-Bianchi & Lugosi, 2006). Hence, the results (1) and (2) in
Theorem 4.1 imply that a coarse correlated equilibrium will emerge in the long run from the interactions of the LLM agents
(under certain assumptions as in the theorem).

F.8. Extending Theorem 4.1 with Relaxed Assumptions

F.8.1. RELAXATION UNDER MORE GENERAL DATA DISTRIBUTIONS

We first remark on the possibility of relaxing the Gaussian assumptions on the data distributions.

Remark F.2 (Relaxing the Gaussian distribution assumption). In the proof of Lemma 1, to obtain the result that the action
is a quantal response w.r.t. ℓ1:T , one does not necessarily require both the prior distribution of z and the conditional
distribution of ℓi given z to be Gaussian. Instead, for any joint distribution P(z, ℓ1:T), as long as its posterior distribution
satisfies Equation (F.1), it would suffice. It is a combined effect of both the prior and the conditional distributions.

More formally, we can extend Theorem 4.1 to the case with a much more general prior task distribution than the Gaussian
one, where the key is that Equation (F.1) only needs to hold approximately.

Theorem F.2. In Theorem 4.1, we can relax the assumption on P(z) to one where we only require P(z) to be i.i.d for each
coordinate of z and 0 < P(zj) <∞, |∇P(zj)| <∞ for any j ∈ [d], zj ∈ R, and the bounds for (1) and (2) of Theorem 4.1
still hold, with only a degradation of O(d2 log T).

The key idea of the proof is that when t is large enough, the prior distribution does not affect the posterior distribution,
which is also referred to as the Bernstein–von Mises theorem (Van der Vaart, 2000).

Proof. Since we extend Theorem 4.1 to settings with general task prior distribution only requiring the coordinates to be i.i.d,
from now on, we consider the j-th coordinate only. To begin with, fix t ∈ [T], we define the log-likelihood of the posterior
as

Lt(zj) := log

t∏
i=1

1

σd(2π)d/2
e−

1
2σ2 (ℓij−zj)

2

= −t log σ − t

2
log 2π −

t∑
i=1

1

2σ2
(ℓij − zj)

2.

Then, the MLE estimator ẑj,t is defined as

ẑj,t := argmax
zj∈R

Lt(zj) =
1

t

t∑
i=1

ℓij .

41

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309

Do LLM Agents Have Regret?

We also define Ĵt : R→ R as:

Ĵt(zj) := −
∇2Lt(zj)

t
=

1

σ2
.

For Assumption 1 of (Kasprzak et al., 2022) to hold, any δ > 0, M2 > 0 suffices.

For Assumption 2 of (Kasprzak et al., 2022) to hold, we can choose M̂1 = maxzj∈[−δ,1+δ]
1

P(zj)

For Assumption 7 of (Kasprzak et al., 2022) to hold, we choose δ to be σ.

For Assumption 8 of (Kasprzak et al., 2022) to hold, one can choose M2 = σ
2 .

For Assumption 9 of (Kasprzak et al., 2022) to hold, we have

κ ≤ − sup
(zj−ẑj)2≥δ

Lt(zj)− Lt(ẑj,t)

t
= − 1

2σ2t
sup

(zj−ẑj,t)2≥δ

t∑
i=1

(ℓij − ẑj,t)
2 − (ℓij − zj)

2 =
1

4σ
.

For Assumption 10 of (Kasprzak et al., 2022) to hold, we choose M1 = supzj∈[−δ,1+δ]

∣∣∣∇P(zj)
P(zj)

∣∣∣, M̃1 =

supzj∈[−δ,1+δ] |P(zj)| since we have assumed that 0 < P(zj) <∞, |∇P(zj)| <∞.

By Theorem 6.1 of (Kasprzak et al., 2022), we have∫
zj

|P(zj/
√
t+ ẑj | (ℓij)i∈[t])− Ce−

1
2σ2 z2

j |dzj

=
√
t

∫
zj

|P(zj | (ℓij)i∈[t])−N (ẑj ,
σ2

t
)|dzj ≤ D1t

−1/2 +D2t
1/2e−tκ + 2D̂(t, δ),

where C is the normalization constant and

D1 =

√
M̃1M̂1

σ

√
3σ2

2

(
1−

√
D̂(t, δ)

)M2 +M1

D2 =

2M̂1Ĵ
p
t (ẑj , δ)

(2π)1/2(1− D̂p(t, δ))

D̂(t, δ) = e−
1
2 (

√
t−1)2

Ĵp
t (ẑj , δ) =

1

σ2
+

δM2

3
.

Therefore, we conclude that the TV distance between z (conditioned on (ℓi)i∈[t]) and N
(
ẑ, σ2

t

)
satisfies that

∫
z

∣∣∣∣P(z | (ℓi)i∈[t])−N
(
ẑ,

σ2

t

) ∣∣∣∣dz ≤ d∑
j=1

∫
zj

∣∣∣∣P(zj | (ℓij)i∈[t])−N
(
ẑj ,

σ2

t

) ∣∣∣∣dzj ≤ O(d/t),
due to the independence of (zj)j∈[d] conditioned on ℓ1:t. Now we denote algorithm F̂TPL to be the FTPL algorithm w.r.t.
the noise distribution P(z | (ℓi)i∈[t]), and FTPL to be the algorithm w.r.t. the noise distribution N (ẑ, σ2

t). Therefore, we
have

∣∣RegretFTPL((ℓ)i∈[T])− RegretF̂TPL((ℓ)i∈[T])
∣∣ ≤ T∑

t=1

d∥πt − π̂t∥∞

≤ d

T∑
t=1

∫
z

∣∣P(z | (ℓi)i∈[t])−N (ẑ,
σ2

t
)
∣∣dz = O(d2 log T).

42

2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364

Do LLM Agents Have Regret?

In other words, using P(z | (ℓi)i∈[t]) as the noise distribution only increases the regret by O(d2 log T). Similarly, it is easy
to see that ∣∣D-RegretFTPL((ℓ)i∈[T])− D-RegretF̂TPL((ℓ)i∈[T])

∣∣ ≤ O(d2 log T),
which completes the proof.

F.8.2. RELAXATION UNDER DECISION-IRRELEVANT PRE-TRAINING DATA

We then remark on the possible relaxation when the training data may not all come from decision-making tasks.

Remark F.3 (Pre-training with relaxed data assumptions). Note that the pre-training (text) data are so far assumed to
be related to decision-making problems (though not necessarily sequential ones), see Assumption 1 and Example 1 for
instance. It can also be generalized to the text datasets involving Question-Answering (Q-A), a typical task in natural
language processing, where the true/fact answer, sampled answers from different human users (with possibly wrong or
biased answers), correspond to the latent z (and associated maximizer a) and ℓ1:t, respectively. Moreover, in practice, the
pre-training data may also involve non-decision-making/Q-A texts, given the diversity of the datasets. For such scenarios,
we will make the assumptions on the data distribution conditioned on the prompt for decision-making. Specifically, when
interacting with the LLM, human users will provide prompts (see e.g., our Figure E.1), to induce it to make decisions. This
will query the conditional distribution of

P
(
g(xNt+1:Nt+1)

∣∣x1:Nt , decision-making prompt
)

to generate the control action. Correspondingly, Assumption 1 will thus only need to be made on

P
(
z, ℓ1:t, x1:Nt+1 , decision-making prompt

)
,

while we do not need to make such assumptions on other prompts, e.g., corpora that are not related to decision-making.

F.9. Comparison with (Lee et al., 2023; Lin et al., 2024; Liu et al., 2023b)

Intriguingly, similar assumptions and pre-training objectives have also been considered in the very recent work of (Lee et al.,
2023; Lin et al., 2024; Liu et al., 2023b) for studying in-context reinforcement learning property of Transformers/LLM-
agents under supervised pre-training. (Lee et al., 2023) established its equivalence to posterior sampling (Osband et al.,
2013), an important RL algorithm with provable regret guarantees when the environments are stationary, and (Lin et al.,
2024) generalized the study to the setting of algorithm distillation as in (Laskin et al., 2023). (Liu et al., 2023b) adopted the
similar data generation assumption as (Lee et al., 2023) without assuming optimal labels are available in the pre-training
datasets, but leverages external oracles for planning. Consequently, the resulting LLM agent would still perform the posterior
sampling algorithm. However, these results cannot directly imply the no-regret guarantee in our online learning setting, due
to the known fact that posterior sampling can perform poorly under potentially adversarial or non-stationary environments
(Zimmert & Seldin, 2021; Liu et al., 2023a). In contrast, we here establish the equivalence of the pre-trained LLM to
the FTPL algorithm (under different pre-training data distribution specifications), with the ability to handle arbitrary loss
sequences, even though the LLMs are only trained on a fixed/stationary distribution of texts (tasks).

F.10. How Well Can Cur Hypothetical Model Predict Actual LLMs’ Behaviors?

To further verify our theoretically-justified model in Theorem 4.1, we propose to estimate the parameters of {ηt}T−1
t=0 in

Definition F.2 using the interaction data with actual LLMs, and use the estimated model to predict LLMs’ behaviors on
some test set. In Figure F.1, we show the averaged regret for the LLMs and our estimated model, where the generalized
quantal response can very well capture the behavior of the LLM agent for all problem instances in Section 3.2, on which the
LLMs are oftentimes no-regret, justifying the applicability of our hypothetical model and assumptions.

F.10.1. DETAILS OF ESTIMATING THE PARAMETERS OF OUR HYPOTHETICAL MODEL

To further validate our model and data distribution assumptions, we also propose to estimate the parameter {ηt}t∈[T−1] in
Definition F.2, using data from interacting with LLMs (following the same protocol as before), with Pnoise being a standard
normal distribution (note that we do not need to estimate η0 by Definition F.2). Specifically, given n episodes of the LLM

43

2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419

Do LLM Agents Have Regret?

0 5 10 15 20 25

Iterations

0

10

20

30

40

R
eg

re
t/D

yn
am

ic
re

gr
et Examples in Sec. 3.2

GPT-4 regret:
(ptrend, β̂0, preg)=(0.0, 0.46, 0.0)
GPT-4 dynamic regret:
(ptrend, β̂0, preg)=(0.0, 0.89, 0.0)
Generalized QR regret:
(ptrend, β̂0, preg)=(0.0, 0.51, 0.0)
Generalized QR dynamic regret:
(ptrend, β̂0, preg)=(0.0, 0.92, 0.0)

Figure F.1. Comparison of GPT-4 with the generalized QR model, where the model can very well capture the behavior of the GPT-4 agent
for examples in Section 3.2.

agent’s behavior {(ℓ(j)t , π
(j)
t)t∈[T]}j∈[n], motivated by our Lemma 1 and Theorem 4.1, we estimate {ηt}t∈[T−1] by solving

the following problem

σ⋆ ∈ argmin
σ>0

∑
t∈[T−1]

∑
j∈[n]

∥∥∥π(j)
t+1 − Pσ

√
t+1

quantal

(
·
∣∣∣∣ ℓ(j)1:t

)∥∥∥
1
, η⋆t = σ⋆

√
t+ 1, ∀t ∈ [T − 1].

We solve this single-variable optimization problem by grid search over [0, 10]. We then run the generalized quantal response
model with the estimated {η⋆t }t∈[T−1] on another unseen test set, and compare it with the behavior of the actual LLM agents.
We use all the interaction data from Section 3.2 and split it in half for training and testing.

We also use the same framework to understand the regrettable behaviors in Section 3.4. This analysis uses all the data from
Section 3.4. We first find that such fitting procedures do not yield good predictions for LLMs on those counter-examples.
Therefore, we resort to a more expressive model by directly fitting each ηt as

η⋆t ∈ arg min
ηt>0

∑
j∈[n]

∥∥∥π(j)
t+1 − P ηt

quantal

(
·
∣∣∣∣ ℓ(j)1:t

)∥∥∥
1

separately for each t ∈ [T − 1]. Even under the expressive model, LLMs fail to follow the generalized quantal response
for the counter-examples with noisy alternating or adaptive loss sequences, as Figure F.1 shows the gap between GPT-4
(dynamic) regret and the our model’s (dynamic) regret.

44

2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474

Do LLM Agents Have Regret?

G. Deferred Results and Proofs in Section 5
G.1. Regularity Conditions on f and h

h : R → R+ is a continuous function, with continuous derivative h′, and f(·, k) : R → R+ is a continuous function for
each k ∈ N+, satisfying limk→∞

f(R1,k)
f(R2,k)

=∞ · 1(R1 > R2) + 1(R1 = R2), where we use the convention of∞ · 0 = 0.
These conditions on h, f will be assumed throughout the paper. Examples of such an f include f(x, k) = xk and exp(kx).

Additional regularity conditions for Theorem 5.1. For any k ∈ N+, h, f(·, k) are non-decreasing, and log f is a
supermodular function (i.e., log f(R1, k1)− log f(R1, k2) ≥ log f(R2, k1)− log f(R2, k2) for R1 ≥ R2 and k1 ≥ k2)

G.2. Basic Lemmas

Lemma 5 (Double iterated limit). For a sequence (amn)m,n∈N+ , suppose that limm,n→∞ amn = L. Then the following
are equivalent:

• For each m, limn→∞ amn exists;

• limm→∞ limn→∞ amn = L.

Lemma 6 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be independent random variables bounded by the intervals [ai, bi],
respectively. Define X̄ = 1

n

∑n
i=1 Xi and let µ = E[X̄] be the expected value of X̄ . Then, for any t > 0,

P(|X̄ − µ| ≥ t) ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

Lemma 7 (Uniform convergence =⇒ Interchanging limit and infimum). If (fn : X → R)n∈N+ is a sequence of continuous
functions that uniformly converge to a function f : X → R on the domain X , then limn→∞ infx∈X fn(x) = infx∈X f(x)
holds.

G.3. Deferred Proof for the Arguments in Section 5.1

In this section, we prove some properties of L(θ, k,N) under certain regularity conditions of f, h. Throughout this
subsection, we will assume the following condition holds.

Condition 1. For h : R→ R+ and f : R× N+ → R+, suppose h(·) and f(·, k) are both continuous and non-decreasing
functions for any k ∈ N+. The derivative h′ : R → R is also a continuous function. Moreover, f satisfies that
log f(R1, k1) − log f(R1, k2) ≥ log f(R2, k1) − log f(R2, k2) for R1 ≥ R2 and k1 ≥ k2, i.e., log f is supermodular.
Lastly, f is a function such that limk→∞

f(R1,k)
f(R2,k)

= ∞ · 1(R1 > R2) + 1(R1 = R2), with the convention of∞ · 0 = 0.

Lastly, (ℓ(j)t)t∈[T],j∈[N] are continuous random variables supported on [−B,B]T×N .

Claim 1 (Iterated limit of L(θ, k,N) is the same as double limit of L(θ, k,N)). It holds that:

lim
N→∞

lim
k→∞

L(θ, k,N) = lim
N,k→∞

L(θ, k,N) = lim
k→∞

lim
N→∞

L(θ, k,N) = h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

)
.

Proof. Step 1. Proving limN→∞ limk→∞ L(θ, k,N) = h
(
maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T])
)
.

Firstly, as both h and f are non-negative (Condition 1), and E
(ℓ

(j)
t)t∈[T],j∈[N]

[
h(maxj∈[N] RegretLLMθ

((ℓ
(j)
t)t∈[T]))

]
exists,

we have by dominated convergence theorem that

lim
k→∞

L(θ, k,N) = E lim
k→∞

[∑
j∈[N] h(RLLMθ

((ℓ
(j)
t)t∈[T]))f(RLLMθ

((ℓ
(j)
t)t∈[T]), k)∑

j∈[N] f(RLLMθ
((ℓ

(j)
i)t∈[T]), k)

]

= E
(ℓ

(j)
t)t∈[T],j∈[N]

[
h(max

j∈[N]
RLLMθ

((ℓ
(j)
t)t∈[T]))

]

45

2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529

Do LLM Agents Have Regret?

where RLLMθ
denotes an abbreviation of RegretLLMθ

. By (?)Chapter 11]ahsanullah2013introduction, we have

h(maxj∈[N] RegretLLMθ
((ℓ

(j)
t)t∈[T]))

p→ h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T])) when N → ∞. Hence, we have

limN→∞ limk→∞ L(θ, k,N) = h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T])) holds.

Step 2. Proving limN,k→∞ L(θ, k,N) = h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T])).

Now, we will calculate limN,k→∞ L(θ, k,N).

Lemma 8. For any 0 < ϵ < 1, it follows that

lim
N,k→∞

∑N
i=1 f(Xi, k)H(Xi)1(H(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)H(Xi)1(H(Xi) > 1− ϵ/2)
= 0

and

lim
N,k→∞

∑N
i=1 f(Xi, k)1(H(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)1(H(Xi) > 1− ϵ/2)
= 0

hold with probability 1, where Xi’s are i.i.d. random variables, esssup(H(Xi)) = 1, and H : R → R+ is a continuous
non-decreasing function.

Proof of Lemma 8. Since f(·, k), H are non-negative and non-decreasing functions, we have∑N
i=1 f(Xi, k)H(Xi)1(H(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)H(Xi)1(H(Xi) > 1− ϵ/2)
≤ (1− ϵ)f(H−1(1− ϵ), k)|{i ∈ [N] | (H(Xi) < 1− ϵ)}|

(1− ϵ/2)f(H−1(1− ϵ/2), k)|{i ∈ [N] | (H(Xi) > 1− ϵ/2)}|

and we know that

|{i ∈ [N] | (H(Xi) < 1− ϵ)}|
|{i ∈ [N] | (H(Xi) > 1− ϵ/2)}|

a.s.→ F (1− ϵ)

1− F (1− ϵ/2)

as N →∞, where F is the cumulative distribution function of random variable H(X). Therefore, we have

0 ≤ lim
N,k→∞

∑N
i=1 f(Xi, k)H(Xi)1(H(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)H(Xi)1(H(Xi) > 1− ϵ/2)
≤ lim

N,k→∞

(1− ϵ)f(H−1(1− ϵ), k))|{i ∈ [N] | (H(Xi) < 1− ϵ)}|
(1− ϵ/2)f(H−1(1− ϵ/2), k))|{i ∈ [N] | (H(Xi) > 1− ϵ/2)}|

≤
a.s.

lim
N,k→∞

(1− ϵ)f(H−1(1− ϵ), k))

(1− ϵ/2)f(H−1(1− ϵ/2), k))

F (1− ϵ)

1− F (1− ϵ/2)
= 0.

By a similar argument, we have

lim
N,k→∞

∑N
i=1 f(Xi, k)1(H(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)1(H(Xi) > 1− ϵ/2)
= 0

with probability 1.

One key idea in the proof above is the use of some truncation level ϵ for H(X) with esssup(H(X)) = 1. By Lemma 8, we
have

lim
N,k→∞

∑N
i=1 f(Xi, k)H(Xi)1(H(Xi) > 1− ϵ)∑N

i=1 f(Xi, k)H(Xi)
= lim

N,k→∞

∑N
i=1 f(Xi, k)1(H(Xi) > 1− ϵ)∑N

i=1 f(Xi, k)
= 1,

since

0 ≤
∑N

i=1 f(Xi, k)1(H(Xi) < 1− ϵ)∑N
i=1 f(Xi, k)

≤
∑N

i=1 f(Xi, k)1(H(Xi) < 1− ϵ)∑N
i=1 f(Xi, k)1(H(Xi) > 1− ϵ/2)

46

2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584

Do LLM Agents Have Regret?

holds with probability 1. Therefore, for any 0 < ϵ < 1, we have

lim
N,k→∞

L(θ, k,N) = E lim
N,k→∞

[∑
j∈[N] h(RLLMθ

((ℓ
(j)
t)t∈[T]))f(RLLMθ

((ℓ
(j)
t)t∈[T]), k)∑

j∈[N] f(RLLMθ
((ℓ

(j)
i)t∈[T]), k)

]

= h

(
max

ℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T])

)

× E lim
N,k→∞

∑j∈[N]

h(RLLMθ
((ℓ

(j)
t)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))
f(RLLMθ

((ℓ
(j)
t)t∈[T]), k)1(

h(RLLMθ
((ℓ

(j)
t)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))
> 1− ϵ)∑

j∈[N] f(RLLMθ
((ℓ

(j)
i)t∈[T]), k)1(

h(RLLMθ
((ℓ

(j)
t)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))
> 1− ϵ)

≥ (1− ϵ)h(max

ℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))

which implies limN,k→∞ L(θ, k,N) = h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T])) since

L(θ, k,N) ≤ h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

)
by definition of L, the fact that h is non-decreasing, and by setting ϵ→ 0 to obtain

L(θ, k,N) ≥ h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

)
.

Here, we used the fact that (ℓt)t∈[T] has a continuous distribution, RegretLLMθ
((ℓt)t∈[T]) is a continuous function, and the

non-decreasing property and continuity of h (Condition 1), which lead to:

esssup
(
h
(
RegretLLMθ

((ℓt)t∈[T])
))

= max
ℓ1,...,ℓT

h
(
RegretLLMθ

((ℓt)t∈[T])
)
= h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

)
. (G.1)

Equation (G.1) will be used frequently in the overall proof in Appendix G.3.

Step 3. Proving limk→∞ limN→∞ L(θ, k,N) = h
(
maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T])
)
.

Lastly, if N →∞, similarly by dominated convergence theorem we have

lim
N→∞

L(θ, k,N) = E lim
N→∞

∑j∈[N] h
(
RLLMθ

(
(ℓ

(j)
t)t∈[T]

))
f(RLLMθ

((ℓ
(j)
t)t∈[T]), k)∑

j∈[N] f
(
RLLMθ

(
(ℓ

(j)
i)t∈[T]

)
, k
)

=

E
[
h
(
RLLMθ

(
(ℓ

(j)
t)t∈[T]

))
f
(
RLLMθ

(
(ℓ

(j)
t)t∈[T]

)
, k
)]

E
[
f
(
RLLMθ

(
(ℓ

(j)
i)t∈[T]

)
, k
)] .

Thus, limN→∞ L(θ, k,N) always exists for every k. Now, we use the known property of double iterated limit (Lemma 5),
and obtain that limk→∞ limN→∞ L(θ, k,N) = h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T])).

Claim 2 (Uniform convergence of L(θ, k,N) (with respect to k and N)). L(θ, k,N) uniformly converges to
h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T])) on the domain Θ.

Proof. We will provide a similar analysis as Lemma 8 as follows:

Lemma 9. For any 0 < ϵ < 1, 0 < δ < 1, and k ∈ N+, we have∑N
i=1 f(Xi, k)1(H(Xi) < 1− ϵ)∑N
i=1 f(Xi, k)1(H(Xi) > 1− ϵ)

= Õ
(
A(k,H, ϵ)

(
1

1− FH,X(1− ϵ/2)
+

1√
N

))
with probability at least 1− δ, where Xi’s are i.i.d. random variables, esssup(H(Xi)) = 1, H : R→ R+ is a continuous
non-decreasing function, A(k, t, ϵ) := (1−ϵ)f((t/ esssup(t(X)))−1(1−ϵ),k)

(1−ϵ/2)f((t/ esssup(t(X)))−1(1−ϵ/2),k) , for any non-decreasing function t : R→ R+,
and Ft,X is a cumulative distribution function of random variable t(X)/esssup(t(X)).

47

2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639

Do LLM Agents Have Regret?

Proof of Lemma 9. With the same argument as the proof of Lemma 8, we have∑N
i=1 f(Xi, k)1(H(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)1(H(Xi) > 1− ϵ/2)
≤ f(H−1(1− ϵ), k)|{i ∈ [N] | (H(Xi) < 1− ϵ)}|

f(H−1(1− ϵ/2), k)|{i ∈ [N] | (H(Xi) > 1− ϵ/2)}| .

It holds that 1
N |{i ∈ [N] | (H(Xi) < 1 − ϵ)}| = FH,X(1 − ϵ) + Õ(1/

√
N) with probability at least 1 − δ/2 due to

Hoeffding’s inequality (Lemma 6). Similarly, we have 1
N |{i ∈ [N] | (H(Xi) > 1−ϵ/2)}| = 1−FH,X(1−ϵ/2)+Õ(1/

√
N)

with probability at least 1− δ/2. Therefore,

|{i ∈ [N] | (H(Xi) < 1− ϵ)}|
|{i ∈ [N] | (H(Xi) > 1− ϵ/2)}| =

FH,X(1− ϵ)

1− FH,X(1− ϵ/2)
+ Õ(

√
1/N) ≤ 1

1− FH,X(1− ϵ/2)
+ Õ(

√
1/N),

with probability at least 1− δ. Finally, we have∑N
i=1 f(Xi, k)1(H(Xi) < 1− ϵ)∑N
i=1 f(Xi, k)1(H(Xi) > 1− ϵ)

<

∑N
i=1 f(Xi, k)1(H(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)1(H(Xi) > 1− ϵ/2)
≤ A(k,H, ϵ)

(
1

1− FH,X(1− ϵ/2)
+ Õ(1√

N
)

)
.

Note that limk→∞ A(k,H, ϵ) = 0, since limk→∞
f(R1,k)
f(R2,k)

= ∞ · 1(R1 > R2) + 1(R1 = R2). By Lemma 9 with

H(RLLMθ
((ℓt)t∈[T])) =

h(RLLMθ
((ℓt)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))
, we have

∑N
i=1 f(RLLMθ ((ℓ

(i)
t)t∈[T]), k)1

(
h(RLLMθ

((ℓ
(i)
t)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))
≥ 1− ϵ

)
∑N

i=1 f(RLLMθ ((ℓ
(i)
t)t∈[T]), k)

=
1

1 +

∑N
i=1 f(RLLMθ

((ℓ
(i)
t)t∈[T]),k)1

 h(RLLMθ
((ℓ

(i)
t)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))
<1−ϵ

∑N

i=1 f(RLLMθ
((ℓ

(i)
t)t∈[T]),k)1

 h(RLLMθ
((ℓ

(i)
t)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))
≥1−ϵ

≥ 1

1 +A(k,H, ϵ)(1
1−FH,RLLMθ

((ℓt)t∈[T])
(1−ϵ/2)

+ Õ(
√

1/N))
,

where we recall the shorthand notation of RLLMθ
= RegretLLMθ

. Note that A(k,H, ϵ) = A(k, h, ϵ) and FH,RLLMθ
=

Fh,RLLMθ
hold by the definitions of Ft,X and A(k, t, ϵ) in Lemma 9. Therefore,

1 ≥
∑N

i=1 f(RLLMθ
((ℓ

(i)
t)t∈[T]), k)

h(RLLMθ
((ℓ

(i)
t)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))∑N
i=1 f(RLLMθ

((ℓ
(i)
t)t∈[T]), k)

≥
∑N

i=1 f(RLLMθ
((ℓ

(i)
t)t∈[T]), k)

h(RLLMθ
((ℓ

(i)
t)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))
1(

h(RLLMθ
((ℓ

(i)
t)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))
≥ 1− ϵ)∑N

i=1 f(RLLMθ
((ℓ

(i)
t)t∈[T]), k)1(

h(RLLMθ
((ℓ

(i)
t)t∈[T]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T]))
≥ 1− ϵ)

× 1

1 +A(k, h, ϵ)(1
1−Fh,RLLMθ

((ℓt)t∈[T])
(1−ϵ/2) + Õ(

√
1/N))

≥ 1− ϵ

1 +A(k, h, ϵ)(1
1−Fh,RLLMθ

((ℓt)t∈[T])
(1−ϵ/2) + Õ(

√
1/N))

with probability at least 1− δ.

Now, for any ϵ > 0 and δ > 0, we have

0 ≤ h

(
max

ℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T])

)
− L(θ, k,N)

≤ h

(
max

ℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T])

)1− (1− δ)(1− ϵ)

1 +A(k, h, ϵ)(1
1−Fh,RLLMθ

((ℓt)t∈[T])
(1−ϵ/2) + Õ(

√
1/N))

 .

48

2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694

Do LLM Agents Have Regret?

Note that

1− Fh,RLLMθ
((ℓt)t∈[T])(1− ϵ/2) = P

(
h
(
RegretLLMθ

(
(ℓt)t∈[T]

))
> (1− ϵ/2)h

(
max

ℓ1,...,ℓT
RegretLLMθ

(
(ℓt)t∈[T]

)))
is a continuous function of θ, since we assume LLMθ is a continuous function of θ, (ℓt)t∈[T] has a continuous distribution,
and RegretLLMθ

((ℓt)t∈[T]) is a continuous function of LLMθ and (ℓt)t∈[T]. Since we consider a compact Θ (as several recent
works on analyzing Transformers (Bai et al., 2023; Lin et al., 2024)), we have p(ϵ) := minθ∈Θ 1− Fh,RLLMθ

((ℓt)t∈[T])(1−
ϵ/2) > 0. Therefore,1− (1− δ)(1− ϵ)

1 +A(k, h, ϵ)(1
1−Fh,RLLMθ

(1−ϵ/2) + Õ(
√
1/N))

 ≤ (1− (1− δ)(1− ϵ)

1 +A(k, h, ϵ)(1
p(ϵ) + Õ(

√
1/N))

)
, (G.2)

and we know that limN,k→∞ 1+A(k, h, ϵ)(1
p(ϵ)+Õ(

√
1/N)) = 1, which is not dependent on θ. Thus, we can conclude that

limN,k→∞ supθ∈Θ |h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T]))− L(θ, k,N)| = 0, as we can choose arbitrarily small ϵ, δ.

Claim 3 (Double iterated limit of supremum). It holds that:

lim
N→∞

lim
k→∞

sup
θ∈Θ

∣∣∣L(θ, k,N)− h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

) ∣∣∣ = 0.

Proof. Since h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T])) ≥ L(θ, k,N), we will prove

lim
N→∞

lim
k→∞

sup
θ∈Θ

h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

)
− L(θ, k,N) = 0.

Lemma 10.
∑N

i=1 f(Xi,k1)h(Xi)∑N
i=1 f(Xi,k1)

≤
∑N

i=1 f(Xi,k2)h(Xi)∑N
i=1 f(Xi,k2)

holds if 0 <k1 ≤ k2 for any real-valued (Xi)i∈[N].

Proof. By multiplying (
∑N

i=1 f(Xi, k1))(
∑N

i=1 f(Xi, k2)) on both sides of the formula, we know that it is equivalent to∑
1≤i ̸=j≤N f(Xi, k1)h(Xi)f(Xj , k2) ≤

∑
1≤i ̸=j≤N f(Xi, k1)h(Xj)f(Xj , k2). This is equivalent to∑

1≤i ̸=j≤N

(f(Xi, k1)f(Xj , k2)− f(Xj , k1)f(Xi, k2))(h(Xi)− h(Xj)) ≤ 0,

which is true since if Xi ≥ Xj , (f(Xi, k1)f(Xj , k2)− f(Xj , k1)f(Xi, k2)) ≤ 0 due to the log-increasing difference of f
(Condition 1), as log f(Xj , k1)− log f(Xj , k2) ≥ log f(Xi, k1)− log f(Xi, k2) if Xi ≥ Xj .

Therefore, L(θ, k,N) is a non-decreasing function of k if N is fixed, which indicates that

lim
k→∞

sup
θ∈Θ

h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

)
− L(θ, k,N)

exists, as L(θ, k,N) is also bounded. Therefore, by Lemma 5 and Claim 2, we know that

lim
N→∞

lim
k→∞

sup
θ∈Θ

∣∣∣L(θ, k,N)− h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

) ∣∣∣
exists and this value should be 0.

Claim 4. It holds that

lim
N,k→∞

inf
θ∈Θ
L(θ, k,N) = lim

N→∞
lim
k→∞

inf
θ∈Θ
L(θ, k,N) = inf

θ∈Θ
h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

)
.

Proof. Firstly, by Lemma 7, we have limN,k→∞ infθ∈Θ L(θ, k,N) = infθ∈Θ h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T])).

Plus, we already know that L(θ, k,N) is a monotonically non-decreasing function of k for any fixed N
(Lemma 10), and it is bounded, limk→∞ infθ∈Θ L(θ, k,N) always exists. Therefore, by Lemma 5 , we also have
limN→∞ limk→∞ infθ∈Θ L(θ, k,N) = infθ∈Θ h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T])).

49

2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749

Do LLM Agents Have Regret?

G.4. Definition of the Empirical Loss Function

Definition G.1 (Empirical loss function). We define the empirical loss L̂ computed with NT samples as follows:

L̂(θ, k,N,NT) :=
1

NT

NT∑
s=1

∑j∈[N] h
(

RegretLLMθ
((ℓ

(j)
s,t)t∈[T])

)
f
(

RegretLLMθ
((ℓ

(j)
s,t)t∈[T]), k

)
∑

j∈[N] f
(

RegretLLMθ
((ℓ

(j)
s,t)t∈[T]), k

)
 (G.3)

where (ℓ
(j)
s,t)j∈[N],t∈[T] denotes the s-th sample of (ℓ(j)t)j∈[N],t∈[T] for estimating L(θ, k,N).

G.5. Deferred Proofs of Theorem G.1 and Theorem 5.1

Theorem G.1. (Generalization gap). Suppose LLMθ is Lipschitz-continuous with respect to the model parameter θ, then
for any 0 < ϵ < 1/2, with probability at least 1− ϵ, we have

L
(
θ̂k,N,NT

, k,N
)
− inf

θ∈Θ
L(θ, k,N) ≤ Õ

√dθ + log(1/ϵ)

NT

 , (G.4)

for any N and sufficiently large k, where dθ is the dimension of the parameter θ.

Through a careful use of Berge’s Maximum Theorem (Berge, 1877), we prove that the right-hand side of Equation (G.4)
does not depend on k and N , which allows us to take the limit of limN→∞ limk→∞ without affecting the generalization
bound.

Before proving the theorem, we remark on what LLM structure enjoys the Lipschitz-continuity. We provide two auxiliary
results in the following proposition. The first result is from (Bai et al., 2023, Section J.1), which is about the Lipschitzness of
Transformers. The second result is regarding processing the output of Transformers. In particular, the output of Transformers
is usually not directly used, but passed through some matrix multiplication (by some matrix A), followed by some projection
Operator (to be specified later).

Proposition 2. The L-layer Transformer TFθ as defined in Appendix D.1 is CTF-Lipschitz continuous with respect to θ with
CTF := L

(
(1 +B2

TF)(1 +B2
TFR

3)
)L

BTFR(1 +BTFR
2 +B3

TFR
2), i.e.,

∥TFθ1(Z)− TFθ2(Z)∥2,∞ ≤ CTF∥θ1 − θ2∥TF
where ∥ · ∥TF is as defined in Equation (D.1), and R,Z,BTF are as introduced in Appendix D.1. Moreover, the function
Operator(A · TFθ(·)−1) is ∥A∥opCTF-Lipschitz continuous with respect to θ, i.e.,

∥Operator(A · TFθ1(Z)−1)− Operator(A · TFθ2(Z)−1)∥2 ≤ ∥A∥opCTF∥θ1 − θ2∥TF.

Here, Operator is either the projection operator onto some convex set, or the Softmax function.

Proof. The first result is from (Bai et al., 2023, Section J.1). The second result comes from

• If Operator is a projection onto the convex set, then ∥Operator(x)− Operator(y)∥2 ≤ ∥x− y∥2;

• If Operator is Softmax, then ∥Softmax(x)− Softmax(y)∥2 ≤ ∥x− y∥2 (Gao & Pavel, 2017, Corollary 3).

Note that the only condition that we require for Operator is its non-expansiveness.

Proof of Theorem G.1. Let CLLM denote the Lipschitz-continuity constant for LLMθ with respect to some norm ∥ · ∥LLM,
where ∥ · ∥LLM denotes any norm defined on the parameter space of LLM (e.g., the norm ∥ · ∥TF above in Proposition 2).
Now, we prove that regret is also a Lipschitz-continuous function with respect to the LLM’s parameter.

Lemma 11 (Lipschitzness of regret). The function RegretLLMθ
is CReg := BCLLMT -Lipschitz continuous with respect to θ,

i.e., ∣∣∣RegretLLMθ1
((ℓt)t∈[T])− RegretLLMθ2

((ℓt)t∈[T])
∣∣∣ ≤ CReg∥θ1 − θ2∥LLM.

50

2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804

Do LLM Agents Have Regret?

Proof. By definition, we have

∣∣∣RegretLLMθ1
((ℓt)t∈[T])− RegretLLMθ2

((ℓt)t∈[T])
∣∣∣ = ∣∣∣∣∣

T∑
t=1

⟨ℓt,LLMθ1(Zt−1)− LLMθ2(Zt−1)⟩
∣∣∣∣∣

= B

T∑
t=1

∥LLMθ1(Zt−1)− LLMθ2(Zt−1)∥

≤ BCLLMT∥θ1 − θ2∥LLM

where Zt := (ℓ1, . . . , ℓt, c) for all t ∈ [T] and Z0 = (c) where c is a d-dimensional vector.

Now, we will prove the Lipschitzness of

C
(
(ℓ

(j)
t)t∈[T],j∈[N], k, θ

)
:=

∑
j∈[N] h(RegretLLMθ

((ℓ
(j)
t)t∈[T]))f(RegretLLMθ

((ℓ
(j)
t)t∈[T]), k)∑

j∈[N] f(RegretLLMθ
((ℓ

(j)
t)t∈[t]), k)

(G.5)

with respect to the model parameter θ.

Claim 5. For any R > 0, there exists βR > 0 such that if β > βR, we have∣∣∣∣∣
∑

n∈[N] xnf(xn, β)∑
n∈[N] f(xn, β)

−
∑

n∈[N] ynf(yn, β)∑
n∈[N] f(yn, β)

∣∣∣∣∣ ≤ 2∥x− y∥∞

for every x, y ∈ Rn such that |xi| ≤ R, |yi| ≤ R for all i ∈ [N].

Proof. If β =∞, we have

lim
β→∞

(∣∣∣∣∣
∑

n∈[N] xnf(xn, β)∑
n∈[N] f(xn, β)

−
∑

n∈[N] ynf(yn, β)∑
n∈[N] f(yn, β)

∣∣∣∣∣/∥x− y∥∞
)

=
|maxn∈[N] xn −maxn∈[N] yn|

∥x− y∥∞
≤ 1

holds. Moreover, consider the following constrained optimization problem:

max
x,y∈Rn

(∣∣∣∣∣
∑

n∈[N] xnf(xn, β)∑
n∈[N] f(xn, β)

−
∑

n∈[N] ynf(yn, β)∑
n∈[N] f(yn, β)

∣∣∣∣∣/∥x− y∥∞
)

subject to |xi| ≤ R, |yi| ≤ R for all i ∈ [N],

whose optimum is denoted as F (R, β). Then, since ∥x∥∞ ≤ R and ∥y∥∞ ≤ R is a compact set, by Berge’s Maximum
Theorem (Berge, 1877), we have that F (R, β) is a continuous function for β. Moreover, we know that F (R,∞) ≤ 1, which
indicates that we can find a large enough βR such that if β > βR, F (R, β) ≤ 2.

Note that Claim 5 does not hold if either xi or yi is unbounded. Now, we will apply Claim 5 to Equation (G.5). We can
guarantee that

∣∣RegretLLMθ
((ℓt)t∈[T])

∣∣ ≤ diam(Π, ∥ · ∥2)TB.

Also, note that the domain of h : R→ R+ is effectively constrained to the range that RegretLLMθ
((ℓt)t∈[T]) can achieve,

which means that we can regard h as h : [−diam(Π, ∥ · ∥2)TB, diam(Π, ∥ · ∥2)TB] → R+. Due to the continuity of h′,
and the fact that h has a compact domain, we know that h(·) is Ch-Lipschitz continuous for some Ch > 0 on this interval of
[−diam(Π, ∥ · ∥2)TB, diam(Π, ∥ · ∥2)TB].

Lemma 12 (Lipschitzness of C in Equation (G.5)). The function C in Equation (G.5) is Ccost := 2ChCReg-Lipschitz
continuous with respect to θ, if k > kdiam(Π,∥·∥2)TB for some kdiam(Π,∥·∥2)TB > 0, i.e.,∣∣∣C ((ℓ(j)t)t∈[T],j∈[N], k, θ1

)
− C

(
(ℓ

(j)
t)t∈[T],j∈[N], k, θ2

) ∣∣∣ ≤ Ccost∥θ1 − θ2∥LLM.

51

2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859

Do LLM Agents Have Regret?

Proof. ∣∣C((ℓ
(j)
t)t∈[T],j∈[N], k, θ1)− C((ℓ

(j)
t)t∈[T],j∈[N], k, θ2)

∣∣
≤
(i)

2∥h(RegretLLMθ1
((ℓ

(j)
t)t∈[T]))− h(RegretLLMθ2

((ℓ
(j)
t)t∈[T]))∥∞

≤
(ii)

2Ch∥RegretLLMθ1
((ℓ

(j)
t)t∈[T])− RegretLLMθ2

((ℓ
(j)
t)t∈[T])∥∞

≤
(iii)

2ChCReg∥θ1 − θ2∥LLM = Ccost∥θ1 − θ2∥LLM.

Here, (i) holds due to Claim 5, (ii) holds since h is Ch-Lipschitz continuous on the range of RegretLLMθ
((ℓt)t∈[T]), and (iii)

holds due to Lemma 11.

For completeness of the paper, we provide the definition of covering set and covering number.

Definition G.2 (Covering set and covering number). For δ > 0, a metric space (X, ∥ · ∥), and subset Y ⊆ X , set C ⊂ Y
is a δ-covering of Y when Y ⊆ ∪c∈CB(c, δ, ∥ · ∥) holds. δ-covering number N(δ;Y, ∥ · ∥) is defined as the minimum
cardinality of any covering set.

By (Wainwright, 2019, Example 5.8), for any r > 0, we can verify that the δ-covering number N(δ;B(0, r, ∥·∥LLM), ∥·∥LLM)
can be bounded by

logN(δ;B(0, r, ∥ · ∥LLM), ∥ · ∥LLM) ≤ dθ log(1 + 2r/δ),

where dθ is the dimension of the LLM’s whole parameter. For example, if we use the ∥ · ∥TF and consider the Transformer
model as defined in Appendix D.1, for any r > 0,

logN(δ;B(0, r, ∥ · ∥LLM), ∥ · ∥LLM) ≤ L(3Md2 + 2d(dd′ + 3md2)) log(1 + 2r/δ).

Since we consider a compact Θ (as several recent works on analyzing Transformers (Bai et al., 2023; Lin et al., 2024)),
let RΘ := diam(Θ, ∥ · ∥LLM) (which corresponds to BTF for the Transformer models as defined in Appendix D.1, with
∥ · ∥LLM = ∥ · ∥TF), then there exists a set Θ0 with log |Θ0| = dθ log(1 + 2RΘ/δ) such that for any θ ∈ Θ, there exists a
θ0 ∈ Θ0 with ∣∣∣C ((ℓ(j)t)t∈[T],j∈[N], k, θ

)
− C

(
(ℓ

(j)
t)t∈[T],j∈[N], k, θ0

) ∣∣∣ ≤ Ccostδ.

Then, by the standard result from statistical learning theory (Wainwright, 2019, Chapter 5), when trained with NT samples,
for every 0 < ϵ < 1/2, with probability at least 1− ϵ, we have

L(θ̂k,N,NT
, k,N)− inf

θ∈Θ
L(θ, k,N) ≤

√
2(log |Θ0|+ log(2/ϵ))

NT
+ 2Ccostδ.

Setting δ = Ω(
√
log(ϵ)/NT), we further obtain

L(θ̂k,N,NT
, k,N)− inf

θ∈Θ
L(θ, k,N) ≤ Õ

√ log |Θ0|+ log(1/ϵ)

NT

with probability at least 1− ϵ, completing the proof.

Theorem 5.1. (Regret, Informal). Under regular conditions on f, h, with high probably, we have

h

(
lim

N→∞
lim

k→∞
max

∥ℓt∥∞≤B
RegretLLM

θ̂k,N,NT

(
(ℓt)t∈[T]

))

≤ h

(
inf
θ∈Θ

max
∥ℓt∥∞≤B

RegretLLMθ

(
(ℓt)t∈[T]

))
+ Õ

√ dθ

NT

 .

52

2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914

Do LLM Agents Have Regret?

Proof. The limit on the right-hand side of Equation (G.4) remains as Õ
(√

dθ+log(1/ϵ)
NT

)
, since we firstly take limk→∞

and then take limN→∞, thanks to the fact that Theorem G.1 holds for large enough k and any N . Next, we have

lim
N→∞

lim
k→∞

∣∣∣∣L(θ̂k,N,NT
, k,N)− h

(
lim

N→∞
lim
k→∞

max
∥ℓt∥∞≤B

RegretLLM
θ̂k,N,NT

((ℓt)t∈[T])

) ∣∣∣∣
≤ lim

N→∞
lim
k→∞

∣∣∣∣L(θ̂k,N,NT
, k,N)− h

(
max

∥ℓt∥∞≤B
RegretLLM

θ̂k,N,NT

((ℓt)t∈[T])

) ∣∣∣∣+
lim

N→∞
lim
k→∞

∣∣∣∣h(max
∥ℓt∥∞≤B

RegretLLM
θ̂k,N,NT

((ℓt)t∈[T])

)
− h

(
lim

N→∞
lim
k→∞

max
∥ℓt∥∞≤B

RegretLLM
θ̂k,N,NT

((ℓt)t∈[T])

) ∣∣∣∣
≤ lim

N→∞
lim
k→∞

sup
θ∈Θ

∣∣∣∣L(θ, k,N)− h

(
max

∥ℓt∥∞≤B
RegretLLMθ

((ℓt)t∈[T])

) ∣∣∣∣+ 0 = 0,

due to the continuity of h and Claim 3. Finally, we have

lim
N→∞

lim
k→∞

inf
θ∈Θ
L(θ, k,N) = inf

θ∈Θ
h

(
max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T])

)
due to Claim 4, which, combined with the fact that h is non-decreasing, completes the proof.

As a result, the coarse correlated equilibrium will emerge as the long-term interactions of multiple such learned LLMs, as
stated in the following corollary.
Corollary 1. (Emerging behavior: Coarse correlated equilibrium). For a sufficiently large NT , if each agent in the matrix
game plays according to LLMθ̂k,N,NT

, then the time-averaged policy for each agent will constitute an approximate coarse
correlated equilibrium of the game.
Remark G.1 (Dynamic-regret loss). So far, we have focused on the canonical online learning setting with regret being the
metric. One can also generalize the results to the non-stationary setting, with dynamic regret being the metric. Specifically,
one can define the dynamic-regret-loss function as follows:

L(θ, k,N) := E

[∑
j∈[N] h(D-RegretLLMθ

((ℓ
(j)
t)t∈[T]))f(D-RegretLLMθ

((ℓ
(j)
t)t∈[T]), k)∑

j∈[N] f(D-RegretLLMθ
((ℓ

(j)
i)t∈[T]), k)

]
.

Then, one can also establish similar results as before, since the analysis does not utilize other properties of the regret except
its boundedness, and the Lipschitz-continuity of LLM with respect to θ. To be specific, Lemma 11 holds due to the reason
that we can bound the difference of the regret with the term∣∣∣∣∣

T∑
t=1

⟨ℓt, (LLMθ1(Zt−1)− LLMθ2(Zt−1))⟩
∣∣∣∣∣ ,

as well as the fact that infπi∈Π⟨ℓi, πi⟩ will be canceled. One can verify that all the arguments in Appendix G.3 also hold for
similar reasons.

G.6. Detailed Explanation of Optimizing Equation (5.2) with Single-layer Self-attention Model

We consider the single-layer linear self-attention model as follows, for which we can show that the global optimizer of our
regret-loss can automatically lead to a no-regret learning algorithm:

g(Zt;V,K,Q, vc, kc, qc) =

t∑
i=1

(V ℓi + vc) ((Kℓi + kc)
⊺ · (Qc+ qc)) . (G.6)

Theorem G.2. Consider the policy space Π = B(0, RΠ, ∥ · ∥) for some RΠ > 0. The configuration of a single-
layer linear self-attention model in Equation (G.6) (V,K,Q, vc, kc, qc) such that K⊺(Qc + qc) = vc = 000d and V =

−2RΠΣ
−1E

(
∥∑T

t=1 ℓt∥ℓ1ℓ
⊺
2

)
Σ−1 is a global optimal solution of Equation (5.2) with N = 1, h(x) = x2. Moreover,

every global optimal configuration of Equation (5.2) within the parameterization class of Equation (G.6) has the same output
function g. Additionally, if Σ is a diagonal matrix, then plugging any global optimal configuration into Equation (G.6), and
projecting the output with ProjΠ,∥·∥ is equivalent to FTRL with an L2-regularizer.

53

2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Do LLM Agents Have Regret?

We consider the following structure of single-layer self-attention model g (see a formal introduction in Appendix D.1):

g(Zt;V,K,Q, vc, kc, qc) := (V ℓ1:t + vc111
⊺
t)Softmax ((Kℓ1:t + kc111

⊺
t)

⊺ · (Qc+ qc)) , (G.7)

where Zt = (ℓ1, . . . , ℓt, c) and V,K,Q ∈ Rd×d correspond to the value, key, and query matrices, respectively, vc, kc, qc ∈
Rd correspond to the bias terms associated with V,K,Q, and c ̸= 000d is a constant vector. We then have the following result.

Theorem G.3. Consider the policy space Π = B(0, RΠ, ∥ · ∥) for some RΠ > 0. The configuration of a single-
layer self-attention model in Equation (G.7) (V,K,Q, vc, kc, qc) such that K⊺(Qc + qc) = vc = 000d and V =

−RΠ
T∑T−1

t=1 1/t
Σ−1E

[∥∥∥∥∑T
t=1 ℓt

∥∥∥∥ℓ1ℓ⊺2]Σ−1 is a first-order stationary point of Equation (5.2) with N = 1, h(x) = x2.

Moreover, if Σ is a diagonal matrix, then plugging this configuration into Equation (G.7), and projecting the output with
ProjΠ,∥·∥ would perform FTRL with an L2-regularizer for the loss vectors (ℓt)t∈[T].

In practical training, such stationary points of the loss may be attained by first-order optimization algorithms of (stochastic)
gradient descent, the workhorse in machine learning.

G.7. Deferred Proof of Theorem G.3

Theorem G.3. Consider the policy space Π = B(0, RΠ, ∥ · ∥) for some RΠ > 0. The configuration of a single-
layer self-attention model in Equation (G.7) (V,K,Q, vc, kc, qc) such that K⊺(Qc + qc) = vc = 000d and V =

−RΠ
T∑T−1

t=1 1/t
Σ−1E

[∥∥∥∥∑T
t=1 ℓt

∥∥∥∥ℓ1ℓ⊺2]Σ−1 is a first-order stationary point of Equation (5.2) with N = 1, h(x) = x2.

Moreover, if Σ is a diagonal matrix, then plugging this configuration into Equation (G.7), and projecting the output with
ProjΠ,∥·∥ would perform FTRL with an L2-regularizer for the loss vectors (ℓt)t∈[T].

Proof. We will locally use A = [d] without losing generality as A is finite with |A| = d, and will interchangeably use ℓi(j)
and ℓij for notational convenience. Define a := K⊺(Qc+ qc) ∈ Rd and bt−1 := β111t−1 := k⊺c (Qc+ qc)111t−1 ∈ Rt−1. With
N = 1, h(x) = x2, and the choice of Π, the loss function (Equation (5.2)) can be written as follows:

f(V, a, (bt)t∈[T−1], vc) := E

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2
)2

,

where for t = 1, we use the output of the single-layer self-attention as vc and we will write it as (V ℓ1:0 +

vc111
⊺
0)Softmax(ℓ

⊺
1:0a + b0) for notational consistency with t ≥ 2. Also, we will define empty sum

∑0
i=1 ai = 0

for any sequence (ai)i∈N+ .

Step 1. Calculating ∂f
∂a .

For x ∈ [d], we calculate the corresponding directional derivative with the following equation for t ≥ 2:

∂

∂ax
ℓ⊺t (V ℓ1:t−1 + vc111

⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1)

=
∂

∂ax

t−1∑
i=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)ei

exp(e⊺i (ℓ
⊺
1:t−1a+ bt−1))∑t−1

s=1 exp(e
⊺
s(ℓ

⊺
1:t−1a+ bt−1))

=

∑t−1
i=1 ℓ

⊺
t (V ℓ1:t−1 + vc111

⊺
t−1)ei exp(e

⊺
i (ℓ

⊺
1:t−1a+ bt−1))

∂e
⊺
i (ℓ

⊺
1:t−1a+bt−1)

∂ax
(
∑t−1

s=1 exp(e
⊺
s(ℓ

⊺
1:t−1a+ bt−1)))

(
∑t−1

s=1 exp(e
⊺
s(ℓ

⊺
1:t−1a+ bt−1)))2

−

∑t−1
i=1 ℓ

⊺
t (V ℓ1:t−1 + vc111

⊺
t−1)ei exp(e

⊺
i (ℓ

⊺
1:t−1a+ bt−1))

(∑t−1
s=1 exp(e

⊺
s(ℓ

⊺
1:t−1a+ bt−1))

∂e⊺s (ℓ
⊺
1:t−1a+bt−1)

∂ax

)
(
∑t−1

s=1 exp(e
⊺
s(ℓ

⊺
1:t−1a+ bt−1)))2

.

54

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024

Do LLM Agents Have Regret?

Plugging a = 000d and vc = 000d, and (bt = β111t)t∈[T−1] provides

∂

∂ax
ℓ⊺t (V ℓ1:t−1 + vc111

⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1)

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

=

t−1∑
i=1

ℓ⊺t V ℓiℓix
(t− 1)

−
t−1∑
i=1

ℓ⊺t V ℓi

(∑t−1
s=1 ℓsx

)
(t− 1)2

.

For t = 1, as ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a + bt−1) = ℓ⊺1vc, ∂

∂ax
ℓ⊺t (V ℓ1:t−1 + vc111

⊺
t−1)Softmax(ℓ

⊺
1:t−1a +

bt−1)

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

= 0, so we can use the same formula as t ≥ 2 with empty sum
∑t−1

i=1 . Using the above

calculation, we can further compute ∂f
∂ax

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

as follows:

∂f(V, a, (bt)t∈[T−1], vc)

∂ax

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

= E ∂

∂ax

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)2 ∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

= E

[(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

∂

∂ax

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

]

= E

[(
T∑

t=1

ℓ⊺tV

t−1∑
i=1

1

t− 1
ℓi +RΠ∥

T∑
t=1

ℓt∥2

)
T∑

t=1

(
t−1∑
i=1

ℓ⊺tV ℓiℓix
(t− 1)

−
t−1∑
i=1

ℓ⊺tV ℓi
(∑t−1

s=1 ℓsx
)

(t− 1)2

)]
(G.8)

= 0,

where we used the fact that ℓi is drawn from a symmetric distribution, and flipping the sign of the variable as −ℓi yields the
same distribution, which leads to the following:

E

[(
T∑

t=1

ℓ⊺t V

t−1∑
i=1

1

t− 1
ℓi +RΠ∥

T∑
t=1

ℓt∥2
)

T∑
t=1

t−1∑
i=1

ℓ⊺t V ℓiℓix
(t− 1)

−
t−1∑
i=1

ℓ⊺t V ℓi

(∑t−1
s=1 ℓsx

)
(t− 1)2

]

= E

[(
T∑

t=1

ℓ⊺t V

t−1∑
i=1

1

t− 1
ℓi +RΠ∥

T∑
t=1

ℓt∥2
)

T∑
t=1

− t−1∑
i=1

ℓ⊺t V ℓiℓix
(t− 1)

+

t−1∑
i=1

ℓ⊺t V ℓi

(∑t−1
s=1 ℓsx

)
(t− 1)2

].
This yields Equation (G.8)=0.

Step 2. Calculating ∂f
∂vc

.

We will use the following equation for t ≥ 2:

∂

∂vc
ℓ⊺t (V ℓ1:t−1 + vc111

⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1)

=
∂

∂vc

t−1∑
i=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)ei

exp(e⊺i (ℓ
⊺
1:t−1a+ bt−1))∑t−1

s=1 exp(e
⊺
s (ℓ

⊺
1:t−1a+ bt−1))

= ℓt.

For t = 1, we define ∂
∂vc

ℓ⊺1(V ℓ1:0 + vc111
⊺
0)Softmax(ℓ

⊺
1:0a + b0) = ℓ1, so that we can use the same formula as t ≥ 2.

55

3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079

Do LLM Agents Have Regret?

Therefore, we can calculate ∂f
∂vc

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

as follows:

∂f(V, a, (bt)t∈[T−1], vc)

∂vc

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

= E ∂

∂vc

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)2 ∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

= E

[(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

∂

∂vc

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

]

= E

[(
T∑

t=2

ℓ⊺tV

t−1∑
i=1

1

t− 1
ℓi +RΠ∥

T∑
t=1

ℓt∥2

)
T∑

t=1

ℓt

]
= 0.

The last line is due to the same reason as the last part of Step 1.

Step 3. Calculating ∂f
∂V .

We calculate the following equation, which will be used to calculate ∂f
∂V

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

for t ≥ 2:

∂

∂V
ℓ⊺t (V ℓ1:t−1 + vc111

⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1)

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

=
∂

∂V

t−1∑
i=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)ei

exp(e⊺i (ℓ
⊺
1:t−1a+ bt−1))∑t−1

s=1 exp(e
⊺
s (ℓ

⊺
1:t−1a+ bt−1))

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

=

t−1∑
i=1

ℓtℓ
⊺
i

exp(e⊺i (ℓ
⊺
1:t−1a+ bt−1))∑t−1

s=1 exp(e
⊺
s (ℓ

⊺
1:t−1a+ bt−1))

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

=

t−1∑
i=1

1

t− 1
ℓtℓ

⊺
i .

For t = 1, note that ∂
∂V ℓ⊺t vc = OOOd×d, so we can use the same formula as t ≥ 2 with empty sum

∑t−1
i=1 .

56

3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134

Do LLM Agents Have Regret?

Therefore, we have

∂f(V, a, (bt)t∈[T−1], vc)

∂V

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1]

= E
∂

∂V

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2
)2 ∣∣∣∣

a=000d,vc=000d,(bt=β111t)t∈[T−1]

= E

[(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2
)∣∣∣∣

a=000d,vc=000d,(bt=β111t)t∈[T−1]

∂

∂V

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2
)∣∣∣∣

a=000d,vc=000d,(bt=β111t)t∈[T−1]

]

= E

[(
T∑

t=1

ℓ⊺t V

t−1∑
i=1

1

t− 1
ℓi +RΠ∥

T∑
t=1

ℓt∥2
)

T∑
t=1

t−1∑
i=1

1

t− 1
ℓtℓ

⊺
i

]

= E

[(
T∑

t=1

t−1∑
i=1

(
1

t− 1
ℓ⊺t V ℓi

)(
1

t− 1
ℓtℓ

⊺
i

)
+RΠT∥

T∑
t′=1

ℓt′∥2ℓtℓ⊺i

)]

= E

[(
T∑

t=1

t−1∑
i=1

d∑
x=1

d∑
y=1

vxyℓtxℓiy

(
1

t− 1

)2

[ℓtzℓiw](z,w) +RΠT∥
T∑

t′=1

ℓt′∥2ℓtℓ⊺i

)]

=

T∑
t=1

t−1∑
i=1

d∑
x=1

d∑
y=1

1

(t− 1)2
[σxzvxyσyw](z,w) + E

[
RΠT∥

T∑
t′=1

ℓt′∥2ℓtℓ⊺i

]

=

(
T−1∑
t=1

1

t

)
ΣV Σ+ E

[
RΠT∥

T∑
t′=1

ℓt′∥2ℓtℓ⊺i

]
.

Therefore, if V ⋆ = RΠ
T∑T−1

t=1 1/t
Σ−1E

[
∥∑T

t=1 ℓt∥2ℓtℓ
⊺
i

]
Σ−1, then ∂f

∂V

∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1],V=V ⋆

= Od×d. Lastly,

we have

∂f

∂K

∣∣
K⊺(Qc+qc)=vc=000d,V=V ⋆ =

(
∂f

∂a

∂a

∂K

) ∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1],V=V ⋆

= OOOd×d

∂f

∂Q

∣∣
K⊺(Qc+qc)=vc=000d,V=V ⋆ =

(
∂f

∂a

∂a

∂Q

) ∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1],V=V ⋆

= OOOd×d

∂f

∂qc

∣∣
K⊺(Qc+qc)=vc=000d,V=V ⋆ =

(
∂f

∂a

∂a

∂qc

) ∣∣∣∣
a=000d,vc=000d,(bt=β111t)t∈[T−1],V=V ⋆

= 000d

which means that such configurations are first-order stationary points of Equation (5.2) with N = 1, h(x) = x2, and
Π = B(0, RΠ, ∥ · ∥).

G.8. Deferred Proof of Theorem G.2

Theorem G.2. Consider the policy space Π = B(0, RΠ, ∥ · ∥) for some RΠ > 0. The configuration of a single-
layer linear self-attention model in Equation (G.6) (V,K,Q, vc, kc, qc) such that K⊺(Qc + qc) = vc = 000d and V =

−2RΠΣ
−1E

(
∥∑T

t=1 ℓt∥ℓ1ℓ
⊺
2

)
Σ−1 is a global optimal solution of Equation (5.2) with N = 1, h(x) = x2. Moreover,

every global optimal configuration of Equation (5.2) within the parameterization class of Equation (G.6) has the same output
function g. Additionally, if Σ is a diagonal matrix, then plugging any global optimal configuration into Equation (G.6), and
projecting the output with ProjΠ,∥·∥ is equivalent to FTRL with an L2-regularizer.

57

3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189

Do LLM Agents Have Regret?

Proof. The output of the single-layer linear self-attention structure is as follows:

g(Zt;V,K,Q, vc, kc, qc)

=

t∑
i=1

(V ℓiℓ
⊺
i (K

⊺(Qc+ qc)) + (V k⊺c (Qc+ qc) + vc(Qc+ qc)
⊺K) ℓi + vck

⊺
c (Qc+ qc)) ,

(G.9)

which can be expressed with a larger class

g(Zt,A, β,C, δ) :=
t∑

i=1

(Aℓiℓ⊺i β + Cℓi + δ), (G.10)

where A ∈ Rd×d, β,C, δ ∈ Rd. Then, if a minimizer of

f(A, β,C, δ) : = E

(
T∑

t=1

⟨ℓt,
t−1∑
i=1

(Aℓiℓ⊺i β + Cℓi + δ)⟩ − inf
π∈Π

〈
T∑

t=1

ℓt, π

〉)2

can be expressed as A = V, β = K⊺(Qc+ qc),C = V k⊺c (Qc+ qc) + vc(Qc+ qc)
⊺K,β = vck

⊺
c (Qc+ qc), then we can

conclude that the corresponding V,Q,K, vc, qc, kc are also a minimizer of

E

(
T∑

t=1

⟨ℓt, g(Zt−1)⟩ − inf
π∈Π

〈
T∑

t=1

ℓi, π

〉)2

,

since the corresponding V,Q,K, vc, qc, kc constitute a minimizer among a larger class. Now, since Π = B(000d, RΠ, ∥ · ∥),
we can rewrite f as

f(A, β,C, δ) = E

(
T∑

t=1

⟨ℓt,
t−1∑
i=1

(Aℓiℓ⊺i β + Cℓi + δ)⟩+RΠ

∥∥∥∥ T∑
t=1

ℓi

∥∥∥∥
2

)2

. (G.11)

Step 1. Finding condition for ∂f
∂δ = 0.

Due to the Leibniz rule, if we calculate the partial derivative of Equation (G.11) w.r.t. δ, we have

∂f(A, β,C, δ)
∂δ

=
∂

∂δ
E

(
T∑

t=1

⟨ℓt,
t−1∑
i=1

(Aℓiℓ⊺i β + Cℓi + δ)⟩+RΠ∥
T∑

t=1

ℓt∥2
)2

= E
∂

∂δ

(
T∑

t=1

⟨ℓt,
t−1∑
i=1

(Aℓiℓ⊺i β + Cℓi + δ)⟩+RΠ∥
T∑

t=1

ℓt∥2
)2

= E
T∑

t=1

ℓt

(
T∑

t=1

t−1∑
i=1

(t− 1)ℓ⊺t (Aℓiℓ
⊺
i β + Cℓi + δ) +RΠ∥

T∑
t=1

ℓt∥
)
. (G.12)

Since the expectation of either odd-order polynomial or even-order polynomial times ∥ · ∥2 is 0, due to that ℓt follows a
symmetric distribution, we have

E
T∑

t=1

(t− 1)ℓtRΠ

∥∥∥ T∑
t=1

ℓt

∥∥∥
2
= 0, E

T∑
t=1

(t− 1)ℓt

T∑
t=1

t−1∑
i=1

ℓ⊺tCℓi = 0.

Now, we calculate

E
T∑

t=1

(t− 1)ℓt

T∑
t=1

t−1∑
i=1

ℓ⊺tAℓiℓ
⊺
i β = E

T∑
t1=1

T∑
t=1

t−1∑
i=1

(t1 − 1)ℓt1ℓ
⊺
tAℓiℓ

⊺
i β

=
(i)

E
T∑

t=1

t−1∑
i=1

(t− 1)ℓtℓ
⊺
tAℓiℓ

⊺
i β = E

T∑
t=1

(t− 1)2ℓtℓ
⊺
tAΣβ =

1

6
T (2T 2 − 3T + 1)ΣAΣβ,

58

3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244

Do LLM Agents Have Regret?

where (i) holds since if t1 ̸= t, due to the independence of ℓt, ℓt1 , we can use Eℓt = 0. Lastly,

E
T∑

t=1

(t− 1)ℓt

T∑
t=1

t−1∑
i=1

ℓ⊺t δ = E
T∑

t1=1

T∑
t=1

(t1 − 1)(t− 1)ℓt1ℓ
⊺
t δ =

1

6
T (2T 2 − 3T + 1)Σδ.

Plugging the above equations into Equation (G.12), we have

∂f(A, β,C, δ)
∂δ

=
1

6
T (2T 2 − 3T + 1)(ΣAΣβ +Σδ).

Due to the optimality condition, we have

AΣβ + δ = 0. (G.13)

Step 2. Plugging the optimality condition for ∂f
∂δ into Equation (G.11).

Plugging Equation (G.13) to Equation (G.11), f can be written as

f(A,β,C,−AΣβ) = E

(
T∑

t=1

t−1∑
i=1

ℓ⊺t (A(ℓiℓ
⊺
i − Σ)β + Cℓi) +RΠ

∥∥∥∥ T∑
t=1

ℓt

∥∥∥∥
2

)2

= E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tA(ℓiℓ
⊺
i − Σ)β

)2

︸ ︷︷ ︸
(i)

+E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)2

+ E

(
RΠ

∥∥∥∥ T∑
t=1

ℓt

∥∥∥∥
2

)2

+ 2E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tA(ℓiℓ
⊺
i − Σ)β

)(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)
︸ ︷︷ ︸

(ii)

+ 2E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tA(ℓiℓ
⊺
i − Σ)β

)(
RΠ

∥∥∥∥ T∑
t=1

ℓt

∥∥∥∥
2

)
︸ ︷︷ ︸

(iii)

+ 2E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)(
RΠ

∥∥∥∥ T∑
t=1

ℓt

∥∥∥∥
2

)
.

For the part (i), we have

E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tA(ℓiℓ
⊺
i − Σ)β

)2

= E

[
T∑

t1=1

t1−1∑
i1=1

T∑
t=1

t−1∑
i=1

β⊺(ℓi1ℓ
⊺
i1
− Σ)A⊺ℓt1ℓ

⊺
tA(ℓiℓ

⊺
i − Σ)β

]

=
(1)

E

[
T∑

t=1

t−1∑
i1=1

t−1∑
i=1

β⊺(ℓi1ℓ
⊺
i1
− Σ)A⊺ℓtℓ

⊺
tA(ℓiℓ

⊺
i − Σ)β

]

=
(2)

E

[
T∑

t=1

t−1∑
i=1

β⊺(ℓiℓ
⊺
i − Σ)A⊺ℓiℓ

⊺
i A(ℓiℓ

⊺
i − Σ)β

]

=
(T − 1)T

2
β⊺E [(ℓiℓ

⊺
i − Σ)A⊺ΣA(ℓiℓ⊺i − Σ)]β (G.14)

=
(T − 1)T

2
β⊺E

[
(
√
ΣA(ℓiℓ

⊺
i − Σ))⊺(

√
ΣA(ℓiℓ

⊺
i − Σ))

]
β.

Here, (1) holds because if t1 ̸= t, we know that Eℓt1 = Eℓt = 0, and they are independent, and (2) holds because if i1 ̸= i,
we can calculate E(ℓi1ℓ

⊺
i1
− Σ) = Od×d. In addition, we can easily check that (ii) and (iii) are 0 as they are polynomials

of odd degrees and we have Z
d
= −Z. Note that Equation (G.14) is minimized when P(

√
ΣA(ℓiℓ⊺i − Σ)β = 000d) = 1.

59

3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299

Do LLM Agents Have Regret?

If A ̸= Od×d, suppose that the singular value decomposition of A = UΛV yields that Λ is a diagonal matrix whose first
diagonal element is non-zero, and U, V are orthogonal matrices. Then, we want to find β that

√
ΣUΛV (ℓiℓ

⊺
i −Σ)β = 000d for

any ℓi such that p(ℓi) ̸= 0, where p indicates the probability density function of loss vectors. Since Σ and U are invertible,
we only need to consider ΛV (ℓiℓ

⊺
i − Σ)β = 000d. Since Λ’s first diagonal component is non-zero, we will consider equation

e⊺1ΛV (ℓiℓ
⊺
i − Σ)β = 0. This is equivalent to V1(ℓiℓ

⊺
i − Σ)β = 0, where V1 is the first row of V , and is a non-zero vector.

Now, we will generally consider ax,y(v) := vv⊺x− y where x, y, v ∈ Rd and ax,y : B(000d, 2ϵ1, ∥ · ∥)→ Rd function. Then,
we can check that the Jacobian of ax,y(v) is vx⊺ + (v · x)I , and we can find that the determinant of the Jacobian is nonzero
when v = ϵ1x if x ̸= 000d. Therefore, the volume of (V1(ℓiℓ

⊺
i − Σ)) for ℓi ∈ B(000d, cz, ∥ · ∥) is greater than the volume of

(V1(vv
⊺−Σ)) for v ∈ B(ϵ1V

⊺
1 , ϵ2, ∥ · ∥), where cz is a constant such that B(000d, cz, ∥ · ∥) ⊆ supp(Z), and ϵ1, ϵ2 > 0 satisfy

that ϵ1|V1|+ ϵ2 < cz . Here, we define ϵ2 > 0 sufficiently small so that the determinant of Jacobian(vv⊺V ⊺
1 − ΣV ⊺

1) > 0
for v ∈ B(ϵ1V

⊺
1 , ϵ2, ∥ · ∥), and v → vv⊺V ⊺

1 −ΣV ⊺
1 is a one-to-one correspondence, by inverse function theorem. Therefore,

the volume of (V1(vv
⊺ − Σ)) for v ∈ B(ϵ1V

⊺
1 , ϵ2, ∥ · ∥) can be calculated as

[Volume (V1(vv
⊺ − Σ)) for v ∈ B(ϵ1V

⊺
1 , ϵ2, ∥ · ∥)] =

∫
v∈B(ϵ1V

⊺
1 ,ϵ2,∥·∥)

∣∣det(Jacobian(V1(vv
⊺ − Σ)))

∣∣dv > 0.

Therefore, Volume(V1(vv
⊺ − Σ)) where v ∈ B(ϵ1V

⊺
1 , ϵ2, ∥ · ∥) is non-zero, so that we can find d loss vectors {ℓi}i∈[d]

such that the vectors {V1(ℓiℓ
⊺
i − Σ)}i∈[d] are linearly independent. Hence, if we want to minimize Equation (G.14), either

A = Od×d or β = 000d should hold. In both cases, Equation (G.10) can be re-written as

g(Zt;A, β,C, δ) :=
t∑

i=1

Cℓi,

and this is covered by the original parametrization (Equation (G.9)) with K⊺(Qc+ qc) = vc = 000d.

Step 3. Calculating ∂f
∂C .

Now, we optimize over C, by minimizing the following objective:

f(C) : = E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi +RΠ∥
T∑

t=1

ℓt∥
)2

= E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)2

︸ ︷︷ ︸
(i)

+2E

((
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)
RΠ∥

T∑
t=1

ℓt∥
)

+ E

(
RΠ∥

T∑
t=1

ℓt∥
)2

=
T (T − 1)

2
Tr (C⊺ΣCΣ) + 2E

B

T∑
t=1

t−1∑
i=1

ℓ⊺tCℓi∥
T∑

j=1

ℓj∥

+ E

(
RΠ∥

T∑
t=1

ℓt∥
)2

.

Here, (i) can be calculated as follows:

E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)2

= E

(
T∑

t1=1

t1−1∑
i1=1

T∑
t=1

t−1∑
i=1

ℓ⊺i1C
⊺ℓt1ℓ

⊺
i Cℓi

)

=
(1)

E

(
T∑

t=1

i−1∑
i1=1

t−1∑
i=1

ℓ⊺i1C
⊺ℓiℓ

⊺
i Cℓi

)
= E

(
T∑

t=1

i−1∑
i1=1

t−1∑
i=1

ℓ⊺i1C
⊺ΣCℓi

)

=
(2)

E

(
T∑

t=1

t−1∑
i=1

ℓ⊺kC
⊺ΣCℓi

)
=
(3)

ETr

(
T∑

t=1

t−1∑
i=1

C⊺ΣCℓiℓ⊺k

)
=

T (T − 1)

2
Tr (C⊺ΣCΣ) ,

since (1) holds because if t1 ̸= t, we already know that Eℓt = Eℓt1 = 0, (2) holds due to a similar reason, and (3) comes
from Tr(AB) = Tr(BA).

60

3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354

Do LLM Agents Have Regret?

We calculate ∂f(C)
∂C :

∂f(C)
∂C

= T (T − 1)ΣCΣ+ 2RΠE

∥ T∑
j=1

ℓj∥
T∑

t=1

t−1∑
i=1

ℓtℓ
⊺
i

 .

Hence, the optimal C = − 2RΠ

T (T−1)Σ
−1E

(
∥∑T

j=1 ℓj∥
∑T

t=1

∑t−1
i=1 ℓtℓ

⊺
i

)
Σ−1.

Now, we see that for the special case of Σ = I , we have C = −RΠE
(
∥∑T

j=1 ℓj∥ℓtℓ
⊺
i

)
. If we calculate the (a, b)-coordinate

of C, we need to calculate

Eℓ

√√√√ d∑

o=1

(

T∑
s=1

ℓso)2ℓiaℓkb

 .

If a ̸= b, then since Z is symmetric, the term above becomes zero. Therefore, we only need to consider the case when

a = b, which is Eℓ

[√∑d
o=1(

∑T
s=1 ℓso)

2ℓiaℓka

]
, and it will be the same value for all a ∈ [d] since ℓi’s coordinates are

independent.

Now, we calculate the scale of Eℓ

[√∑d
o=1(

∑T
s=1 ℓso)

2ℓi1ℓk1

]
. We have Z :=

∑d−1
o=1 (

∑T
s=1 ℓso)

2

T (d−1)

a.s.→ 1 as d→∞ (by the

law of large numbers) and we define W :=
∑

s̸=i,k ℓs1/
√
T which is independent of ℓi1 and ℓk1.

Eℓ

√√√√ d∑

o=1

(

T∑
s=1

ℓso)2ℓi1ℓk1

 = EZ,W,ℓi1,ℓk1

[√
T (d− 1)Z + (

√
TW + ℓi1 + ℓk1)2ℓi1ℓk1

]

= EZ,W,ℓi1,ℓk1≥0

[√
T (d− 1)Z + (

√
TW + ℓi1 + ℓk1)2ℓi1ℓk1 −

√
T (d− 1)Z + (

√
TW + ℓi1 − ℓk1)2ℓi1ℓk1

]

= EZ,W,ℓi1,ℓk1≥0

 4(
√
TW + ℓi1)ℓk1√

T (d− 1)Z + (
√
TW + ℓi1 + ℓk1)2 +

√
T (d− 1)Z + (

√
TW + ℓi1 − ℓk1)2

ℓi1ℓk1

 .

Taking d→∞, we have√
T (d− 1)Z + (

√
TW + ℓi1 + ℓk1)2 +

√
T (d− 1)Z + (

√
TW + ℓi1 − ℓk1)2

2
√
Td

d→ 1,

which further implies

√
Td

4(
√
TW + ℓi1)ℓk1√

T (d− 1)Z + (
√
TW + ℓi1 + ℓk1)2 +

√
T (d− 1)Z + (

√
TW + ℓi1 − ℓk1)2

ℓi1ℓk1

d→
√
Td

4(
√
TW + ℓi1)ℓk1

2
√
Td

ℓi1ℓk1 = 2(
√
TW + ℓi1)ℓi1ℓk1

as d→∞. Therefore,

lim
d→∞

EZ,W,ℓi1,ℓk1≥0

√Td 4(
√
TW + ℓi1)ℓk1√

T (d− 1)Z + (
√
TW + ℓi1 + ℓk1)2 +

√
T (d− 1)Z + (

√
TW + ℓi1 − ℓk1)2

ℓi1ℓk1

= EZ,W,ℓi1,ℓk1≥0

[
2(
√
TW + ℓi1)ℓi1ℓk1

]
= Eℓi1,ℓk1≥0

[
ℓ2i1ℓk1

]
which is a constant. The last equality came from the fact that W , ℓi1, ℓk1 are independent random variables, and expectation
of ℓi1 is zero. Therefore, the output of the single-layer linear self-attention provides us with online gradient descent with
step-size Θ(RΠ/

√
Td). In the online learning literature, we usually set the gradient step size as Θ(RΠ/

√
Td) (Hazan, 2016,

Theorem 3.1), which is consistent with the result above.

61

3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409

Do LLM Agents Have Regret?

G.9. Empirical Validation of Theorem G.3 and Theorem G.2

We now provide empirical validations for Theorem G.3 and Theorem G.2. We provide the training details and the results as
follows.

G.9.1. EMPIRICAL VALIDATION OF THEOREM G.3

Our model architecture is defined as follows: the number of layers T is set to 30 and the dimensionality d to 32, with the
loss vector ℓi’s distribution Z following a standard normal distribution N (0, 1). During training, we conducted 40,000
epochs with a batch size of 512. We employed the Adam optimizer, setting the learning rate to 0.001. We initialized the
value, query, and key vectors (vc, qc, kc) as zero vectors.

Our empirical analysis aims to demonstrate that the optimized model inherently emulates online gradient descent. To
illustrate this, we will focus on two key convergence properties: K⊺Q approaching the zero matrix OOOd×d and V converging
to a111d111

⊺
d + bId×d, where a and b are constants in R. The conditions K⊺Q = OOOd×d and V = a111d111

⊺
d + bId×d imply that

the function g(Zt;V,Q,K) =
∑t

i=1(b− a)ℓi, effectively emulating the process of an online gradient descent method. We
repeated 10 times of the experiments. For verifying K⊺Q = OOOd×d, we will measure Frobenius norm (∥ · ∥F) of K⊺Q. Also
for measuring the closeness of V and a111d111

⊺
d + bId×d, we will measure mina,b∈R ∥V − (a111d111

⊺
d + bId×d)∥F /b. The results

are demonstrated in the first plot of Figure G.1.

G.9.2. EMPIRICAL VALIDATION OF THEOREM G.2

We now focus on two key convergence properties: K⊺(Q111d + qc) approaching the zero vector 000d and V converging to
a111d111

⊺
d + bId×d, where a and b are constants in R. The conditions K⊺(Q111d + qc) = 000d and V = a111d111

⊺
d + bId×d imply that

the function g(Zt;V,Q,K) =
∑t

i=1(b− a)ℓi, effectively emulating the process of an online gradient descent method. We
repeated 10 times. For verifying K⊺(Q111d + qc) = 000d, we will measure 2-norm of K⊺(Q111d + qc). Also for measuring the
closeness of V and a111d111

⊺
d + bId×d, we will measure mina,b∈R ∥V − (a111d111

⊺
d + bId×d)∥F /b. The results are demonstrated

in the second plot of Figure G.1.

0 10000 20000 30000 40000

Epochs

0

200

400

600

800

m
in

a,
b,

x
||(

V
−

(a
11
>

+
bI

))
)/

b|
| F

Empirical validation of Theorem 3
Distance between V and Identity Matrix
Distance between KQ and zero matrix

2.5

5.0

7.5

10.0

12.5

||K
>

Q
|| F

0 10000 20000 30000 40000

Epochs

0

200

400

600

800

m
in

a,
b,

x
||(

V
−

(a
11
>

+
bI

))
)/

b|
| F

Empirical validation of Theorem 4
Distance between V and Identity Matrix

Distance betweenK>(Q1 + qc)and 0 vector

0

2

4

6

8

10

||K
>

(Q
1+

q c
)||

0 10000 20000 30000 40000

Epochs

0

400

800

1200

1600

2000

m
in

a,
b,

x
||(

V
−

(a
11
>

+
bI

))
)/

b|
| F

Empirical validation of Conjecture 6
Distance between V and Identity Matrix

Distance betweenK>(Q1 + qc)and 0 vector

2.5

5.0

7.5

10.0

12.5

||K
>

(Q
1+

q c
)||

Figure G.1. Empirical validation of Theorem G.3 (top), Theorem G.2 (middle), and Conjecture 4 (bottom). The observed convergence in
Theorem G.3 and Conjecture 4’s result suggests that configuration in Theorem G.3 and Conjecture 4 are not only the local optimal point,
but it has the potential as being the global optimizer.

G.10. Discussions on the Production of FTRL with Entropy Regularization

Now, we will consider projecting a single-layer linear self-attention model into a constrained domain such as a simplex,
which is more amenable to the Experts Problem setting. To this end, we consider the following parameterization by adding
an additional non-linear structure for the single-layer linear self-attention:

g(Zt;V,K,Q, vc, kc, qc) = Operator

(
t∑

i=1

(V ℓi + vc)((Kℓi + kc))
⊺ · (Qc+ qc))

)
, (G.15)

where the Operator denotes projection to the convex set.

Conjecture 4. Assume Σ = I . Then, the configuration that K⊺(Qc + qc) = vc = 000d and V = Ω̃
(
− 1√

nd

)
Id×d is a

62

3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464

Do LLM Agents Have Regret?

first-order stationary point of Equation (5.2) with N = 1 and h(x) = x2 when LLMθ is parameterized with Equation (G.15),
Operator = Softmax, and Π = ∆(A). This configuration performs FTRL with an entropy regularizer which is a
no-regret algorithm.

We provide an idea for proving the conjecture, together with its numerical validation. Also, we have observed in Figure G.1
that Theorem G.3 and Conjecture 4 might also be a global optimizer, as training results have provided the configuration that
Theorem G.3 and Conjecture 4 have suggested.

To be specific, we will consider

f(V, a, β, vc) = E

 T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

2

and will try to prove that a = 000d, vc = v111d, V = kI is a first-order stationary point.

Step 1. Calculating ∂f
∂vc

.

We use the following formula: for x ∈ [d] and t ≥ 2, we have

∂

∂vcx
exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V =kI

= exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)
∂

∂vcx

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V =kI

= exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)
t∑

i=1

(a⊺ℓiℓ
⊺
i ex + β)

∣∣∣∣
a=000d,vc=v111d,V =kI

= tβ exp(vβ) exp(βk

t∑
i=1

ℓiy),

and for t = 1, ∂
∂vcx

exp
(
e⊺y
∑t

i=1(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)
) ∣∣∣∣

a=000d,vc=v111d,V=kI

= 0, so we can use the same

formula with t ≥ 2. Thus, we have

∂

∂vcx

 T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

∣∣∣∣
a=000d,vc=v111d,V =kI

= β exp(vβ)

T∑
t=1

t

d∑
s=1

ℓts

∑d
y=1 exp

(∑t−1
j=1 βkℓjy

)
exp

(∑t−1
j=1 βkℓjs

)
−
∑d

y=1 exp
(∑t−1

j=1 βkℓjs
)
exp

(∑t−1
j=1 βkℓjy

)
(∑d

y=1 exp
(
e⊺y
∑t−1

j=1 βV ℓj
))2

= 0.

Therefore,

∂f(V, a, β, vc)

∂vcx

∣∣∣∣
a=000d,vc=v111d,V=kI

= E

[T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

∂

∂vcx

 T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

]∣∣∣∣
a=000d,vc=v111d,V=kI

= 0.

63

3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519

Do LLM Agents Have Regret?

Step 2. Calculating ∂f
∂V .

The following formula will be used for calculating ∂f
∂V

∣∣∣∣
a=000d,vc=v111d,V=kI

: for r, c ∈ [d], we have

∂

∂Vrc
exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V=kI

= exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)
∂

∂Vrc

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V=kI

= exp

(
t∑

i=1

kβℓiy + vβ

)
t∑

i=1

β111(y = r)ℓic.

Therefore,

∂f(V, a, β, vc)

∂Vrc

∣∣∣∣
a=000d,vc=v111d,V =kI

= E

[T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

∂

∂Vrc

 T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

]∣∣∣∣
a=000d,vc=v111d,V =kI

= E

[T∑
t=1

d∑
s=1

ℓts
exp

(∑t−1
j=1 βkℓjs + vβ

)
∑d

y=1 exp
(∑t−1

j=1 βV ℓjy + vβ
) −min

s

T∑
t=1

ℓts

(

T∑
t=1

d∑
s=1

ℓts

∑t−1
j=1 β111(s = r)ℓjc exp

(∑t−1
j=1 βkℓjs + vβ

)∑d
y=1 exp

(∑t−1
j=1 βkℓjy + vβ

)
(∑d

y=1 exp
(∑t−1

j=1 βkℓjy + vβ
))2

−
T∑

t=1

d∑
s=1

ℓts
exp

(∑t−1
j=1 βkℓjs + vβ

)∑d
y=1

(∑t−1
j=1 β111(y = r)ℓjc exp

(∑t−1
j=1 βkℓjy + vβ

))
(∑d

y=1 exp
(∑t−1

j=1 βkℓjy + vβ
))2

)]

= βE

[T∑
t=1

d∑
s=1

ℓts
exp

(∑t−1
j=1 βkℓjs

)
∑d

y=1 exp
(∑t−1

j=1 βV ℓjy
) −min

s

T∑
t=1

ℓts

(∑T

t=1

∑t−1
j=1

∑d
y=1 ℓtrℓjc exp

(
βk
∑t−1

j=1 ℓjr
)
exp

(
βk
∑t−1

j=1 ℓjy
)

(∑d
y=1 exp

(
βk
∑t−1

j=1 ℓjy
))2

︸ ︷︷ ︸
(i)

−

∑T
t=1

∑t−1
j=1

∑d
y=1 ℓtyℓjc exp

(
βk
∑t−1

j=1 ℓjr
)
exp

(
βk
∑t−1

j=1 ℓjy
)

(∑d
y=1 exp

(
βk
∑t−1

j=1 ℓjy
))2

︸ ︷︷ ︸
(ii)

)]
.

We can observe the followings: 1) if r1 ̸= c1 and r2 ̸= c2, ∂f
∂Vr1c1

∣∣∣∣
a=000d,vc=v111d,V=kI

= ∂f
∂Vr2c2

∣∣∣∣
a=000d,vc=v111d,V=kI

holds,

and 2) ∂f
∂Vr1r1

∣∣∣∣
a=000d,vc=v111d,V=kI

= ∂f
∂Vr2r2

∣∣∣∣
a=000d,vc=v111d,V=kI

.

Step 3. Calculating ∂f
∂β .

64

3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574

Do LLM Agents Have Regret?

The following formula will be used for calculating ∂f
∂β

∣∣∣∣
a=000d,vc=v111d,V=kI

:

∂

∂β
exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V=kI

= exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)
∂

∂β

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V=kI

= tvβ exp

(
t∑

i=1

kβℓiy + vβ

)
.

Further, we have

∂

∂β

 T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

∣∣∣∣
a=000d,vc=v111d,V =kI

= vβ exp(vβ)

T∑
t=1

t

d∑
s=1

ℓts

∑d
y=1 exp

(∑t−1
j=1 βkℓjy

)
exp

(∑t−1
j=1 βkℓjs

)
−
∑d

y=1 exp
(∑t−1

j=1 βkℓjs
)
exp

(∑t−1
j=1 βkℓjy

)
(∑d

y=1 exp
(
e⊺y
∑t−1

j=1 βV ℓj
))2

= 0.

Step 4. Calculating ∂f
∂a .

Note that

∂

∂ax
exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V=kI

= exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)
∂

∂ax

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V=kI

= exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)
t∑

i=1

(
e⊺yV ℓiℓ

⊺
i ex + e⊺yvcℓ

⊺
i ex
) ∣∣∣∣

a=000d,vc=v111d,V=kI

= exp

(
t∑

i=1

βkℓiy + vβ

)
t∑

i=1

(kℓiyℓix + vℓix).

65

3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629

Do LLM Agents Have Regret?

Therefore,

∂f(V, a, β, vc)

∂ax

∣∣∣∣
a=000d,vc=v111d,V=kI

= E

[T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

∂

∂ax

 T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

]∣∣∣∣
a=000d,vc=v111d,V=kI

= E

[T∑
t=1

d∑
s=1

ℓts
exp

(∑t−1
j=1 βkℓjs

)
∑d

y=1 exp
(∑t−1

j=1 βkℓjy

) −min
s

T∑
t=1

ℓts

(

T∑
t=1

d∑
s=1

ℓts

∑t−1
j=1(kℓjsℓjx + vℓjx) exp

(∑t−1
j=1 βkℓjs

)∑d
y=1 exp

(∑t−1
j=1 βkℓjy

)
(∑d

y=1 exp
(∑t−1

j=1 βkℓjy

))2
−

T∑
t=1

d∑
s=1

ℓts
exp

(∑t−1
j=1 βkℓjs

)∑d
y=1

(∑t−1
j=1(kℓjyℓjx + vℓjx) exp

(∑t−1
j=1 βkℓjy

))
(∑d

y=1 exp
(∑t−1

j=1 βkℓjy

))2
)]

= E

[
k

 T∑
t=1

d∑
s=1

ℓts
exp

(∑t−1
j=1 βkℓjs

)
∑d

y=1 exp
(∑t−1

j=1 βkℓjy

) −min
s

T∑
t=1

ℓts

(

T∑
t=1

d∑
s=1

ℓts

∑t−1
j=1 ℓjsℓjx exp

(∑t−1
j=1 βkℓjs

)∑d
y=1 exp

(∑t−1
j=1 βkℓjy

)
(∑d

y=1 exp
(∑t−1

j=1 βkℓjy

))2
−

T∑
t=1

d∑
s=1

ℓts
exp

(∑t−1
j=1 βkℓjs

)∑d
y=1

(∑t−1
j=1 ℓjyℓjx exp

(∑t−1
j=1 βkℓjy

))
(∑d

y=1 exp
(∑t−1

j=1 βkℓjy

))2
)]

Note that the value does not depend on x, which means that ∂f
∂a

∣∣∣∣
a=000d,vc=v111d,V=kI

= c̃111d for some constant c̃.

G.10.1. NUMERICAL ANALYSIS OF STEP 2 AND STEP 4

In Steps 2 and 4 above, we were not able to show that a k whose value becomes zero exists. We hence provide

some empirical evidence here. First, we attach the estimated ∂f
∂Vrc

∣∣∣∣
a=000d,vc=v111d,V=kI

(r ̸= c), ∂f
∂Vrr

∣∣∣∣
a=000d,vc=v111d,V=kI

,

∂f
∂ax

∣∣∣∣
a=000d,vc=v111d,V=kI

and ∂f
∂ax

∣∣∣∣
a=000d,vc=v111d,V=kI

graph with respect to k value when ℓts ∼ Unif([0, 1]) for all t ∈

[T], s ∈ [d]. While the graph of ∂f
∂V

∣∣∣∣
a=000d,vc=v111d,V=kI

is not stable, we can see that k for ∂f
∂Vrc

∣∣∣∣
a=000d,vc=v111d,V=kI

= 0,

∂f
∂Vrr

∣∣∣∣
a=000d,vc=v111d,V=kI

= 0 and ∂f
∂ax

∣∣∣∣
a=000d,vc=v111d,V=kI

= 0 is very similar in Figure G.2. We used the Monte Carlo

estimation of 1, 000, 000 times.

G.10.2. EMPIRICAL VALIDATION

Our model architecture is defined as follows: the number of layers T is set to 30 and the dimensionality d to 32, with the
loss vector li’s distribution Z following a standard normal distribution N (0, 1). During training, we conducted 40,000
epochs with a batch size of 512. We employed the Adam optimizer, setting the learning rate to 0.001. We focus on

66

3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684

Do LLM Agents Have Regret?

two key convergence properties: K⊺(Q111 + qc) approaching the zero vector 000d and V converging to a111d111
⊺
d + bId×d,

where a and b are constants in R. The conditions K⊺(Q111 + qc) = 000d and V = a111d111
⊺
d + bId×d imply that the function

g(Zt;V,Q,K) =
∑t

i=1(b− a)li, effectively emulating the process of an online gradient descent method. We repeated 10
times. For verifying K⊺(Q111 + qc) = 000d, we will measure 2-norm of K⊺(Q111 + qc). Also for measuring the closeness of V
and a111d111

⊺
d + bId×d, we will measure mina,b∈R ∥V − (a111d111

⊺
d + bId×d)∥2,2/b. The results are demonstrated in the third plot

of Figure G.1.

G.11. Comparison with (Ahn et al., 2023; Zhang et al., 2023a; Mahankali et al., 2023)

The very recent studies by (Ahn et al., 2023; Zhang et al., 2023a; Mahankali et al., 2023) have demonstrated that if
Zt = ((x1, y1), . . . , (xt, yt), (xt+1, 0)) and the “instruction tuning” loss (i.e., E[∥ŷt+1 − yt+1∥2]) is being minimized with
a single-layer linear self-attention model, then a global optimizer among single-layer linear self-attention models yields
the output ŷn+1 = η

∑n
i=1 yix

⊺
i xn+1. This output can be interpreted as a gradient descent algorithm, indicating that a

single-layer linear self-attention model implicitly performs gradient descent. However, in the online learning setting where
there are no y-labels, such an implicit gradient descent update-rule is hard to define. Compared to the previous studies, our
global optimizer among single-layer linear self-attention models is an explicit and online gradient descent update for online
learning. With a different loss (regret-loss v.s. instruction-tuning-loss), the techniques to obtain the seemingly similar results
are also fundamentally different.

G.12. Details of Experiments for Regret-loss Minimization

Randomly generated loss sequences. We use the same loss vectors as those in Section 3.2 for randomly generated loss
functions, and compare the results with that using GPT-4. The results show that with regret-loss, both the trained single-layer
self-attention model and the trained Transformers with multi-layer self-attention structures can achieve comparable regrets
as FTRL and GPT-4. The results can be found in Figure G.3.

Loss sequences with certain trends. We investigate the case where the loss sequences have predictable trends such as
linear-trend or sine-trend. One might expect that the performance of the trained Transformer would surpass the performance
of traditional no-regret learning algorithms such as FTRL, since they may not be an optimal algorithm for the loss sequence
with a predictable trend. We modify the training distribution by changing the distribution of random variable Z (which
generates the loss vectors ℓt) to follow two kinds of trends: linear and sine functions. The results, as illustrated in Figure G.4,
show that the trained single-layer self-attention model and the trained Transformer with multi-layer self-attention structures
with regret-loss outperformed GPT-4 and FTRL in terms of regret, when the loss sequence is a linear trend. Similarly,
Figure G.4 shows that the trained Transformer with multi-layer self-attention structures with regret-loss is comparable to
GPT-4 and outperformed FTRL in terms of regret, when the loss sequence is a sine-trend. Note that the training dataset does
not contain the sequence of losses. Nonetheless, by focusing on the overall trend during training, we can attain performance
that is either superior to or on par with that of FTRL and GPT-4.

Repeated games. We then investigate the case of multi-player repeated games. We study 2x2, 3x3x3, 3x3x3x3 games,
where each entry of the payoff matrix is sampled randomly from Unif([0, 10]). The results, as illustrated in Figure G.5,
show that the trained single-layer self-attention model and the trained Transformer with multi-layer self-attention structures
with regret-loss have a similar performance as that of FTRL. However, GPT-4 still outperforms the trained single-layer
self-attention model and the trained Transformer with multi-layer self-attention structures in terms of regret. Since for
repeated games (in which the environment faced by the agent can be less adversarial than that in the online setting), there
might be a better algorithm than FTRL (see e.g., (Daskalakis et al., 2021)), while our self-attention models have a similar
structure as FTRL (Theorem G.3 or Theorem G.2). Also, in practical training (with the empirical loss in Equation (G.3)),
we possibly did not find the exact global minimum or stationary point of the expected loss in Equation (5.2). Hence, it is
possible that GPT-4 may have lower regret than our trained models with the regret-loss.

Two scenarios that caused regrettable behaviors of GPT-4. Finally, we investigate the cases that have caused GPT-4
to have regrettable performance in Section 3.2. The results, which can be found in Figure E.7, show that both the trained
single-layer self-attention model and the trained Transformer with regret-loss can achieve comparable no-regret performance
as FTRL, and outperforms that of GPT-4. This validates that our new unsupervised training loss can address the regrettable
cases, as our theory in Section 5.2 has predicted.

67

3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739

Do LLM Agents Have Regret?

G.12.1. TRAINING DETAILS OF EXPEIMENTS

For the multi-layer Transformer training, we used 4 layers, 1 head Transformer. For both single-layer and multi-layer, we
employed the Adam optimizer, setting the learning rate to 0.001. During training, we conducted 2,000 epochs with a batch
size 512. Moreover, when we trained for the loss sequences with the predictable trend, we used 4 layers, 1 head Transformer.
For both single-layer and multi-layer, we employed the Adam optimizer, setting the learning rate to 0.001. During training,
we conducted 9,000 epochs with a batch size of 512.

G.13. Ablation Study on Training Equation (5.2)

In this section, we provide an ablation study that changes N and k in Equation (5.2). To be specific, we will set N = 1, 2, 4,
f(x, k) = max(x, 0)k, h(x) = max(x, 0)2, and k = 1, 2. For the multi-layer Transformer training, we used 4 layers and
1 head Transformer. For both single-layer and multi-layer, we employed the Adam optimizer, setting the learning rate to
0.001. During training, we conducted 2,000 epochs with a batch size of 512. We experimented on the randomly generated
loss sequences. Especially, we used the uniform loss sequence (ℓt ∼ Unif([0, 10]2)), with the results in Figure G.6 and
Figure G.7; and the Gaussian loss sequence (ℓt ∼ N (5 · 1112, I)), with the results in Figure G.8 and Figure G.9.

68

3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794

Do LLM Agents Have Regret?

H. Limitations and Concluding Remarks
In this paper, we studied the online decision-making and strategic behaviors of LLMs quantitatively, through the metric of
regret. We first examined and validated the no-regret behavior of several representative pre-trained LLMs in benchmark
settings of online learning and games. As a consequence, (coarse correlated) equilibrium can oftentimes emerge as the
long-term outcome of multiple LLMs playing repeated games. We then provide some theoretical insights into the no-regret
behavior, by connecting pre-trained LLMs to the follow-the-perturbed-leader algorithm in online learning, under certain
assumptions. We also identified (simple) cases where pre-trained LLMs fail to be no-regret, and thus proposed a new
unsupervised training loss, regret-loss, to provably promote the no-regret behavior of Transformers without the labels of
(optimal) actions. We established both experimental and theoretical evidence for the effectiveness of our regret-loss.

As a first attempt toward rigorously understanding the online and strategic decision-making behaviors of LLMs through the
metric of regret, We provide the following limitations and list some potential directions for future research:

• There are more than one definitions of (dynamic-)regret in the online learning literature, and we mainly focused on the
so-called external-regret in the literature. There are some other regret metrics we have studied, e.g., swap-regret (Blum
& Mansour, 2007), which may lead to stronger equilibrium notions in playing repeated games.

• Our new regret-loss has exhibited promises in our experiments for training modest-scale Transformers. One limitation
is that we haven’t trained other larger-scale models, such as Foundation Models, for decision-making.

• No-regret behavior can sometimes lead to better outcomes in terms of social efficiency (Blum et al., 2008; Roughgarden,
2015; Nekipelov et al., 2015). It would thus be interesting to further validate the efficiency of no-regret LLM agents
in these scenarios, as well as identifying new prompts and training losses for LLMs to promote the efficiency of the
outcomes.

• To evaluate the performance quantitatively, we focused on online learning and games with numeric valued payoffs.
It would be interesting to connect our no-regret-based and game-theoretic framework with existing multi-LLM
frameworks, e.g., debate, collaborative problem-solving, and human/social behavior simulation, with potentially new
notions of regret (defined in different spaces) as performance metrics.

69

3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849

Do LLM Agents Have Regret?

Figure G.2. Calculation of 20 ∂f
∂Vrc

∣∣∣∣
a=000d,vc=v111d,V =kI

(r ̸= c)(red), 20 ∂f
∂Vrr

∣∣∣∣
a=000d,vc=v111d,V =kI

(blue), and ∂f
∂ax

∣∣∣∣
a=000d,vc=v111d,V =kI

(black). We experimented with n ∈ [4, 9] and d ∈ [4, 9]. The figure might indicate that βk that makes the derivative zero of
∂f

∂Vrc

∣∣∣∣
a=000d,vc=v111d,V =kI

(r ̸= c), ∂f
∂Vrr

∣∣∣∣
a=000d,vc=v111d,V =kI

, and ∂f
∂ax

∣∣∣∣
a=000d,vc=v111d,V =kI

would coincide.

70

3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904

Do LLM Agents Have Regret?

0 5 10 15 20 25

Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0
R

eg
re

t
Uniform

Single-layer: (ptrend, β̂0, preg)=(0.0, 0.43, 0.0)

Multi-layer: (ptrend, β̂0, preg)=(0.0, 0.47, 0.0)

FTRL: (ptrend, β̂0, preg)=(0.0, 0.45, 0.0)

GPT-4: (ptrend, β̂0, preg)=(0.0, 0.42, 0.0)

0 5 10 15 20 25

Iterations

0

1

2

3

4

R
eg

re
t

Gaussian
Single-layer: (ptrend, β̂0, preg)=(0.0, 0.4, 0.0)

Multi-layer: (ptrend, β̂0, preg)=(0.0, 0.39, 0.0)

FTRL: (ptrend, β̂0, preg)=(0.0, 0.4, 0.0)

GPT-4: (ptrend, β̂0, preg)=(0.0, 0.44, 0.0)

Figure G.3. Regret performance for the randomly generated loss sequences that are generated by Gaussian with truncation and uniform
distribution. No-regret behaviors of single-layer and multi-layer self-attention models are validated by both of our frameworks (low
p-values and β̂0 < 1).

0 5 10 15 20 25

Iterations

0

10

20

30

R
eg

re
t

Linear-trend
Single-layer: (ptrend, β̂0, preg)=(0.0, 0.51, 0.0)

Multi-layer: (ptrend, β̂0, preg)=(0.0, -0.13, 0.03)

FTRL: (ptrend, β̂0, preg)=(0.0, 0.62, 0.0)

GPT-4: (ptrend, β̂0, preg)=(0.0, 0.64, 0.0)

0 5 10 15 20 25

Iterations

−10

−5

0

5

10

15

20

R
eg

re
t

Sine-trend
Single-layer: (ptrend, β̂0, preg)=(0.0, 0.89, 0.0)

Multi-layer: (ptrend, β̂0, preg)=(0.0, -0.9, 0.19)

FTRL: (ptrend, β̂0, preg)=(0.0, 0.92, 0.0)

GPT-4: (ptrend, β̂0, preg)=(0.0, -0.2, 0.68)

Figure G.4. Regret performance for the randomly generated loss sequences that are generated by linear-trend and sine-trend. No-regret
behaviors of single-layer and multi-layer self-attention models are validated by both of our frameworks (low p-values and β̂0 < 1).

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

30

35

R
eg

re
t

Two-player games
Single-layer: (ptrend, β̂0, preg)=(0.0, 0.93, 0.0)

Multi-layer: (ptrend, β̂0, preg)=(0.0, 0.91, 0.0)

FTRL: (ptrend, β̂0, preg)=(0.0, 0.83, 0.0)

GPT-4: (ptrend, β̂0, preg)=(0.0, 0.67, 0.0)

0 5 10 15 20 25

Iterations

0

5

10

15

20

25

R
eg

re
t

Three-player games
Single-layer: (ptrend, β̂0, preg)=(0.0, 0.94, 0.0)

Multi-layer: (ptrend, β̂0, preg)=(0.0, 0.98, 0.0)

FTRL: (ptrend, β̂0, preg)=(0.0, 0.94, 0.0)

GPT-4: (ptrend, β̂0, preg)=(0.0, 0.69, 0.0)

0 5 10 15 20 25

Iterations

0

2

4

6

8

10

12

14

16

R
eg

re
t

Four-player games
Single-layer: (ptrend, β̂0, preg)=(0.0, 0.97, 0.0)

Multi-layer: (ptrend, β̂0, preg)=(0.0, 0.99, 0.0)

FTRL: (ptrend, β̂0, preg)=(0.0, 0.97, 0.0)

GPT-4: (ptrend, β̂0, preg)=(0.0, 0.79, 0.0)

Figure G.5. Regret performance for the game with two players, three players, and four players general-sum games. No-regret behaviors of
single-layer and multi-layer self-attention models are validated by both of our frameworks (low p-values and β̂0 < 1).

71

3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959

Do LLM Agents Have Regret?

0 10 20
Iterations

0

2

4

6

8

10

12
R

eg
re

t
N=1, k=1, model=single

Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.57, 0.0)
FTRL
GPT-4

0 10 20
Iterations

0

2

4

6

8

10

12

R
eg

re
t

N=2, k=1, model=single
Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.59, 0.0)
FTRL
GPT-4

0 10 20
Iterations

0

2

4

6

8

10

12

R
eg

re
t

N=4, k=1, model=single
Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.54, 0.0)
FTRL
GPT-4

0 10 20
Iterations

0

2

4

6

8

10

12

R
eg

re
t

N=1, k=2, model=single
Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.57, 0.0)
FTRL
GPT-4

0 10 20
Iterations

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

R
eg

re
t

N=2, k=2, model=single
Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.57, 0.0)
FTRL
GPT-4

0 10 20
Iterations

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

R
eg

re
t

N=4, k=2, model=single
Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.58, 0.0)
FTRL
GPT-4

Figure G.6. Ablation study for the uniform loss sequence trained with single-layer self-attention layer and Softmax projection.

0 10 20
Iterations

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
eg

re
t

N=1, k=1, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.59, 0.0)
FTRL
GPT-4

0 10 20
Iterations

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

R
eg

re
t

N=2, k=1, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.57, 0.0)
FTRL
GPT-4

0 10 20
Iterations

0

5

10

15

R
eg

re
t

N=4, k=1, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.6, 0.0)
FTRL
GPT-4

0 10 20
Iterations

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
eg

re
t

N=1, k=2, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.59, 0.0)
FTRL
GPT-4

0 10 20
Iterations

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

R
eg

re
t

N=2, k=2, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.55, 0.0)
FTRL
GPT-4

0 10 20
Iterations

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

R
eg

re
t

N=4, k=2, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.53, 0.0)
FTRL
GPT-4

Figure G.7. Ablation study for the uniform loss sequence trained with multi-layer self-attention layer and Softmax projection.

72

3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014

Do LLM Agents Have Regret?

0 5 10 15 20 25
Iterations

0

1

2

3

4
R

eg
re

t
N=1, k=1, model=single

Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.41, 0.0)
FTRL
GPT-4

0 5 10 15 20 25
Iterations

0

1

2

3

4

R
eg

re
t

N=2, k=1, model=single
Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.39, 0.0)
FTRL
GPT-4

0 5 10 15 20 25
Iterations

0

1

2

3

4

R
eg

re
t

N=4, k=1, model=single
Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.44, 0.0)
FTRL
GPT-4

0 5 10 15 20 25
Iterations

0

1

2

3

4

R
eg

re
t

N=1, k=2, model=single
Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.41, 0.0)
FTRL
GPT-4

0 5 10 15 20 25
Iterations

−1

0

1

2

3

4
R

eg
re

t
N=2, k=2, model=single

Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.44, 0.0)
FTRL
GPT-4

0 5 10 15 20 25
Iterations

−1

0

1

2

3

4

R
eg

re
t

N=4, k=2, model=single
Single-layer:
(ptrend, β̂0, preg)=(0.0, 2.42, 0.0)
FTRL
GPT-4

Figure G.8. Ablation study for the Gaussian loss sequence trained with single-layer self-attention layer and Softmax projection.

0 10 20
Iterations

−1

0

1

2

3

4

R
eg

re
t

N=1, k=1, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.43, 0.0)
FTRL
GPT-4

0 10 20
Iterations

0

1

2

3

4

R
eg

re
t

N=2, k=1, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.46, 0.0)
FTRL
GPT-4

0 10 20
Iterations

−1

0

1

2

3

4

R
eg

re
t

N=4, k=1, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.4, 0.0)
FTRL
GPT-4

0 10 20
Iterations

−1

0

1

2

3

4

R
eg

re
t

N=1, k=2, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.43, 0.0)
FTRL
GPT-4

0 10 20
Iterations

0

1

2

3

4

R
eg

re
t

N=2, k=2, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.55, 0.0)
FTRL
GPT-4

0 10 20
Iterations

−1

0

1

2

3

4

R
eg

re
t

N=4, k=2, model=multi
Multi-layer:
(ptrend, β̂0, preg)=(0.0, 2.72, 0.0)
FTRL
GPT-4

Figure G.9. Ablation study for the Gaussian loss sequence trained with single-layer self-attention layer and Softmax projection.

73

	Introduction
	Preliminaries
	Online Learning & Games
	Performance Metric: Regret

	Do Pre-Trained LLMs Have Regret? Experimental Validation
	Framework for No-Regret Behavior Validation
	Results: Online Learning
	Results: Multi-Player Repeated Games
	Pre-Trained LLM Agents May Still Have Regret

	Why Do Pre-Trained LLMs (Not) Have Regret? A Hypothetical Model and Some Theoretical Insights
	Provably Promoting No-Regret Behavior by an Unsupervised Loss
	A New Unsupervised Training Loss: Regret-Loss
	 Generalization and Regret Guarantees of Regret-Loss Minimization
	Minimizing Regret-Loss Can Automatically Produce Online Learning Algorithms

	Societal Impact
	Related Work
	Deferred Background
	Notation
	Additional Definitions for Appendix
	In-Context Learning
	Online Learning Algorithms
	Why Focusing on Linear Loss Function?
	Six Representative General-Sum Games

	Deferred Results and Proofs in sec:empiricalinsights
	Intuition why pre-trained language models may exhibit no-regret behavior
	Visualization of Interaction Protocols
	Framework for No-Regret Behavior Validation
	Deferred Figure for sec:experimentsonline
	Deferred Experiments for Non-stationary Environments in sec:experimentsonline
	Deferred Experiments for Bandit-feedback Environments in sec:experimentsonline
	Deferred Figures for sec:experimentsgames
	Deferred Explanation and Details for sec:yesregretexample
	Ablation Study on Prompts
	Ablation Study on Horizon Length
	Results for GPT-4 Turbo
	LLM Agents' Explanation on Their Output Policies

	Deferred Results and Proofs in sec:theoreticalinsights
	Pre-Trained LLMs Have Similar Regret as Humans (Who Generate Data)
	Background and Motivations for (Generalized) Quantal Response
	A (Human) Decision-Making Model: Quantal Response

	Detailed Explanation for the Meaning of z and Assumptions on Pre-training Distribution
	The Example Instantiating assump:decomp
	Alignment of assump:decomp with Quantal Response
	Relationship between FTPL and quantal
	Formal Statement and Proof of thm:ftpl-main
	Implications of thm:ftpl-main for Repeated Games

	Extending thm:ftpl-main with Relaxed Assumptions
	Relaxation under More General Data Distributions
	Relaxation under Decision-Irrelevant Pre-Training Data

	Comparison with lee2023supervised, lin2023transformers, liu2023reason
	How Well Can Cur Hypothetical Model Predict Actual LLMs' Behaviors?
	Details of Estimating the Parameters of Our Hypothetical Model

	Deferred Results and Proofs in sec:trained-transformer
	Regularity Conditions on f and h
	Basic Lemmas
	Deferred Proof for the Arguments in ssec:regret-loss
	Definition of the Empirical Loss Function
	Deferred Proofs of thm:generalization-error and coro:regretguarantee
	Detailed Explanation of Optimizing eqn:regret-loss with Single-layer Self-attention Model
	Deferred Proof of thm:single-softmax-layer-regret-minimizer
	Deferred Proof of thm:single-layer-regret-minimizer
	Empirical Validation of thm:single-softmax-layer-regret-minimizer and thm:single-layer-regret-minimizer
	Empirical Validation of thm:single-softmax-layer-regret-minimizer
	Empirical Validation of thm:single-layer-regret-minimizer

	Discussions on the Production of FTRL with Entropy Regularization
	Numerical Analysis of Step 2 and Step 4
	Empirical Validation

	Comparison with ahn2023transformers, zhang2023trained, mahankali2023one
	Details of Experiments for Regret-loss Minimization
	Training Details of Expeiments

	Ablation Study on Training eqn:regret-loss

	Limitations and Concluding Remarks

