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Abstract
Tractography is the process of virtually reconstructing the white matter structure of the
brain in a non-invasive manner. To tackle the various known problems of tractography,
deep learning has been proposed, but the lack of well curated diverse datasets makes
neural networks incapable of generalizing well on unseen data. Recently, deep reinforcement
learning (RL) has been shown to effectively learn the tractography procedure without
reference streamlines. While the performances reported were competitive, the proposed
framework is complex and little is known on the role and impact of its multiple parts.
In this work, we thoroughly explore the different components of the proposed framework
through seven experiments on two datasets and shed light on their impact. Our goal
is to guide researchers eager to explore the possibilities of deep RL for tractography by
exposing what works and what does not work with this category of approach. We find that
directionality is crucial for the agents to learn the tracking procedure and that the input
signal and the seeding strategy offer a trade-offs in connectivity vs. volume.
Keywords: Tractography, reinforcement learning

1. Introduction

Tractography has recently been posed as a reinforcement learning (RL) problem (Théberge
et al., 2021) so as to leverage the expressiveness of machine learning without the need
for hard-to-obtain reference streamlines. Agents trained with this procedure demonstrated
competitive performance compared to their supervised and classical alternatives on in-silico
and in-vivo datasets.

Track-to-Learn (Théberge et al., 2021) is the only deep RL tractography method avail-
able as of today. However, it is a complex framework with many moving parts. In their
original paper, the authors report results for only one configuration of input signal, seeding
strategy, etc. It is thus unclear from that only paper what the effects of each compo-
nents truly are. In this work, we explore the impacts of different instantiations
of Track-to-Learn to assess the do’s and don’ts of reinforcement learning for
tractography.

2. Experiments

For each experiment, we vary only one component of the Track-to-Learn framework. (1)
we report baseline performance by training a learning agent with the same framework
components originally defined. (2) We then investigate the usefulness of the retracking
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procedure when seeding from the white matter (WM) by removing it. (3) We further
investigate the effects of the seeding strategy by instead seeding from the gray-matter/white-
matter interface (GM/WM). (4) we gauge the effects of the components of the input signal
by (4.1) using the raw diffusion signal instead of fiber ODF (fODF) SH coefficients, (4.2)
removing the WM mask, (4.3) including 0 previous directions, (4.4) including 2 previous
directions.

Two datasets were used for training and testing the agents: the FiberCup (Fillard et al.,
2011) and the ISMRM2015 (Maier-Hein et al., 2017) synthetic phantoms. Per experiment
and dataset, five agents were trained for 1000 epochs using the SAC algorithm (Haarnoja
et al., 2018). A grid-search on the learning rate and discount factor were done for each
experiment and dataset. Actors and critics each use three-layer, 1024-neurons wide fully
connected networks. The Adam optimizer was used to update weights. States st are the
concatenation of the input signal in the voxel and its six neighbours at the head of the
streamline and the last n directions, depending on the experiment. We use the same reward
function as in (Théberge et al., 2021):

rt = |max
pi

⟨pi,at⟩| · ⟨at,u−1⟩ (1)

where pi are the fODF peaks at the head of the streamline, at is the 3D vector produced
by the agents, u−1 is the last streamline segment, pi,at,u−1 are unit vectors. Tracking and
seeding parameters were the same as in (Théberge et al., 2021). The Tractometer (Côté
et al., 2013) was used to measure valid connections ratio (VC), number of valid bundles
(VB), invalid connections ratio (IC), overlap ratio (OL) and no-connections ratio (NC). We
compare the results of our agents to the Particle Filtering Tractography (PFT) classical
algorithm (Girard et al., 2014) using both WM and GM/WM interface seeding.

3. Results

Table 1 reports mean scores extracted by the Tractometer from five tractograms per agent
for all experiments and the PFT algorithms on the two datasets. First, we can observe
that the RL agents in experiment 1 produce more accurate reconstructions (in terms of
VC) than their classical PFT counterpart. The RL agents also produced fewer invalid (IC)
and broken (NC) streamlines. The classical algorithm, however, produced fuller bundles
(OL) and a comparable or higher number of bundles (VB). We can observe that some
components are essential to the framework: removing the retracking procedure negatively
impacted the reconstructed tractograms. Removing all previous directions prevented the
agents from learning the tractography procedure entirely, but including only two directions
did not significantly impact the performances. Some components in the framework offered
a tradeoff in metrics: removing the WM mask or using the raw diffusion signal produced
fuller tractograms, at the expense of valid connections. Seeding from the interface greatly
improved the VC rate and reduced the NC and IC rates, but lowered overlap. Empirically,
we also found that interface seeding greatly improved tracking time and stabilized training.

4. Conclusion

Results presented in this work reveal that reinforcement learning for tractography is a truly
competitive ML-based alternative to classical algorithms. It also underlines the impacts of
some of the Track-to-Learn components: directionality plays a crucial role in the learning
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Do’s and don’ts

Table 1: Scores computed by the Tractometer. Bold indicates per dataset best results
when compared to experiment 1. ↑ / ↓ indicates if higher or lower is better.

VC % ↑ VB ↑ IC % ↓ OL % ↑ NC % ↓
F
ib
e
rC

u
p

PFT WM 27.9 7.0 13.7 99.4 58.3
PFT Interf. 29.1 7.0 11.46 97.8 59.3
1 Baseline 82.7 7.0 7.11 87.7 10.2
2 No retrack 10.7 7.0 4.4 75.2 85.0
3 Interf. seed. 87.2 7.0 10.2 72.7 2.6
4.1 Raw diff. 76.3 7.0 12.6 89.2 11.1
4.2 No WM 83.7 7.0 6.5 87.4 9.8
4.3 0 dirs. 8.1 4.0 18.1 21.2 73.8
4.4 2 dirs. 78.9 7.0 12.6 88.6 8.5

IS
M

R
M

2
0
1
5

PFT WM 61.0 24.0 30.1 78.5 8.9
PFT Interf. 54.1 23.2 29.0 40.0 17.0
1 Baseline 69.5 23.2 23.0 52.7 7.5
2 No retrack 42.5 23.0 41.7 39.7 15.8
3 Interf. seed. 74.7 23.0 18.3 31.6 7.0
4.1 Raw diff. 68.3 23.2 22.7 52.6 8.9
4.2 No WM 68.1 23.2 24.5 54.4 7.4
4.3 0 dirs. 7.5 12.4 49.5 2.3 43.0
4.4 2 dirs. 70.6 23.0 21.8 52.9 7.6

procedure, but including two directions instead of four suffices. The retracking method was
also shown to be crucially important. Varying the input signal and seeding strategy may
allow the user to prioritize either volume reconstruction or connectivity.
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Côté et al. Tractometer: Towards validation of tractography pipelines. Medical Image
Analysis, 17(7):844–857, 2013. ISSN 1361-8415. doi: 10.1016/j.media.2013.03.009.

Fillard et al. Quantitative evaluation of 10 tractography algorithms on a realistic diffu-
sion MR phantom. NeuroImage, 56(1):220–234, 2011. ISSN 1053-8119. doi: 10.1016/j.
neuroimage.2011.01.032.

Girard et al. Towards quantitative connectivity analysis: reducing tractography biases.
Neuroimage, 98:266–278, 2014.

Haarnoja et al. Soft actor-critic algorithms and applications. ArXiv, abs/1812.05905, 2018.

Maier-Hein et al. The challenge of mapping the human connectome based on diffusion
tractography. Nature Communications, 8(1):1–13, 2017. ISSN 2041-1723. doi: 10.1038/
s41467-017-01285-x.
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