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Abstract

Reinforcement learning (RL) has become a key driver of language model reasoning.
Among RL algorithms, Group Relative Policy Optimization (GRPO) is the de facto
standard, avoiding the need for a critic by using per-prompt baselines and variance
normalization. Yet, the role of normalization remains unclear. In this work, we pro-
vide an explanation through the lens of local curvature of the sequence-level policy
gradient. We show that standard deviation normalization implements an adaptive
gradient, improving convergence when curvature varies across prompts and across
iterations. Furthermore, empirical studies on synthetic tasks and GSM8K confirm
that normalization consistently improves stability and convergence, especially on
harder problems with high reward variance. By establishing the connection be-
tween normalization and adaptive gradient, we provide a theoretical foundation
for the empirical success of GRPO and offers broader insights into the design of
critic-free RL algorithms for LLM training.

1 Introduction

Large language models (LLMs) have recently exhibited striking gains in multi-step reasoning,
particularly when a lightweight reinforcement-learning (RL) stage is applied on top of a strong,
pretrained and instruction-tuned base model. Among the many post-training recipes, Group Relative
Policy Optimization (GRPO) has emerged as a practical, critic-free alternative that has powered some
of the most visible reasoning systems [26], where it consistently improves solution accuracy under
tight compute budgets.

While Proximal Policy Optimization (PPO) [25] remains a popular default in RLHF pipelines, it
couples the policy with a learned value-function critic (and often GAE [24]). This increases memory
footprint and implementation complexity, since the environment is a pretrained LLM and rewards
arrive only at the end of whole sequences. This has renewed interest in critic-free policy-gradient
methods that operate at the sequence level, such as REINFORCE-style method (ReMax [13] and its
multi-sample extension RLOO [2]), which often match or outperform PPO for LLM alignment while
being simpler and lighter-weight.
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†Co-last authors
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Classical REINFORCE [31] reduces gradient variance by subtracting a baseline (e.g., a running mean
reward), yielding an unbiased estimator with lower variance [7]. This is textbook policy-gradient
variance reduction. GRPO goes one step further: for each prompt, it samples multiple responses from
the current policy, computes the group mean reward as a baseline, and normalizes each response’s
update by the within-prompt reward standard deviation, which effectively uses a per-prompt z-scored
advantage [26]. Empirically, this simple normalization has been repeatedly observed to stabilize
optimization and improve sample-efficiency in LLM RL [11]. Yet, the underlying mechanism of this
normalization step has not been theoretically clarified.

What, exactly, does normalization do? In this work, we provide a principled explanation of why
GRPO benefits from it. Our key insight is that the reward variance of each question serves as an
estimate of the local Lipschitz constant of the policy gradient, i.e., its local curvature. Standard
deviation normalization therefore acts as an adaptive gradient mechanism, scaling updates according
to the smoothness of each question. In effect, it sets step sizes proportional to the inverse of the
local curvature, which improves both stability and convergence when curvature varies significantly
across questions and iterations. This perspective explains why GRPO consistently outperforms
unnormalized policy gradient methods.

We provide both empirical and theoretical evidence to support this explanation. Our contributions
can be summarized as follows:

• Theoretical results on sequence-level bandit. We show that, under a standard sequence-level
bandit formulation, the per-prompt reward variance controls the local Lipschitz constant of the
prompt-specific policy-gradient. Consequently, REINFORCE applies a single learning rate across
heterogeneous prompts, whereas GRPO’s variance normalization implements a prompt-wise and
iteration-wise adaptive step size aligned with the local curvature, allowing adaptation across
both prompts and iterations. Under an intuitive assumption of orthogonal representation, which
guarantees that the gradients associated with different questions are orthogonal, we prove that
GRPO attains provably faster convergence than unnormalized REINFORCE.

• Empirical validation. We validate our theory through (i) orthogonality checks of question repre-
sentations, (ii) comparisons of three normalization strategies on GSM8K across difficulty levels,
and (iii) synthetic tasks varying reward variance. Standard deviation normalization consistently im-
proves stability and convergence under high variance, supporting our curvature-based explanation.

Our results explain why GRPO needs normalization: it is not only variance reduction, but a principled
adaptive gradient mechanism that adapts learning to per-prompt curvature. Our work provides a
theoretical foundation for the empirical success of GRPO and offers broader insights into the design
of critic-free RL algorithms for LLM training.

1.1 Related works

REINFORCE-style PG methods. ReMax proposes a simple sequence-level REINFORCE ob-
jective for LLM alignment with strong performance and minimal complexity [13]. RLOO extends
this by sampling multiple responses per prompt and using a leave-one-out baseline to further reduce
variance [2]. REINFORCE++ continues this line, emphasizing simplicity and efficiency at scale [9].

GRPO and its variants. GRPO has become the default in state-of-the-art reasoning systems,
combining a per-prompt baseline with within-prompt standard-deviation normalization [26]. Large-
scale systems work (e.g., DAPO) has consolidated GRPO-style training across diverse tasks and
compute regimes [33]. Related analyses examine design choices in normalization and sampling [17].

Emerging theory for GRPO. Recent studies analyze what GRPO optimizes and how it behaves
in on- and off-policy regimes [20], its implicit alignment objective [29], and trajectory-corrected
variants with convergence guarantees [22]. Other work highlights a trade-off between normalization
and calibration, showing that removing the std term can improve probability calibration at the cost
of optimization speed [3]. We contribute a new perspective: interpreting the std term as an adaptive
gradient mechanism tied to local curvature, thereby unifying disparate empirical observations.

RLVR. Reinforcement learning with verifiable rewards (RLVR) has emerged as an effective
paradigm for reasoning-intensive domains. Unlike RLHF, which relies on a learned reward model,
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RLVR uses deterministic, verifiable rewards such as correctness checks [12, 8, 28, 30]. This avoids
reward-model bias and simplifies training, while scaling effectively with compute and dataset size.
Strong results have been reported on GSM8K, MATH, Omni-MATH, and FormalMATH [35, 16].
In this paper, we study GRPO in the RLVR setting, where deterministic rewards enable sharper
theoretical analysis of normalization and its role in adaptive gradient updates.

2 Preliminaries and problem settings

We begin by formalizing the RLVR framework for LLM training and reviewing the GRPO algorithm.
Then, we present our choice of policy parametrization along with the update details.

Notation. For a finite set X , we use ∆(X ) to denote the set of probability distributions over X .
By default, all vectors are column vectors. Unless specified, ∥ · ∥ = ∥ · ∥2 will always denote
the standard 2-norm for vectors, and the spectral norm for matrices. We use diag(v) ∈ Rm×m to
denote the diagonal matrix that has v ∈ Rm at its diagonal. We also use the shorthand notation
[m] := {1, . . . ,m} and B(v, r) := {x ∈ Rm | ∥x− v∥2 ≤ r}.
We say that a continuously differentiable function f : Rm → Rn is K-Lipschitz continuous if for
all x ∈ Rm, we have ∥∇f(x)∥ ≤ K. We say that f : Rn → R is ρ−weakly convex over B(v, r) if
f + ρ

2∥ · ∥
2 is convex over B(v, r); it is L−smooth over B(v, r) if for all x1,x2 ∈ B(v, r), we have

∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥.

An L−smooth function over B(v, r) is automatically L−weakly convex over B(v, r). From now
on, we will not distinguish between a Lipschitz smooth function and a function with a Lipschitz
continuous gradient. Also, we will not differentiate among the Lipschitz smoothness constant, the
Lipschitz continuity constant of the gradient, and the curvature.

2.1 Problem setup

RLVR. We adopt a sequence-level RL with verifiable reward formulation for LLM training. RLVR
[12, 8, 28, 30] has recently gained attention as an effective approach for enhancing the reasoning
performance of LLMs. Let Q = {q1, . . . , qn} be the set of questions and O = {o1, . . . , oK} be the
set of possible output sequences. A predefined deterministic reward function r : Q×O → {0, 1}
evaluates whether the output o ∈ O for a certain q ∈ Q is correct or not. Specifically, r(q, o) = 1 if
the response is correct and r(q, o) = 0 otherwise. Given a question q an LLM generates the response
o ∼ πθ(q) using a stochastic policy πθ : Q → ∆(O) parameterized by θ ∈ Θ. The goal of RLVR is
to learn a policy that maximizes the expected reward:

J(θ) :=
1

n

n∑
i=1

Ji(θ) =
1

n

n∑
i=1

Eo∼πθ(·|qi)[r(o, qi)] (1)

where Ji(θ) := Eo∼πθ(·|qi)[r(o, qi)] denotes the expect reward of policy πθ for question qi.

Remark 1. In the scenario of LLM alignment (e.g., RLHF), to mitigate over-optimization of the
reward model, an additional KL penalty term is often added:

JKL(θ) =
1

n

n∑
i=1

Eo∼πθ(·|qi)[r(o, qi)]− βKL(πθ∥πref),

where β ≥ 0 is the regularization parameter and πref corresponds to the reference policy, which
is often the model after the Supervised Fine-Tuning (SFT) stage [26]. For RLVR, recent studies
[4, 10] have shown that the KL term can be ignored when other hyperparameters are carefully set,
and JKL(θ) reduces exactly to J(θ) for β = 0.

In this paper, we analyze a simplified on-policy setting with exact parameter updates for randomly
selected questions. Specifically, at each iteration, a question qi is sampled uniformly from Q, and the
corresponding gradient∇Ji(θ) can be computed exactly.
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REINFORCE. Before we introduce GRPO, we first review the classical policy gradient algorithm
REINFORCE. REINFORCE [31] appears well-suited for LLM alignment as it efficiently estimates
the gradient with a single query of the language and reward model. Furthermore, it does not require
training a value model, making it computationally more efficient compared to PPO. Nevertheless,
REINFORCE suffers from a large variance in its stochastic gradients [13]. In this paper, we focus on
the exact setting where the full gradient is computed for randomly selected questions. In this context,
all critic-free policy gradient methods, including REINFORCE, reduce to the vanilla policy gradient
method, as shown in Algorithm 1.

Algorithm 1 Critic-free Policy Gradient Method

Input: learning rate η > 0, initial parameter θ0.
for t = 1 to T do

Select i(t) uniformly at random from {1, . . . , n}
θt ← θt−1 + η∇Ji(t)(θt−1)

end for
Return: final policy πθT−1

PPO. PPO [25] is an actor-critic RL algorithm that is widely used in LLM alignment [21, 23].
Unlike REINFORCE, a critic model is trained alongside the actor model to estimate the state-value
function for the current policy. In particular, the objective function of PPO is given by:

JPPO(θ) =
1

n

n∑
i=1

Eo∼πθold (·|qi)

[
min

(
γi(o)Ai(o), clip(γi(o), 1− ϵ, 1 + ϵ)Ai(o)

)]
, (2)

where ϵ is the clipping parameter, and γi(o) :=
πθ(o|qi)
πθold (o|qi)

is the importance ratio between the current
policy πθ and the old policy πθold . The advantage Ai(o) is calculated using Generalized Advantage
Estimation (GAE) with a learned value-function critic. The requirement of an additional critic model
causes substantial computational overhead and memory demands for LLM training.

2.2 GRPO

GRPO, introduced in DeepSeek-Math [26] and DeepSeek-R1 [8], builds upon the computational
efficiency of REINFORCE by eliminating the learned value-function critic but significantly enhances
its effectiveness. It computes the group mean reward as a baseline, and normalizes each response’s
update by the within-prompt reward standard deviation. Under the sequence-level RL setting, the
GRPO objective closely resembles the PPO objective (2):

1

n

n∑
i=1

Eo∼πθold (·|qi)

[
min

(
γi(o)Ai(o), clip(γi(o), 1− ϵ, 1 + ϵ)Ai(o)

)]
, (3)

differing only in the advantage term Ai(o). Specifically, the advantage Ai(o) is given by:

Ai(o) :=
r(qi, o)− Eo′∼πθold (·|qi) [r (qi, o

′)]√
Varo′∼πθold (·|q) [r (qi, o

′)]
,

where no critic model is required. Now we impose the assumption that each question in Q admits a
unique correct answer in O, an assumption that is commonly adopted in the theoretical analysis of
RL algorithms [18, 19, 14]:

Assumption 1 (Unique correct answer). For any q ∈ Q, there exists a unique o∗(q) ∈ O such that
r(q, o∗(q)) = 1.

Under Assumption 1, we use ai to denote the index of correct answer for question qi ∈ Q:

r(qi, oj) =

{
1, if j = ai
0, if j ̸= ai,

(4)
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and use ri ∈ RK to denote the reward vector for question qi: [ri]j = r(qi, oj) ∀j ∈ [K]. We
consider the on-policy scenario where πθ = πθold , and the reward function has a unique correct answer.
Therefore, the importance ratio remains to be γi(o) = 1, and

Ai(o) =
r(qi, o)− π∗

θ(i)√
π∗
θ(i)

(
1− π∗

θ(i)
) . (5)

where π∗
θ(i) := πθ(oai

| qi) denotes the success probability of policy πθ on question qi. The GRPO
objective can be further simplified as:

JGRPO(θ) =
1

n

n∑
i=1

J i
GRPO(θ) :=

1

n

n∑
i=1

Eo∼πθ

[
Ai(o)

]
=

1

n

n∑
i=1

Eo∼πθ

 r(qi, o)− π∗
θ(i)√

π∗
θ(i)

(
1− π∗

θ(i)
)
 .

We also denote πθ(i) ∈ RK as the probability vector for πθ in question i, that is, [πθ(i)]j := πθ(oj |
qi),∀j ∈ [K]. Under the exact parameter updates setting, the gradient of GRPO does not change
when removing the baseline. We term such an algorithm as (on-policy) GRPO. Our key observation
is that the variance normalization in GRPO implicitly implements an adaptive step size. In particular,

∇J i
GRPO(θ) = Eo∼πθ

[Ai(o)∇ lnπθ(o | qi)] = Eo∼πθ

 r(qi, o)√
π∗
θ(i)

(
1− π∗

θ(i)
)∇ lnπθ(o | qi)


=

Eo∼πθ
[r(qi, o)∇ lnπθ(o | qi)]√
π∗
θ(i)

(
1− π∗

θ(i)
) =

∇Ji(θ)√
π∗
θ(i)

(
1− π∗

θ(i)
) .

(6)

for all i ∈ [n]. The first and last equalities follow from the policy gradient theorem [27]. The second
equality holds because subtracting a constant baseline does not affect the gradient calculation. The
third equality follows from the fact that Ai(o) is treated as constant in the gradient propagation. The
pseudo-code for on-policy GRPO in the exact setting is provided in Algorithm 2.

Algorithm 2 On-policy GRPO

Input: learning rate η > 0, initial parameter θ0.
for t = 1 to T do

Select i(t) uniformly at random from {1, . . . , n}
θt ← θt−1 + η

∇Ji(t)(θt−1)√
π∗
θt−1

(i(t))
(
1−π∗

θt−1
(i(t))

)
end for
Return: final policy πθT−1

Policy parametrization and updates. In this paper, we focus on the log-linear policy parametriza-
tion [1, 34]. Specifically, we assume that for each question-output pair (qi, oj), there exists a constant
feature vector xi,j ∈ Rd and the policy is given by:

πθ(oj | qi) :=
exp(x⊤

i,jθ)∑K
l=1 exp(x

⊤
i,lθ)

. (7)

We denote Xi ∈ RK×d as the feature matrix for question qi: Xi := (xi,1, · · · ,xi,K)
⊤
. For ease of

notation, we simply drop t from i(t) whenever it clear in context. The update of Algorithm 1 takes
the following form [14]:

θt ← θt−1 + ηX⊤
i

(
diag

(
πθt−1(i)

)
− πθt−1(i)π

⊤
θt−1

(i)
)
ri. (8)
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Under Assumption 1, the update of REINFORCE (Algorithm 1) can be simplified as:

θt ← θt−1 + η
(
π∗
θt−1

(i)(1− π∗
θt−1

(i)xi,ai
− π∗

θt−1
(i)

∑
j ̸=ai

[πθt−1
(i)]j · xi,j

)
. (9)

Similarly, the update of GRPO (Algorithm 2) can be simplified as:

θt ← θt−1 + η
(√

π∗
θt−1

(i)(1− π∗
θt−1

(i))xi,ai
−

√
π∗
θt−1

(i)

1− π∗
θt−1

(i)

∑
j ̸=ai

[πθt−1(i)]j · xi,j

)
. (10)

3 Theoretical results

In this section, we provide the convergence analysis for REINFORCE-style PG methods and GRPO
in the exact setting. We show that GRPO achieves provably faster convergence than unnormalized
REINFORCE. Note that PG methods with linear function approximation may fail to converge to the
optimal policy [14]. Therefore, our analysis focuses on the convergence rate toward stationary points.

3.1 Local smoothness of objective function

We begin by relating reward variance to the smoothness of the objective. Let Xmax = maxi∈[n] ∥Xi∥.

Lemma 1. Under Assumption 1, for all i ∈ [n] and θ ∈ Rd,

∥∇2Ji(θ)∥ ≤ 4X2
max · π∗

θ(i)
(
1− π∗

θ(i)
)
= 4X2

max ·Var(πθ(i)). (11)

The proof is provided in Appendix A.1. This result shows that the local smoothness constant of Ji(θ)
is proportional to the reward variance on qi under policy πθ.

Corollary 1. Under Assumption 1, for all i ∈ [n] and θ ∈ Rd,

∥∇2Ji(θ)∥ ≤ X2
max, (12)

so that Ji(θ) is X2
max-smooth on Rd.

For deterministic gradient descent on an L-smooth function, a step size of 1/L is a standard choice
[6]. By Lemma 1, it is thus natural to adaptively adjust the step size according to the local smoothness
constant of each Ji(θ), which varies across questions. GRPO achieves exactly this: variance
normalization implicitly implements an adaptive step size matched to the local curvature of each
prompt, providing a key explanation for its advantage over REINFORCE.

3.2 Orthogonal representation assumption

To extend this intuition from per-question objectives Ji to the averaged objective J = 1
n

∑
i Ji, we

must also control the interaction between different questions. In particular, we need to ensure that
gradients for different prompts do not interfere destructively. Empirically, we observe in Section 4.1
that gradients associated with different questions are nearly orthogonal. Motivated by this, we adopt
the following assumptions to facilitate analysis:

Assumption 2 (Orthogonal representation). For all i, j ∈ [n] with i ̸= j, we have X⊤
i Xj = 0.

This assumption guarantees that the gradients associated with different questions are orthogonal,
simplifying the analysis of convergence for both REINFORCE and GRPO.

To show the convergence guarantee for GRPO, we further impose the following assumption on the
bound of within-prompt Bernoulli variance at every step:

Assumption 3 (Bounded variance). For each i ∈ [n], there exists a positive sequence {Ci(t)}∞t=1√
π∗
θt
(i)

(
1− π∗

θt
(i)

)
≤ Ci(t) ≤

1

2
.
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3.3 Convergence result

We established that the local smoothness constant of each question can be estimated through the
variance of rewards. Before presenting the convergence result for Algorithm 1 and 2, we further
characterize the local smoothness constant at each iteration via the following lemmas:

Lemma 2. Under Assumption 1, for all i ∈ [n], Ji(θ) is 1
2Xmax−Lipschitz over Rd.

Lemma 3 (Non-uniform local smoothness). Under Assumption 1, for all i ∈ [n] and θ ∈ Rd, Ji(θ)
is 5

2X
2
max ·

√
π∗
θ(i)(1− π∗

θ(i))−smooth over B(θ, 1
Xmax

·
√

π∗
θ(i)(1− π∗

θ(i))).

The proofs are available in Appendix A.2 and A.3. We now present our two main theorems, which
establish the convergence guarantees for Algorithm 1 and Algorithm 2, respectively. Their proofs are
deferred in Appendix B:

Theorem 1 (Convergence rate of REINFORCE). Under Assumption 1 and Assumption 2, with the
step size η = 1

X2
max

, the following holds:

E[Ji(θt)]− E[Ji(θt−1)] ≤ −
1

2nX2
max

E[∥∇Ji(θt−1)∥2].

Moreover, we have

T∑
t=1

E[∥∇Ji(θt)∥2] ≤ 2n(1− π∗
θ0(i))X

2
max,

min
t∈[T ]

E[∥∇Ji(θt)∥2] ≤
2n(1− π∗

θ0
(i))X2

max

T
.

Theorem 2 (Convergence rate of GRPO). Under Assumption 1-3 with the step size η = 1
2X2

max
, we

have

E[Ji(θt)]− E[Ji(θt−1)] ≤ −
3

16nX2
max Ci(t)

E[∥∇Ji(θt−1)∥2],

Moreover, we have

T∑
t=1

E[∥∇Ji(θt)∥2] ≤ 2n(1− π∗
θ0(i))X

2
max ·

8

3T

T−1∑
t=0

Ci(t),

min
t∈[T ]

E[∥∇Ji(θt)∥2] ≤
2n(1− π∗

θ0
(i))X2

max

T
· 8

3T

T−1∑
t=0

Ci(t).

According to Assumption 3, we use 1
T

∑T−1
i=0

√
π∗
θt
(i)

(
1− π∗

θt
(i)

)
as an estimation of

1
T

∑T−1
t=0 Ci(t) in Theorem 2. Comparing Theorems 1 and 2, we observe that GRPO attains an

average better convergence bound than the standard REINFORCE-style policy gradient methods,
particularly if the constant factor

C(n, T ) :=

n∑
i=1

T−1∑
j=0

8
√

π∗
θj
(i)

(
1− π∗

θj
(i)

)
3nT

=

n∑
i=1

8
∑T−1

j=0

√
Var(πθj )

3nT
< 1.

Here, C(n, T ) represents the average over prompts i and iterations j of the within-prompt Bernoulli
standard deviation. C(n, T ) is typically much smaller than 1 when the question set contains diverse
questions with varying levels of difficulty. A similar improvement can also be obtained in settings
where the curvature varies across iterations. A more detailed discussion of the conditions under which
C(n, T ) = o(1) is provided in Appendix C.
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(a) Distribution of absolute cosine similarity (| cos |) (b) Inverse CDF of absolute cosine similarity (| cos |)

Figure 1: Empirical validation of near-orthogonality assumption. (a) Histogram of absolute cosine
similarities between question pairs. (b) Inverse CDF showing tail behavior.

4 Empirical studies

4.1 Validation of Orthogonal Assumption

A key assumption in our analysis is that representations of different training examples are nearly
orthogonal in high-dimensional space. Formally, for two distinct questions i ̸= j, we expect

⟨vi, vj⟩
∥vi∥∥vj∥

≈ 0, (13)

where vi denotes the representation vector (e.g., penultimate-layer hidden state) of question i. This
assumption simplifies the analysis by ensuring cross-question interference is negligible.

We validate Assumption 2 on GSM8K [5] using Qwen2.5-MATH-1.5B [32]. For 1,000 random
pairs of distinct questions, we extracted penultimate hidden states, pooled them into sentence-level
embeddings, and measured absolute cosine similarities. As shown in Figure 1a, similarities are
sharply concentrated near zero (mean ≈ 0.088, std ≈ 0.064). The inverse CDF in Figure 1b further
shows that over 90% of pairs have similarity below 0.15, supporting the orthogonality assumption.

4.2 Validation of Local Curvature-Variance Connection

Table 1: Temporal Independence of Fisher Information and Reward Variance

Time Lag Mean Correlation Significant (p < 0.05)

Same time (∆t = 0) 0.342 Yes (0.008)
Different times (∆t ̸= 0) -0.028 No (0.18)

In our implementation, we compute the Fisher Information matrix following the efficient esti-
mator proposed by [15]. Given a batch of prompts {qi}Bi=1 at iteration t, we: 1. Sample re-
sponses ôi ∼ πθt(·|qi) for each prompt qi 2. Compute the mini-batch gradient: ∇L̂B(θt) =
1
B

∑B
i=1∇ log πθt(ôi|qi) 3. Estimate the diagonal Fisher Information using the efficient estima-

tor: h(θt) = diag(F̂eff(θt)) = B · ∇L̂B(θt) ⊙ ∇L̂B(θt), where this estimator remains unbiased:
Eô[diag(F̂eff(θ))] = Eô[diag(F̂ (θ))](the expectation is taken over the sampled responses). The result-
ing Fisher Information h(θt) serves as our curvature proxy, capturing the local smoothness of the loss
landscape. In Table 1, prompt-level Fisher entries correlate with reward-variance at the same iteration
(mean Pearson ≈ 0.34, p< 0.01) but not across different times, indicating the curvature–variance
link is local in time and supports the result shown in Lemma 1.
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Figure 2: Training reward standard deviation on GSM8K-easy. Normalized GRPO (standard,
orange) rapidly reduces reward variance around ∼100 iterations and remains near zero, while no_std
(blue) exhibits larger, persistent fluctuations. The reduced variance increases the signal-to-noise ratio
of policy updates, leading to faster and smoother accuracy gains.

4.3 Comparisons on LLM Reasoning Task

Building upon the theoretical foundations established earlier, we conduct empirical evaluations
to validate the effectiveness of different advantage normalization strategies in GRPO. Our exper-
iments compare two normalization approaches across varying dataset difficulties on the GSM8K
mathematical reasoning benchmark.

Experimental setup. We employ the Qwen2.5-Math-1.5B model as our base model, enhanced
with Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning.

To study the effect of task difficulty, we partition the GSM8K training set by solution complexity into
two splits: Easy (4,695 examples), and Hard (1,909 examples). We employ Qwen2-7B-Instruct as
an evaluator to partition the dataset into distinct difficulty levels, thereby enabling a controlled study
of how normalization behaves under varying difficulty regimes.

Normalization strategies. We evaluate three group-level (per-question) normalization approaches:

• Standard GRPO (Nstandard): per-question z-score normalization: Âi,t =
ri−mean(r)

std(r)

• No-Std (Nno-std): mean-centering without variance scaling: Âi,t = ri −mean(r).

Evaluation metrics. We report complementary metrics: sample accuracy which is fraction of correct
solutions among all generations.

Results and Discussion. According to Figure 2, both runs begin with a reward standard deviation
near 0.55. The GRPO (normalized) run decreases earlier and more rapidly. The No normalization
run declines more gradually and plateaus at a higher level. Overall, the normalized curve maintains a
consistently lower variance throughout mid-to-late training phase.

Across difficulties shown in Figure 3, we observe a clear variance-dependent pattern consistent with
our theory:

• Easy (low variance). Both methods converge rapidly and saturate at high accuracy. GRPO Norm
(standard) remains consistently but a little bit better, finishing around ≈ 0.98 versus ≈ 0.96 for
No Normalization (no_std), i.e., a ∼2 points gap. After the initial rise, the two trajectories largely
overlap and remain stable near the plateau.

• Hard (high variance). The benefit of normalization becomes more obvious once training moves
beyond the mid range. GRPO Norm enters the 70–80% band earlier and retains a persistent lead,
ending at about ≈ 0.81 compared to ≈ 0.78 for No Normalization (a ∼3 point gap). Variability is
higher overall, but the normalized run shows a steadier climb in the later stages.

For easy questions, the initial accuracy starts near 50%. In this regime, GRPO provides little
improvement over No-Std during the early iterations; however, the gap steadily widens after roughly
150–200 iterations, once accuracy is higher and variance is lower. For hard questions, the initial
accuracy is much lower (around 20%), and GRPO yields a substantial early-phase acceleration. In
both cases, the benefit of normalization grows as accuracy moves away from the 50% region, where

9



(a) GSM8K Easy: both settings rise quickly and satu-
rate above 0.95; normalization stays ∼ 2 pts higher.

(b) GSM8K Hard: larger variance and a persistent gap;
normalization finishes ∼3 pts higher.

Figure 3: Training accuracy vs. iterations on GSM8K Easy/Hard. Curves are smoothed with a 5-step
moving window. standard (orange) uses normalization; no_std (blue) does not.

Bernoulli reward variance is highest, and becomes increasingly evident, especially in the later stages
of training.

5 Conclusion

We showed that GRPO’s normalization can be understood as an adaptive gradient mechanism,
where reward variance controls the local curvature of the policy gradient and adjusts step sizes
accordingly. This perspective explains its empirical advantages over unnormalized REINFORCE.
Our theoretical results establish faster convergence under an orthogonal representation assumption,
while experiments on synthetic tasks and GSM8K confirm that normalization improves stability
and convergence, especially on harder questions with high reward variance. These findings provide
a theoretical foundation for the success of GRPO and point to adaptive gradient mechanisms as a
promising direction for designing robust critic-free RL algorithms for LLM training.
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A Analysis of the Local Smoothness Constant

A.1 Proof of Lemma 1

According to Lemma 17 in [14], for any y ∈ Rd, we have

y⊤∇2Ji(θ)y = (H (πθ(i)) ri)
⊤
(Xiy ⊙Xiy)− 2 (H (πθ(i)) ri)

⊤
(Xiy)

(
π⊤
θ (i)Xiy

)
where H(πθ(i)) is defined as H (πθ) := diag (πθ(i)) − πθ(i)π

⊤
θ (i) ∈ RK×K and ⊙ denotes the

Hadamard (component-wise) product. Using the triangle inequality and Cauchy-Schwarz inequality,
we get

|y⊤∇2Ji(θ)y| ≤ | (H (πθ(i)) ri)
⊤
(Xiy ⊙Xiy)|+ 2| (H (πθ(i)) ri)

⊤
(Xiy)| · |

(
π⊤
θ (i)Xiy

)
|

≤ ∥ (H (πθ(i)) ri) ∥∞∥Xiy ⊙Xiy∥1 + 2∥H (πθ(i)) ri∥ · ∥Xiy∥ · ∥πθ(i)∥ · ∥Xiy∥
= ∥ (H (πθ(i)) ri) ∥∞∥Xiy∥2 + 2∥H (πθ(i)) ri∥ · ∥πθ(i)∥ · ∥Xiy∥2

≤ ∥ (H (πθ(i)) ri) ∥∞∥Xiy∥2 + 2∥H (πθ(i)) ri∥ · ∥Xiy∥2.
(14)

The last inequality follows because ∥πθ(i)∥ ≤ ∥πθ(i)∥1 = 1. According to Assumption 1, we have

[H(πθ(i))ri]j =

{
π∗
θ(i)(1− π∗

θ(i)), if j = ai
−π∗

θ(i)[πθ(i)]j , if j ̸= ai
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With this expression, we get

∥H(πθ(i))ri∥∞ = π∗
θ(i)(1− π∗

θ(i)), (15)

and

∥H(πθ(i))ri∥ = π∗
θ(i)

√
(1− π∗

θ(i))
2 +

∑
j ̸=ai

[πθ(i)]2j

≤ π∗
θ(i)

√
(1− π∗

θ(i))
2 +

∑
j ̸=ai

[πθ(i)]j(1− π∗
θ(i))

=
√
2π∗

θ(i)(1− π∗
θ(i)).

(16)

Combining (15) and (16) with (14), we get

|y⊤∇2Ji(θ)y| ≤ ∥ (H (πθ(i)) ri) ∥∞∥Xiy∥2 + 2∥H (πθ(i)) ri∥ · ∥Xiy∥2

≤ (2
√
2 + 1)π∗

θ(i)(1− π∗
θ(i))∥Xiy∥2

≤ (2
√
2 + 1)π∗

θ(i)(1− π∗
θ(i))∥Xi∥2∥y∥2

≤ 4π∗
θ(i)(1− π∗

θ(i))X
2
max∥y∥2

where the third inequality is due to the definition of operator norm, and the last inequality is by
definition of Xmax. Note that

∥∇2Ji(θ)∥ = max
y

|y⊤∇2Ji(θ)y|
∥y∥2

for symmetric Hessian matrix∇2Ji(θ), which completes the proof.

A.2 Proof of Lemma 2

According to (9), the gradient of Ji(θ) takes the following form:

∇Ji(θ) = x⊤
ai
(1− π∗

θt(i))π
∗
θt(i)−

∑
j ̸=ai

x⊤
j πθt(i)j · π∗

θt(i).

Note that a matrix’s operator norm is larger than the norm of any of its row vector, we get

∥∇Ji(θ)∥ ≤ ∥xai
∥(1− π∗

θt(i))π
∗
θt(i) +

∑
j ̸=ai

∥xj∥πθt(i)j · π∗
θt(i)

≤ ∥Xi∥(1− π∗
θt(i))π

∗
θt(i) +

∑
j ̸=ai

∥Xi∥πθt(i)j · π∗
θt(i)

= 2∥Xi∥(1− π∗
θt(i))π

∗
θt(i)

≤ 1

2
Xmax

where the last inequality is due to the definition of Xmax, finishing the proof.

A.3 Proof of Lemma 3

By Assumption 1, the objective Ji(θ) is same as π∗
θ(i). From Lemma 2, Ji(θ) is 1

2Xmax-Lipschitz.

Consequently, for any θ′ ∈ B
(
θ, 1

Xmax

√
π∗
θ(i)

(
1− π∗

θ(i)
))

, we have∣∣π∗
θ′(i)− π∗

θ(i)
∣∣ ≤ 1

2Xmax · 1
Xmax

·
√

π∗
θ(i)

(
1− π∗

θ(i)
)
= 1

2

√
π∗
θ(i)

(
1− π∗

θ(i)
)
.

Combining with Lemma 1,

∥∇2Ji(θ
′)∥ ≤ max

l
4X2

max · l(1− l)

over B
(
θ, 1

Xmax

√
π∗
θ(i)

(
1− π∗

θ(i)
))

, where l satisfies∣∣ l − π∗
θ(i)

∣∣ ≤ 1
2

√
π∗
θ(i)

(
1− π∗

θ(i)
)
.
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We denote π∗
θ(i) as a. Thus, proving Lemma 3 is equivalent as proving

f(a) := max
l∈[a−

√
a(1−a)

2 ,a+

√
a(1−a)

2 ]

4l(1− l)√
a(1− a)

≤ 5

2
.

WLOG, we assume a ∈ [0, 1
2 ] and consider two cases.

Case 1: When a ∈ [ 12 −
√
5

10 ,
1
2 ], we know that

1

2
∈ [a−

√
a(1− a)

2
, a+

√
a(1− a)

2
],

which implies that

f(a) =
1√

a(1− a)
≤ f(

1

2
−
√
5

2
) =
√
5 ≤ 5

2
.

Case 2: When a ∈ [0, 1
2 −

√
5

10 ], we know that

1

2
̸∈ [a−

√
a(1− a)

2
, a+

√
a(1− a)

2
],

which implies that

f(a) =
(a+

√
a(1−a)

2 )(1− a−
√

a(1−a)

2 )√
a(1− a)

= 3
√

a(1− a) + (2− 4a).

f(a) takes its maximum when a = 1
10 and f(a) = 5

2 .

Combining the above two cases, we conclude the lemma.

B Convergence Analysis of the Main Result

B.1 Auxiliary Lemma

Lemma 4. Under Assumption 1 and 2, for any i, j ∈ [n], i ̸= j and θ ∈ Rd, we have

∇Ji(θ)⊤∇Jj(θ) = 0 (17)

Proof. According to (8), we get

∇Ji(θ)⊤∇Jj(θ) = r⊤i
(
diag (πθ(i))− πθ(i)π

⊤
θ (i)

)
XiX

⊤
j

(
diag (πθ(j))− πθ(j)π

⊤
θ (j)

)
rj

= r⊤i
(
diag (πθ(i))− πθ(i)π

⊤
θ (i)

)
0
(
diag (πθ(j))− πθ(j)π

⊤
θ (j)

)
rj

= 0,

where the second step is by Assumption 2.

B.2 Proof of Theorem 1

We consider a specific question ql. Combining Lemma 4 with log-linear policy parameterization in
our setting, if question qi(t) is selected on iteration t in REINFORCE, we get

Jj(θt) = Jj(θt−1 + η∇Ji(θt−1))

= Jj(θt−1)
(18)

for any i(t) ̸= l. That is, the parameter update on question qi(t) will not affect the expected reward
on other questions.

If question i(t) = l is selected on iteration t in REINFORCE, we have

Jl(θt)− Jl(θt−1) ≥ ⟨θt − θt−1,∇Jl(θt−1)⟩ −
X2

max

2
∥θt − θt−1∥2

= (η − X2
max

2
η2)∥∇Jl(θt−1)∥2

=
1

2X2
max

∥∇Jl(θt−1)∥2

(19)
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where the first step is by Corollary 1, which also indicate that Ji(θ) is X2
max-weakly convex. Taking

expectation of (19) on i(t), we get

E[Jl(θt)]− E[Jl(θt−1)] ≥
1

2nX2
max

∥∇Jl(θt−1)∥2. (20)

Summing up (20) for t = 1, . . . , T , we get

1

2nX2
max

T−1∑
t=0

E[∥Jl(θt−1)∥2] ≤ E[Jl(θT )]− Jl(θ0) ≤ 1− π∗
θ0(l).

This directly leads to

min
t∈{0,1,...,T−1}

E[∥∇Jl(θt)∥2] ≤
2n(1− π∗

θ0
(l))X2

max

T
.

B.3 Proof of Theorem 2

Similar to (18) in the proof of Theorem 1, the gradient update based on question qi does not affect
the objective for question ql if i ̸= l. That is,

Jl(θt) =

{
Jl(θt−1), if i(t) ̸= l

Jl(θt), if i(t) = l.
(21)

Consider the case where i(t) = l, from the parameter update rule in GRPO, we get

θt = θt−1 + η
(√

π∗
θt−1

(l)(1− π∗
θt−1

(l))xl,al
−

√
π∗
θt−1

(l)

1− π∗
θt−1

(l)

∑
j ̸=al

[πθt−1(l)]j · xl,j

)
.

Also, by setting η = 1
2X2

max
, we have

∥η
(√

π∗
θt−1

(l)(1− π∗
θt−1

(l))xl,al
−

√
π∗
θt−1

(l)

1− π∗
θt−1

(l)

∑
j ̸=al

[πθt−1(l)]j · xl,j

)
∥

=
1

2X2
max

∥
(√

π∗
θt−1

(l)(1− π∗
θt−1

(l))xl,al
−

√
π∗
θt−1

(l)

1− π∗
θt−1

(l)

∑
j ̸=al

[πθt−1(l)]j · xl,j

)
∥

≤ 1

2X2
max

(√
π∗
θt−1

(l)(1− π∗
θt−1

(l))∥xl,al
∥+

√
π∗
θt−1

(l)

1− π∗
θt−1

(l)

∑
j ̸=al

[πθt−1
(l)]j · ∥xl,j∥

)
≤ 1

2X2
max

(2
√

π∗
θt−1

(l)(1− π∗
θt−1

(l))Xmax)

=
1

Xmax
·
√
π∗
θt−1

(l)(1− π∗
θt−1

(l)).

This implies that θt ∈ B(θ, 1
Xmax

·
√
π∗
θt−1

(l)(1− π∗
θt−1

(l))). According to Lemma 3, we obtain

Jl(θt) ≥ Jl(θt−1) + ⟨θt − θt−1,∇Jl(θt−1)⟩ −
5

4
X2

max ·
√

π∗
θt−1

(l)(1− π∗
θt−1

(l))∥θt − θt−1∥2

= Jl(θt−1) +
3

16X2
max

√
π∗
θ(l)(1− π∗

θ(l))
∥∇Jl(θt−1)∥2

≥ Jl(θt−1) +
3

16X2
maxCl(t− 1)

∥∇Jl(θt−1)∥2

(22)
where the last step is by Assumption 3. Taking expectation of (22) on i(t), we have

E[Jl(θt)] ≥ E[Jl(θt−1)] +
3

16nX2
maxCl(t− 1)

E[∥∇J(θt−1)∥2]. (23)
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because the objective Jl remains unchanged if i(t) ̸= l according to (21). Summing up (23) for
t = 1, . . . , T , we get

E[Jl(θT )] ≥ Jl(θ0) +

T−1∑
t=0

3

16nX2
maxCl(t− 1)

E[∥∇J(θt−1)∥2]. (24)

According to the Cauchy-Schwarz inequality, we obtain

min
t∈{0,1,...,T−1}

E[∥∇Jl(θt)∥2] ≤
2n(1− π∗

θ0
(l))X2

max

T

8
∑T−1

t=0 Cl(t)

3T
.

C Discussion on C(n, T )

We are interested in the meaningful small-constant regime where C(n, T ) = o(1). Let εi,j :=
1− πθj

(i) ∈ [0, 1]. Then

C(n, T ) =
8

3nT

n∑
i=1

T−1∑
j=0

√
πθj

(i)
(
1− πθj

(i)
)
≤ 8

3n

n∑
i=1

1

T

T−1∑
j=0

min
{

1
2 ,
√
εi,j

}
︸ ︷︷ ︸

=:Ai(T )

. (25)

Hence C(n, T ) = o(1) whenever each prompt’s Cesàro mean Ai(T )→ 0. A convenient pointwise
bound is

0 ≤
√
π(1− π) ≤ min

{
1
2 ,
√

1− π
}
.

A sufficient (and essentially necessary) condition is that, for every fixed δ > 0,

1

T

∣∣∣{ j < T : εi,j ≥ δ }
∣∣∣ −−−−→

T→∞
0 for all i ∈ [n].

We provide improvement regimes under which Ai(T )→ 0 below.

(i) Exponential improvement. If εi,j ≤ ciρ
j
i with ρi ∈ (0, 1), then

1

T

∑
j<T

√
εi,j ≤

√
ci
T

∑
j<T

ρ
j/2
i = O

(
1
T

)
,

so C(n, T ) = O(1/T ) = o(1).

(ii) Polynomial improvement. If εi,j ≤ ci j
−αi for some αi > 0, then

1

T

∑
j<T

√
εi,j ≤

√
ci
T

∑
j<T

j−αi/2 =


O
(
T−αi/2

)
, 0 < αi < 2,

O
(
(log T )/T

)
, αi = 2,

O
(
1/T

)
, αi > 2,

hence C(n, T ) = o(1) for any αi > 0. A notable special case is the harmonic regime εi,j = Θ(1/j),
which yields

C(n, T ) = O
(√

log T
T

)
= o(1).

Note. This refines the example following Eq. (14): the intended assumption is 1− πθj
(i) = Θ(1/j)

(not Θ(1/T )).

Observe that

T−1∑
j=0

√
π∗
θj
(i)(1− π∗

θj
(i)) ≤

√√√√T ·
T−1∑
j=0

π∗
θj
(i)(1− π∗

θj
(i)) ≤

√√√√T ·
T−1∑
j=0

(1− π∗
θj
(i)).

For instance, if (1− π∗
θj
(i)) = O(1/T ), then C(n, T ) = O(

√
log T/T ).
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(iii) Log-slow improvement. If εi,j ≍ 1/ log(j + e), then

1

T

∑
j<T

√
εi,j ≍

1√
log T

, ⇒ C(n, T ) = O
(
1/
√
log T

)
= o(1).

(iv) Persistent hard prompts (plateau). If for some i there exists ε0 > 0 such that εi,j ≥ ε0
on a non-vanishing fraction of iterations, then Ai(T ) is bounded away from 0, and C(n, T ) ̸→ 0.
Thus, for fixed n, every prompt must become (asymptotically) easy in Cesàro mean in order to have
C(n, T ) = o(1).

(v) Mixed populations (curriculum/heterogeneity). Suppose the prompts split into E (easy) with
εi,j → 0 sufficiently fast (any of (i)–(iii)), andH (hard) with lim supT Ai(T ) ≥ c > 0. Then

C(n, T ) ≤ 8

3

( |E|
n
· o(1) +

|H|
n
·Θ(1)

)
.

Therefore C(n, T ) = o(1) iff |H| = 0 (for fixed n); if n grows with T , one additionally needs
|H|/n→ 0.

A universal upper bound. Since
√
π(1− π) ≤ 1

2 , we always have

C(n, T ) ≤ 8

3nT
· n · T

2
=

4

3
.

Thus the multiplicative factor in Eq. (14) is at worst a constant; the benefit over the unnormalized
baseline is most pronounced when C(n, T ) = o(1), i.e., when success probabilities approach 1 on
(almost) all prompts.

In summary, any training dynamic in which πθj
(i) → 1 for every prompt, no matter how slowly

(even logarithmically), drives C(n, T ) → 0. Faster per-prompt improvement directly tightens
Eq. (14), quantifying how GRPO’s normalization converts heterogeneous per-prompt “curvature”
into a vanishing multiplicative constant in the convergence bound.
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