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ABSTRACT

Rectified flow (RF) models have recently demonstrated superior generative per-
formance compared to DDIM-based diffusion models. However, in real-world
applications, they suffer from two major challenges: (1) low inversion accuracy
that hinders the consistency with the source image, and (2) entangled multimodal
attention in diffusion transformers, which hinders precise attention control. To ad-
dress the first challenge, we propose an efficient high-order inversion method for
rectified flow models based on the Runge-Kutta solver of differential equations.
To tackle the second challenge, we introduce Decoupled Diffusion Transformer
Attention (DDTA), a novel mechanism that disentangles text and image atten-
tion inside the multimodal diffusion transformers, enabling more precise semantic
control. Extensive experiments on image reconstruction and text-guided editing
tasks demonstrate that our method achieves state-of-the-art performance in terms
of fidelity and editability.

1 INTRODUCTION

Text-to-image diffusion models Ho et al. (2020); Ramesh et al. (2022); Saharia et al. (2022); Rom-
bach et al. (2022); Balaji et al. (2023); Betker et al. (2023); Podell et al. (2024); Sauer et al. (2024);
Chen et al. (2024); Esser et al. (2024) have achieved remarkable progress with powerful capabilities
in generating diverse and realistic images conditioned on textual prompts. Recent research on Rec-
tified Flow (RF) Liu et al. (2023); Lipman et al. (2023); Esser et al. (2024) models (e.g., FLUX Labs
(2024)) has demonstrated superior generative performance, surpassing previous DDIM-based Song
et al. (2021); Dhariwal & Nichol (2021) methods such as Stable Diffusion (SD) Rombach et al.
(2022); Podell et al. (2024); Sauer et al. (2024).

The image generation process in diffusion models starts from an initial Gaussian noise and progres-
sively denoises it to approximate the target data distribution. Consequently, a critical challenge in
ensuring consistency lies in how to invert a given image to a specific noise sample that can recon-
struct it faithfully. To date, only a limited number of studies Yang et al. (2025); Rout et al. (2025);
Wang et al. (2025); Deng et al. (2025) have explored inversion for RF models. However, their
performance remains significantly below the VQAE Rombach et al. (2022) reconstruction upper
bound. Prior work Wang et al. (2025) has demonstrated that high-order approximation can partially
mitigate this degradation, motivating the development of a higher-order inversion technique with a
tighter error bound tailored to RF models.

In text-guided image editing with diffusion models, the target prompt is applied during the denois-
ing process. Therefore, another key challenge is how to effectively leverage the source information
from the inversion process to balance the trade-off between faithfulness and editability. Existing ap-
proaches for RF models Wang et al. (2025); Deng et al. (2025); Tewel et al. (2025); Zhu et al. (2025)
reuse the source attention features of query, key, and value from the inversion process to enhance the
fidelity. However, state-of-the-art (SoTA) RF models adopt the Multimodal Diffusion Transformer
(MM-DiT) architecture Peebles & Xie (2023), which jointly encodes and processes both text and
image modalities within a unified transformer framework. As a result, directly reusing the attention
features with entangled text and image information may lead to performance degradation in editing
precision.
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Inversion source prompt: A black car
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Editing target prompt: A red car
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Transformer Attention

Figure 1: Conceptual illustration of our text-guided semantic editing framework.

To address the first challenge, we propose an efficient high-order inversion method for rectified
flow models based on the Runge-Kutta solver of differential equations. To tackle the second chal-
lenge, inspired by DiTCtrl Cai et al. (2025), we introduce Decoupled Diffusion Transformer Atten-
tion (DDTA), a novel mechanism that disentangles text and image attention inside the multimodal
diffusion transformers, enabling more precise semantic control. Extensive experiments on image
reconstruction and text-guided editing tasks demonstrate that our method achieves state-of-the-art
performance in terms of fidelity and editability.

As shown in Fig. 1, in this paper, we introduce Runge-Kutta (RK) approximation and decoupled
attention for RF inversion and semantic editing. Specifically, to address the first challenge, we
incorporate the RK method from numerical analysis into the RF sampling process and propose a
high-order solver for the differential process of RF. To tackle the second challenge, we delve into
the internal structure of MM-DiTs and decouple the tightly entangled text and image attention in
MM-DiTs, thereby enabling more precise control over the semantic editability. To comprehensively
evaluate the proposed method, we conduct extensive experiments on both image reconstruction and
text-guided semantic editing tasks. Experimental results on the reconstruction task show that our
RK solver improves inversion fidelity, achieving a Peak Signal-to-Noise Ratio (PSNR) gain up to
2.39 dB, which is quite significant. The results of the editing task demonstrate that our method
achieves a superior overall performance in terms of fidelity and editability compared to SoTA RF-
based methods.

2 RELATED WORK AND UNIQUE CONTRIBUTIONS

Our work is closely related to existing inversion methods and text-guided semantic editing. In this
section, we first review existing work on these two related research areas. We then summarize the
unique contributions of this work.

2.1 INVERSION FOR RECTIFIED FLOW MODELS

Inversion serves as a fundamental building block for real-world image manipulation, which has been
widely studied in SD literature Mokady et al. (2023); Dong et al. (2023); Duan et al. (2024); Pan et al.
(2023); Wang et al. (2025); Rout et al. (2025); Deng et al. (2025); Dhariwal & Nichol (2021); Song
et al. (2021); Wallace et al. (2023); Zhang et al. (2024); Wang et al. (2024); Samuel et al. (2025).
However, due to the theoretical differences between DDIM and RF, these successful DDIM-based
methods cannot be directly applied to RF-based models. RF-Prior Yang et al. (2025) performs score
distillation to invert a given image using RF models. However, this method incurs substantial com-
putational overhead due to the large number of optimization steps required. RF inversion Rout et al.
(2025) improves the inversion quality by employing dynamic optimal control derived from linear
quadratic regulators. RF-Solver Wang et al. (2025) uses the Taylor expansion to reduce inversion er-
rors in the ordinary differential equations (ODEs) of RF models. FireFlow Deng et al. (2025) reuses
intermediate velocity approximations to achieve the second-order accuracy while maintaining the
computational cost of a first-order method. Unlike previous methods, this work leverages the RK
method to provide a higher-order, training-free, and more accurate approximation of the differential
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process in RF models. Furthermore, we conduct comprehensive experiments to identify the optimal
Butcher tableau configuration for each solver order, ensuring the best reconstruction accuracy using
RF models.

2.2 TEXT-GUIDED SEMANTIC EDITING WITH DIT-BASED MODELS

Image editing aims to modify the visual content in a controllable manner while preserving the over-
all structure of the original image. Among various approaches, text-guided semantic editing has
attracted the most research attention due to its remarkable flexibility Huang et al. (2025). Text-
guided semantic editing based on diffusion models has been widely studied in recent years Kim
et al. (2022); Miyake et al. (2023); Hertz et al. (2023); Tumanyan et al. (2023); Mokady et al.
(2023); Dong et al. (2023); Brooks et al. (2023); Parmar et al. (2023); Kawar et al. (2023); Wang
et al. (2023); Pan et al. (2023); Wallace et al. (2023); Huang et al. (2024). However, due to the sig-
nificant structural differences between UNet-based (e.g., SD) and DiT-based (e.g., FLUX) models,
these methods fail to apply to DiT-based models directly. RF-Solver Wang et al. (2025) and Fire-
Flow Deng et al. (2025) replace the value attention feature of single-stream DiT blocks in the editing
branch with those from the inversion branch to balance the faithfulness and editability. KV-Edit Zhu
et al. (2025) caches the keys and values corresponding to the background during the inversion pro-
cess and reuses them during the denoising to improve background consistency. However, it requires
an additional mask input to separate the foreground from the background, making it less flexible than
purely text-guided semantic editing. Add-it Tewel et al. (2025) utilizes both keys and values of DiT
blocks from the source image to guide the editing process. However, its latent blending mechanism
relies on SAM-2 Ravi et al. (2025) to obtain an object mask, introducing additional computational
overhead. In contrast to previous methods, this work delves into the internal structure of MM-DiTs
and decouples the entangled text-image attention, inspired by the attention analysis presented in
DiTCtrl Cai et al. (2025). This decoupling mechanism, in turn, enables precise text-guided semantic
editing without introducing additional computational overhead.

2.3 UNIQUE CONTRIBUTIONS

Compared to existing methods, our unique contributions include: (1) We incorporate the RK method
into the RF sampling process to perform high-order modeling of the differential trajectory, and pro-
pose a high-fidelity inversion method that better aligns the inversion and denoising paths. (2) We
introduce a decoupled attention mechanism that decouples the entangled text and image attention in
MM-DiTs, thereby enabling precise semantic editing in MM-DiT architectures. (3) Extensive exper-
imental results on benchmark datasets demonstrate that our method achieves superior performance
on both reconstruction and text-guided semantic editing tasks.

3 THE PROPOSED METHOD

In this section, we first provide a brief overview of the relevant background knowledge and our
method, followed by detailed descriptions of the proposed Runge-Kutta solver and DDTA.

3.1 PRELIMINARIES AND METHOD OVERVIEW

(1) Preliminaries. Rectified Flow (RF) Liu et al. (2023) transits the standard Gaussian noise
(source) distribution p1 to the real data (target) distribution p0 along a straight path. This transition
is modeled by an ordinary differential equation (ODE) over a continuous time interval t ∈ [0, 1]:

dZt = v (Zt, t) dt, (1)
where Z0 ∼ p0 denotes the image latent representation sampled from the target distribution, and
Z1 ∼ p1 is the noise latent sampled from the source distribution N (0, I). Given an initial state Z0

and a terminal state Z1, the forward process (i.e., adding noise) of RF follows a linear path defined
as Zt = tZ1 + (1− t)Z0. This path induces a corresponding ODE: dZt = (Z1 − Z0) dt. Then, the
training process employs a diffusion transformer vθ, parameterized by θ, to approximate the ODE
by solving the following least-squares regression objective:

min
θ

∫ 1

0

E

[∥∥∥∥dZt

dt
− vθ (Zt, t)

∥∥∥∥2
2

]
. (2)
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In practice, the ODE is discretized and solved using the Euler method for the text-to-image RF mod-
els. Specifically, the RF process begins with a noise latent ZtN ∈ N (0, I), and performs denoising
over N discrete timesteps t = {tN , . . . , t0}, progressively refining the latent representation until the
final image latent Zt0 is obtained:

Zti−1 = Zti + (ti−1 − ti) vθ (Zti , ti,P) , (3)

where P is the conditional prompt embedding extracted by the T5 text encoder Raffel et al. (2020).

(2) Method Overview. We identify two key challenges that lead to the imbalance between fidelity
and editability in RF-based image inversion and semantic editing: (1) the low inversion accuracy
which hinders the faithfulness between the edited image and the source image, and (2) the entan-
glement of text and image modalities in MM-DiTs limits precise control over attention features. To
address these two tightly coupled challenges, we first incorporate the Runge-Kutta method with RF
models and propose the RK Solver to perform high-order approximations of the differential process.
Secondly, we propose the DDTA mechanism, which improves attention controllability by disentan-
gling text and image modalities in MM-DiTs, thereby achieving a better balance between fidelity
and editability.

3.2 RUNGE-KUTTA SOLVER FOR RECTIFIED FLOW MODELS

Despite the impressive image generation performance of the vanilla RF sampler, it suffers from
severely degraded fidelity in inversion. RF-Solver Wang et al. (2025) has shown that high-order
solvers can partially alleviate this issue. However, it merely presents a second-order method derived
from Taylor expansion, without thoroughly exploring the combination of high-order terms, and this
ultimately results in suboptimal performance. Prior work Liu et al. (2023) has demonstrated that the
outputs of ODEs tend to fall into a smooth manifold. The smoothness of the learned ODE trajec-
tory in RF models arises from the linear interpolation in the forward process, making the system a
non-stiff differential equation. Therefore, the well-studied explicit Runge-Kutta (RK) method from
numerical analysis becomes a naturally suitable high-order solver for the ODE in RF.

We now present the inversion form of the proposed RK solver. Given a known state at the
(i − 1)-th timestep Zti−1

, an r-order of explicit RK solver builds a series of intermediate slopes{
Ki

1, . . . ,K
i
r

}
:

Ki
s = vθ

Zti−1 +∆ti

s−1∑
j=1

asjK
i
j , ti−1 + cs∆ti,P

 , (4)

where ∆ti = ti − ti−1 denotes the step size of adjacent states. Then, the next state Zti can be
computed by:

Zti = Zti−1
+∆ti

r∑
j=1

bjK
i
j . (5)

Note that the lower triangular matrix A = [amn] together with the vectors bT and c, constitute a
Butcher tableau, i.e.,

B =
c A

bT
. (6)

The denoising process of the RK solver has a symmetrical formulation, i.e.,

Ki
s = vθ

Zti −∆ti

s−1∑
j=1

asjK
i
j , ti − cs∆ti,P

 , (7)

Zti−1
= Zti −∆ti

r∑
j=1

bjK
i
j . (8)

Empirically, the RK solver should adopt the same order for both the inversion and denoising pro-
cesses. The complete inversion process with our RK solver is provided in pseudocode in the Ap-
pendix.

4
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A cat wearing a hat and glasses

cat hat glasses

A tree with lighting and the moon

tree lighting moon

Figure 2: Visualization of the response maps corresponding to the decoupled cross-attention com-
ponents. We aggregate cross-attention maps across all DiT blocks during the sampling process to
show the spatial correlation between image layout and prompt words. Details see in Appendix B.3.

Noting that the existing inversion methods, RF-Solver and FireFlow, can be regarded as two spe-
cific variants of our RK solver. RF-Solver uses the Taylor expansion to approximate the velocity
prediction, while FireFlow uses the midpoint method. Thus, their Butcher tableaus are given by:

BRF-Solver =

0 0 0

1
2

1
2 0

3
4

1
4

, BFireFlow =

0 0 0

1
2

1
2 0

0 1

. (9)

In addition, FireFlow achieves runtime acceleration by reusing the midpoint velocity from the pre-
vious step to approximate the current velocity, i.e., Ki

1 ≈ Ki−1
2 .

3.3 DECOUPLED DIFFUSION TRANSFORMER ATTENTION FOR SEMANTIC IMAGE EDITING

Text-guided semantic editing attracts the most attention due to its flexibility. Representative meth-
ods (e.g., P2P Hertz et al. (2023)) focus on manipulating attentions in the editing branch by lever-
aging the preserved attentions from the inversion branch. The effectiveness of these methods stems
from the separate design of self-attention and cross-attention mechanisms in UNet-based diffusion
models. However, the MM-DiT-based diffusion models process text and image information jointly
within a unified transformer framework, making it difficult to transfer those effective methods to
DiT-based architectures. Specifically, the MM-DiT architecture consists of two types of transformer
blocks, i.e., multi-stream and single-stream DiT blocks. In the multi-stream DiT block, text and
image attention features are first extracted separately:

F l
C = W l

FC

(
hl
C

)
, F l

I (ti) = W l
FI

(
hl
I (ti)

)
. (10)

Here, l denotes the layer index of the DiT block. W (·) represents the pre-trained attention projection
in the transformer. FC = {QC ,KC , VC} is the attention feature corresponding to the conditional
hidden state related to the textual prompt, while FI (ti) = {QI (ti) ,KI (ti) , VI (ti)} correspond
to the attention feature derived from the hidden state associated with the image latent at timestep ti.
Then, attention features are concatenatedF l = F l

C⊕F l
I (ti), followed by the attention computation:

Attention (Q,K, V ) = softmax
(
QKT

√
d

)
· V . (11)

In the single-stream DiT block, text and image hidden states are concatenated before attention fea-
ture extraction, i.e.,

F l (ti) = W l
F
(
hl
C ⊕ hl

I (ti)
)
. (12)

5
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Figure 3: Overview of Decoupled Diffusion Transformer Attention (DDTA)

According to the observation of the internal structure, the attention map of the DiT block can be
decoupled into four regions based on the dimension of hidden states:

M = softmax
(
QKT

√
d

)
=

 MCC MCI

MIC MII

 , (13)

where MCC and MII correspond to the self-attention maps of the condition and image, while MCI

and MIC represent the cross-attention maps between condition and image. As shown in Fig. 2, the
decoupled cross-attention maps reveal strong spatial correlations between image layout and prompt
words, demonstrating the effectiveness of our attention decoupling method. In addition, the value
feature can also be decoupled into two regions according to the dimension: V = [VC |VI ].

Therefore, the proposed attention decoupling mechanism facilitates effective text-guided semantic
editing via fine-grained attention manipulation. Specifically, as illustrated in Fig. 3, attentions in
the editing branch Bedit =

{
M̃CC , M̃CI , M̃IC , M̃II , Ṽ

}
are modified based on the preserved at-

tentions in the inversion branch Binv = {MCC ,MCI ,MIC ,MII , V }. We consider two types of
operations, i.e.,

Replacement: M̃
′
= M, Mean: M̃

′
=

(
M + M̃

)
/2 . (14)

Both operations improve the faithfulness of the edited image, with the replacement strategy yield-
ing a greater fidelity gain than the mean operation. This indicates that preserving original attention
features is more effective in maintaining content consistency. Moreover, incorporating a larger pro-
portion of attention features into the manipulation enhances fidelity to the source image but reduces
editability. These findings highlight the inherent trade-off between fidelity and editability, which
must be carefully balanced in image editing tasks. For general semantic editing purposes, apply-
ing the replacement operation to cross-attention maps

{
M̃CI , M̃IC

}
and the mean operation to

the image region of value attention feature ṼI in single-stream DiT blocks is typically sufficient.
Furthermore, users can flexibly customize both the manipulation type and the number of blocks or
sampling steps to achieve the most satisfactory result for a given image.

4 EXPERIMENTAL RESULTS

In this section, we conduct comprehensive evaluations of the proposed method and provide detailed
ablation studies to further understand its performance. Detailed experimental settings are presented
in Appendix B. More results are provided in Appendix C.
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Table 1: Comparison results on the reconstruction task. The best result for each metric is highlighted
in bold, and the second-best is underlined (excluding the VQAE method).

Method PSNR ↑ SSIM ↑ LPIPS ↓
VQAE (upper bound) 32.95 0.9347 0.0121
Vanilla RF 17.46 0.5952 0.4282
RF Inversion 22.14 0.6540 0.1388
RF-Solver 22.20 0.7778 0.1890
Fireflow 23.29 0.8006 0.1639
Ours (r = 2) 24.00 0.8124 0.1534
Ours (r = 3) 23.98 0.8131 0.1497
Ours (r = 4) 25.68 0.8364 0.1241

Table 2: Comparison results on the text-guided semantic editing task. The best result for each metric
is highlighted in bold, and the second-best is underlined.

Method Baseline Structure
Distance↓

Unedited Fidelity CLIP Similariy StepsPSNR ↑ SSIM ↑ Whole ↑ Edited ↑
P2P SD 0.0699 17.84 0.7141 25.18 22.35 50
MasaCtrl SD 0.0277 22.31 0.8041 23.99 21.15 50
PnP SD 0.0273 22.32 0.7958 25.42 22.52 50

RF Inversion FLUX 0.0446 20.31 0.7014 25.07 22.36 28
RF-Solver FLUX 0.0297 22.27 0.7938 24.61 21.87 25
FireFlow FLUX 0.0264 23.30 0.8302 24.53 21.65 8
Ours (r = 2) FLUX 0.0288 23.29 0.8296 25.30 22.54 8
Ours (r = 3) FLUX 0.0284 23.51 0.8339 25.30 22.50 8
Ours (r = 4) FLUX 0.0259 24.24 0.8535 24.67 21.95 8
Ours (r = 4) FLUX 0.0271 23.76 0.8431 25.26 22.48 5

4.1 IMAGE RECONSTRUCTION TASK

We compare our proposed RK solver against VQAE, vanilla RF, RF inversion, RF-Solver, and Fire-
Flow. The evaluations are conducted on the first 1,000 images from the Densely Captioned Images
(DCI) dataset Urbanek et al. (2024), using the same experimental setting as in FireFlow’s original
literature Deng et al. (2025). The VQAE method represents the upper bound of reconstruction per-
formance, as it directly decodes the image latent Zt0 obtained from the encoder. The results are
presented in Tab. 1, demonstrating that our method outperforms all existing approaches across all
evaluation metrics. We report the results based on the best-performing configurations, using Heun’s
second-order, Kutta’s third-order, and the 3/8-rule fourth-order Kutta (1901) variants, whose corre-
sponding Butcher tableaus are as follows:

Br=2 =

0 0 0

1 1 0
1
2

1
2

, Br=3 =

0 0 0 0
1
2

1
2 0 0

1 −1 2 0
1
6

2
3

1
6

, Br=4 =

0 0 0 0 0
1
3

1
3 0 0 0

2
3 − 1

3 1 0 0

1 1 −1 1 0
1
8

3
8

3
8

1
8

.

The third-order variant slightly outperforms the second-order one, while our fourth-order variant
achieves the best reconstruction performance, surpassing FireFlow by 10.3%, 4.5%, and 24.3% in
PSNR, SSIM, and LPIPS, respectively.

4.2 TEXT-GUIDED SEMANTIC EDITING TASK

Quantitative Results. We conduct a comprehensive quantitative comparison on the PIE-bench
dataset Ju et al. (2024) across various methods, including both DDIM-based and RF-based methods,

7
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Table 3: User study of the text-guided semantic editing task on the PIE-Bench dataset.
Method Qwen-VL-Max Hunyuan-T1 Doubao-1.5
P2P 4.01 10.74 6.59
MasaCtrl 14.59 9.31 7.74
PnP 15.74 14.18 17.34
RF Inversion 12.59 10.89 7.88
RF-Solver 11.59 13.75 6.03
FireFlow 8.44 15.75 10.32
Ours 33.04 25.36 44.13

Table 4: Ablation study on the trade-off between fidelity and editability.

RK Solver DDTA Structure
Distance↓

Unedited Fidelity CLIP Similariy
PSNR ↑ SSIM ↑ Whole ↑ Edited ↑

✗ ✗ 0.0264 23.30 0.8302 24.53 21.65
✓ ✗ 0.0133 28.42 0.8918 23.74 21.00
✗ ✓ 0.0358 22.18 0.8177 25.73 22.99
✓ ✓ 0.0284 23.51 0.8339 25.30 22.50

using Stable Diffusion v1.5 and FLUX.1-dev as their respective baselines. Noting that the results
of our method presented in this section are achieved through the combination of the proposed RK
Solver and DDTA. Quantitative results shown in Tab. 2 support the following three conclusions: (1)
Our method outperforms all baselines in content consistency, with our fourth-order variant achieving
the highest PSNR, SSIM, and structure distance. (2) Our method demonstrates competitive editabil-
ity (closely trailing the best result) while maintaining substantially higher fidelity, highlighting a
more favorable trade-off between fidelity and editability. (3) Our method achieves the best over-
all performance with significantly fewer sampling steps, indicating the superior efficiency of our
method.

Qualitative Results. As shown in Fig. 4, we present qualitative results demonstrating the effective-
ness of our method across diverse editing types, including both object and attribute manipulations.
While minor unintended background changes may occur, our method consistently outperforms ex-
isting baselines in terms of semantic alignment with target prompts and structural consistency with
source images, highlighting its robustness and versatility in the text-guided semantic editing task.

User Study. To further evaluate the effectiveness of our proposed method, we employ Multimodal
Large Language Models (MLLMs) to assess the quality of edited images based on both editing
performance and consistency with the source image. To ensure the reliability of the evaluation,
we select three state-of-the-art MLLMs as independent judges: Qwen-VL-Max, Hunyuan-T1, and
Doubao-1.5. This evaluation is performed on the entire PIE-Bench dataset, where for each image,
the MLLMs are tasked with selecting the best-edited result among all compared methods. In this
study, we adopt the fourth-order variant with 5 sampling steps for comparison against other base-
lines. We report the proportion of selections for each method across the dataset. As shown in Tab. 3,
our proposed method is selected significantly more often than all comparisons, demonstrating its
superior editing quality and faithfulness.

4.3 ABLATION STUDIES

To assess the contribution of each component in our framework, we perform an ablation study on
the PIE-Bench dataset. We use FireFlow as the baseline and compare it against our third-order vari-
ant under a fixed setting of 8 sampling steps. As shown in Tab. 4, our full framework, which inte-
grates the proposed RK Solver and DDTA, achieves the best balance between fidelity and editability.
Specifically, replacing the baseline sampler with the RK Solver significantly improves content con-
sistency, though the alignment with the editing prompt remains limited. In contrast, substituting the
editing module with DDTA leads to substantial gains in editability, but at the cost of significantly
reduced fidelity. Additional ablation studies are provided in the Appendix, including the selection of
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Ours MasaCtrl P2P PnP RF-inversion RF-solver FireflowSource

A large brown teddy bear sitting on a white couch

a colorful car motorcycle is parked on the street

a round star shape cake with orange frosting on a wooden plate

a lion in a suit sitting at a table with a laptop

a girl with a pink yellow umbrella in the rain

and a girl

Figure 4: Qualitative results on the text-guided semantic editing task.

the Butcher tableau (C.1), the sampling steps and Number of Function Evaluations (C.2), the con-
tribution of each decoupled attention component (C.3), and the effectiveness of different attention
manipulation strategies (C.4).

5 CONCLUSION

In this work, we address two critical limitations of applying RF models to real-world image edit-
ing: (1) the difficulty of accurate inversion, and (2) the lack of semantic controllability stemming
from entangled multimodal attention. To overcome the first challenge, we propose RK Solver, a
high-order inversion technique inspired by the well-studied Runge-Kutta method from numerical
analysis. To address the second challenge, we introduce DDTA, a novel attention mechanism that
decouples text and image modalities in MM-DiTs. Extensive experimental results on image re-
construction and text-guided editing tasks demonstrate the effectiveness of our approach, which
achieves the SoTA performance in terms of fidelity and editability. Regarding the societal impact
of this work, our method not only enhances the practical applicability of RF models in real-world
generative tasks but also provides new insights into controllable diffusion-based generation. These
advancements have the potential to benefit various domains, including the creative industries, digital
art, education, and accessibility. Although the proposed RK solver significantly improves fidelity,
its high-order modeling introduces additional computational overhead. Additionally, preserving the
decoupled attention maps incurs notable memory consumption. These limitations suggest promising
directions for future work, including the development of high-order solvers with low computational
overhead and the design of efficient attention-preserving mechanisms, which could further improve
the practicality of RF models.
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6 ETHICS STATEMENT

The proposed editing framework presents both positive and negative societal impacts. On the posi-
tive side, it enables relatively fine-grained and flexible editing of real-world images through simple
modifications to textual descriptions, which may benefit applications in creative industries, digital
art, and education. On the negative side, the method could be misused by malicious actors to gen-
erate inappropriate or offensive content. In particular, the high-order RK solver may exacerbate the
inherent risks associated with the underlying generative models.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of the work presented in this paper, and
have made systematic efforts to provide comprehensive supporting materials and clear references
to critical details. Specifically, we provide a detailed theoretical analysis in Appendix A and
complete implementation details in Appendix B.3 to eliminate ambiguity in practical deployment.
In addition, the anonymous source code repository corresponding to this paper is available at
https://anonymous.4open.science/r/653A143A5BF8.
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A APPENDIX: THEORETICAL ANALYSIS

In practice, vθ is predicted by a neural network without a rigorous mathematical explicit expression.
It may be unable to be exactly equal to the original required v for various reasons, including the
performance of the neural network and the noise. This error could accumulate when finding the
solution to the ODE by iterative methods. Therefore, understanding the bounds of this error is
crucial for assessing and improving the denoising algorithm of flow matching. In this section, we
will prove that this error has an upper bound as

|Z̃t0 − Zt0 | ≤ eΛ|δ0|+
eΛ − 1

Λ
max

1≤i≤N
|δi|, (15)

where Z̃t0 is the ODE solution with perturbation, Zt0 is the ODE solution by iterative method with-
out any perturbation ideally, δi(i = 0, 1, 2, . . . , N) is the perturbation at step i, and Λ = (41/24)L
(L is Lipschitz constant).

Proof. The process of solving ODE is determining Zt0 based on the given ZtN . This can be achieved
using the general Runge-Kutta method, which takes the form:

Zti−1
= Zti + hΦi(Zti) (i = 1, 2, 3, . . . , N), (16)

where h is the hyperparameter associated with the time step configuration, and Φi(Zti) denotes the
incremental function of the Runge-Kutta method at step i. Since the time step in RF is uniform
(∆ti = ∆tj for i ̸= j)), it can be simplified that h = ∆ti(i = 0, 1, 2, . . . , N). And the Φi(Zti) is
defined as:

Φi(Zti) =

r∑
j=1

bjK
i
j(Zti), where Ki

s(Zti) = vθ

Zti −∆ti

s−1∑
j=1

asjK
i
j , ti − cs∆ti,P

 . (17)

In conjunction with Equation (16), the perturbed process can be represented as:

Z̃ti−1
= Z̃ti + h

[
Φi(Z̃ti) + δi

]
(i = 1, 2, 3, . . . , N), Z̃tN = ZtN + δN . (18)

According to Runge Runge (1895), it is shown that for the 4-th order RF solver in this work:

|Φi(y)− Φi(x)| ≤
[
1 +

Lh

2!
+

(Lh)2

3!
+

(Lh)4

4!

]
L|y − x|, (19)

where L can be any Lipschitz constant of v. And from Equation (19), it can be obtained that
|Φi(y)− Φi(x)| ≤ Λ|y − x|, for 0 < h ≤ h0. (20)

Take the h0 = 1/L, it can be obtained that Λ = (41/24)L.

By substracting the ralations in Equation (16) from the corresponding ones in Equation (18) and by
using the Equation (19), it can be obtained that

|Z̃ti−1
− Zti−1

| ≤ (1 + hΛ)|Z̃ti − Zti |+ h|δi−1| (i = 1, 2, 3, . . . , N). (21)

As (1 + hΛ)n ≤ enhΛ, it can be iteratively obtained:

|Z̃t0 − Zt0 | ≤ eΛT |δ0|+
eΛT − 1

Λ
max

1≤i≤N
|δi|. (22)

B APPENDIX: EXPERIMENTAL SETTINGS

In this section, we present detailed experimental settings of this paper.

B.1 BASELINES

We adopt FLUX.1-dev with the vanilla RF Euler sampler as the baseline for all tasks. For the
reconstruction task, we compare SoTA inversion approaches designed for RF models, such as RF
inversion Rout et al. (2025), RF-Solver Wang et al. (2025), and FireFlow Deng et al. (2025). For
the editing task, we include both RF-based methods and DDIM-based approaches for comparison.
Here, the DDIM-based methods include P2P Hertz et al. (2023), MasaCtrl Cao et al. (2023), and
PnP Tumanyan et al. (2023).
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Algorithm 1: Semantic Editing Using RK Solver and DDTA
Input: Source image Zt0 , Source prompt Ps, Target prompt Pt, r-order Butcher tableau Br,

Sampling steps N , Index list for performing DDTA Dlist

Output: Target image Z̃t0

// Inversion Stage
1 c← N × r
2 for i← 1 to N do
3 ∆ti ← ti − ti−1

4 Zti ← Zti−1

5 for s← 1 to r do
6 if c in Dlist then
7 Ki

s ← DDTAsave

(
Zti−1

+∆ti
∑s−1

j=1 asjK
i
j , ti−1 + cs∆ti,Ps

)
8 else
9 Ki

s ← vθ

(
Zti−1

+∆ti
∑s−1

j=1 asjK
i
j , ti−1 + cs∆ti,Ps

)
10 Zti ← Zti + bs∆tiK

i
s

11 c← c− 1

// Editing Stage

12 Z̃tN ← ZtN
13 c← 1
14 for i← N to 1 do
15 ∆ti ← ti − ti−1

16 Z̃ti−1
← Z̃ti

17 for s← 1 to r do
18 if c in Dlist then
19 K̃i

s ← DDTAmanipulate

(
Z̃ti −∆ti

∑s−1
j=1 asjK̃

i
j , ti − cs∆ti,Pt

)
20 else
21 K̃i

s ← vθ

(
Z̃ti −∆ti

∑s−1
j=1 asjK̃

i
j , ti − cs∆ti,Pt

)
22 Z̃ti−1 ← Z̃ti − bs∆tiK̃

i
s

23 c← c+ 1

24 return Z̃t0

B.2 DATASETS AND EVALUATION METRICS

We evaluate the proposed method on two tasks: image reconstruction and text-guided semantic edit-
ing. To comprehensively assess the reconstruction performance of our RK solver, we report results
on the first 1,000 images from the Densely Captioned Images (DCI) dataset Urbanek et al. (2024),
using Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) Wang et al.
(2004), and Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018) as evaluation
metrics. For the editing task, we assess our framework on the PIE-Bench dataset Ju et al. (2024). We
use CLIP Radford et al. (2021) to measure the alignment between the edited image and the guiding
text. To evaluate the fidelity of non-edited regions, we further report PSNR, SSIM, and structural
distance Ju et al. (2024).

B.3 IMPLEMENTATION DETAILS

All methods are implemented by PyTorch and the Diffusers library, with all reported results based
on our re-implementation. All experiments are conducted on a single NVIDIA A100-80G SXM
GPU, unless otherwise specified.
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Algorithm 2: Visualization of Word-Pixel Response Maps for MM-DiT Architectures
Input: Input caption with k words C = {w1, . . . , wk}, Target word index G
Output: Word-pixel response maps R = {Rg|g ∈ G}

1 ztN ← N (0, I) // sample initial latent
2 P = T5(C) // compute prompt embedding
3 Acache ← None // initialize cached decoupled attention maps
4 R← [ ]

5 for i← N to 1 do
6 zti−1

← zti + (ti−1 − ti) · vcacheθ (zti , ti,P, Acache)

7 Acache ← Acache/N
8 for g ∈ G do
9 Ag ← Acache[:, g] // extract target attention maps

10 Ag ← resize(Ag, H ×W ) // resize to image resolution
11 R.append(Ag)

12 Function vcacheθ (zti , ti, P , Acache):
// multi-stream DiT blocks

13 hC ← AdaLayerNorm(P, ti)
14 hI ← AdaLayerNorm(zti , ti)
15 for l← 1 to Lmulti do
16 QC ,KC , VC ←W l

QC
(hC),W

l
KC

(hC),W
l
VC

(hC)

17 QI ,KI , VI ←W l
QI

(hI),W
l
KI

(hI),W
l
VI
(hI)

18 Q,K, V ← QC ⊕QI ,KC ⊕KI , VC ⊕ VI

19 M{MCC ,MCI ,MIC ,MII} ← softmax(QKT

√
dim

)

20 if Acache is None then
21 Acache ←MIC +MT

CI
22 else
23 Acache ← Acache +MIC +MT

CI

24 {hC , hI} ←M · V
// single-stream DiT blocks

25 h← hC ⊕ hI
26 for l← to Lsingle do
27 Q,K, V ←W l

Q(h),W
l
K(h),W l

V (h)

28 M{MCC ,MCI ,MIC ,MII} ← softmax(QKT

√
dim

)

29 Acache ← Acache +MIC +MT
CI

30 h←M · V
31 vti ← PostProcess(h)
32 Acache ← Acache/(Lmulti + Lsingle)
33 return vti
34 return R

Image Reconstruction Task. Images from the DCI dataset are center-cropped to square format and
resized to 1024 × 1024, using the short version of the provided captions. The guidance scale of
each method is set to 1.0. The sampling steps of each method are set to 30, except for VQAE. The
hyperparameter settings for RF inversion follow the configuration in the literature Rout et al. (2025),
with controller guidance γ = 0.5, η = 1.0, starting time s = 8, and stopping time τ = 25.

Text-Guided Semantic Editing Task. Stable Diffusion v1.5 is adopted as the baseline model for all
DDIM-based methods. For DDIM-based methods, the guidance scales for the inversion and editing
branches are set to 1.0 and 7.5, respectively. For RF-based methods, these scales are set to 1.0 and
3.0, respectively. For RF inversion, we report the best editing results on the PIE-Bench dataset using
controller guidance parameters γ = 0.5, η = 0.9, with a starting time s = 0 and stopping time

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Ablation study on Butcher tableaux across second- to fourth-order solvers. Results in bold
denote the best performance for each solver order.

Variant Order PSNR ↑ SSIM ↑ LPIPS ↓
Midpoint 2 22.17 0.7766 0.1903

Heun 2 24.00 0.8124 0.1534
Ralston 2 23.73 0.8096 0.1556

Kutta 3 23.98 0.8131 0.1497
Heun 3 22.48 0.7780 0.1936

Ralston 3 21.46 0.7611 0.2061
Houwen 3 21.11 0.7488 0.2270
SSPRK3 3 20.52 0.7364 0.2373

Classic 4 24.46 0.8197 0.1425
3/8-rule 4 25.68 0.8364 0.1241
Ralston 4 20.16 0.7258 0.2564

τ = 6. To minimize the impact of image resolution, we resize the images from the PIE-Bench
dataset Ju et al. (2024) to match the resolution used in the corresponding pre-trained baselines, i.e.,
512× 512 for SD and 1024× 1024 for FLUX. The configuration of our DDTA follows the general
setup described in Sec. 3.3, where attention manipulations are applied only to the single-stream
DiT blocks at the first sampling step. Specifically, text-guided semantic editing is performed using
Algorithm 1, with Dlist = [1]. In all single-stream DiT blocks, we replace the cross-attention maps
{MCI ,MIC} and apply a mean operation to the value feature VI .

Visualization of Word-Pixel Response Maps. DAAM Tang et al. (2023) is an attention visual-
ization technique originally designed for UNet-based models, and thus cannot be directly applied
to MM-DiT architectures. Inspired by DAAM, we visualize word-pixel response maps to validate
the correctness of our proposed DDTA. As shown in Fig. 2, the visualization provides direct ev-
idence that DDTA effectively decouples multimodal attention. The implementation details of the
visualization are outlined in Algorithm 2.

C APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results to further demonstrate the effectiveness
of the proposed method.

C.1 ABLATION STUDY ON BUTCHER TABLEAU

The Runge-Kutta method comprises a family of numerical solvers, each defined by a specific
Butcher tableau. We report the results obtained using various Butcher tableaux, ranging from
second-order to fourth-order solvers. For the second-order methods, we include the midpoint,
Heun’s, and Ralston’s Ralston (1962) methods, which are given by:

B(2)
midpoint =

0 0 0
1
2

1
2 0

0 1

, B(2)
Heun =

0 0 0

1 1 0
1
2

1
2

, B(2)
Ralston =

0 0 0
2
3

2
3 0
1
4

3
4

.

For the third-order methods, we include the Kutta’s Kutta (1901), Heun’s, Ralston’s Ralston (1962),
Van der Houwen’s der Houwen P J. (1972), and Strong Stability Preserving Runge-Kutta (SSPRK3)
methods, each defined as follows:

B(3)
Kutta =

0 0 0 0
1
2

1
2 0 0

1 −1 2 0
1
6

2
3

1
6

, B(3)
Heun =

0 0 0 0
1
3

1
3 0 0

2
3 0 2

3 0
1
4 0 3

4

, B(3)
Ralston =

0 0 0 0
1
2

1
2 0 0

3
4 0 3

4 0
2
9

1
3

4
9

,
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Table 6: Ablation study on sampling steps and NFEs.
Method Steps NFEs PSNR ↑ SSIM ↑ LPIPS ↓

Vanilla RF 30 60 17.46 0.5952 0.4282
Vanilla RF 60 120 19.03 0.6758 0.3092
Vanilla RF 90 180 19.53 0.6969 0.2841
Vanilla RF 120 240 17.70 0.6386 0.3539
RF-Solver 15 60 19.44 0.7157 0.2477
RF-Solver 30 120 22.20 0.7778 0.1890
RF-Solver 60 240 22.25 0.7655 0.2106
FireFlow 30 62 23.29 0.8006 0.1639
FireFlow 60 122 23.15 0.7861 0.1873
FireFlow 90 182 24.40 0.8146 0.1496
FireFlow 120 242 18.60 0.6543 0.3311

Ours (r = 2) 15 60 20.66 0.7393 0.2407
Ours (r = 2) 30 120 24.00 0.8124 0.1534
Ours (r = 2) 60 240 26.89 0.8607 0.0974
Ours (r = 3) 30 180 23.98 0.8131 0.1497
Ours (r = 3) 40 240 25.14 0.8274 0.1349
Ours (r = 4) 15 120 22.28 0.7699 0.1993
Ours (r = 4) 30 240 25.68 0.8364 0.1241

B(3)
Houwen =

0 0 0 0
8
15

8
15 0 0

2
3

1
4

5
12 0

1
4 0 3

4

, B(3)
SSPRK3 =

0 0 0 0

1 1 0 0
1
2

1
4

1
4 0

1
6

1
6

2
3

.

For the fourth-order methods, we include the classic, 3/8-rule, and Ralston’s Ralston (1962) meth-
ods, which are defined by:

B(4)
classic =

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0
1
6

1
3

1
3

1
6

, B(4)
3/8-rule =

0 0 0 0 0
1
3

1
3 0 0 0

2
3 − 1

3 1 0 0

1 1 −1 1 0
1
8

3
8

3
8

1
8

,

B(4)
Ralston =

0 0 0 0 0

0.4 0.4 0 0 0

0.45573725 0.29697761 0.15875964 0 0

1 0.21810040 −3.05096516 3.83286476 0

0.17476028 −0.55148066 1.20553560 0.17118478

.

The comparison results of various Butcher tableaux are shown in Tab. 5. The Heun’s, Kutta’s, and
3/8-rule variants achieve the best performance from the second-order to the fourth-order solver.
Among the second-order to the fourth-order solvers, the fourth-order solver achieves the best per-
formance, while the third-order solver slightly outperforms the second-order method.

C.2 ABLATION STUDY ON SAMPLING STEPS AND NFES

Although the high-order approximation improves reconstruction performance, it introduces addi-
tional NFEs. For instance, our fourth-order RK solver with 30 sampling steps requires 240 NFEs,
which is equivalent to a second-order method with twice the number of sampling steps. To rule out
the possibility that the improvement is merely due to the increased NFEs, we conduct an ablation
study on sampling steps and NFEs. The results are illustrated in Tab. 6. All experimental results in-
dicate that increasing the number of sampling steps generally improves reconstruction performance.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Ablation study on the manipulation of different decoupled attention components.
Attention Map Attention Feature Structure

Distance↓
Unedited Fidelity CLIP Similariy

MCC MII MCI MIC VC VI PSNR ↑ SSIM ↑ Whole ↑ Edited ↑
✗ ✗ ✗ ✗ ✗ ✗ 0.0606 19.01 0.7540 25.97 23.27
✓ ✗ ✗ ✗ ✗ ✗ 0.0610 19.02 0.7544 26.07 23.29
✗ ✓ ✗ ✗ ✗ ✗ 0.0333 22.68 0.8234 25.19 22.50
✓ ✓ ✗ ✗ ✗ ✗ 0.0332 22.70 0.8236 25.17 22.51
✗ ✗ ✓ ✗ ✗ ✗ 0.0606 19.04 0.7547 26.16 23.35
✗ ✗ ✗ ✓ ✗ ✗ 0.0573 19.42 0.7630 25.93 23.16
✗ ✗ ✓ ✓ ✗ ✗ 0.0573 19.40 0.7625 25.98 23.16
✓ ✓ ✓ ✓ ✗ ✗ 0.0372 22.78 0.8249 25.20 22.50
✗ ✗ ✗ ✗ ✓ ✗ 0.0589 19.28 0.7600 26.05 23.21
✗ ✗ ✗ ✗ ✗ ✓ 0.0246 25.35 0.8530 24.73 22.17
✗ ✗ ✗ ✗ ✓ ✓ 0.0245 25.36 0.8532 24.71 22.13

Table 8: Ablation study on manipulation methods. Here, R denotes the replacement operation,
whileM indicates the mean operation.

Attention Map Attention Feature Structure
Distance↓

Unedited Fidelity CLIP Similariy
MCC MII MCI MIC VC VI PSNR ↑ SSIM ↑ Whole ↑ Edited ↑
R ✗ ✗ ✗ ✗ ✗ 0.0610 19.02 0.7544 26.07 23.29
M ✗ ✗ ✗ ✗ ✗ 0.0609 19.02 0.7542 26.07 23.32
✗ R ✗ ✗ ✗ ✗ 0.0333 22.68 0.8234 25.19 22.50
✗ M ✗ ✗ ✗ ✗ 0.0412 21.36 0.8010 25.61 22.51
✗ ✗ R ✗ ✗ ✗ 0.0606 19.04 0.7547 26.16 23.35
✗ ✗ M ✗ ✗ ✗ 0.0609 19.02 0.7544 26.11 23.28
✗ ✗ ✗ R ✗ ✗ 0.0573 19.42 0.7630 25.93 23.16
✗ ✗ ✗ M ✗ ✗ 0.0591 19.22 0.7593 26.04 23.28
✗ ✗ ✗ ✗ R ✗ 0.0589 19.28 0.7600 26.05 23.21
✗ ✗ ✗ ✗ M ✗ 0.0598 19.13 0.7567 26.07 23.25
✗ ✗ ✗ ✗ ✗ R 0.0246 25.35 0.8530 24.73 22.17
✗ ✗ ✗ ✗ ✗ M 0.0311 23.38 0.8312 25.26 22.53

However, results on the vanilla RF and FireFlow Deng et al. (2025) reveal that such performance
gains do not scale indefinitely. Notably, the reconstruction performance degrades significantly when
the number of sampling steps reaches 120. In addition, although the NFEs of vanilla RF with 120
sampling steps, RF-Solver Wang et al. (2025) with 60 steps, FireFlow with 120 steps, our third-
order RK solver with 40 steps, and our fourth-order RK solver with 30 steps are all about 240, our
fourth-order method significantly outperforms the others. This demonstrates that the improvement
in reconstruction performance is not solely owing to the increased NFEs.

C.3 ABLATION STUDY ON DECOUPLED ATTENTION COMPONENTS

We conduct a comprehensive experiment to evaluate the influence of each attention region on the
trade-off between fidelity and editability. In this experiment, we employ the third-order RK solver
(Kutta’s variant) with 8 sampling steps as the sampler, and apply attention replacement only to the
single-stream DiT blocks at the first timestep. From the results shown Tab. 7, we draw the following
conclusions: (1) For self-attention maps, replacing MCC yields only a very small improvement in
both fidelity and editability, whereas replacing MII significantly enhances fidelity at the cost of
reduced editability. (2) Manipulating the two types of cross-attention maps leads to different effects,
i.e., replacing MCI improves the editability while slightly enhancing the fidelity, whereas replacing
MIC improves the fidelity but slightly reduces the editability. (3) For the value attention features,
replacing VC slightly improves the fidelity while maintaining the editability, whereas replacing VI

significantly enhances the fidelity but substantially reduces the editability. Therefore, the order of
contributions to fidelity is: VI > MII > MIC > MCI > MCC , while the order of contributions to
editability is: MCI > MCC ≈ VC > MII > VI .
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Table 9: Computational cost of the proposed RK Solver.
Method Order NFEs Runtime GPU Memory

Vanilla RF 1 60 45.9 35.51
RK Solver 2 120 91.5 35.51
RK Solver 3 180 136.9 35.51
RK Solver 4 240 182.6 35.51

Table 10: Computational cost of the proposed DDTA. Here, R denotes the replacement operation,
whileM indicates the mean operation.

Attention Map Attention Feature Runtime GPU Memory
MCC MII MCI MIC VC VI

✗ ✗ ✗ ✗ ✗ ✗ 35.6 35.51
R ✗ ✗ ✗ ✗ ✗ 55.4 36.89
M ✗ ✗ ✗ ✗ ✗ 55.3 36.89
✗ R ✗ ✗ ✗ ✗ 108.7 38.39
✗ M ✗ ✗ ✗ ✗ 111.8 38.39
✗ ✗ R ✗ ✗ ✗ 56.3 36.89
✗ ✗ M ✗ ✗ ✗ 56.3 36.89
✗ ✗ ✗ R ✗ ✗ 56.3 36.89
✗ ✗ ✗ M ✗ ✗ 56.3 36.89
✗ ✗ ✗ ✗ R ✗ 51.6 36.89
✗ ✗ ✗ ✗ M ✗ 51.8 36.89
✗ ✗ ✗ ✗ ✗ R 51.7 36.89
✗ ✗ ✗ ✗ ✗ M 51.9 36.89

C.4 ABLATION STUDY ON MANIPULATION METHOD

We conduct a series of experiments to evaluate the effectiveness of different manipulation strate-
gies. Experimental results in Tab. 8 show that the mean operation is slightly less effective than
the replacement operation. Therefore, users can precisely control the edited image by customizing
the manipulation method, the number of DiT blocks, and the sampling steps to achieve the most
satisfactory results.

D APPENDIX: DISCUSSION ON COMPUTATIONAL COST

Although our proposed framework achieves substantial improvements in both reconstruction and
editing performance, it inevitably incurs additional computational overhead. Here, we present a
quantitative analysis of the computational cost incurred by the proposed RK Solver and DDTA,
reporting the runtime (in seconds per image) and GPU memory usage. In this evaluation, all ex-
periments are conducted on a single NVIDIA L40 GPU, and the data is running under the bfloat16
floating-point format. The results of RK Solver, as shown in Tab. 9, lead to the following obser-
vations: (1) since the proposed method is training-free, all solvers occupy the same GPU memory,
and (2) the runtime increases approximately linearly with the solver’s order, as higher-order solvers
require more NFEs. To quantify the computational overhead introduced by DDTA, we evaluate the
runtime and GPU memory consumption under different attention manipulation strategies. As shown
in Tab. 10, applying DDTA leads to additional computational cost in both runtime and GPU mem-
ory usage. This overhead is directly correlated with the dimensionality of the preserved attention
maps or features, following the order: MII > MCI = MIC > MCC > VI > VC . It is worth
noting that the additional cost originates from storing and reusing attention maps/features from the
inversion branch. Therefore, the specific manipulation type (e.g., replace or mean) does not affect
the computational overhead.
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E APPENDIX: LLMS USAGE STATEMENT

In this paper, we utilized LLMs solely for the purpose of language polishing and stylistic refinement
of the manuscript. Specifically, the LLM was employed to optimize the clarity, fluency, and consis-
tency of the written English expression to enhance the readability. Notably, the LLMs did not play
any role in research ideation, experimental design, or formulation of key conclusions of this study.
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