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Abstract— An autonomous service robot should be capable
of interacting with its environment safely. However, outcomes
of executions are not always as expected due to several
factors including perception errors, failures in manipulation,
or unexpected external events. While most current research
emphasizes detecting and classifying robot failures, our study
shifts its focus to anticipating these failures before they occur.
The underlying idea is that by anticipating a potential failure
early on, preventive actions can be taken. To address this,
we present a novel failure anticipation framework based on
knowledge distillation. This system utilizes video transformers
and incorporates a sensor fusion network designed to handle
RGB, depth, and optical flow data. We assess the effectiveness
of our method on FAILURE, a real-world robot manipulation
dataset. Experimental results indicate that our proposed frame-
work achieves an F1 score of 82.12%, highlighting its ability to
anticipate robot execution failures up to one second in advance.

I. INTRODUCTION

Robots interact with humans and objects in various social,
unstructured environments. In such environments, robots
need a variety of skills to ensure safe interaction [1]. During
these interactions, unforeseen situations can arise due to
incorrect estimation of parameters or representation of the
real world. Such situations raise concerns for safety and
security in robot-object interaction.

In order to enhance safety during interactions between
robots and objects, continuous execution monitoring is nec-
essary. For this purpose, there have been studies for failure
detection [2], [3], [4], [5], [6], [7] and classification [3], [8],
[9]. In these works, a post-execution classification is targeted
indicating whether the execution was failed or successful.
Nevertheless, this is only helpful as an inspection procedure
after a failure occurs. In contrast, failure anticipation involves
determining whether there will be a failure before its actual
occurrence. Hence, anticipating and preventing failures is
possible. This proactive strategy aims to reduce the potential
harm that may arise from failures in manipulation. Fig. 1
presents the difference of a failure anticipation case from a
failure detection case on a pouring scenario.

In a recent study, a robot was trained to learn failure-
preventive actions using deep reinforcement learning [10].
In this work, rule-based methods are utilized to predict a
potential risk that may pose a threat to safety. The method
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Fig. 1: Symbolic representations for (a) detecting and (b) antici-
pating a failure during a scenario involving a robot pouring into
a bowl. The input of the detection problem contains the frames
including the failure case. Yet these frames are excluded for the
anticipation problem, and the goal is to predict the failure.

we propose aims to predict risks without expert knowledge
and predefined features, using only real-world data.

Early detection refers to the earliest possible identifi-
cation of an event, while anticipation involves predicting
an event before it occurs [11]. Similar to the problem of
failure anticipation, there have been studies on other domains
such as human activity anticipation [12]. For instance, [13]
uses exponential loss for delayed predictions, while another
study [14] combines cross-entropy loss with ranking loss.
In another work [15], the Rolling-Unrolling LSTM method
is being utilized. In this method, Rolling LSTM encodes
historical context into a hidden vector, and Unrolling LSTM
uses this hidden vector for decoding.

Knowledge distillation is the process of transferring
knowledge from a large, complex model (Teacher model) to
a smaller, lighter model (Student model) to adapt it to real-
time applications [16], [17], [18]. In contrast, in this work,
the student network is designed to have the identical capacity
as the teacher network. Knowledge distillation has also been
used in predicting human activities [19], [20]. In this study,
knowledge distillation is reinterpreted for anticipating robot-
object manipulation failures with a multi-headed transformer
backbone network (Section II-C).

Spatio-temporal sensory data analysis is necessary to
represent the real-world robot manipulations which are used
for failure anticipation. In recent years, video transformers
have shown significant advancements in computer vision
by utilizing self-attention mechanisms to effectively capture
complex interactions, making them ideal for tasks like video



Fig. 2: Knowledge distillation based failure anticipation architecture. Training has two steps. First, the Teacher network is trained
independently of the Student. Then, the Teacher network weights are freezed and used to guide the Student network’s training by
distilling learned representations.

processing. Therefore, ViViT [21] is used as the backbone
model for our study.

In summary, the contributions of this study are as follows:
• we introduce extended FAILURE dataset [2] with opti-

cal flow modality,
• we present a sensor fusion based transformer model for

RGB, depth and optical flow modalities,
• we propose a failure anticipation architecture that uses

knowledge distillation.

II. METHODOLOGY

In this study, a knowledge distillation-based failure antici-
pation architecture is presented (Fig. 2). The proposed archi-
tecture consists of Teacher (ΦT ) and Student (ΦS) networks.
While the Teacher network assists in the learning process,
failure anticipation is performed by the Student network.
Both the Teacher and Student networks are implemented
based on video transformers models.

A. Problem Description

Anticipating manipulation failures requires carefully ob-
serving changes in the scene using multiple sensory modal-
ities [2], [3]. In this study, the failure anticipation task is
represented as a classification problem without the failure in-
formation (i.e., input does not contain frames corresponding
to the failure). Consider a set of sensing modalities denoted
as M ∈ {1,2,3 . . .} where m ∈ M represents the modality
index. Let D be the dataset containing |D| = N multimodal
observation sequences. An observation is denoted by xm

tm,i,
tm represents the time index for modality m, and i is the
recording index. Finally, y ∈ { f ail,success} is the label:

D = {{(xm
1,i . . .x

m
tm,i))

M
m=1,yi}}N

i=1 (1)

The objective is to anticipate failures by extracting discrim-
inative features from ΦT (.), which is specified for failure
detection. Subsequently, these features are distilled to ΦS(.)
which assigns (i.e., anticipation) a categorical label as either
success or failure to the subset of multimodal sensory data.

B. Dataset and Preprocessing

In this study, the FAILURE dataset [3] is utilized which
consists of 324 real-world object interaction video recordings
captured using the Baxter robot, containing RGB, depth,
and audio modalities. These object interactions are cate-
gorized as pouring, pushing, place-in-container, put-on-top,
and pick&place. A symbolized pouring execution failure is
given in Fig. 1. Additionally, we extended the FAILURE
dataset with optical flow modality. Optical flow represents a
distribution that expresses the apparent velocities of bright-
ness patterns’ movement in an image. This movement can
originate from the moving entity or passively affected objects
relative to it [22]. Therefore, optical flow provides significant
information about the spatial arrangement of objects causing
or being affected by the motion [23].

Positions, distances, and motion states of objects in the

Fig. 3: RGB frames captured using the head camera during
the robot-objects interaction and their corresponding optical flow
frames.



environment are crucial for identifying the signatures of
failures. Therefore, we propose to use depth and optical flow
data in addition to RGB data. The optical flow data obtained
from RGB using FlowNet2 [24] is merged into the dataset
(Fig. 3).

Data Preprocessing. Due to the online planning and
execution of object interaction trajectories by the robot, the
length of recordings varies depending on the type of object
interaction and the planned trajectory. Each recording in
the dataset is downsampled to 1 FPS, converting them into
sequences of sequential image frames.

Videos in the dataset are represented by sampled 8 frames
including the failure. While the Teacher network can observe
all 8 frames, the selection for the Student network is con-
strained to be just before the occurrence of a failure. Student
network observes 7 frames from the execution and a blank
frame. Finally, all frames are cropped to 224 × 224 pixels
corresponding to the dimensions of the table.

C. Network Architecture

The proposed model has been designed to anticipate
potential failures and provide enough time to prevent them
before they occur. The key aspect of the model is the use
of the knowledge distillation method to anticipate failures.
Knowledge distillation architecture is composed of Teacher
and Student networks. Both networks utilize Video Vision
Transformer model (ViViT [21]) as backbone.
Teacher Network: The teacher network is responsible for
failure detection. It has access to all frames of the manip-
ulation execution. The teacher model (ΦT (.)) is formulated
as follows:

ŷtm,i = ΦT (φ1(x
(1)
1,1, . . . ,x

(1)
t1,i

)⊕·· ·⊕φm(x
(m)
1,1 , . . . ,x

(m)
tm,i)) (2)

Student Network. The main goal of the student network is
to anticipate potential failures in advance. The input of the
Student network is denoted by xm

rm,i. r contains a subset of
time indices that correspond to the frames before the failure
which is defined as r ∈ {1,2, . . . ,(t −1)m}M

m=1. The Student
(ΦS) is formulated as:

ŷtm,i = ΦS(φ1(x1
1,1, . . . ,x

(1)r1, i)⊕·· ·⊕φm(x
(m)
1,1 , . . . ,x

(m)rm, i)) (3)

Vision Transformer: The ViViT [21] model-3 architecture is
adopted to extract features from failure manipulation videos.
We input a sequence of 8 video frames with 224 x 224 pixels
dimensions into ViViT. The size of the extracted tubelet from
each image frame is defined by (patchh, patchw) = 32 x 32.
Additionally, the temporal tubelet size (patcht ) is set to 4.
The dimension parameter is specified as 256, while the depth
parameter is set to 6. Moreover, a multi-head self-attention
mechanism with a head size of 8 is utilized.

D. Training Methodology

In this work, offline distillation is adopted [25], [26],
[27] where training involves two steps. First, the teacher
is trained independently of the student. Then, the teacher
network weights are freezed and used to guide the student
network’s training by distilling learned representations.

Teacher network is trained using cross-entropy loss. On
the other hand, the loss function for the Student network is
composed of two parts. One of which measures the loss of
the student network’s failure anticipation (LC) and the other
one is used to measure the distillation loss (LT S) from the
teacher to the student network. The total loss (Ltotal) function
is formulated as:

Ltotal = αLT S(ZT
m,Z

S
m)+βLC(y, ŷ) (4)

Here, α and β are defined as learnable parameters of the
network, and their values are determined by the network
during training. LC represents the failure anticipation loss
of the student network and is calculated using cross-entropy
(CE). y denotes the true class label, and ŷ represents the
student’s anticipated class label. The distillation loss, denoted
as LT S, is calculated using the maximum mean discrepancy
(MMD) loss function and formulated as:

LT S = LMMD(ZT
RGB,Z

S
RGB)+LMMD(ZT

D,Z
S
D)+LMMD(ZT

F ,Z
S
F) (5)

III. EXPERIMENTS

For quantitative evaluation, the extended FAILURE dataset
is divided into training (70%), validation (10%), and test sets
(20%). All network weights are initialized randomly, and
training is conducted for 250 steps using Adam optimization,
with a learning rate set to 1e-5. The best model is deter-
mined based on the validation set using an early stopping
strategy. Test scores obtained with the selected best models
are reported in the following sections. Data augmentation
is applied to prevent overfitting, where, for example, the
brightness, contrast, saturation, and hue values of all images
in a sequence are randomly altered with a 20% probability.
Similarly, each image sequence is flipped vertically with a
50% probability.

A. Quantitative Evaluation

In this section, the numerical results obtained are pre-
sented. The proposed architecture has been trained for both
individual modalities and multi-modal sensor fusion. In
the multi-modal architecture, an independent copy of the
transformer network is created for each modality, and the
modalities are combined through late fusion.

TABLE I: QUANTITATIVE RESULTS FOR TEACHER NETWORK

Precision Recall F1 Score

RGB 62.63 62.16 62.39

D (Depth) 64.97 60.89 62.86

F (Optical Flow) 64.57 62.16 63.34

RGB-F 67.56 67.56 67.56

RGB-D 70.43 67.56 68.97

RGB-D-F 76.05 75.67 75.86

Table I presents the results obtained from the Teacher
network for different sensor modalities and their fusion. The
input frames of the Teacher network cover the entire video.
Therefore, it represents a failure detection problem.



The results show that the multimodal network outperforms
one with a single modality for failure detection. Multimodal
fusion is significant in enhancing the accuracy and reliability
of failure detection systems by leveraging the complementary
strengths of each modality. Combining all modalities (RGB-
D-F) yields the highest performance with an F1 score of
76.06% during testing.

TABLE II: QUANTITATIVE RESULTS FOR STUDENT NETWORK
(FAILURE ANTICIPATION)

1-Frame (1 sec) 2-Frames (2 sec)

Precision Recall F1 Score Precision Recall F1 Score

RGB 73.05 72.97 72.98 72.64 62.16 66.99

D 68.26 68.42 68.34 66.84 65.78 66.31

RGB-D 75.85 75.67 75.76 70.19 70.27 70.23

RGB-F 79.41 78.37 78.89 67.48 67.52 67.52

RGB-D-F 83.19 81.08 82.12 81.27 78.37 79.79

Table II presents the results of the Student network. The
input to the Student network includes frames preceding the
failure and is utilized for failure anticipation. The column
1-Frame in the table represents the last frame observed
by the student network before the failure (i.e., 1 second
before the failure). When comparing the performance of the
student network for the 1-Frame column with that of the
teacher network, the student network outperforms the teacher
network for each modality.

The student network is designed to have the identical
capacity as the teacher network, contrary to conventional
approaches [28], [16], [17], [18]. Additionally, despite not
directly observing failures, the student network distils all
the information possessed by the teacher network for failure
anticipation and further validates it by comparing the learned
information with the ground truth data labels. Hence, it
exhibits better performance than the teacher network for
the 1-Frame column. When comparing 2-Frames with 1-
Frame, since 1-Frame is closer to the failure event, the failure
anticipation F1 score of the student network is higher as
expected.

IV. CONCLUSION
In summary, anticipating failures is a crucial step in

ensuring the reliability and robustness of autonomous sys-
tems. Real-time execution monitoring approaches for object
manipulation can detect potential failures, and the relevant
preventive actions can be taken before undesired outcomes
occur. Our proposed method enables the robot to anticipate
object manipulation failures with an F1-score of 82.12%
1 second in advance and 79.79% 2 seconds in advance.
The obtained results demonstrate the potential utility of
our proposed system in preemptively anticipating failures.
Real-time testing of the developed video transformer-based
architecture on the robot is an ongoing work.
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learning for robotic grasp verification using neural networks,” in
International Conference on Pattern Recognition, 2022, pp. 5111–
5117.

[8] D. Altan and S. Sariel, “What went wrong? identification of everyday
object manipulation anomalies,” Intelligent Service Robotics, vol. 14,
no. 2, pp. 215–234, 2021.

[9] ——, “Clue-ai: A convolutional three-stream anomaly identification
framework for robot manipulation,” Preprint arXiv:2203.08746, 2022.

[10] A. C. Ak, E. E. Aksoy, and S. Sariel, “Learning failure prevention
skills for safe robot manipulation,” IEEE Robotics and Automation
Letters, vol. 8, no. 12, pp. 7994–8001, 2023.

[11] M. Hutchinson and V. Gadepally, “Video action understanding: A
tutorial,” arXiv preprint arXiv:2010.06647, 2020.

[12] Z. Zhong, M. Martin, M. Voit, J. Gall, and J. Beyerer, “A survey
on deep learning techniques for action anticipation,” arXiv preprint
arXiv:2309.17257, 2023.

[13] A. Jain, A. Singh, H. S. Koppula, S. Soh, and A. Saxena, “Recurrent
neural networks for driver activity anticipation via sensory-fusion
architecture,” in IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 3118–3125.

[14] S. Ma, L. Sigal, and S. Sclaroff, “Learning activity progression in
lstms for activity detection and early detection,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 1942–1950.

[15] A. Furnari and G. M. Farinella, “What would you expect? anticipating
egocentric actions with rolling-unrolling lstms and modality attention,”
in IEEE/CVF International Conference on Computer Vision, 2019, pp.
6252–6261.

[16] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[17] R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and J. Lin, “Distilling
task-specific knowledge from bert into simple neural networks,” arXiv
preprint arXiv:1903.12136, 2019.

[18] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in
IEEE conference on computer vision and pattern recognition, 2017,
pp. 4133–4141.

[19] G. Camporese, P. Coscia, A. Furnari, G. M. Farinella, and L. Ballan,
“Knowledge distillation for action anticipation via label smoothing,”
in International Conference on Pattern Recognition, 2021, pp. 3312–
3319.

[20] V. Tran, Y. Wang, Z. Zhang, and M. Hoai, “Knowledge distillation
for human action anticipation,” in IEEE International Conference on
Image Processing (ICIP). IEEE, 2021, pp. 2518–2522.

[21] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and C. Schmid,
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