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Abstract
Diffusion-based generative models use stochastic
differential equations (SDEs) and their equivalent
ordinary differential equations (ODEs) to estab-
lish a smooth connection between a complex data
distribution and a tractable prior distribution. In
this paper, we identify several intriguing trajectory
properties in the ODE-based sampling process of
diffusion models. We characterize an implicit de-
noising trajectory and discuss its vital role in form-
ing the coupled sampling trajectory with a strong
shape regularity, regardless of the generated con-
tent. We also describe a dynamic programming-
based scheme to make the time schedule in sam-
pling better fit the underlying trajectory structure.
This simple strategy requires minimal modifica-
tion to any given ODE-based numerical solvers
and incurs negligible computational cost, while
delivering superior performance in image genera-
tion, especially in 5 ∼ 10 function evaluations.

1. Introduction
Diffusion-based generative models (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2021c) have gained significant attention and achieved re-
markable results in image (Dhariwal & Nichol, 2021; Rom-
bach et al., 2022), audio (Kong et al., 2021), video (Ho et al.,
2022; Blattmann et al., 2023), and notably in text-to-image
synthesis (Saharia et al., 2022; Ruiz et al., 2023; Podell et al.,
2024; Esser et al., 2024). These models introduce noise into
data through a forward process and subsequently generate
data by sampling via a backward process. Both processes
are characterized and modeled using stochastic differential
equations (SDEs) (Song et al., 2021c). In diffusion-based
generative models, the pivotal element is the score function,
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Figure 1. A geometric picture of ODE-based sampling in diffusion
models. Each initial sample (from the noise distribution) starts
from a big sphere and converges to the final sample (in the data
manifold) along a regular sampling trajectory, which is controlled
by an implicit denoising trajectory.

defined as the gradient of the log data density w.r.t. the in-
put (Hyvärinen, 2005; Lyu, 2009; Raphan & Simoncelli,
2011; Vincent, 2011), irrespective of the model’s specific
configurations. Training such a model involves learning
the score function, which is achievable by developing a
noise-dependent denoising model. This model is trained to
minimize the mean square error in data reconstruction for
the data-noise pairings generated during the forward pro-
cess (Kingma et al., 2021; Karras et al., 2022). To generate
data, diffusion-based generative models solve the acquired
score-based backward SDE through a numerical solver. Re-
cent research has shown that the backward SDE can be
effectively replaced by an equivalent probability flow ordi-
nary differential equation (PF-ODE), preserving identical
marginal distributions (Song et al., 2021c;a; Lu et al., 2022a;
Zhang & Chen, 2023; Zhou et al., 2023). This determinis-
tic ODE-based generation reduces the need for stochastic
sampling to just the randomness in the initial sample selec-
tion, thereby simplifying and granting more control over the
entire generative process (Song et al., 2021a;c). Under the
PF-ODE formulation, starting from white Gaussian noise,
the sampling trajectory is formed by running a numerical
solver with discretized time steps. These steps collectively
constitute the time schedule used in sampling.

Despite the impressive generative capabilities exhibited by
diffusion-based models, many mathematical and statistical
aspects of these models remain veiled in mystery, largely
due to the complex nature of SDEs and neural network
models, and the substantial data dimensions involved. In
particular, empirical studies indicate an intriguing regular-
ity in the sampling trajectories of PF-ODE based diffusion
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models (Chen et al., 2023a), i.e., the tendency of sample
paths to exhibit a “boomerang” shape, or specifically, a
linear-nonlinear-linear structure as depicted in Figure 1. In
addition, we observe that each sampling trajectory barely
strays from the straight line joining its beginning and end
points, a deviation that can be effectively approximated us-
ing two or three orthogonal bases (Section 3). This pattern
appears consistently in different trajectories, irrespective of
their initial random samples or the corresponding real data
samples (see Figure 4). This simple structure guarantees the
common use of a shared time schedule for synthesizing dif-
ferent samples, and enable us to safely adopt large sampling
steps without incurring much truncation error (Song et al.,
2021a; Karras et al., 2022; Lu et al., 2022a), especially at
the first step (Dockhorn et al., 2022; Zhou et al., 2023).

We hypothesize that this regularity reflects some underly-
ing geometric structures of the sampling trajectories. This
work aims to elucidate this phenomenon. We start by sim-
plifying the ODE-based sampling trajectory, which reveals
an implicit denoising trajectory. The denoising trajectory
corresponds to a rotation of each point on the sampling tra-
jectory and thus determines the curvature of the sampling
trajectory (Section 4.1). Built upon this insight, we show
that the denoising trajectory affords a closed-form solution
when we use a kernel density estimation (KDE) of varying
widths to approximate the original data distribution from
training samples. This is analogous to the classical mean-
shift algorithm (Fukunaga & Hostetler, 1975; Cheng, 1995;
Comaniciu & Meer, 2002), albeit an important difference
is that we use time-varying width in KDE (Section 4.2).
Though not feasible for the practical solution of the sam-
pling trajectories, the KDE-based solution converges to the
optimal solution based on the real data distribution asymp-
totically. Its closed form lends itself to theoretical analysis.
We show that the linear-nonlinear-linear structure follows
naturally from this interpretation of the PF-ODE. This trajec-
tory regularity unifies prior observations and clarifies many
existing heuristics to expedite diffusion model sampling.
Using the shape regularity of the sampling trajectories, we
introduce an efficient and effective accelerated sampling
approach based on dynamic programming to determine the
optimal time schedule. Experimental results demonstrate
that trajectory regularity-based accelerated sampling can
significantly improve the performance of diffusion-based
generative models in a few (≤ 10) function evaluations. Our
main contributions are summarized as follows1:

• We describe and demonstrate a strong shape regular-
ity of trajectories of ODE-based diffusion sampling,
i.e., the sampling trajectories approximately follow a
similar shape with a linear-nonlinear-linear structure.

1The unpublished, early manuscript of this paper can be found
in arXiv (Chen et al., 2023a).

• We explain this regularity through the closed form
of the denoising trajectory under a KDE-based data
modeling with the time-varying bandwidth.

• We develop a dynamic programming-based approach
that leverages the trajectory regularity to find the opti-
mal time schedule of the sampling steps. It introduces
minimal overhead and yields improved image quality.

2. Preliminaries
For successful generative modeling, it is essential to connect
the data distribution pd with a non-informative, manageable
distribution pn. Diffusion models fulfill this objective by
incrementally introducing white Gaussian noise into the
data, effectively obliterating its structures, and subsequently
reconstructing the synthesized data from noise samples via a
series of denoising steps. The forward step can be modeled
as a diffusion process {xt}Tt=0 starting from x0 ∼ pd, which
is the solution of a linear Itô stochastic differential equation
(SDE) (Song et al., 2021c; Karras et al., 2022)

dxt = f(t)xtdt+ g(t)dwt, (1)

where wt denotes the Wiener process; f(t)xt and g(t)
are the drift and diffusion coefficients, respectively. The
marginal distribution pt(xt) evolves according to the well-
known Fokker-Planck equation given the initial condition
p0(x0) = pd(x0) (Oksendal, 2013). By properly setting
the drift and diffusion coefficients, the data distribution
is smoothly transformed to the (approximate) noise distri-
bution pT (xT ) ≈ pn in a forward manner. The transi-
tion kernel in this context is always a Gaussian distribu-
tion, i.e., p0t(xt|x0) = N (xt; s(t)x0, s

2(t)σ2(t)I), where

s(t) = exp
(∫ t

0
f(ξ)dξ

)
, σ(t) =

√∫ t

0
[g(ξ)/s(ξ)]

2
dξ,

and we denote them as st, σt hereafter for notation simplic-
ity. The signal-to-noise ratio (SNR) is defined as 1/σ2

t (Kar-
ras et al., 2022). More details are provided in Section A.1.

In the literature, two forms of SDEs are commonly used,
namely, the variance-preserving (VP) SDE and the variance-
exploding (VE) SDE (Song et al., 2021c), and they are both
widely used in large-scale generative models (Ramesh et al.,
2022; Rombach et al., 2022; Balaji et al., 2022; Yuan et al.,
2023). Our analysis will be based on VE-SDEs and the
results can be easily extended to VP-SDEs. In fact, we can
safely remove the drift term in (1) without changing the
essential characteristics of the underlying diffusion model.
Remark 2.1 (Proofs in Section A.1). Linear diffusion pro-
cesses sharing the same SNR of transition kernels are equiv-
alent according to Itô’s lemma (Oksendal, 2013).

Because of this, we only consider a standardized VE-SDE

dxt =
√
dσ2

t /dtdwt, σt : R→ R, (2)
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where σt is a pre-defined increasing noise schedule.

The reverse of the forward SDE, as expressed in (2), is rep-
resented by another SDE which facilitates the synthesis of
data from noise through a backward sampling (Feller, 1949;
Anderson, 1982). Notably, a probability flow ordinary dif-
ferential equation (PF-ODE) exists and maintains the same
marginal distributions {pt(xt)}Tt=0 as the SDE at each time
step throughout the diffusion process (Song et al., 2021c):

dxt = −σt∇xt
log pt(xt)dσt. (3)

The deterministic nature of ODE offers several benefits in
generative modeling, including efficient sampling, unique
encoding, and meaningful latent manipulations (Song et al.,
2021c;a). We thus choose this formula to analyze the sam-
pling behavior of diffusion models throughout this paper.

Training. Simulating the above PF-ODE (3) requests hav-
ing the score function ∇xt log pt(xt) (Hyvärinen, 2005;
Lyu, 2009), which is typically estimated with denoising
score matching (Vincent, 2011). Thanks to a profound con-
nection between the score function and the posterior expec-
tation, i.e., E(x0|xt) = xt + σ2

t∇xt
log pt(xt) (Robbins,

1956; Efron, 2011; Raphan & Simoncelli, 2011), we can
also train a denoising autoencoder (DAE) (Vincent et al.,
2008; Bengio et al., 2013), denoted as rθ, to estimate the
conditional expectation E(x0|xt), and then convert it to the
score function. The objective function of training such a neu-
ral network across different noise levels with the weighting
function λ(t) is LDAE (θ;λ(t)) :=∫ T

0

λ(t)Ex0∼pd
Ext∼p0t(xt|x0)∥rθ(xt;σt)− x0∥22dt. (4)

The optimal estimator r⋆θ(xt;σt), also known as Bayesian
least squares estimator, equals E(x0|xt). We thus have
r⋆θ(xt;σt) = xt + σ2

t∇xt log pt(xt). In practice, it is as-
sumed that this connection approximately holds for a con-
verged model (rθ(xt;σt) ≈ r⋆θ(xt;σt)

2), and we can plug
it into (3) to derive the empirical PF-ODE as follows

dxt =
xt − rθ(xt;σt)

σt
dσt = ϵθ(xt;σt)dσt. (5)

The noise-prediction model ϵθ(·, ·) introduced above are
used in some previous works (Ho et al., 2020; Song et al.,
2021a; Nichol & Dhariwal, 2021; Bao et al., 2022).

Sampling. Given the empirical PF-ODE (5), we can synthe-
size novel samples by first drawing pure noises x̂tN ∼ pn as
the initial condition, and then numerically solving this equa-
tion backward with N steps to obtain a sequence {x̂tn}Nn=0

with a certain time schedule Γ = {t0 = ϵ, · · · , tN = T}.
We adopt the notation x̂tn to denote the generated sample

2We slightly abuse the notation and still denote the converged
model as rθ(·; ·) hereafter.

Figure 2. The sampling trajectory exhibits a very small trajectory
deviation (red curve) compared to the sample distance (blue curve)
in the sampling process starting from tN = 80 to t0 = 0.002.

by numerical methods, which differs from the exact solu-
tions denoted as xtn . The final sample x̂t0 is considered to
approximately follow the data distribution pd. We designate
this sequence as a sampling trajectory. In practice, there
exists various sampling strategies inspired from the classic
numerical methods to solve the backward PF-ODE (5), in-
cluding Euler (Song et al., 2021a), Heun’s (Karras et al.,
2022), Runge-Kutta (Song et al., 2021c; Liu et al., 2022; Lu
et al., 2022a), and linear multistep methods (Liu et al., 2022;
Lu et al., 2022b; Zhang & Chen, 2023; Zhao et al., 2023).

3. Regularity of PF-ODE Sampling Trajectory
As mentioned in Section 1, the sampling trajectories within a
PF-ODE framework of the diffusion model exhibit a certain
regularity in their shapes, regardless of the specific content
generated. To better demonstrate this concept, we undertake
a series of empirical studies.

1-D Projections. Visualizing the entire sampling trajectory
and analyzing its geometric characteristics in the original
high-dimensional space is intractable. To address this, we
first examine the trajectory deviation from the direct line
connecting the two endpoints, which helps assess the trajec-
tory’s linearity (see Figure 1). This approach allows us to
align and collectively observe the general behaviors of all
sampling trajectories. Specifically, we determine the trajec-
tory deviation as the perpendicular L2 distance from each
intermediate sample x̂tn to the vector x̂tN − x̂t0 , depicted
by the red curve with a “boomerang” shape in Figure 2. Ad-
ditionally, we calculate the L2 distance between x̂tn and the
final sample x̂t0 in the trajectory as ∥x̂tn − x̂t0∥2, depicted
by the blue monotone curve in Figure 2.

From Figure 2, we observe that the sampling trajectory’s
deviation gradually increases from t = 80 to approximately
t = 10, then swiftly diminishes as it approaches the final
samples. This pattern suggests that initially, each sample
might be influenced by various modes, experiencing signifi-
cant impact, but later becomes strongly guided by its specific
mode after a certain turning point. This behavior supports
the approach of arranging time intervals more densely near
the minimum timestamp and sparsely towards the maximum
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(a) Trajectory projection. (b) Visual Comparison. (c) L2 error. (d) PCA ratio.

Figure 3. (a) We adopt d-dimensional vector x̂tN − x̂t0 and several top principal components (PCs) on its (d−1)-dimensional orthogonal
complement to approximate the original d-dimensional sampling trajectory. (b) The visual comparison of trajectory reconstruction on
Imagenet 64×64. We reconstruct the real sampling trajectory (top row) using x̂tN − x̂t0 (1-D recon.) along with its top 1 or 2 principal
components (2-D or 3-D recon.). To amplify the visual difference, we present the denoising outputs of these trajectories. (c) We calculate
the L2 distance between the real trajectory and the reconstructed trajectories up to 5-D reconstruction. (d) The variance explained by the
top k principal components. We report the ratio of the summation of the top k eigenvalues to the summation of all eigenvalues.

(a) CIFAR-10. (b) FFHQ. (c) ImageNet 64× 64.

Figure 4. We project 30 high-dimensional sampling trajectories generated on three different datasets into 3-D subspace. These trajectories
are first aligned to the direction of x̂tN − x̂t0 (this direction is different for each sample), and then projected to the top 2 principal
components in the orthogonal space to x̂tN − x̂t0 . See texts for more details.

one (Song et al., 2021a; Lu et al., 2022a; Karras et al., 2022;
Song et al., 2023). However, when we consider the ratio of
the maximum deviation to the endpoint distance in Figure 2,
we find that the trajectory deviation is remarkably slight (ap-
proximately 30/8868 ≈ 0.0034), indicating a pronounced
straightness. Additionally, the generated samples along the
sampling trajectory tend to move monotonically from their
initial points toward their final points.

The trajectory deviation mathematically equals the recon-
struction error if we project all d-dimensional points of the
sampling trajectory onto the vector x̂tN − x̂t0 . As demon-
strated in Figure 3b-3c, the 1-D approximation proves in-
adequate, leading to a significant deviation from the actual
trajectory. These observations imply that while all sampling
trajectories share a similar macro-structure, 1-D projection
cannot accurately capture such trajectory details.

Multi-D Projections. Moreover, we implement principal
component analysis (PCA) on the orthogonal complement
to the vector x̂tN − x̂t0 , which assists in assessing the tra-

jectory’s rotational properties. As illustrated in Figure 3a,
we begin by projecting each d-D sampling trajectory into
its (d − 1)-D orthogonal space relative to the associated
x̂tN − x̂t0 vector, followed by conducting PCA. Figure 3b-
3c show that the 2-D approximation using x̂tN − x̂t0 and
the first principal component markedly narrows the visual
discrepancy with the real trajectory, thereby reducing the
L2 reconstruction error. This finding suggests that all points
in each d-D sampling trajectory diverge slightly from a 2-D
plane. Consequently, the tangent and normal vectors of the
trajectory can be effectively characterized in this manner.

By incorporating an additional principal component, we
enhance our ability to capture the torsion of the sampling
trajectory, thereby increasing the total explained variance
to approximately 85% (see Figure 3d). This improvement
allows for a more accurate approximation of the actual tra-
jectory and further reduces the L2 reconstruction error (see
Figure 3b-3c). In practical terms, this level of approximation
effectively captures all the visually pertinent information,
with the deviation from the real trajectory being nearly in-
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distinguishable. Consequently, we can confidently utilize a
3-D subspace, formed by two principal components and the
vector x̂tN − x̂t0 , to understand the geometric structure of
high-dimensional sampling trajectories.

Expanding on this understanding, we present a visualiza-
tion of 30 randomly chosen sampling trajectories created
by a diffusion model trained on CIFAR-10 (Krizhevsky &
Hinton, 2009), FFHQ (Karras et al., 2019), or ImageNet
64 × 64 (Russakovsky et al., 2015) in Figure 4. It is im-
portant to note that the scale along the axis of x̂tN − x̂t0

is significantly larger than that of the other two principal
components by orders of magnitude. As a result, the tra-
jectory remains very close to the straight line connecting
its endpoints, corroborating our findings from the trajectory
deviation experiment (see Figure 2). Furthermore, Figure 4
accurately depicts the sampling trajectory’s behavior, show-
ing its gradual departure from the osculating plane during
the sampling process. Interestingly, each trajectory displays
a simple linear-nonlinear-linear structure and shares a sim-
ilar shape. This consistency reveals a strong regularity in
all sampling trajectories with different initial starting points,
independent of the specific content generated.

4. Understanding the Trajectory Regularity
We next attempt to explain the trajectory regularity observed
in the previous section. We first show that there exists an
implicit denoising trajectory, which controls the rotation
of the sampling trajectory and determines the subsequent
points in a convex combination way (Section 4.1). We then
establish a connection between the sampling trajectory and
KDE approximation of data distribution (Section 4.2), which
is the linchpin to understanding the observed regularity.

4.1. Implicit Denoising Trajectory

Given a parametric diffusion model with the denoising out-
put rθ(·; ·), the sampling trajectory is simulated by numeri-
cally solving the empirical PF-ODE (5), and meanwhile, an
implicitly coupled sequence {rθ(x̂tn , σtn)}Nn=1 is formed
as a by-product. We designate this sequence, or simpli-
fied to {rθ(x̂tn)}Nn=1 if there is no ambiguity, as a denois-
ing trajectory. It follows a PF-ODE drθ(xt;σt)/dσt =
−σt

[
d2xt/dσ

2
t

]
and actually encapsulates the curvature

information of the associated sampling trajectory. The fol-
lowing proposition reveals how these two trajectories are
inherently related.

Proposition 4.1. Given the probability flow ODE (5) and
a current position x̂tn+1

, n ∈ [0, N − 1] in the sampling
trajectory, the next position x̂tn predicted by a k-order
Taylor expansion with the time step size σtn+1

− σtn equals

x̂tn =
σtn

σtn+1

x̂tn+1
+

σtn+1
− σtn

σtn+1

Rθ(x̂tn+1
), (6)

!𝐱!!"#
𝑟𝜽 !𝐱!!"# !𝐱!!

𝑟𝜽 !𝐱!!
!𝐱!!$#

𝜎!! 𝝐𝜽 !𝐱!!"# #

𝜎!! 𝝐𝜽 !𝐱!! #

Figure 5. An illustration of two consecutive Euler steps, starting
from a current sample x̂tn+1 . A single Euler step in the ODE-
based sampling is a convex combination of the denoising output
and the current position to determine the next position. Blue points
form a piecewise linear sampling trajectory, while red points form
the denoising trajectory governing the rotation direction.

which is a convex combination of x̂tn+1
and the generalized

denoising outputRθ(x̂tn+1
) =

rθ(x̂tn+1)−
k∑

i=2

1

i!

d(i)xt

dσ
(i)
t

∣∣∣
x̂tn+1

σtn+1(σtn − σtn+1)
i−1.

(7)
We haveRθ(x̂tn+1

) = rθ(x̂tn+1
) for Euler method (k = 1),

and Rθ(x̂tn+1
) = rθ(x̂tn+1

) +
σtn−σtn+1

2

drθ(x̂tn+1
)

dσt
for

second-order numerical methods (k = 2).

Corollary 4.2. The denoising output rθ(x̂tn+1) reflects the
prediction made by a single Euler step from x̂tn+1 with the
time step size σtn+1

.

Corollary 4.3. Each previously proposed second-order
ODE-based accelerated sampling method corresponds to a
specific first-order finite difference of drθ(x̂tn+1)/dσt.

Proofs and more discussions are provided in Section A.2.
The ratio σtn/σtn+1

in (6) reflects our inclination to main-
tain the current position rather than transitioning to the gen-
eralized denoising output at tn+1. In this context, different
time-schedule functions, such as uniform, quadratic, and
polynomial schedules (Song et al., 2021a; Lu et al., 2022a;
Karras et al., 2022), essentially represent various weight-
ing functions. We primarily focus on the Euler method to
simplify subsequent discussions, though these insights can
be readily extended to higher-order methods. The behav-
ior of the trajectory in the continuous scenario is similarly
discernible by examining the sampling process with an in-
finitesimally small Euler step. A graphical representation of
two successive Euler steps is depicted in Figure 5.

We further deduce that, approximately, each intermediate
point x̂tn , n ∈ [1, N − 1] in the piecewise linear sam-
pling trajectory is determined by the selected time schedule,
given that ∥rθ(x̂tn+1

)−x̂tn∥2 = (σtn/σtn+1
)∥rθ(x̂tn+1

)−
x̂tn+1

∥2 = σtn∥ϵθ(x̂tn+1
)∥2 ≈ σtn∥ϵθ(x̂tn)∥2 =

∥rθ(x̂tn) − x̂tn∥2. In this scenario, the denoising output
rθ(x̂tn+1) appears to be oscillating toward rθ(x̂tn) around
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x̂tn , akin to a simple gravity pendulum (Young et al., 1996).
The pendulum length effectively shortens by the coefficient
σtn/σtn+1 in each sampling step, starting from roughly
σT

√
d. This specific structure exits in all trajectories. Theo-

retical justification and empirical evidence are detailed in
Section A.3.3. Practically, the magnitude of each oscillation
is extremely small (≈ 0◦), and the entire sampling trajectory
only marginally deviates from a 2-D plane. Such deviations
can be further represented using a few orthogonal bases as
discussed in Section 3.

4.2. Theoretical Analysis of the Trajectory Structure

Next we show that using a Gaussian kernel density estimate
(KDE) with training data samples, the denoising trajectory
has a closed-form solution.

Given a dataset D := {yi ∈ Rd}i∈I containing |I| i.i.d.
data points drawn from the unknown data distribution pd, the
marginal density at each time of the forward diffusion pro-
cess (2) becomes a Gaussian KDE with a bandwidth σ2

t , i.e.,
p̂t(xt) =

∫
p0t(xt|y)p̂d(y) = 1

|I|
∑

i∈I N
(
xt;yi, σ

2
t I
)
,

where the empirical data distribution p̂d(y) is a sum-
mation of multiple Dirac delta functions, i.e., p̂d(y) =
1
|I|
∑

i∈I δ(∥y − yi∥). In this case, the optimal denois-
ing output of training a denoising autoencoder becomes a
convex combination of original data points, r⋆θ(xt;σt) =∑

i

exp
(
−∥xt − yi∥22/2σ2

t

)∑
j exp (−∥xt − yj∥22/2σ2

t )
yi =

∑
i

uiyi, (8)

where each weight ui is calculated based on the time-scaled
and normalized L2 distance between the input xt and yi

belonging to the dataset D, and
∑

i ui = 1. The proof is
provided in Appendix A.3.1. The above equation appears
to be highly similar to the iterative formula used in mean
shift, which is a well-known non-parametric mode-seeking
algorithm via iteratively gradient ascent with adaptive step
sizes (Fukunaga & Hostetler, 1975; Cheng, 1995; Comani-
ciu & Meer, 2002; Yamasaki & Tanaka, 2020). In partic-
ular, the time-decreasing bandwidth (σt → 0 as t → 0)
in (8) is strongly reminiscent of annealed mean shift, or
multi-bandwidth mean shift (Shen et al., 2005), which was
developed as a metaheuristic algorithm to escape local max-
ima, where classical mean shift is susceptible to stuck, by
monotonically decreasing the bandwidth in iterations.

Based on this connection, we characterize the local behavior
of diffusion sampling, i.e., each sampling trajectory mono-
tonically converges in terms of the sample likelihood, and
its coupled denoising trajectory always achieves higher like-
lihood (see the proof in Appendix A.3.4). We also charac-
terize the global behavior of diffusion sampling as a linear-
nonlinear-linear mode-seeking path. In the optimal case, the
denoising output, or annealed mean vector, starts from a spu-
rious mode (dataset mean), i.e., r⋆θ(xt;σt) ≈ 1

|I|
∑

i∈I yi

with a sufficiently large bandwidth σt. Meanwhile, the
sampling trajectory is initially located in an approximately
uni-modal Gaussian distribution with a linear score func-
tion ∇xt

log pt(xt) = (r⋆θ(xt;σt)− xt) /σ
2
t ≈ −xt/σ

2
t .

The approximation is valid as the norm of dataset mean
is very close to zero compared with the norm of xt due
to the concentration of measure (see Lemma A.11). As
σt monotonically decreases in the sampling process, the
mode numbers of p̂t(xt) increase (Silverman, 1981), and
the simple distribution surface gradually shifts to the com-
plex multi-modal one. The score function appears nonlinear
in the medium σt stage since multiple data points contribute
a non-negligible effect. Finally, the sampling trajectory is at-
tracted by a certain real-data mode with a sufficiently small
bandwidth σt, and the score function appears linear again,
i.e.,∇xt

log pt(xt) ≈ (yk − xt)/σ
2
t , where yk denotes the

nearest data point to xt. In this way, the global mode is
hopefully sought by the sampling trajectory, as annealed
mean shift (Shen et al., 2005). Intriguingly, we can provide
a guarantee that the whole sampling trajectory length is
around σT

√
d (see Section A.3.3). The above analysis im-

plies that the optimal sampling trajectories simply replay the
dataset, but in practice, a slight score deviation ensures the
generative ability of diffusion models (see Section A.3.5).

5. Geometry-Inspired Time Scheduling
An ODE-based numerical solver such as Euler (Song et al.,
2021c) or Runge-Kutta (Liu et al., 2022; Zhang & Chen,
2023) relies on a pre-defined time schedule Γ = {t0 =
ϵ, · · · , tN = T} in the sampling process. Typically, given
the initial time tN and the final time t0, the intermediate time
steps t1 to tN−1 are determined by heuristic strategies such
as uniform, quadratic (Song et al., 2021a), log-SNR (Lu
et al., 2022a;b), and polynomial functions (Karras et al.,
2022; Song et al., 2023). In fact, the time schedule reflects
our prior knowledge of the sampling trajectory shape. Under
the constraint of the total number of score function evalu-
ations (NFEs), an improved time schedule can reduce the
local truncation error in each numerical step, and hopefully
minimize the global truncation error. In this way, the sample
quality generated by numerical methods could approach that
of the exact solutions of the given empirical PF-ODE (5).

Our previous discussions in Section 3 identified each sam-
pling trajectory as a simple low-dimensional “boomerang”
curve. We can thus leverage this geometric structure to
re-allocate the intermediate timestamps according to the
principle that assigning a larger time step size when the tra-
jectory exhibits a relatively small curvature while assigning
a smaller time step size when the trajectory exhibits a rela-
tively large curvature. Additionally, we have demonstrated
that different trajectories share almost the same shape, which
helps us estimate the common structure of the sampling tra-
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jectory by using just a few “warmup” samples. We name
our approach to achieve the above goal as geometry-inspired
time scheduling (GITS) and elaborate the details as follows.
We will also show that GITS is adaptable, easy to implement,
and introduces negligible computing overheads.

The allocation of the intermediate timestamps can be for-
mulated as an integer programming problem and solved by
dynamic programming to search for optimal time schedul-
ing (Cormen et al., 2022). We first define a searching
space denoted as Γg, which is a fine-grained grid includ-
ing all possible intermediate timestamps. Then, we mea-
sure the trajectory curvature by the local truncation errors.
Specifically, we define the cost from the current position
xti to the next position xtj as the difference between an
Euler step and the ground-truth prediction, i.e., cti→tj :=
D(x̂ti→tj ,xti→tj ), where ti and tj are two intermediate
timestamps from Γg and ti > tj . According to the empiri-
cal PF-ODE (5), the ground-truth prediction is calculated as
xti→tj =

∫ tj
ti

xti + ϵθ(xt)σ
′
tdt, and the Euler prediction is

calculated as x̂ti→tj = xti + (σtj − σti)ϵθ(x̂ti)σ
′
ti . The

cost functionD can be defined as the L2 distance in the orig-
inal pixel space, i.e.,D(x,y) = ∥x−y∥2, or any other user-
specified metric. Given all computed pair-wise costs, which
form a cost matrix, this becomes a standard minimum-cost
path problem and can be solved with dynamic programming.
The algorithm and details are provided in Appendix A.4.1.

Still, there also exist many different ways to determine the
time schedule (e.g., using a trainable neural network) by
leveraging our discovered trajectory regularity.

6. Experiments
We adhere to the setup and experimental designs of the EDM
framework (Karras et al., 2022; Song et al., 2023), with
f(t) = 0, g(t) =

√
2t, and σt = t. Under this parameteriza-

tion, the forward VE-SDE is expressed as dxt =
√
2tdwt,

while the corresponding empirical PF-ODE is formulated as
dxt =

xt−rθ(xt;t)
t dt. The temporal domain is segmented

using a polynomial function tn = (t
1/ρ
0 + n

N (t
1/ρ
N − t

1/ρ
0 ))ρ,

where t0 = 0.002, tN = 80, n ∈ [0, N ], and ρ = 7. In the
visual analysis about 1-D projections (Figure 2) and Multi-
D projections (Figure 4) detailed in Section 3, we simulate
each sampling trajectory employing the Euler method with
100 score function evaluations. The mean and standard
deviation for trajectory deviation showcased in Figure 2
are derived from 5, 000 synthesized samples on ImageNet
64× 64, and the ratios of explained variance for PCA pre-
sented in Figure 3d are based on 1,000 synthesized samples.

We initiate the dynamic programming experiments with
256 “warmup” samples randomly selected from Gaussian
noise to create a more refined grid, and then calculate the
cost matrix. The number of “warmup” samples is not a

Table 1. Sample quality comparison in terms of Fréchet Inception
Distance (FID (Heusel et al., 2017), lower is better) on four datasets
(resolutions ranging from 32 × 32 to 256 × 256). †: Results
reported by authors. More results are provided in Table 8.

METHOD
NFE

5 6 8 10

CIFAR-10 32×32 (Krizhevsky & Hinton, 2009)

DDIM (Song et al., 2021a) 49.66 35.62 22.32 15.69
DDIM + GITS (ours) 28.05 21.04 13.30 10.37
DPM-Solver-2 (Lu et al., 2022a) - 60.00 10.30 5.01
DPM-Solver++(3M) (Lu et al., 2022b) 24.97 11.99 4.54 3.00
DEIS-tAB3 (Zhang & Chen, 2023) 14.39 9.40 5.55 4.09
UniPC (Zhao et al., 2023) 23.98 11.14 3.99 2.89
AMED-Solver (Zhou et al., 2023) - 7.04 5.56 4.14
AMED-Plugin (Zhou et al., 2023) - 6.67 3.34 2.48
iPNDM (Zhang & Chen, 2023) 13.59 7.05 3.69 2.77
iPNDM + GITS (ours) 8.38 4.88 3.24 2.49

FFHQ 64×64 (Karras et al., 2019)

DDIM (Song et al., 2021a) 43.93 35.22 24.39 18.37
DDIM + GITS (ours) 29.80 23.67 16.60 13.06
DPM-Solver-2 (Lu et al., 2022a) - 83.17 22.84 9.46
DPM-Solver++(3M) (Lu et al., 2022b) 22.51 13.74 6.04 4.12
DEIS-tAB3 (Zhang & Chen, 2023) 17.36 12.25 7.59 5.56
UniPC (Zhao et al., 2023) 21.40 12.85 5.50 3.84
AMED-Solver (Zhou et al., 2023) - 10.28 6.90 5.49
AMED-Plugin (Zhou et al., 2023) - 9.54 5.28 3.66
iPNDM (Zhang & Chen, 2023) 17.17 10.03 5.52 3.98
iPNDM + GITS (ours) 11.22 7.00 4.52 3.62

ImageNet 64×64 (Russakovsky et al., 2015)

DDIM (Song et al., 2021a) 43.81 34.03 22.59 16.72
DDIM + GITS (ours) 24.92 19.54 13.79 10.83
DPM-Solver-2 (Lu et al., 2022a) - 44.83 12.42 6.84
DPM-Solver++(3M) (Lu et al., 2022b) 25.49 15.06 7.84 5.67
DEIS-tAB3 (Zhang & Chen, 2023) 14.75 12.57 6.84 5.34
UniPC (Zhao et al., 2023) 24.36 14.30 7.52 5.53
RES(M)† (Zhang et al., 2023) 25.10 14.32 7.44 5.12
AMED-Solver (Zhou et al., 2023) - 10.63 7.71 6.06
AMED-Plugin (Zhou et al., 2023) - 12.05 7.03 5.01
iPNDM (Zhang & Chen, 2023) 18.99 12.92 7.20 5.11
iPNDM + GITS (ours) 10.79 8.43 5.82 4.48

LSUN Bedroom 256×256 (Yu et al., 2015) (pixel-space)

DDIM (Song et al., 2021a) 34.34 25.25 15.71 11.42
DDIM + GITS (ours) 22.04 16.54 11.20 9.04
DPM-Solver-2 (Lu et al., 2022a) - 80.59 23.26 9.61
DPM-Solver++(3M) (Lu et al., 2022b) 23.15 12.28 7.44 5.71
UniPC (Zhao et al., 2023) 23.34 11.71 7.53 5.75
AMED-Solver (Zhou et al., 2023) - 12.75 6.95 5.38
AMED-Plugin (Zhou et al., 2023) - 11.58 7.48 5.70
iPNDM (Zhang & Chen, 2023) 26.65 20.73 11.78 5.57
iPNDM + GITS (ours) 15.85 10.41 7.31 5.28

critical hyper-parameter, but reducing it generally increases
the variance, as shown in the Table 6. Due to subtle dif-
ferences exist among sampling trajectories (see Figure 4),
we recommend utilizing a reasonable number of “warmup”
samples to determine the optimal time schedule, such that
this time schedule hopefully works well for all the gener-
ated samples. The ground-truth predictions are generated
by iPNDM (Zhang & Chen, 2023) (employing a fourth-
order multistep Runge-Kutta method with a lower-order
warming start) using the polynomial time schedule speci-
fied in EDM (Karras et al., 2022) with 60 NFEs, resulting
in a grid size |Γg| = 61. Additional findings are avail-
able in Appendix A.4. The reported results of all com-
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Table 2. Image generation on Stable Diffusion v1.4 (Rombach
et al., 2022) with the default classifier-free guidance scale 7.5 (one
sampling step requires two NFEs). We follow the standard FID
evaluation, and use the statistics and 30k sampled captions from
the MS-COCO (Lin et al., 2014) validation set provided here.

METHOD
NFE

10 12 14 16

DPM-Solver++(2M) (Lu et al., 2022b) 17.16 15.76 15.06 14.72
DPM-Solver++(2M) + GITS (ours) 15.53 13.29 12.44 12.26

pared approaches are obtained from an open-source toolbox:
https://github.com/zju-pi/diff-sampler.

Image generation. As shown in Tables 1-2, our simple time
re-allocation strategy based on iPNDM (Zhang & Chen,
2023) consistently beats all existing ODE-based acceler-
ated sampling methods, with a significant margin especially
in the few NFE cases. In particular, all time schedules in
these datasets are searched based on the Euler method, i.e.,
DDIM (Song et al., 2021a), but they are directly applicable
with high-order methods such as iPNDM (Zhang & Chen,
2023). The trajectory regularity we uncovered guarantees
that the schedule determined through 256 “warmup” sam-
ples is effective across all generated content. Furthermore,
the experimental outcomes suggest that identifying this tra-
jectory regularity enhances our comprehension of diffusion
models’ mechanisms. This understanding opens avenues
for developing tailored time schedules for more efficient
diffusion sampling. Note that we did not use the analyt-
ical first step (AFS) that replaces the first numerical step
with an analytical Gaussian score to save one NFE, pro-
posed in (Dockhorn et al., 2022) and later used in (Zhou
et al., 2023), as we found this trick is particularly effective
for datasets containing the small-resolution images. DPM-
Solver-2 (Lu et al., 2022a) and AMED-Solver/Plugin (Zhou
et al., 2023) are thus inapplicable with NFE= 5 (marked as
“-”) in Table 1. Ablation studies on AFS and the grid size
for dynamic programming are provided in Appendix A.4.

Time schedule comparison. From Table 3, we can see that
compared with existing handcraft time schedules, our used
schedule is expected to better fit the underlying trajectory
structure in the sampling of diffusion models and achieves
smaller truncation errors with improved sample quality.

Running time. Our strategy incurs a very low cost and does
not require accessing the real dataset. We start by a few
initial “warmup” samples and run the given ODE-solver
with fine-grained and coarse-grained steps to compute the
cost matrix for dynamic programming. Such a computation
is performed only once on each dataset to simultaneously
find optimal time schedules for different NFEs, thanks to the
optimal substructure property (Cormen et al., 2022). This
requires less than or about a minute on CIFAR-10, FFHQ,

Table 3. The comparison of FID results on CIFAR-10. Time sched-
ules considerably affect the image generation performance.

TIME SCHEDULE
NFE

5 6 8 10

DDIM-uniform 36.98 28.22 19.60 15.45
DDIM-logsnr 53.53 38.20 24.06 16.43
DDIM-polynomial 49.66 35.62 22.32 15.69
DDIM + GITS (ours) 28.05 21.04 13.30 10.09

iPNDM-uniform 17.34 9.75 7.56 7.35
iPNDM-logsnr 19.87 10.68 4.74 2.94
iPNDM-polynomial 13.59 7.05 3.69 2.77
iPNDM + GITS (ours) 8.38 4.88 3.24 2.49

Table 4. Used time (seconds) in different stages of GITS, evaluated
on an NVIDIA A100 GPU. “warmup” samples are generated by
60 NFE and the NFE budget for dynamic programming is 10.

DATASET
sample cost dynamic total

generation matrix programming time (s)

CIFAR-10 32 × 32 27.47 5.29 0.015 32.78
FFHQ 64 × 64 51.90 10.88 0.016 62.79
ImageNet 64 × 64 71.77 13.28 0.016 85.07
LSUN Bedroom 517.63 122.13 0.015 639.78
LAION (sd-v1.4) 877.62 24.00 0.016 901.62

ImageNet 64×64, and 10 to 15 minutes for LSUN Bedroom
and LAION (Stable Diffusion), as shown in Table 4.

7. Related Work and Discussions
The popular variance-exploding (VE) SDEs (Song & Ermon,
2019; Song et al., 2021c) are taken as our main examples for
analysis, which are equivalent to their variance-preserving
(VP) counterparts according to Itô’s lemma (see Remark 2.1
and Appendix A.1). The equivalence has been established
in their corresponding PF-ODE (rather than SDE) forms
by using the change-of-variable formula (see Proposition 1
of Song et al. (2021a) and Proposition 3 of Zhang & Chen
(2023)). Karras et al. (2022) also presented a set of steps to
express different specific models in a common framework.

Instead of training a noise-conditional score model with
denoising score matching (Vincent, 2011; Song & Ermon,
2019; Song et al., 2021b) or training a noise-prediction
model to estimate the added noise in each step (Ho et al.,
2020; Song et al., 2021a; Nichol & Dhariwal, 2021; Vahdat
et al., 2021; Bao et al., 2022), we follow (Kingma et al.,
2021; Karras et al., 2022) and train a denoising model that
predicts the reconstructed data from its corrupted version.
With the help of simplified empirical PF-ODE (5), we could
characterize an implicit denoising trajectory and draw inspi-
ration from classical non-parametric mean shift (Fukunaga
& Hostetler, 1975; Cheng, 1995; Comaniciu & Meer, 2002).

Denoising trajectory has been observed since the renais-
sance of diffusion models (see Figure 6 of (Ho et al., 2020))
and later in Figure 3 of (Kwon et al., 2023), but did not been
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(a) DDIM, NFE = 5. (b) DDIM + GITS, NFE = 5.

Figure 6. The visual comparison of samples generated by DDIM
and DDIM + GITS (1st row: CIFAR-10, 2nd row: ImageNet 64×
64, 3rd row: LSUN Bedroom). See more results in Appendix A.4.

investigated, perhaps due to the indirect model parameter-
ization. Karras et al. (2022) first stated that the denoising
output reflects the tangent of the sampling trajectory as our
Corollary 4.2, but neither characterizes the denoising trajec-
tory in differential equations nor discusses how it controls
the sampling trajectory. In fact, Karras et al. (2022) men-
tioned this property to argue the sampling trajectory of (5)
is approximately linear due to the slow change in denoising
output, and verified it in a 1D toy example. In contrast,
we provide an in-depth analysis of the high-dimensional
trajectories with real data and highlight a strong regularity.

We then describe one potential application to accelerate the
sampling process. Different from most existing methods
focusing on develop better ODE-solvers (Song et al., 2021a;
Karras et al., 2022; Liu et al., 2022; Lu et al., 2022a; Zhang
& Chen, 2023; Zhao et al., 2023) while selecting a time
schedule in a handcraft or trial-and-error way, we lever-
age trajectory regularity to better allocate the discretized
time steps. Our approach is extremely faster than those
distillation-based accelerating sampling methods (Luhman
& Luhman, 2021; Salimans & Ho, 2022; Zheng et al., 2023;
Song et al., 2023) by several orders of magnitude. Besides,
Watson et al. (2021) used dynamic programming to opti-
mize the time schedule based on the decomposable nature
of ELBO but even worsen the sample quality. There are also
many theoretical studies on the convergence analysis, and
score estimation of diffusion models, but none of them focus
on the trajectory properties (De Bortoli, 2022; Pidstrigach,
2022; Lee et al., 2023; Chen et al., 2023b;c).

Recently, a concurrent work named AYS was proposed to
optimize time schedules in sampling by minimizing the
mismatch between solving the true backward SDE and its
approximated linear counterpart, based on techniques from
stochastic calculus (Sabour et al., 2024). In contrast, our
GITS leverages the strong trajectory regularity in diffusion
models and yields time schedules with dynamic program-
ming using only a few number of “warmup” samples. Our
method also gets rid of the time-consuming Monte-Carlo

(a) Uniform. (b) AYS. (c) GITS.

Figure 7. The visual comparison of samples generated by Stable
Diffusion 1.5 with DPM-Solver++(2M), using the uniform, AYS-
optimized (Sabour et al., 2024) or GITS-optimized time schedule
and 10 steps. The text prompts are “a photo of an astronaut riding a
horse on mars” (1st row); “a whimsical underwater world inhabited
by colorful sea creatures and coral reefs” (2nd row); “a digital
illustration of the Babel tower 4k detailed trending in artstation
fantasy vivid colors” (3rd row).

computation in AYS (Sabour et al., 2024) and therefore
is faster by several orders of magnitude. In Figure 7, we
compare samples generated by different time schedules, us-
ing the colab code from https://research.nvidia.
com/labs/toronto-ai/AlignYourSteps/ with
the default setting. We also evaluate their FID performance
as the procedure used in Table 2, and the results are 14.28
(uniform), 12.48 (AYS), and 12.02 (GITS).

8. Conclusion
In this paper, we illustrate the trajectory regularity that con-
sistently appears in the ODE-based diffusion sampling, re-
gardless of the specific content generated. We explain this
regularity by characterizing and analyzing the implicit de-
noising trajectory, especially its behavior, under kernel den-
sity estimation-based data modeling. Such insights about
the trajectory structure of diffusion-based generative models
can lead to an accelerated sampling method to improve im-
age synthesis quality with negligible computing overheads.

For future works, we would like to explore deeper shape
regularities in the sampling trajectories, describing more
precise geometric structures of the regular shapes, and iden-
tifying new applications of these insights.
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Impact Statement
This work examines the theoretical properties of sampling
trajectories in diffusion-based generative models. These
models can produce images, audio, and videos indistinguish-
able from humans, raising concerns about their potential
use in disseminating misinformation. We are fully aware
of these negative impacts and, in subsequent work, will de-
vote ourselves to developing mitigation measures, including
detecting and watermarking synthetic contents.
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A. Appendix
A.1. The Equivalence of Linear Diffusion Models

In this section, we show that various linear diffusion models sharing the same signal-to-noise ratio (SNR) are closely
connected with Itô’s lemma. In particular, all other model types (e.g., variance-preserving (VP) diffusion process used in
DDPMs (Ho et al., 2020)) can be transformed into the variance-exploding (VE) counterparts. Therefore, we merely focus
on the mathematical properties and geometric behaviors of VE-SDEs in the main text to simplify our discussions.

A.1.1. GENERAL NOTATIONS OF LINEAR DIFFUSION MODELS

We first recap the basic notations in diffusion models. We consider the data perturbation as a continuous stochastic process
{zt}Tt=0 starting from z0 ∼ pd, which is the solution of a linear stochastic differential equation (SDE) (Song et al., 2021c):

dzt = f(t)ztdt+ g(t)dwt, f(·) : R→ R, g(·) : R→ R, (9)

where wt denotes the standard Wiener process; f(·) and g(·) are drift and diffusion coefficients, respectively. These two
coefficients are required to be globally Lipschitz w.r.t. time to ensure the SDE has a unique strong solution (Oksendal,
2013). The probability density function pt(zt), starting from the initial condition p0(z0) = pd(z0), evolves according to the
well-known Fokker-Planck equation ∂pt(zt)

∂t = −∇ ·
[
pt(zt)f(t)zt − g2(t)

2 ∇zt
pt(zt)

]
. In this case, the transition kernel

has the following form (Särkkä & Solin, 2019; Karras et al., 2022)

p0t(zt|z0) = N
(
zt; s(t)z0, s

2(t)σ2(t)I
)
, s(t) = exp

(∫ t

0

f(ξ)dξ

)
, and σ(t) =

√∫ t

0

[g(ξ)/s(ξ)]
2
dξ. (10)

We denote s(t) and σ(t) as st and σt respectively hereafter for notation simplicity.
Remark A.1. An important implication from (10) is that different linear diffusion processes sharing the same σt actually
have the same signal-to-noise ratio (SNR), since SNR is defined as s2t/ [stσt]

2
= 1/σ2

t .

Therefore, we can equivalently rewrite the forward SDE (9) in terms of st and σt as follows

dzt =
d log st

dt
zt dt+ st

√
dσ2

t

dt
dwt, f(t) =

d log st
dt

, and g(t) = st

√
dσ2

t

dt
. (11)

By properly setting the coefficients st and σt, we demonstrate that the standard notations of the variance-preserving (VP)
SDE and the variance-exploding (VE) SDE in the literature (Song et al., 2021c; Karras et al., 2022) can be recovered:

• VP-SDEs (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021a;c): By setting st =
√
αt, σt =

√
(1− αt)/αt,

βt = −d logαt/dt, and αt ∈ (0, 1] as a decreasing sequence with α0 = 1, αT ≈ 0, we have

zt =
√
αt z0 +

√
1− αt ϵt, ϵt ∼ N (0, I); dzt = −

1

2
βtzt dt+

√
βtdwt. (12)

• VE-SDEs (Song & Ermon, 2019; 2020; Song et al., 2021c): By setting st = 1, we have

zt = z0 + σtϵt, ϵt ∼ N (0, I); dzt =

√
dσ2

t

dt
dwt. (13)

Lemma A.2. Given z0 ∼ pd and the transition kernel as (10), we have ∇zt
log pt(zt) = [stσt]

−2
(stE(z0|zt)− zt), or

equivalently,∇zt
log pt(zt) = − [stσt]

−1 Ept0(z0|zt)ϵt, where ϵt = [stσt]
−1

(zt − stz0).

Proof.

pt(zt) =

∫
pd(z0)pt(zt|z0)dz0, → ∇zt

pt(zt) =

∫
(stz0 − zt)

s2tσ
2
t

pd(z0)p0t(zt|z0)dz0

s2tσ
2
t∇ztpt(zt) =

∫
stz0pd(z0)p0t(zt|z0)dz0 − ztpt(zt)

s2tσ
2
t

∇ztpt(zt)

pt(zt)
= st

∫
z0pt(z0|zt)dz0 − zt

∇zt
log pt(zt) = [stσt]

−2
(stE(z0|zt)− zt) .

(14)
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We further have ∇zt log pt(zt) = [stσt]
−2

(stE(z0|zt)− zt) = [stσt]
−1 E

(
stz0−zt

stσt
|zt
)
= − [stσt]

−1 Ept0(z0|zt)ϵt due
to the linearity of expectation, where zt = stz0 + stσtϵt, ϵt ∼ N (0, I) according to the transition kernel (10).

We can train a data-prediction model rθ(zt;σt) to approximate the posterior E(z0|zt), or train a noise-prediction model
ϵθ(zt;σt) to approximate E

(
stz0−zt

stσt
|zt
)

and then substitute the score with the learned model.

The probability flow ordinary differential equation (PF-ODE) of the forward SDE (9) can also be expressed with st and σt

dzt
dt

=
d log st

dt
zt −

1

2
s2t

dσ2
t

dt
∇zt

log pt(zt) =
d log st

dt
zt −

d log σt

dt
(stE(z0|zt)− zt) . (15)

In practice, we have two formulas to calculate the exact solution from the current position ztn+1 to the next position ztn
(tn+1 > tn) in the ODE-based sampling to obtain the sampling trajectory from tN to t0. One is

ztn = ztn+1
+

∫ tn

tn+1

dzt
dt

dt, (16)

and another leverages the semi-linear structure in (15) to derive the following equation (Lu et al., 2022a; Zhang & Chen,
2023) with the variant of constants formula

ztn = exp

(∫ tn

tn+1

f(t)dt

)
ztn+1

−
∫ tn

tn+1

(
exp

(∫ tn

t

f(r)dr

)
g2(t)

2
∇zt

log pt(zt)

)
dt

=
stn
stn+1

ztn+1
− stn

∫ tn

tn+1

(stσtσ
′
t∇zt

log pt(zt)) dt.

(17)

The above integral, whether in (16) or (17) is generally intractable. Therefore, the ODE-based sampling in diffusion models
is all about how to solve the integral with numerical approximation methods in each step. Typical strategies include Euler
method (Song et al., 2021a), Heun’s method (Karras et al., 2022), Runge-Kutta method (Song et al., 2021c; Liu et al., 2022;
Lu et al., 2022a), and linear multistep method (Liu et al., 2022; Lu et al., 2022b; Zhang & Chen, 2023; Zhao et al., 2023).

A.1.2. THE EQUIVALENCE OF LINEAR DIFFUSION MODELS

We further prove that various linear diffusion models sharing the same SNR are equivalent up to a scaling factor. We also
demonstrate that how their score functions and sampling behaviors are connected.

Proposition A.3. Any diffusion process defined as (11) can be transformed into its VE counterpart with the change-of-
variables formula xt = zt/st (t ∈ (0, T ]), keeping the SNR unchanged.

Proof. We adopt the change-of-variables formula xt = ϕ(t, zt) = zt/st with ϕ : (0, T ]× Rn → Rn, and we denote the
i-th dimension of zt, xt and wt as zt[i], xt[i], and wt respectively; ϕ = [ϕ1, · · · , ϕi, · · · , ϕn]

T with a twice differentiable
scalar function ϕi(t, z) = z/st of two real variables t and z. Since each dimension of zt is independent, we can apply Itô’s
lemma (Oksendal, 2013) to each dimension with ϕi(t, zt[i]) separately. We have

∂ϕi

∂t
= − z

s2t

dst
dt

,
∂ϕi

∂z
=

1

st
,

∂2ϕi

∂z2
= 0, dzt[i] =

d log st
dt

zt[i]dt+ st

√
dσ2

t

dt
dwt, (18)

then

dϕi(t, zt[i]) =

(
∂ϕi

∂t
+ f(t)zt[i]

∂ϕi

∂z
+

g2(t)

2

∂2ϕi

∂z2

)
dt+ g(t)

∂ϕi

∂z
dwt

=

(
∂ϕi

∂t
+

g2(t)

2

∂2ϕi

∂z2

)
dt+

∂ϕi

∂z
dzt[i]

dxt[i] = −
zt[i]

st

d log st
dt

dt+
1

st

(
d log st

dt
zt[i]dt+ st

√
dσ2

t

dt
dwt

)

dxt[i] =

√
dσ2

t

dt
dwt, → dxt =

√
dσ2

t

dt
dwt,

(19)
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with the initial condition x0 = z0 ∼ pd. Since σt in the above VE-SDE (x-space) is exactly the same as that used in the
original SDE (z-space, (11)), the SNR remains unchanged.

Similarly, we provide the PF-ODE in the x-space as follows

dxt = −σt∇xt
log pt(xt)dσt, (20)

with the score function for t ∈ (0, T ]

∇xt log pt(xt) = st∇zt log

∫
N
(
zt/st; z0, σ

2
t I
)
pd(z0)dz0

= st∇zt
log

∫
sdtN

(
zt; stz0, s

2
tσ

2
t I
)
pd(z0)dz0

= st∇zt
log pt(zt).

(21)

This equation also holds for t = 0 since s0 = 1. Thus,∇xt
log pt(xt) = st∇zt

log pt(zt) for t ∈ [0, T ].

Corollary A.4. With the same numerical method, the results obtained by using (16) or (17) are not equal in general cases.
But they become exactly the same for VE-SDEs in the x-space.

Corollary A.5. With the same numerical method, the result obtained by using (17) in the z-space is exactly the same as the
result obtained by using (16) or (17) in the x-space.

Sketch of proof. Given the sample ztn obtained by solving the equation (17) in z-space starting from ztn+1 , we prove that
ztn/stn is exactly equal to sampling with the equation (16) in x-space starting from xtn+1 = ztn+1/stn+1 to xtn . We have

ztn = stn

(
ztn+1

stn+1

−
∫ tn

tn+1

stσtσ
′
t∇zt

log pt(zt)dt

)
= stn

(
xtn+1

+

∫ tn

tn+1

−σt∇xt
log pt(xt)σ

′
tdt

)

= stn

(
xtn+1 +

∫ tn

tn+1

dxt

dt
dt

)
= stnxtn .

(22)

A.2. Generalized Denoising Output

All following proofs are conducted in the context of a VE-SDE dxt =
√
2tdwt, i.e., σt = t for notation simplicity, and the

sampling trajectory always starts from x̂tN ∼ N (0, T 2I) and ends at x̂t0 .

The PF-ODEs of the sampling trajectory and denoising trajectory are provided as follows

sampling-ODE:
dxt

dt
= ϵθ(xt; t) =

xt − rθ(xt; t)

t
, denoising-ODE:

drθ(xt; t)

dt
= −td

2xt

dt2
. (23)

The denoising-ODE above is derived by simply rearranging the sampling-ODE as rθ(xt; t) = xt − tdxt

dt , and then take the

derivative of both sides, i.e., drθ(xt;t)
dt = dxt

dt −
(

dxt

dt + td
2xt

dt2

)
= −td

2xt

dt2 .

A.2.1. CONVEX COMBINATION

Proposition A.6. Given the probability flow ODE (5) and a current position x̂tn+1
, n ∈ [0, N−1] in the sampling trajectory,

the next position x̂tn predicted by a k-order Taylor expansion with the time step size tn+1 − tn equals

x̂tn =
tn

tn+1
x̂tn+1 +

tn+1 − tn
tn+1

hθ(x̂tn+1). (24)

which is a convex combination of x̂tn+1
and the generalized denoising output hθ(x̂tn+1

),

hθ(x̂tn+1
) = rθ(x̂tn+1

)−
k∑

i=2

1

i!

d(i)xt

dt(i)

∣∣∣
x̂tn+1

tn+1(tn − tn+1)
i−1. (25)
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We have hθ(x̂tn+1
) = rθ(x̂tn+1

) for Euler method (k = 1), and hθ(x̂tn+1
) = rθ(x̂tn+1

) + tn−tn+1

2

drθ(x̂tn+1
)

dt for second-
order methods (k = 2).

Proof. The k-order Taylor expansion at x̂tn+1
is

x̂tn =

k∑
i=0

1

i!

d(i)xt

dt(i)

∣∣∣
x̂tn+1

(tn − tn+1)
i

= x̂tn+1
+ (tn − tn+1)

dxt

dt

∣∣∣
x̂tn+1

+

k∑
i=2

1

i!

d(i)xt

dt(i)

∣∣∣
x̂tn+1

(tn − tn+1)
i

= x̂tn+1
+

tn − tn+1

tn+1

(
x̂tn+1

− rθ(x̂tn+1
)
)
+

k∑
i=2

1

i!

d(i)xt

dt(i)

∣∣∣
x̂tn+1

(tn − tn+1)
i

=
tn

tn+1
x̂tn+1

+
tn+1 − tn

tn+1
hθ(x̂tn+1

),

(26)

where hθ(x̂tn+1
) = rθ(x̂tn+1

) −
∑k

i=2
1
i!

d(i)xt

dt(i)

∣∣∣
x̂tn+1

tn+1(tn − tn+1)
i−1. As for first-order approximation (k = 1), we

have hθ(x̂tn+1
) = rθ(x̂tn+1

). As for second-order approximation (k = 2), we have

hθ(x̂tn+1) = rθ(x̂tn+1)−
tn+1(tn − tn+1)

2

d2xt

dt2

∣∣∣
x̂tn+1

= rθ(x̂tn+1) +
tn − tn+1

2

drθ(x̂tn+1
)

dt
. (27)

Corollary A.7. The denoising output rθ(x̂tn+1) reflects the prediction made by a single Euler step from x̂tn+1 with the time
step size tn+1.

Proof. The prediction of such an Euler step equals to x̂tn+1
+ (0− tn+1)

(
x̂tn+1

− rθ(x̂tn+1
)
)
/tn+1 = rθ(x̂tn+1

).

Corollary A.8. Each previously proposed second-order ODE-based accelerated sampling method corresponds to a specific
first-order finite difference of drθ(x̂tn+1)/dt.

Proof. The proof is provided in the next section.

A.2.2. SECOND-ORDER ODE SAMPLERS AS FINITE DIFFERENCES OF DENOISING TRAJECTORY

To accelerate the sampling speed of diffusion models, various numerical solver-based samplers have been developed in
the past several years (Song et al., 2021a;c; Karras et al., 2022; Lu et al., 2022a; Zhang & Chen, 2023). In particular,
second-order ODE-based samplers are relatively promising in the practical use since they strike a good balance between fast
sampling and decent visual quality (Rombach et al., 2022; Balaji et al., 2022).

We next demonstrate that each of them can be rewritten as a specific way to perform finite difference of the denoising
trajectory drθ(x̂tn+1)/dt, as shown in Table 5. We assume that history points are already available for samplers in PNDM
and DEIS and they are calculated with Euler method (otherwise, we need to consider Taylor expansion in terms of the
data-prediction model rθ(xt) rather than the noise-prediction model ϵθ(xt) as the implementation in the original papers).

A.2.3. EDMS (KARRAS ET AL., 2022)

EDMs employ Heun’s 2nd order method, where one Euler step is first applied and followed by a second order correction,
which can be written as

x̂′
tn = x̂tn+1 + (tn − tn+1)ϵθ(x̂tn+1),

x̂tn = x̂tn+1 + (tn − tn+1)
(
0.5ϵθ(x̂tn+1) + 0.5ϵθ(x̂

′
tn)
)

= x̂tn+1 + (tn − tn+1)ϵθ(x̂tn+1) +
1

2
(tn − tn+1)

2 ϵθ(x̂
′
tn)− ϵθ(x̂tn+1

)

tn − tn+1
.

(28)
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By using rθ(xt; t) = xt − tϵθ(xt; t), the sampling iteration above is equivalent to

x̂tn = x̂tn+1
+ (tn − tn+1)

x̂tn+1
− rθ(x̂tn+1

)

tn+1
+

1

2
(tn − tn+1)

2

x̂′
tn

−rθ(x̂
′
tn

)

tn
− x̂tn+1

−rθ(x̂tn+1
)

tn+1

tn − tn+1

=
tn

tn+1
x̂tn+1

+
tn+1 − tn

tn+1
rθ(x̂tn+1

)− 1

2

(tn − tn+1)
2

tn+1

tn+1

tn

rθ(x̂
′
tn)− rθ(x̂tn+1

)

tn − tn+1

=
tn

tn+1
x̂tn+1

+
tn+1 − tn

tn+1

(
rθ(x̂tn+1

) +
tn − tn+1

2

tn+1

tn

rθ(x̂
′
tn)− rθ(x̂tn+1)

tn − tn+1

)
.

(29)

Compared with the generalized denoising output (27), we have
drθ(x̂tn+1

)

dt ≈ tn+1

tn

rθ(x̂
′
tn

)−rθ(x̂tn+1
)

tn−tn+1
.

A.2.4. DPM-SOLVER (LU ET AL., 2022A)

According to (3.3) in DPM-Solver, the exact solution of PF-ODE in the VE-SDE setting is given by

x̂tn = x̂tn+1
+

∫ tn

tn+1

ϵθ(x̂t)dt. (30)

The Taylor expansion of ϵθ(x̂t) w.r.t. time at tn+1 is

ϵθ(x̂t) =

k−1∑
m=0

(t− tn+1)
m

m!
ϵ
(m)
θ (x̂tn+1

) +O
(
(t− tn+1)

k
)
. (31)

Then, the DPM-Solver-k sampler can be written as

x̂tn = x̂tn+1
+

k−1∑
m=0

ϵ
(m)
θ (x̂tn+1

)

∫ tn

tn+1

(t− tn+1)
m

m!
dt+O

(
(tn − tn+1)

k
)

= x̂tn+1 +

k−1∑
m=0

(tn − tn+1)
m+1

(m+ 1)!
ϵ
(m)
θ (x̂tn+1) +O

(
(tn − tn+1)

k+1
)
.

(32)

Specifically, when k = 2, the DPM-Solver-2 sampler is given by

x̂tn = x̂tn+1 + (tn − tn+1)ϵθ(x̂tn+1) +
1

2
(tn − tn+1)

2 dϵθ(x̂tn+1
)

dt
, (33)

The above second-order term in (Lu et al., 2022a) is approximated by

dϵθ(x̂tn+1)

dt
≈

ϵθ(x̂sn)− ϵθ(x̂tn+1)

(tn − tn+1)/2
, (34)

where sn =
√
tntn+1 and x̂sn = x̂tn+1

+ (sn − tn+1)ϵθ(x̂tn+1
). We have

x̂tn = x̂tn+1
+ (tn − tn+1)ϵθ(x̂tn+1

) +
1

2
(tn − tn+1)

2 ϵθ(x̂sn)− ϵθ(x̂tn+1
)

(tn − tn+1)/2

=
tn

tn+1
x̂tn+1

+
tn+1 − tn

tn+1
rθ(x̂tn+1

)− 1

2

(tn − tn+1)
2

tn+1

tn+1

sn

rθ(x̂sn)− rθ(x̂tn+1
)

(tn − tn+1)/2

=
tn

tn+1
x̂tn+1

+
tn+1 − tn

tn+1

(
rθ(x̂tn+1

) +
tn − tn+1

2

tn+1

sn

rθ(x̂sn)− rθ(x̂tn+1)

(tn − tn+1)/2

)
.

(35)

Compared with the generalized denoising output (27), we have
drθ(x̂tn+1

)

dt ≈ tn+1

sn

rθ(x̂sn )−rθ(x̂tn+1
)

(tn−tn+1)/2
.
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Table 5. Each second-order ODE-based sampler listed below corresponds to a specific finite difference of the denoising trajectory. γ
denotes a correction coefficient of forward differences. DDIM is a first-order sampler listed for comparison. GENIE trains a neural
network to approximate high-order derivatives. rθ(x̂tn+2) in S-PNDM and DEIS denotes a previous denoising output. sn =

√
tntn+1 in

DPM-Solver-2. x̂′
tn in EDMs denotes the output of an intermediate Euler step.

ODE solver-based samplers drθ(x̂tn+1
)/dt γ

DDIM (Song et al., 2021a) None None
GENIE (Dockhorn et al., 2022) Neural Networks None
S-PNDM (Liu et al., 2022) γ

(
rθ(x̂tn+1

)− rθ(x̂tn+2
)
)
/(tn − tn+1) 1

DEIS (ρAB1) (Zhang & Chen, 2023) γ
(
rθ(x̂tn+1

)− rθ(x̂tn+2
)
)
/(tn+1 − tn+2) 1

DPM-Solver-2 (Lu et al., 2022a) γ
(
rθ(x̂sn)− rθ(x̂tn+1)

)
/ ((tn − tn+1)/2) tn+1/sn

EDMs (Heun) (Karras et al., 2022) γ
(
rθ(x̂

′
tn)− rθ(x̂tn+1

)
)
/(tn − tn+1) tn+1/tn

A.2.5. PNDM (LIU ET AL., 2022)

Assume that the previous denoising output rθ(x̂tn+2) is available, then one S-PNDM sampler step can be written as

x̂tn = x̂tn+1
+ (tn − tn+1)

1

2

(
3ϵθ(x̂tn+1

)− ϵθ(x̂tn+2
)
)

= x̂tn+1
+ (tn − tn+1)ϵθ(x̂tn+1

) +
1

2
(tn − tn+1)

2 ϵθ(x̂tn+1
)− ϵθ(x̂tn+2

)

tn − tn+1

=
tn

tn+1
x̂tn+1

+
tn+1 − tn

tn+1
rθ(x̂tn+1

)− 1

2

(tn − tn+1)
2

tn+1

rθ(x̂tn+1
)− rθ(x̂tn+2

)

tn − tn+1

=
tn

tn+1
x̂tn+1

+
tn+1 − tn

tn+1

(
rθ(x̂tn+1

) +
tn − tn+1

2

rθ(x̂tn+1
)− rθ(x̂tn+2

)

tn − tn+1

)
.

(36)

Compared with the generalized denoising output (27), we have
drθ(x̂tn+1

)

dt ≈ rθ(x̂tn+1
)−rθ(x̂tn+2

)

tn−tn+1
.

A.2.6. DEIS (ZHANG & CHEN, 2023)

In DEIS paper, the solution of PF-ODE in the VE-SDE setting is given by

x̂tn = x̂tn+1
+

r∑
j=0

C(n+1)jϵθ(x̂tn+1+j
),

C(n+1)j =

∫ tn

tn+1

∏
k ̸=j

τ − tn+1+k

tn+1+j − tn+1+k
dτ.

(37)

r = 1 yields the ρAB1 sampler:

x̂tn = x̂tn+1 + ϵθ(x̂tn+1)

∫ tn

tn+1

τ − tn+2

tn+1 − tn+2
dτ + ϵθ(x̂tn+2)

∫ tn

tn+1

τ − tn+1

tn+2 − tn+1
dτ

= x̂tn+1 + ϵθ(x̂tn+1)
(tn − tn+2)

2 − (tn+1 − tn+2)
2

2(tn+1 − tn+2)
+ ϵθ(x̂tn+2)

(tn − tn+1)
2

2(tn+2 − tn+1)

= x̂tn+1 + (tn − tn+1)ϵθ(x̂tn+1) +
1

2
(tn − tn+1)

2 ϵθ(x̂tn+1
)− ϵθ(x̂tn+2

)

tn+1 − tn+2

=
tn

tn+1
x̂tn+1 +

tn+1 − tn
tn+1

rθ(x̂tn+1)−
1

2

(tn − tn+1)
2

tn+1

rθ(x̂tn+1
)− rθ(x̂tn+2

)

tn+1 − tn+2

=
tn

tn+1
x̂tn+1

+
tn+1 − tn

tn+1

(
rθ(x̂tn+1

) +
tn − tn+1

2

rθ(x̂tn+1
)− rθ(x̂tn+2

)

tn+1 − tn+2

)
.

(38)

Compared with the generalized denoising output (27), we have
drθ(x̂tn+1

)

dt ≈ rθ(x̂tn+1
)−rθ(x̂tn+2

)

tn+1−tn+2
.
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A.3. Theoretical Analysis of the Trajectory Structure

A.3.1. THE OPTIMAL DENOISING OUTPUT

Lemma A.9. The optimal estimator r⋆θ (xt;σt), also known as Bayesian least squares estimator, of the minimization of
denoising autoencoder (DAE) objective is the conditional expectation E (x0|xt)

LDAE = Ex0∼pd(x0)Ext∼p0t(xt|x0)∥rθ (xt;σt)− x0∥22 =

∫
pt(xt)pt0(x0|xt)∥rθ (xt;σt)− x0∥22. (39)

Proof. The solution can be easily obtained by setting the derivative of LDAE equal to zero.

Suppose we have a training dataset D = {yi}|I|i=1 where each data yi is sampled from an unknown data distribution pd. The
empirical data distribution p̂d is denoted as a summation of multiple Dirac delta functions (a.k.a a mixture of Gaussian
distribution): p̂d(y) = 1

|I|
∑|I|

i=1 δ(∥y − yi∥), and the Gaussian kernel density estimate (KDE) is

p̂t(xt) =

∫
p0t(xt|y)p̂d(y) =

1

|I|
∑
i

N
(
xt;yi, σ

2
t I
)
. (40)

Proposition A.10. The optimal denoising output of training a denoising autoencoder with the empirical data distribution is
a convex combination of original data points, where each weight ui is calculated based on the time-scaled and normalized
ℓ2 distance between the input xt and yi belonging to the dataset D:

r⋆θ(xt;σt) = min
rθ

Ey∼p̂d
Ext∼p0t(xt|y)∥rθ(xt;σt)− y∥22 =

∑
i

exp
(
−∥xt − yi∥22/2σ2

t

)∑
j exp (−∥xt − yj∥22/2σ2

t )
yi =

∑
i

uiyi, (41)

with the coefficients satisfying
∑

i ui = 1.

This equation appears to be highly similar to the iterative formula used in mean shift (Fukunaga & Hostetler, 1975; Cheng,
1995; Comaniciu & Meer, 2002; Yamasaki & Tanaka, 2020), especially annealed mean shift (Shen et al., 2005).

Proof. Based on Lemmas A.2 and A.9, the optimal denoising output is

r⋆θ (xt;σt) = E (y|xt) = xt + σ2
t∇xt

log p̂t(xt)

= xt + σ2
t

∑
i

∇xtN
(
xt;yi, σ

2
t I
)∑

j N (xt;yj , σ2
t I)

= xt + σ2
t

∑
i

N
(
xt;yi, σ

2
t I
)∑

j N (xt;yj , σ2
t I)

(
yi − xt

σ2
t

)

= xt +
∑
i

N
(
xt;yi, σ

2
t I
)∑

j N (xt;yj , σ2
t I)

(yi − xt)

=
∑
i

N
(
xt;yi, σ

2
t I
)∑

j N (xt;yj , σ2
t I)

yi

=
∑
i

exp
(
−∥xt − yi∥22/2σ2

t

)∑
j exp (−∥xt − yj∥22/2σ2

t )
yi.

(42)

A.3.2. THEORETICAL CONNECTION TO MEAN SHIFT

Mean shift is a well-known non-parametric algorithm designed to seek modes of a density function, typical a KDE, via
iteratively gradient ascent with adaptive step sizes. Given a current position x, mean shift with a Gaussian kernel and
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bandwidth h iteratively adds a vector m(x)− x, which points toward the maximum increase in the kernel density estimate
ph(x) =

1
|I|
∑|I|

i=1N (x;yi, h
2I), to itself, i.e., x← [m(x)− x] + x. The mean vector is

m(x, h) =
∑
i

viyi =
∑
i

exp
(
−∥x− yi∥22/2h2

)∑
j exp (−∥x− yj∥22/2h2)

yi, (43)

with the coefficients satisfying
∑

i vi = 1. As a mode-seeking algorithm, mean shift has shown particularly successful in
clustering (Cheng, 1995; Carreira-Perpinán, 2015), image segmentation (Comaniciu & Meer, 1999; 2002) and video tracking
(Comaniciu et al., 2000; 2003). By treating the bandwidth σt in (41) as the bandwidth h in (43), we build a connection
between the optimal denoising output of a diffusion model and annealed mean shift under the KDE-based data modeling.

A.3.3. THE CONSTANT MAGNITUDE OF VECTOR FIELD AND SAMPLING TRAJECTORY LENGTH

Lemma A.11 (see Section 3.1 in (Vershynin, 2018)). Given a high-dimensional isotropic Gaussian noise z ∼ N (0;σ2Id),
σ > 0, we have E ∥z∥2 = σ2d, and with high probability, z stays within a “thin spherical shell”: ∥z∥ = σ

√
d±O(1).

Proof. We denote zi as the i-th dimension of random variable z, then the expectation and variance is E [zi] = 0, V [zi] = σ2,
respectively. The fourth central moment is E

[
z4i
]
= 3σ4. Additionally,

E
[
z2i
]
= V [zi] + E [zi]

2
= σ2, E

[
∥z∥2

]
= E

[
d∑

i=1

z2i

]
=

d∑
i=1

E
[
z2i
]
= σ2d,

V
[
∥z∥2

]
= E

[
∥z∥4

]
−
(
E
[
∥z∥2

])2
= 2dσ4,

(44)

Then, we have
E
[
∥x+ z∥2 − ∥x∥2

]
= E

[
∥z∥2 + 2xT z

]
= E

[
∥z∥2

]
= σ2d. (45)

Furthermore, the standard deviation of ∥z∥2 is σ2
√
2d, which means

∥z∥2 = σ2d± σ2
√
2d = σ2d±O

(√
d
)
, ∥z∥ = σ

√
d±O (1) , (46)

holds with high probability.

We denote the optimal denoising output in the KDE-based data modeling as r⋆θ(xt;σt) (see Section A.3.1). In this case, the
optimal noise prediction is denoted as ϵ⋆θ(xt;σt) =

xt−r⋆θ(xt)
σt

, and the optimal empirical PF-ODE in (5) becomes

dxt = ϵ⋆θ(xt;σt)dσt. (47)

Remark A.12. Intriguingly, the magnitude of ϵ⋆θ(xt;σt) approximately distributes around
√
d. The total trajectory length

approximately equals σT

√
d, where d denotes the data dimension.

We next provide a sketch of proof. Suppose the data distribution lies in a smooth real low-dimensional manifold with the
intrinsic dimension as m. According to the Whitney embedding theorem (Whitney, 1936), it can be smoothly embedded in a
real 2m Euclidean space. We then decompose each ϵ⋆θ ∈ Rd vector as ϵ⋆θ,∥ and ϵ⋆θ,⊥, which are parallel and perpendicular
to the 2m Euclidean space, respectively. Therefore, we have ∥ϵ⋆θ∥2 = ∥ϵ⋆θ,∥ + ϵ⋆θ,⊥∥2 ≥ ∥ϵ⋆θ,⊥∥2 ≈

√
d− 2m.

We provide a upper bound for the ∥ϵ⋆θ∥2 below

Ept(xt)∥ϵ
⋆
θ∥2 = Ept(xt)∥

xt − r⋆θ(xt)

σt
∥2 = Ept(xt)∥

xt − E(x0|xt)

σt
∥2

= Ept(xt)∥E(
xt − x0

σt
|xt)∥2 = Ept(xt)∥Ept0(x0|xt)ϵ∥2

≤ Ept(xt)Ept0(x0|xt)∥ϵ∥2
≤ Ep0(x0)Ep0t(xt|x0)∥ϵ∥2
≈
√
d (concentration of measure, Lemma A.11).

(48)
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(a) The L2 norm of ϵθ . (b) The L2 norm of ϵ⋆θ .

Figure 8. The optimal noise prediction ∥ϵ⋆θ∥2 ≈
√
d in the whole sampling process, as the theoretical results guarantee. The actual noise

prediction ∥ϵθ∥2 ≈
√
d in the most timestamps, but shrinks in the final stage (when the timestamp is very close to zero). Such norm

shrinkage almost does not affect the trajectory length as the discretized time steps are very small in the final stage.

Figure 9. Left: The trajectory length is around σT

√
d for both the optimal and actual diffusion models. Right: The cosine value between

two consecutive Euler steps is very small, which indicates the magnitude of each oscillation is extremely small (around 0◦).

Additionally, the variance of ∥ϵ⋆θ∥2 is relatively small.

Varpt(xt)∥ϵ
⋆
θ∥2 = Varpt(xt)∥Ept0(x0|xt)ϵ∥2 = Ept(xt)∥Ept0(x0|xt)ϵ∥

2
2 −

[
Ept(xt)∥Ept0(x0|xt)ϵ∥2

]2
≤ Ept(xt)Ept0(x0|xt)∥ϵ∥

2
2 − (d− 2m) = Ep0(x0)Ep0t(x0|xt)∥ϵ∥

2
2 − (d− 2m)

= d− (d− 2m)

= 2m

(49)

Therefore, the standard deviation of ∥ϵ⋆θ∥2 is upper bounded by
√
2m. Since d≫ m, we can conclude that in the optimal

case, the magnitude of vector field is approximately constant, i.e., ∥ϵ⋆θ∥2 ≈
√
d.

The total sampling trajectory length is
∑N−1

n=0 (σtn+1 −σtn)∥ϵ⋆θ(xtn+1)∥2 ≈ σT

√
d. Therefore, in the optimal case, we have

∥rθ(x̂tn+1)− x̂tn∥2 = (σtn/σtn+1)∥rθ(x̂tn+1)− x̂tn+1∥2 = σtn∥ϵ⋆θ(x̂tn+1)∥2 ≈ σtn∥ϵ⋆θ(x̂tn)∥2 = ∥rθ(x̂tn)− x̂tn∥2. In
this scenario, the denoising output rθ(x̂tn+1

) appears to be oscillating toward rθ(x̂tn) around x̂tn , akin to a simple gravity
pendulum (Young et al., 1996). The length of this pendulum effectively shortens by the coefficient σtn/σtn+1

, starting
from roughly σT

√
d. This specific structure is common to all sampling trajectories. Empirical verification of the constant

magnitude of vector field is illustrated in Figure 8 and the trajectory length is illustrated in Figure 9.
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Figure 10. Left: We have three likelihood rankings in the ODE-based diffusion sampling: (1) ph(rθ(x̂tn)) ≥ ph(x̂tn), (2) ph(x̂tn−1) ≥
ph(x̂tn), and (3) ph(r⋆θ(x̂tn)) ≥ ph(x̂tn). This figure complements the trajectory structure shown in Figure 5. Right: We compute the
ratios d1(x̂tn)/d2(x̂tn) along 50k sampling trajectories on CIFAR-10 (black curve), and find that these ratios are consistently lower than
one from tN = 80 to t0 = 0.002. This empirical evidence supports the validity of Assumption A.13 in practice.

A.3.4. MONOTONE INCREASE IN SAMPLE LIKELIHOOD

In this section, we characterize the local behavior of the sampling process of diffusion models. To simplify notations, we
denote the deviation of denoising output from the optimal counterpart as d1(x̂tn) = ∥r⋆θ(x̂tn)− rθ(x̂tn)∥2 and the distance
between the optimal denoising output and the current position as d2(x̂tn) = ∥r⋆θ(x̂tn)− x̂tn∥2.

Assumption A.13. We assume d1(x̂tn) ≤ d2(x̂tn) for all x̂tn , n ∈ [1, N ] in the sampling trajectory.

This assumption requires that our learned denoising output rθ(x̂tn) falls within a sphere centered at the optimal denoising
output r⋆θ(x̂tn) with a radius of d2(x̂tn). This radius controls the maximum deviation of the learned denoising output and
shrinks during the sampling process. In practice, the assumption is relatively easy to satisfy for a well-trained diffusion
model. A visual illustration is provided in Figure 10.

Proposition A.14. We have ph(rθ(x̂tn)) ≥ ph(x̂tn) and ph(x̂tn−1
) ≥ ph(x̂tn) in terms of the KDE ph(x) =

1
|I|
∑

i∈I N (x;yi, h
2I) with any positive bandwidth h.

Proof. We first prove that given a random vector v falling within a sphere centered at the optimal denoising output r⋆θ(x̂tn)
with a radius of ∥r⋆θ(x̂tn)− x̂tn∥2, i.e., ∥r⋆θ(x̂tn)− x̂tn∥2 ≥ ∥v∥2, the sample likelihood is non-decreasing from x̂tn to
r⋆θ(x̂tn) + v, i.e., ph(r⋆θ(x̂tn) + v) ≥ ph(x̂tn). Then, we provide two settings for v to finish the proof.

The increase of sample likelihood from x̂tn to r⋆θ(x̂tn) + v in terms of ph(x) is

ph(r
⋆
θ(x̂tn) + v)− ph(x̂tn) =

1

|I|
∑
i

[
N
(
r⋆θ(x̂tn) + v;yi, h

2I
)
−N

(
x̂tn ;yi, h

2I
)]

(i)
≥ 1

2h2|I|
∑
i

N
(
x̂tn ;yi, h

2I
) [
∥x̂tn − yi∥22 − ∥r⋆θ(x̂tn) + v − yi∥22

]
=

1

2h2|I|
∑
i

N
(
x̂tn ;yi, h

2I
) [
∥x̂tn∥22 − 2x̂T

tnyi − ∥r⋆θ(x̂tn) + v∥22 + 2 (r⋆θ(x̂tn) + v)
T
yi

]
(ii)
=

1

2h2|I|
∑
i

N
(
x̂tn ;yi, h

2I
) [
∥x̂tn∥22 − 2x̂T

tnr
⋆
θ(x̂tn)− ∥r⋆θ(x̂tn) + v∥22 + 2 (r⋆θ(x̂tn) + v)

T
r⋆θ(x̂tn)

]
=

1

2h2|I|
∑
i

N
(
x̂tn ;yi, h

2I
) [
∥x̂tn∥22 − 2x̂T

tnr
⋆
θ(x̂tn) + ∥r⋆θ(x̂tn)∥22 − ∥v∥22

]
=

1

2h2|I|
∑
i

N
(
x̂tn ;yi, h

2I
) [
∥r⋆θ(x̂tn)− x̂tn∥22 − ∥v∥22

]
≥ 0,

(50)

where (i) uses the definition of convex function f(x2) ≥ f(x1) + f ′(x1)(x2 − x1) with f(x) = exp
(
− 1

2∥x∥
2
2

)
, x1 =

(x̂tn − yi) /h and x2 = (r⋆θ(x̂tn) + v − yi) /h; (ii) uses the relationship between two consecutive steps x̂tn and r⋆θ(x̂tn)
in mean shift with the Gaussian kernel (see (43))

r⋆θ(x̂tn) = m(x̂tn) =
∑
i

exp
(
−∥x̂tn − yi∥22/2h2

)∑
j exp (−∥x̂tn − yj∥22/2h2)

yi, (51)
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which implies the following equation also holds∑
i

N
(
x̂tn ;yi, h

2I
)
xi =

∑
i

N
(
x̂tn ;yi, h

2I
)
r⋆θ(x̂tn). (52)

Since ∥r⋆θ(x̂tn)− x̂tn∥2 ≥ ∥v∥2, or equivalently, ∥r⋆θ(x̂tn)− x̂tn∥
2
2 ≥ ∥v∥

2
2, we conclude that the sample likelihood

monotonically increases from x̂tn to r⋆θ(x̂tn) + v unless x̂tn = r⋆θ(x̂tn) + v, in terms of the kernel density estimate
ph(x) =

1
|I|
∑

iN (x;yi, h
2I) with any positive bandwidth h.

We next provide two settings for v, which trivially satisfy the condition ∥r⋆θ(x̂tn)− x̂tn∥2 ≥ ∥v∥2 , and have the following
corollaries:

• ph(rθ(x̂tn)) ≥ ph(x̂tn), when v = rθ(x̂tn)− r⋆θ(x̂tn).

• ph(x̂tn−1) ≥ ph(x̂tn), when v = rθ(x̂tn)− r⋆θ(x̂tn) +
tn−1

tn
(x̂tn − rθ(x̂tn)).

Therefore, each sampling trajectory monotonically converges (ph(x̂tn−1) ≥ ph(x̂tn)), and its coupled denoising trajectory
converges even faster (ph(rθ(x̂tn)) ≥ ph(x̂tn)) in terms of the sample likelihood. Given an empirical data distribution,
Proposition A.14 applies to any marginal distributions of our forward SDE {pt(x)}Tt=0, which should include the optimal
bandwidth for the considered dataset.

We can also obtain the standard monotone convergence property of mean shift (Comaniciu & Meer, 2002) from Proposi-
tion A.14 when diffusion models are trained to achieve the optimal parameters.

Corollary A.15. We have ph(m(x̂tn)) ≥ ph(x̂tn), when rθ(x̂tn) = r⋆θ(x̂tn) = m(x̂tn).

This connection also implies that once a diffusion model has converged to the optimum, all ODE trajectories will be uniquely
determined and governed by a bandwidth-varying mean shift. In this case, the forward (encoding) process and backward
(decoding) process only depend on the data distribution and the given noise distribution, regardless of model architectures
or optimization algorithms. Such a property was previously referred to as uniquely identifiable encoding and empirically
verified in (Song et al., 2021c), while we theoretically characterize the optimum with annealed mean shift, and thus reveal
the asymptotic behavior of diffusion models.

Besides, the optimal diffusion models simply memorize the dataset and replay a certain discrete data point in sampling. We
argue that in practice, a slight score deviation from the optimum ensures the generative ability of diffusion models while
greatly alleviating the mode collapse issue. Experimental results are provided in the next section.

A.3.5. DIAGNOSIS OF SCORE DEVIATION

We simulate four new trajectories based on the optimal denoising output r⋆θ(·) to monitor the score deviation from the
optimum. The first one is optimal sampling trajectory {x̂⋆

t }, where we generate samples as the sampling trajectory {x̂t}
by simulating (5) but adopt r⋆θ(·) rather than rθ(·) for score estimation. The other three trajectories are simulated by
tracking the (optimal) denoising output of each sample in {x̂⋆

t } or {x̂t}, and designated as {rθ(x̂⋆
t )}, {r⋆θ(x̂⋆

t )}, {r⋆θ(x̂t)}.
According to (6) and t0 = 0, we have x̂⋆

t0 = r⋆θ(x̂
⋆
t1), and similarly, x̂t0 = rθ(x̂t1). As t→ 0, r⋆θ(x̂

⋆
t ) and r⋆θ(x̂t) serve as

the approximate nearest neighbors of x̂⋆
t and x̂t to the real data, respectively.

We calculate the deviation of denoising output to quantify the score deviation across all time steps using the L2 distance,
though they should differ by a factor t2, and have the following observation: The learned score is well-matched to the optimal
score in the large-noise region, otherwise they may diverge or almost coincide depending on different regions. In fact, our
learned score has to moderately diverge from the optimum to guarantee the generative ability. Otherwise, the ODE-based
sampling reduces to an approximate (single-step) annealed mean shift for global mode-seeking (see Section A.3.2), and
simply replays the dataset. As shown in Figure 11, the nearest sample of x̂⋆

t0 to the real data is almost the same as itself,
which indicates the optimal sampling trajectory has a very limited ability to synthesize novel samples. Empirically, score
deviation in a small region is sufficient to bring forth a decent generative ability.

From the comparison of {rθ(x̂⋆
t )}, {r⋆θ(x̂⋆

t )} sequences in Figures 11 and 12, we can clearly see that along the optimal
sampling trajectory, the deviation between the learned denoising output rθ(·) and its optimal counterpart r⋆θ(·) behaves
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Figure 11. Top: We visualize a forward diffusion process of a randomly-selected image to obtain its encoding x̂tN (first row) and simulate
multiple trajectories starting from this encoding (other rows). Bottom: The k-nearest neighbors (k=5) of x̂t0 and x̂⋆

t0 to real samples in the
dataset.

Figure 12. The deviation (measured by L2 distance) of outputs from their corresponding optima.

differently in three successive regions: the deviation starts off as almost negligible (about 10 < t ≤ 80), gradually increases
(about 3 < t ≤ 10), and then drops down to a low level once again (about 0 ≤ t ≤ 3). This phenomenon was also validated
by a recent work (Xu et al., 2023) with a different perspective. We further observe that along the sampling trajectory, this
phenomenon disappears and the score deviation keeps increasing (see {rθ(x̂t)}, {r⋆θ(x̂t)} sequences in Figures 11 and 12).
Additionally, samples in the latter half of {r⋆θ(x̂t)} appear almost the same as the nearest sample of x̂t0 to the real data, as
shown in Figure 11. This indicates that our score-based model strives to explore novel regions, and synthetic samples in the
sampling trajectory are quickly attracted to a real-data mode but do not fall into it.

A.4. Additionally Experimental Results

A.4.1. DYNAMIC PROGRAMMING

In this paper, as a simple illustration, we formulated the seeking of an optimal time schedule as an integer programming
problem and solved it with the standard dynamic programming (Cormen et al., 2022), as shown in Algorithm 1. We also
tried the Branch and Bound Algorithm and obtained similar results. Still, there also exist many different ways to determine
the time schedule (e.g., using a trainable neural network) by leveraging our discovered trajectory regularity.

Specifically, we estimate the local truncation errors of PF-ODE based sampling trajectories, and compute the cost matrix
for dynamic programming. In the sampling process of diffusion models, the global truncation error does not equal to the
accumulation of local truncation error in each step. We thus introduce a coefficient γ to compensate this effect.

Discussion. Watson et al. (2021) was the first one leveraging the idea of dynamic programming to re-allocate the time
schedule in diffusion models. However, our motivation behind using DP significantly differs from this previous work.
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Algorithm 1 Geometry-Inspired Time Scheduling (standard dynamic programming, similar to (Watson et al., 2021))

1: Input: the number of teacher NFE Nt for fine-grained sampling, the number of student NFE Ns (NFE budget), the
coefficient γ, a cost matrix with cjk := D(x̂tN−j→tN−k

,xtN−j→tN−k
), 0 ≤ j < k ≤ Nt.

2: Initialize Vij = +∞ (0 ≤ i ≤ Ns, 0 ≤ j ≤ Nt), time schedule Γ = [0], m = 0
3: Vi1 = ciN (0 ≤ i ≤ Ns)
4: for k = 2 to Ns do
5: for j = 0 to Nt − 1 do
6: for i = j + 1 to Nt − 1 do
7: Vjk = min{Vjk, γcji + Vik−1}
8: end for
9: end for

10: end for
11: # Fetch shortest path of Ns steps
12: for k = Ns to 1 do
13: for j = m+ 1 to Nt do
14: if Vmk == γcmj + Vjk−1 then
15: Γ.append(j)
16: m = j
17: break
18: end if
19: end for
20: end for
21: Γ.append(Nt)
22: Return: Γ

Table 6. Ablation study on the “warmup” sample size with iPNDM+GITS on CIFAR-10. † denotes that we search for a unique time
schedule for each sample of 50k generated samples. This special case is more time-consuming while achieving similar results (due to the
strong trajectory regularity).

NFE
SAMPLE SIZE

1† 16 64 128 256 512 1024 2048

5 9.25 9.55±0.75 9.57±0.97 9.21 ±0.44 8.84±0.30 8.81±0.04 8.89±0.11 8.88±0.12
6 5.12 5.36±0.61 5.16±0.28 4.99±0.18 5.03±0.25 5.20±0.27 5.01±0.19 4.92±0.08
8 3.13 3.25±0.13 3.22±0.08 3.28±0.10 3.27±0.11 3.30±0.11 3.29±0.08 3.33±0.10
10 2.41 2.46±0.11 2.46±0.05 2.45±0.05 2.46±0.04 2.45±0.04 2.44±0.05 2.44±0.05

Table 7. Used time (seconds) under different “warmup” sample sizes (iPNDM+GITS on CIFAR-10). “warmup” samples are generated by
60 NFE and the NFE budge for dynamic programming is 10.

SAMPLE SIZE
sample cost dynamic total

generation matrix programming time (s)

16 5.68 0.73 0.015 6.42
64 8.59 1.08 0.015 9.68
128 13.22 2.61 0.015 15.84
256 (default) 27.47 5.29 0.015 32.78
512 40.20 14.16 0.015 54.46
1024 75.90 29.58 0.015 105.58
2048 149.12 40.83 0.015 189.96

Watson et al. (2021) exploit the fact that ELBO can be decomposed into separate KL terms and utilize DP to find the optimal
discrete-time schedule that maximizes the training ELBO, but this strategy even worsens the sample quality, as admitted by
authors. In contrast, we first found a strong trajectory regularity shared by all sampling trajectories (Section 3), and then
used some “warmup” samples to estimate the trajectory curvature to determine a better time schedule for the sampling of
diffusion models.

More results. We provide ablation studies on analytic first step (AFS) and sensitivity analysis of the coefficient γ in Table 8.
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Table 8. Sample quality in terms of Fréchet Inception Distance (FID (Heusel et al., 2017), lower is better) on four datasets (resolutions
ranging from 32× 32 to 256× 256). †: After obtaining the DP schedule, we could further optimize the first time step with AFS, using
the same 256 “warmup” samples as generating the fine-grained (teacher) sampling trajectory. The default setting in our main submission
dose not use AFS and keeps the coefficient in dynamic programming as 1.1 for LSUN Bedroom and 1.15 otherwise. Although as shown in
the Table, the performance can be further improved by carefully tuning the coefficient and using AFS.

METHOD Coeff AFS† NFE

3 4 5 6 7 8 9 10

CIFAR-10 32×32 (Krizhevsky & Hinton, 2009)

DDIM (Song et al., 2021a) - 93.36 66.76 49.66 35.62 27.93 22.32 18.43 15.69
DDIM + GITS 1.10 88.68 46.88 32.50 22.04 16.76 13.93 11.57 10.09
DDIM + GITS (default) 1.15 79.67 43.07 28.05 21.04 16.35 13.30 11.62 10.37
DDIM + GITS 1.20 77.22 43.16 29.06 22.69 18.91 14.22 12.03 11.38
iPNDM (Zhang & Chen, 2023) - 47.98 24.82 13.59 7.05 5.08 3.69 3.17 2.77
iPNDM + GITS 1.10 51.31 17.19 12.90 5.98 6.62 4.36 3.59 3.14
iPNDM + GITS (default) 1.15 43.89 15.10 8.38 4.88 5.11 3.24 2.70 2.49
iPNDM + GITS 1.20 42.06 15.85 9.33 7.13 5.95 3.28 2.81 2.71
iPNDM + GITS 1.10 34.22 11.99 12.44 6.08 6.20 3.53 3.48 2.91
iPNDM + GITS 1.15 29.63 11.23 8.08 4.86 4.46 2.92 2.46 2.27
iPNDM + GITS 1.20 25.98 10.11 6.77 4.29 3.43 2.70 2.42 2.28

FFHQ 64×64 (Karras et al., 2019)

DDIM (Song et al., 2021a) - 78.21 57.48 43.93 35.22 28.86 24.39 21.01 18.37
DDIM + GITS 1.10 62.70 43.12 31.01 24.62 20.35 17.19 14.71 13.01
DDIM + GITS (default) 1.15 60.84 40.81 29.80 23.67 19.41 16.60 14.46 13.06
DDIM + GITS 1.20 59.64 40.56 30.29 23.88 20.07 17.36 15.40 14.05
iPNDM (Zhang & Chen, 2023) - 45.98 28.29 17.17 10.03 7.79 5.52 4.58 3.98
iPNDM + GITS 1.10 34.82 18.75 13.07 7.79 8.30 4.76 5.36 3.47
iPNDM + GITS (default) 1.15 33.09 17.04 11.22 7.00 6.72 4.52 4.33 3.62
iPNDM + GITS 1.20 31.70 16.87 10.83 7.10 6.37 5.78 4.81 4.39
iPNDM + GITS 1.10 33.19 19.88 12.90 8.29 7.50 4.26 4.95 3.13
iPNDM + GITS 1.15 30.39 15.78 10.15 6.86 5.97 4.09 3.76 3.24
iPNDM + GITS 1.20 26.41 13.59 8.85 6.39 5.36 4.91 3.89 3.51

ImageNet 64×64 (Russakovsky et al., 2015)

DDIM (Song et al., 2021a) - 82.96 58.43 43.81 34.03 27.46 22.59 19.27 16.72
DDIM + GITS 1.10 60.11 36.23 27.31 20.82 16.41 14.16 11.95 10.84
DDIM + GITS (default) 1.15 57.06 35.07 24.92 19.54 16.01 13.79 12.17 10.83
DDIM + GITS 1.20 54.24 34.27 24.67 19.46 16.66 14.15 13.41 11.87
iPNDM (Zhang & Chen, 2023) - 58.53 33.79 18.99 12.92 9.17 7.20 5.91 5.11
iPNDM + GITS 1.10 36.18 19.64 13.18 9.58 7.68 6.44 5.24 4.59
iPNDM + GITS (default) 1.15 34.47 18.95 10.79 8.43 6.83 5.82 4.96 4.48
iPNDM + GITS 1.20 32.70 18.59 11.04 9.23 7.18 6.20 5.50 5.08
iPNDM + GITS 1.10 31.50 21.50 13.73 10.74 7.99 6.88 5.29 4.64
iPNDM + GITS 1.15 28.01 18.28 10.28 8.68 6.76 5.90 4.81 4.40
iPNDM + GITS 1.20 26.41 16.41 9.85 8.39 6.44 5.64 4.79 4.47

LSUN Bedroom 256×256 (Yu et al., 2015) (pixel-space)

DDIM (Song et al., 2021a) - 86.13 54.45 34.34 25.25 19.49 15.71 13.26 11.42
DDIM + GITS 1.05 81.77 36.89 27.46 18.78 13.60 12.23 10.29 8.77
DDIM + GITS (default) 1.10 61.85 35.12 22.04 16.54 13.58 11.20 9.82 9.04
DDIM + GITS 1.15 60.11 31.02 23.65 17.18 13.42 12.61 10.89 10.57
iPNDM (Zhang & Chen, 2023) - 80.99 43.90 26.65 20.73 13.80 11.78 8.38 5.57
iPNDM + GITS 1.05 59.02 24.71 19.08 12.77 8.19 6.67 5.58 4.83
iPNDM + GITS (default) 1.10 45.75 22.98 15.85 10.41 8.63 7.31 6.01 5.28
iPNDM + GITS 1.15 44.78 21.67 17.29 11.52 9.59 8.82 7.22 5.97

We provide ablation studies on the grid size for generating the fine-grained sampling trajectory in Table 9, and the number
of “warmup” sample size and used time in Table 6 and Table 7.

Time schedule. The uniform schedule is widely used in papers using a DDPM (Ho et al., 2020) backbone. Following
the implementation in EDM (Karras et al., 2022), we transfer this schedule from its original range [ϵs, 1] to [t0, tN ] where
ϵs = 0.001, t0 = 0.002 and tN = 80. We first uniformly sample τn (n ∈ [0, N ]) from [ϵs, 1] and then calculate tn by

tn =

√
e

1
2βdτn2+βminτn − 1 (53)

where

βd =
2

ϵs − 1

log(1 + t0
2)

ϵs
− log(1 + tN

2), βmin = log(1 + tN
2)− 1

2
βd. (54)
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Table 9. Ablation study on the grid size used for the fine-grained sampling on CIFAR-10 with iPNDM. The DP coefficient is kept as 1.15.

GRID SIZE
NFE BUDGET

4 5 6 7 8 9 10

11 20.88 10.15 5.11 4.63 3.16 2.78 2.77
21 16.22 9.87 4.83 3.76 3.39 3.20 2.81
41 15.34 9.34 4.83 5.54 3.01 2.66 2.53
61 (default) 15.10 8.38 4.88 5.11 3.24 2.70 2.49
81 15.74 8.57 5.09 5.38 3.10 2.93 2.38
101 15.03 8.72 5.02 5.19 3.12 2.81 2.41

iPNDM 24.82 13.59 7.05 5.08 3.69 3.17 2.77

Table 10. Time schedule on CIFAR-10 found by the dynamic programming. See the formula in texts for more details.

NFE TIME SCHEDULE FID

Uniform

3 [80.0000, 6.9503, 1.2867, 0.0020] 50.44
4 [80.0000, 11.7343, 2.8237, 0.8565, 0.0020] 18.73
5 [80.0000, 16.5063, 4.7464, 1.7541, 0.6502, 0.0020] 17.34
6 [80.0000, 20.9656, 6.9503, 2.8237, 1.2867, 0.5272, 0.0020] 9.75
7 [80.0000, 25.0154, 9.3124, 4.0679, 2.0043, 1.0249, 0.4447, 0.0020] 12.50
8 [80.0000, 28.6496, 11.7343, 5.4561, 2.8237, 1.5621, 0.8565, 0.3852, 0.0020] 7.56
9 [80.0000, 31.8981, 14.1472, 6.9503, 3.7419, 2.1599, 1.2867, 0.7382, 0.3401, 0.0020] 10.60
10 [80.0000, 34.8018, 16.5063, 8.5141, 4.7464, 2.8237, 1.7541, 1.0985, 0.6502, 0.3047, 0.0020] 7.35

LogSNR

3 [80.0000, 2.3392, 0.0684, 0.0020] 88.38
4 [80.0000, 5.6569, 0.4000, 0.0283, 0.0020] 35.59
5 [80.0000, 9.6090, 1.1542, 0.1386, 0.0167, 0.0020] 19.87
6 [80.0000, 13.6798, 2.3392, 0.4000, 0.0684, 0.0117, 0.0020] 10.68
7 [80.0000, 17.6057, 3.8745, 0.8527, 0.1876, 0.0413, 0.0091, 0.0020] 6.56
8 [80.0000, 21.2732, 5.6569, 1.5042, 0.4000, 0.1064, 0.0283, 0.0075, 0.0020] 4.74
9 [80.0000, 24.6462, 7.5929, 2.3392, 0.7207, 0.2220, 0.0684, 0.0211, 0.0065, 0.0020] 3.53
10 [80.0000, 27.7258, 9.6090, 3.3302, 1.1542, 0.4000, 0.1386, 0.0480, 0.0167, 0.0058, 0.0020] 2.94

Polynomial (ρ = 7)

3 [80.0000, 9.7232, 0.4700, 0.0020] 47.98
4 [80.0000, 17.5278, 2.5152, 0.1698, 0.0020] 24.82
5 [80.0000, 24.4083, 5.8389, 0.9654, 0.0851, 0.0020] 13.59
6 [80.0000, 30.1833, 9.7232, 2.5152, 0.4700, 0.0515, 0.0020] 7.05
7 [80.0000, 34.9922, 13.6986, 4.6371, 1.2866, 0.2675, 0.0352, 0.0020] 5.08
8 [80.0000, 39.0167, 17.5278, 7.1005, 2.5152, 0.7434, 0.1698, 0.0261, 0.0020] 3.69
9 [80.0000, 42.4152, 21.1087, 9.7232, 4.0661, 1.5017, 0.4700, 0.1166, 0.0204, 0.0020] 3.17
10 [80.0000, 45.3137, 24.4083,12.3816, 5.8389, 2.5152, 0.9654, 0.3183, 0.0851, 0.0167, 0.0020] 2.77

GITS (ours)

3 [80.0000, 3.8811, 0.9654, 0.0020] 43.89
4 [80.0000, 5.8389, 1.8543, 0.4700, 0.0020] 15.10
5 [80.0000, 6.6563, 2.1632, 0.8119, 0.2107, 0.0020] 8.38
6 [80.0000, 10.9836, 3.8811, 1.5840, 0.5666, 0.1698, 0.0020] 4.88
7 [80.0000, 12.3816, 3.8811, 1.5840, 0.5666, 0.1698, 0.0395, 0.0020] 3.76
8 [80.0000, 10.9836, 3.8811, 1.8543, 0.9654, 0.4700, 0.2107, 0.0665, 0.0020] 3.24
9 [80.0000, 12.3816, 4.4590, 2.1632, 1.1431, 0.5666, 0.2597, 0.1079, 0.0300, 0.0020] 2.70
10 [80.0000, 12.3816, 4.4590, 2.1632, 1.1431, 0.5666, 0.3183, 0.1698, 0.0665, 0.0225, 0.0020] 2.49

The losSNR time schedule is proposed for fast sampling in DPM-Solver (Lu et al., 2022a). We first uniformly sample λn

(n ∈ [0, N ]) from [λmin, λmax] where λmin = − log tN and λmax = − log t0. The logSNR schedule is given by tn = e−λn .

The polynomial time schedule tn = (t
1/ρ
0 + n

N (t
1/ρ
N − t

1/ρ
0 ))ρ is proposed in EDM (Karras et al., 2022), where t0 = 0.002,

tN = 80, n ∈ [0, N ], and ρ = 7.

The optimized time schedules for stable diffusion 1.5 in Figure 7 include

• AYS (Sabour et al., 2024): [999, 850, 736, 645, 545, 455, 343, 233, 124, 24, 0].

• GITS: [999, 783, 632, 483, 350, 233, 133, 67, 33, 17, 0].
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(a) CIFAR-10 32×32. (b) FFHQ 64×64. (c) LSUN Bedroom 256×256.

Figure 13. Trajectory deviation (red curve) compared to the sample distance (blue curve) in the sampling process starting from tN = 80
to t0 = 0.002. Each trajectory is simulated with Euler method and 100 NFE. The results are averaged by 5k generated samples.

(a) Visual Comparison. (b) L2 error. (c) Visual Comparison. (d) L2 error.

Figure 14. (a/c) The visual comparison of trajectory reconstruction on CIFAR-10, and FFHQ. We reconstruct the real sampling trajectory
(top row) using x̂tN − x̂t0 (1-d recon.) along with its top 1 or 2 principal components (2-D or 3-D recon.). To amplify the visual
difference, we present the denoising outputs of these trajectories. (b/d) We compute the L2 distance between the real trajectory the
reconstructed trajectories up to 5-D reconstruction.

(a) DDIM, NFE = 5, FID = 49.66. (b) DDIM + GITS, NFE = 5, FID = 28.05.

(c) iPNDM, NFE = 5, FID = 13.59. (d) iPNDM + GITS, NFE = 5, FID = 8.38.

Figure 15. Synthesized samples on CIFAR-10 with DDIM (+ GITS) and iPNDM (+ GITS).

A.4.2. REGULARITY OF SAMPLING TRAJECTORY

Figure 13 provides more experiments about 1-D projections on CIFAR-10, FFHQ, and LSUN Bedroom. Figure 14 provides
more experiments about Multi-D projections on CIFAR-10 and FFHQ. Figures 15, 16, 17, and 18 visualize more generated
samples on four datasets.
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(a) DDIM, NFE = 5, FID = 43.93. (b) DDIM + GITS, NFE = 5, FID = 29.80.

(c) iPNDM, NFE = 5, FID = 17.17. (d) iPNDM + GITS, NFE = 5, FID = 11.22.

Figure 16. Synthesized samples on FFHQ 64× 64 with DDIM (+ GITS) and iPNDM (+ GITS).

a DDIM, NFE = 5, FID = 43.81. b DDIM + GITS, NFE = 5, FID = 24.92.

c iPNDM, NFE = 5, FID = 18.99. d iPNDM + GITS, NFE = 5, FID = 10.79.

Figure 17. Synthesized samples on ImageNet 64× 64 with DDIM (+ GITS) and iPNDM (+ GITS).

(a) DDIM, NFE = 5, FID = 34.34. (b) DDIM + GITS, NFE = 5, FID = 22.04.

(c) iPNDM, NFE = 5, FID = 26.65. (d) iPNDM + GITS, NFE = 5, FID = 15.85.

Figure 18. Synthesized samples on LSUN Bedroom 256× 256 (pixel-space) with DDIM (+ GITS) and iPNDM (+ GITS).
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