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ABSTRACT

We propose CITRIS, a variational framework that learns causal representations
from temporal sequences of images with interventions. In contrast to the recent
literature, CITRIS exploits temporality and the observation of intervention targets
to identify scalar and multidimensional causal factors. Furthermore, by introducing
a normalizing flow, we extend CITRIS to leverage and disentangle representations
obtained by already pretrained autoencoders. Extending previous results on scalar
causal factors, we prove identifiability in a more general setting, in which only some
components of a causal factor are affected by interventions. In experiments on 3D
rendered image sequences, CITRIS outperforms previous methods on recovering
the underlying causal variables, and can even generalize to unseen instantiations of
causal factors, opening future research areas in sim-to-real generalization.

1 INTRODUCTION

Causal representation learning (Khemakhem et al., 2020; Lachapelle et al., 2021; Locatello et al.,
2020; Schölkopf et al., 2021) focuses on learning representations of causal factors from high-
dimensional observations, such as images. Commonly, these causal factors are assumed to be scalars.
As settings become more complex and high-dimensional, however, so do the causal dynamics, where
estimating every scalar causal variable becomes impractical. Consider for instance a set of objects
interacting in a three-dimensional space. For each object, we can describe its position by three
variables x, y, z and its rotation in multiple angles. However, it is often more natural and sufficient to
consider those factors as two multidimensional variables, i.e. position and rotation, especially when
the definition of the default axes is ambiguous. Such multidimensional causal factors are reminiscent
of macrovariables explored before in causality (Chalupka et al., 2015; 2016a;b; Hoel et al., 2013;
Höltgen, 2021), but they remain yet unexplored in the causal representation learning setup.

In this paper, we consider causal factors as potentially multidimensional vectors. To identify these
multidimensional causal variables, we use sequences of observations where interventions may have
been performed at any time step. This setup resembles a reinforcement learning environment, with an
agent performing actions over time representing interventions. We assume that we can observe the
intervention targets in our data, but not the intervention values. We refer to this setup as TempoRal
Intervened Sequences (TRIS). While recent works, Lachapelle et al. (2021) and Yao et al. (2021),
have considered a similar temporal setup, they do not exploit the knowledge of the intervention
targets, and require scalar variables while we generalize to multidimensional causal factors.

In TRIS, we prove that we can identify the minimal causal variables, which model solely the
information of a causal factor that is strictly effected by a provided intervention. Meanwhile, all
information that cannot be directly influenced by interventions is collected in a separate group of
latent variables. As a practical implementation of this, we propose CITRIS for Causal Identifiability
from TempoRal Intervened Sequences. CITRIS is a variational autoencoder that learns an assignment
of latent variables to causal factors, and promotes disentanglement by conditioning each latent’s prior
distribution only on its respective intervention target. In experiments on 3D rendered video datasets,
CITRIS disentangles the causal factors with high accuracy. Moreover, we extend CITRIS to pretrained
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autoencoders. By using a normalizing flow (Rezende & Mohamed, 2015), CITRIS learns a mapping
from the entangled autoencoder representation to a disentangled causal representation. We empirically
show that the normalizing flow can even generalize its disentanglement to unseen instantiations of
causal factors, holding promise for future work on generalization of causal representations.

2 IDENTIFIABILITY OF MINIMAL CAUSAL VARIABLES

We first describe our setting, TempoRal Intervened Sequences (TRIS), in which identifying the
underlying causal factors is not always possible. Therefore, we define the concept of minimal causal
variables, which represent the manipulable part of each multidimensional causal factor. Finally, we
show under which conditions we can recover the minimal causal variables in TRIS.

2.1 TEMPORAL INTERVENED SEQUENCES (TRIS)

In TRIS, we consider data generated by an underlying latent temporal causal process. We assume
this process to be a dynamic Bayesian network (DBN) (Dean & Kanazawa, 1989; Murphy, 2002) G
over the K causal variables (C1, C2, ..., CK), which is first-order Markov, stationary, and without
instantaneous effects. This means that each causal factor Ci is instantiated at each time step t, denoted
by Cti , and its causal parents can only be causal factors at time t− 1, denoted as Ct−1

j , including its
own previous value Ct−1

i . As opposed to most work on causal representation learning, we allow the
causal factor to be potentially multidimensional, i.e., Ci ∈ DMi

i with Mi ≥ 1 with Di being e.g. R
for continuous variables. The causal factor space is then defined as C = DM1

1 ×DM2
2 × ...×DMK

K .
At each time step t, we obtain a high-dimensional observation XT representing a noisy, entangled
view of all causal factors. We define the observation function h(Ct1, C

t
2, ..., C

t
K , E

t
o) = Xt, where

Eto represents noise independent of the causal factors, and h : C ×E → X is a bijective function from
the causal factor space C and the space of the noise variables E to the observation space X . Finally,
we assume that in each time-step some causal factors might (or might not) have been intervened upon
and that we have access to the corresponding intervention targets, but not the intervention values.
We denote these intervention targets by the binary vector It ∈ {0, 1}K where Iti = 1 refers to an
intervention on the causal variable Cti .

2.2 MINIMAL CAUSAL VARIABLES

In TRIS, we generally cannot disentangle two causal factors if they are always intervened upon
jointly, or, on the contrary, if they are never intervened upon. A common example for this are two
variables, x and y, that follow a Gaussian distribution over time. Then, any two orthogonal axes
can describe the distribution equally well (Hyvärinen et al., 2001; 2019), making it impossible to
uniquely identify them without individual interventions.

Additionally, we cannot even completely reconstruct the multidimensional latent causal factors in
TRIS, when by the nature of the system the provided interventions leave some of the causal factor’s
dimensions unaffected. We formalize this as follows. Suppose for each causal factor Ci ∈ DMi ,
there exists an invertible map si : DMi

i → Dvar
i ×Dinv

i that splits the domain DMi of Ci into a part
that is variant and a part that is invariant under intervention. We denote the two parts of this map as

si(C
t
i ) = (svari (Cti ), s

inv
i (Cti )) (1)

The split smust be invertible, so that we can map back and forth between DMi
i and Dvar

i ×Dvar
i without

losing information. Furthermore, sinvi (Cti ) must be independent of the intervention, i.e. sinvi (Cti ) ⊥⊥
Iti | pa(Cti ), and both parts of the split must be conditionally independent, i.e. sinvi (Cti ) ⊥⊥ svari (Cti ) |
pa(Cti ), I

t
i . As a result, svari (Cti ) will contain the manipulable, or variable, part of Cti . In contrast,

sinvi (Cti ) is the invariable part of Cti which is independent of the intervention.

For any causal variable, there exist at least the trivial split where Dvar
i = DMi

i ,Dinv
i = {0} (no

invariant information). But not all splits are trivial, e.g. when some dimensions are invariant.
Intuitively, we want to identify the split where svari contains solely the manipulable information:
Definition 2.1. The minimal causal split of a variable Cti with respect to its intervention variable
Iti is the split si which maximizes the information content H(sinvi (Cti )|pa(Cti )). Under this split,
svari (Cti ) is defined as the minimal causal variable.
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Here, H denotes the entropy in the discrete case, and the limiting density of discrete points (LDDP)
(Jaynes, 1957; 1968) for continuous variables. Intuitively, this ensures that only the information
which truly depends on the intervention is represented in svari (Ci). Our goal becomes to identify
these minimal causal variables, which depends on the characteristics of the provided intervention.

2.3 LEARNING MINIMAL CAUSAL VARIABLES

As a practical example of TRIS, we consider a dataset D of tuples {xt, xt+1, It+1} where xt, xt+1 ∈
RN represent the observations at time step t and t+ 1 respectively. To learn a causal representation,
we consider a latent space Z larger than the latent causal factor space C, i.e. Z ⊆ RM ,M ≥
dim(E) + dim(C). In this latent space, we aim to disentangle the causal factors.

Our goal is to approximate the inverse of the observation function h by learning two components. First,
we learn an invertible mapping from observations to latent space, gθ : X → Z . Second, we learn an
assignment functionψ : J1..MK → J0..KK that maps each dimension of Z to a causal factor. Learning
a flexible assignment function ψ allows us to allocate any dimension size per causal factor without
knowing the individual dimensions M1, ...,MK in advance. Further, some variables like circular
angles or categorical factors with many categories can have simpler distributions when modelled in
more dimensions. In addition to the K causal factors, we use ψ(j) = 0, j ∈ J1..MK to indicate that
the latent dimension zj does not belong to any minimal causal variable. Instead, those dimensions
might model sinvi (Ci) for some causal factor Ci or the observation noise Eto. Finally, we denote the
set of latent variables that ψ assigns to the causal factor Ci with zψi

= {zj |j ∈ J1..MK, ψ(j) = i}.

To enforce a disentanglement of causal factors, we model a prior distribution in latent space,
pϕ(z

t+1|zt, It+1), with zt, zt+1 ∈ Z , zt = gθ(x
t), zt+1 = gθ(x

t+1). This transition prior enforces
a disentanglement by conditioning each latent variable on exactly one of the intervention targets:

pϕ
(
zt+1|zt, It+1

)
=

K∏

i=0

pϕ

(
zt+1
ψi

|zt, It+1
i

)
(2)

where It+1
0 = 0. Then, the objective of the model is to maximize the likelihood pϕ,θ(xt+1|xt, It+1).

Under the assumptions in Section 2.1, we can prove the following identifiability result for this setup:
Theorem 2.2. Suppose that ϕ∗, θ∗ and ψ∗ are the parameters that, under the constraint of maximizing
the likelihood pϕ,θ(xt+1|xt, It+1), maximize the information content of pϕ(zt+1

ψ0
|zt). Then, the

model ϕ∗, θ∗, ψ∗ learns a latent structure where zt+1
ψi

models the minimal causal variable of Ci if
Ct+1
i ̸⊥⊥ It+1

i |Ct, It+1
j for any i ̸= j. All remaining information is modeled in zΨ0

.

We provide the proof for this statement in Appendix A. Finding the minimal variables intuitively
means that the latent variables zψi

model only the information of Ci which strictly depends on the
intervention target It+1

i , thus defining causal variables by their intervention dependency.

3 CAUSAL IDENTIFIABILITY FROM TEMPORAL INTERVENED SEQUENCES

To identify causal factors from temporal observations with interventions, we propose CITRIS (Causal
Identifiability from Temporal Intervened Sequences). Below, we discuss its architecture and variants.

3.1 VARIATIONAL AUTOENCODER SETUP

Inspired by previous works (Locatello et al., 2020; Träuble et al., 2021), we implement the framework
of Section 2.3 by learning a variational autoencoder (VAE) (Kingma & Welling, 2014), visualized in
Figure 1. The encoder qθ and decoder pθ approximate the invertible mapping gθ from observations to
latent space, and pϕ

(
zt+1|zt, It+1

)
is the transition prior on the latent variables. In this VAE setup,

the objective of the model becomes the Evidence Lower Bound (ELBO):

LELBO = − E
zt+1

[
log pθ

(
xt+1|zt+1

)]
+ E
zt,ψ

[
K∑

i=0

DKL

(
qθ(z

t+1
ψi

|xt+1)||pϕ(zt+1
ψi

|zt, It+1
i )

)]
(3)

The KL divergence uses the prior definition of Equation (2). This ensures that, conditioned on the
previous time step and the interventions, the different blocks of latent variables are independent.
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Causal Identifiability from Temporal Sequences with Interventions

4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t + 1
respectively, and It 2 [0, 1]K is a binary vector where It

i de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(z

t+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, It
i

�
(1)

where  i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(x

t+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0

.

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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Causal Identifiability from Temporal Sequences with Interventions

4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t + 1
respectively, and It 2 [0, 1]K is a binary vector where It

i de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(z

t+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, It
i

�
(1)

where  i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(x

t+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0

.

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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{Ct
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |Ct�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.

[
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Causal Identifiability from Temporal Sequences with Interventions

{Ct
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |Ct�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |Ct�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t + 1
respectively, and It 2 [0, 1]K is a binary vector where It

i de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(z

t+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, It
i

�
(1)

where  i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(x

t+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0

.

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t + 1
respectively, and It 2 [0, 1]K is a binary vector where It

i de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(z

t+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, It
i

�
(1)

where  i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(x

t+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0

.

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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{Ct
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |Ct�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct
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2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
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K are independent of each other given the
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In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
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|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify

Figure 1: Comparing the VAE and AE+NF setup of CITRIS. Left: The transition prior promotes
disentanglement in the latent space by conditioning each latent variable on only one intervention target.
Right: The Normalizing Flow learns to map the autoencoder latents to a new, disentangled space.

Thereby, the assignment function of latent to causal variables, ψ, is learned via a Gumbel-Softmax
distribution (Jang et al., 2017) per latent variable. Hence, during training, we sample a latent-to-causal
variable assignment from these distributions, while for inference, we can use the argmax to obtain a
unique assignment. To encourage information independent of any intervention to be modeled in zψ0 ,
we weight the KL divergence of zψ0 with 1−λ, where λ > 0 is a hyperparameter (usually λ = 0.01).

The prior pϕ for each set of latents zt+1
ψi

is implemented by an autoregressive model. For each set
of latents zt+1

ψi
, the model takes zt, It+1

i and zt+1 as input, where we sample from ψ and mask the
dimensions of zt+1 for which ψ(j) ̸= i. From this input, the model predicts one Gaussian distribution
per latent variable. The autoregressive nature of the prior allows complex distributions over the
multiple latent dimensions, while still being independent across causal variables.

3.2 USING PRETRAINED AUTOENCODERS

In practice, VAEs can struggle to model high-dimensional complex images, especially when small
details in the image are relevant. To overcome this issue, we propose an adaptation of CITRIS to
pretrained autoencoders. In this setting, the invertible map gθ is implemented by a deep autoencoder,
which is trained on observational data without interventions independently of any disentanglement.
In a second step, we freeze the autoencoder and learn a normalizing flow (Rezende & Mohamed,
2015) that maps the entangled latent representation to a disentangled version. The invertibility of the
normalizing flow ensures that no information is lost when mapping from the entangled to disentangled
space, and thus we can use the pretrained decoder to reconstruct the observations without requiring
any fine-tuning. Compared to the VAE setup, we replace the encoder by a successive application of the
frozen encoder and a normalizing flow, shown in Figure 1. Besides that, we deploy the same setup of
the transition prior structure. This setup provides an opportunity for generalizing causal factors beyond
the known dataset, and we verify the viability of this approach in a restricted setting in Section 4.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Temporal Causal3DIdent We evaluate CITRIS on an adapted, temporal version of the Causal3DIdent
identifiability benchmark (von Kügelgen et al., 2021). The dataset consists of 3D renderings of objects
with seven different causal factors: the object position as 3D vector; the object rotation as 2D vector;
the hue of the object, background and spotlight; the spotlight’s rotation; and the object shape. The
relations among those variables are inspired by the setup of von Kügelgen et al. (2021) and include
various common causal structures like confounders and chains. Each variable follows a Gaussian
distribution over time, where the mean is a (non-linear) function of the parents. We perform perfect
interventions with Iti ∼ Bernoulli(0.1), ensuring the minimal causal variables to be the true factors.

Baselines We compare CITRIS to SlowVAE (Klindt et al., 2021). Notably, SlowVAE assumes that
the factors of variation are independent, which often cannot be met in more complex settings like
Temporal Causal3DIdent, as shown in the experiments. The second baseline is iVAE (Khemakhem
et al., 2020), which we condition on the previous time step observation xt and the intervention targets
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It+1. As we aim to find a mapping from image to a causal space, which is independent of those
factors, we must adapt iVAE to only condition its prior on u. We refer to this model variant as iVAE∗.

Correlation metrics Following common practice, we report the correlation of the learned latent
variables to the ground truth causal factors. Since in our setup, multiple latent variables can jointly
describe a single causal variable, we first learn a mapping between a set of latents and all causal
variables, e.g., with an MLP. During this learning process, no gradients are propagated through the
model. The baselines, iVAE∗ and SlowVAE, do not learn an assignment of latent to causal factors.
Instead, we assign each latent dimension to the causal factor it has the highest correlation with, which
gives the baselines a considerable advantage over CITRIS. We report both the R2 coefficient of
determination (Wright, 1921) and the Spearman’s rank correlation coefficient (Spearman, 1904). To
better spot spurious correlations between latents and causal factors, we measure the correlations on a
test dataset for which we sample the causal factors independently.

4.2 TEMPORAL CAUSAL3DIDENT EXPERIMENTS

Table 1: Results on the Temporal-Causal3DIdent
dataset. diag refers to the average score of the
predicted causal factor to its true value (optimal
1), and sep the maximum correlation per predicted
causal variable besides its true factor (optimal 0).
CITRIS disentangles the causal factors well, with
CITRIS-NF achieving close-to optimal scores.

Methods R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
SlowVAE 0.61 0.23 0.59 0.27
iVAE∗ 0.80 0.29 0.77 0.28

CITRIS-VAE 0.89 0.10 0.88 0.12
CITRIS-NF 0.98 0.04 0.97 0.08

7-shapes experiments We apply all models to
the Temporal Causal3DIdent dataset with all 7
object shapes (see Table 1). Both the VAE and
Normalizing Flow version of CITRIS consider-
ably outperform the two baselines and are able
to achieve an average R2 and Spearman corre-
lation above 0.9, while keeping the correlation
between factors low. Moreover, CITRIS-NF
achieves close-to optimal scores, and especially
outperforms the VAE-based approaches in mod-
eling the rotations. This underlines the optimiza-
tion benefits of using pretrained autoencoders
for disentanglement learning on complex, high-
dimensional observations. In contrast, the SlowVAE entangles the causal factors due to their strong
correlation over time. Meanwhile, in the iVAE∗, the hue of the spotlight was highly entangled since
its appearance differs with different background and object colors.

Table 2: Results on the Temporal-Causal3DIdent
dataset with CITRIS-NF trained on 5 object shapes.
The same metrics as in Table 1 are reported. Even
for 2 unseen shapes, CITRIS-NF can disentangle
their causal factors well.

CITRIS-NF R2 diag ↑ R2 sep ↓ Spr. diag ↑ Spr. sep ↓
5 seen shapes 0.98 0.05 0.97 0.10
2 unseen shapes 0.94 0.15 0.93 0.19

Generalization of causal representations Fi-
nally, we evaluate whether the causal represen-
tations of CITRIS can generalize to new, unseen
settings. For this, we reuse the same autoen-
coder as before, but train the Normalizing Flow
on an interventional dataset which excludes any
observations from two shapes. Afterwards, we
test its zero-shot generalization to the two un-
seen shapes. Note that optimal performance can-
not be achieved here, since the central point and
default rotation of an object cannot be generalized to other objects. Nonetheless, the results in Table 2
indicate a strong disentanglement among factors, with slight decreases in position and rotation due to
the forementioned limitations. This shows that the learned disentanglement function can indeed gen-
eralize to unseen instantiations of causal factors, promising potential for future work on generalizing
causal representations to unseen settings with CITRIS.

5 CONCLUSION

We propose CITRIS, a VAE framework for learning causal representations. CITRIS identifies the
minimal causal variables of a dynamical system from temporal, intervened sequences. Furthermore,
by using normalizing flows, CITRIS learns to disentangle the representation of pretrained autoen-
coders. In experiments, CITRIS reliably recovered the causal factors of 3D rendered images. More-
over, we empirically showed that CITRIS can generalize to unseen instantiations of causal factors.
This promises great potential for future work on simulation-to-real generalization research for causal
representation learning. As future work, CITRIS can be extended to an active learning setup, allow-
ing for more data-efficient causal identifiability methods in practice.
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A PROOFS

The following section contains the proof for Theorem 2.2. We first give an overview of the notation
and additional preliminary discussions in Appendix A.1. Then, we give an outline of the proof. The
remaining sections provide the details of the proof.

A.1 PRELIMINARIES

A.1.1 SUMMARY OF NOTATION

We summarize the notation, which is in most cases the same as used for the main paper and extend it
in small aspects for the proof, as follows:

• We assume K causal factors C1, . . . , CK such that Ci ∈ DMi
i with Mi ≥ 1;

• We can group all causal factors in a single variable C = (C1, . . . , CK) ∈ C, where C is the
causal factor space C = DM1

1 ×DM2
2 × ...×DMK

K ;
• The data is generated by a latent Dynamic Bayesian network with variables
(Ct1, C

t
2, ..., C

t
K)Tt=1;

• We assume to know at each time step the binary intervention vector It ∈ {0, 1}K+1 where
Iti = 1 refers to an intervention on the causal factor Ct+1

i . As a special case It0 = 0 for all t;
• For each causal factorCi, there exists a split svari (Ci), s

inv
i (Ci) such that svari (Ci) represents

the variable/manipulable part of Ci, while sinvi (Ci) represents the invariable part of Ci;
• The minimal causal split is defined as the one which only contains the intervention-dependent

information in svari (Ci), and everything else in sinvi (Ci). This split is denoted by svar
∗

i (Ci)

and sinv
∗

i (Ci)
• At each timestep we can access observations xt, xt+1 ∈ X ⊆ RN ;
• Observation function h : C × E → X , where E is the space of the noise variables;
• Latent vector zt ∈ Z ⊆ RM , where Z is the latent space of dimension M ≥ dim(E) +

dim(C);
• Inverse of the observation function in the latent space gθ : X → Z;
• Assignment function from latent dimensions to causal factors ψ : J1..MK → J0..KK;
• Disentanglement function δ∗ : X → C̃ × Ẽ with C̃ = DM̃1 × ...×DM̃K and M̃i being the

number of latent dimensions assigned to causal factor Ci by ψ∗. We denote the output of δ∗

for an observation X as δ∗(X) = (C̃1, C̃2, ..., Ẽ). Then, δ∗ is a disentanglement function if
there exist a set of deterministic functions h0, h1, ..., hK for which, for any X = h(C,E),
hi(C̃i) = Ci for all i ∈ J1..KK, and h0(Ẽ) = E.
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• The representation of δ∗ in terms of the learnable function is denoted by g∗θ and ψ∗;
• Latent variables assigned to each causal factor Ci by ψ are denoted as zψi

= {zj |j ∈
J1..MK, ψ(j) = i} = {gθ(xt)j |j ∈ J1..MK, ψ(j) = i};

• The remaining latent variables that are not assigned to any causal factor are denoted as zψ0 ;

• The goal is to learn for each Ci: pϕ
(
zt+1
ψi

|zt, It+1
i

)
≈ p

(
svari (Ct+1

i )|Ct, It+1
i

)
;

A.1.2 LIMITING DENSITY OF DISCRETE POINTS

In this section, we give a short overview on the difference between differential entropy and the
limiting density of discrete points approach, introduced by Jaynes (1957; 1968). Differential entropy
on a continuous random variable X with a distribution p(X) is defined as:

H(X) = −
∫
p(X) log p(X)dx (4)

While for discrete variables, entropy has the intuitive explanation of an uncertainty measure, or the
’information’ of a variable, one cannot draw the same relation so easily for continuous variables.
This is because differential entropy lacks properties that would be necessary for that. For one, the
entropy can become negative. Secondly, and most importantly for the use case in this paper, it is not
invariant under invertible transformations, i.e. a change of variables. For the example of the random
variable X , the entropy of H(X) does not necessarily equal to H(aX) where a is a constant factor,
e.g. a = 2. Thus, it becomes difficult to use differential entropy as a measure of information content
of a continuous variable, like in the discrete case.

One approach that was proposed to overcome these issues is the limiting density of discrete points
(LDDP) Jaynes (1957; 1968). It adjusts the definition of differential entropy by introducing an
invariant measure m(X), which can be seen as a reference distribution we measure the entropy of
p(X) to. Intuitively, the LDDP adjustment is derived from arguing that the continuous entropy should
be derived by taking the limit of increasingly dense discrete distributions. In the limit of infinitely
many discrete points, one arrives at the entropy for continuous functions, which becomes:

H(X) = −
∫
p(X) log

p(X)

m(X)
dx (5)

Note that in some formulations, a constant logN is added to this equation, where N is the number
of discrete points considered which goes against infinity in the limit. Since for this paper, we only
require to compare two entropy values with each other and do not require the entropy to take a specific
value, we can neglect this constant.

One crucial property of LDDP, which we use in the following proof, is that the entropy stays invariant
under a change of variable. This is achieved by transforming the invariant measure m(X) by the
exact same invertible transformation as done for p(X). Therefore, when coming back to the example
of scaling X by a constant factor, both p(X) and m(X) change in the same way, resulting in
H(X) = H(aX).

A.2 PROOF OUTLINE

The goal of this section is to proof Theorem 2.2: the global optimum of CITRIS will find the minimal
causal variables. We will take the following steps in the proof:

1. (Appendix A.3) Firstly, we show that the function δ∗ that disentangles the true latent
variables C1, ..., CK and assigns them to the corresponding sets zψ1

, ..., zψK
constitutes a

global, but not necessarily unique, optimum for maximizing the likelihood of Equation (2).
2. (Appendix A.4) Next, we characterize the class of disentanglement functions ∆∗ which

all represent a global maximum of the likelihood, i.e. get the same score as the true
disentanglement. In particular, we show that in all optimal disentanglement functions, each
assignment set zψi

contains the variable part of the causal factor svari (Ci), but that it might
contain also the invariable parts of any other causal factor, thus creating multiple optimal
solutions. We do this in two sub-steps:
(a) First, we assume that all intervention targets are independent, i.e. It+1

i ⊥⊥ It+1
j |Ct for

any i ̸= j.

10
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Ct Xt

Ct+1
1 Ct+1

2
· · · Ct+1

K

It+1
1 It+1

2 It+1
K

Rt+1

Xt+1

Figure 2: Temporal causal graph with the latent causal factorsCt+1
1 , ..., Ct+1

K andCt = {Ct1, ..., CtK},
the observed intervention targets It+1

1 , ..., It+1
K with a latent confounder Rt+1 representing the

regime, and the observations Xt and Xt+1. Observed variables are shown in gray, latent variables in
white. For simplicity, the variable Ct summarizes all causal factors at time t and inherits all edges of
those. The dashed lines from Rt+1 represent that there can exist an arbitrary confounder between
intervention targets, but are not strictly necessary. The goal is to identify the causal factorsC1, ..., CK .

(b) Secondly, we extend it to a wider group of intervention settings where interventions
might be confounded, and show that all of them fall in the same class ∆∗.

3. (Appendix A.5) Finally, we derive Theorem 2.2 by showing that the function δ̂ ∈ ∆∗, which
maximizes the entropy of zψ0 , identifies the minimal causal mechanisms, which intuitively
represent the parts of the causal factors that are affected by the available interventions.

Along the way, we will make use of Figure 2 summarizing the temporal causal graph. For the
remainder of the proof, we assume that the prior pϕ

(
zt+1|zt, It+1

)
and the invertible map gθ are

sufficiently complex to approximate any possible function and distribution one might encounter. To
simplify the exposition, we also assume that the latent dimension size is unlimited, i.e. M = ∞, so
there are no limitations on how many latent variables zψi

can be used to represent a causal factor Ci.
In practice, however, this is not a limiting factor as long as we can overestimate the dimensions of the
causal factors and noise variables.

Throughout the proof, we will use Ct to refer to the set of all causal factors at time step t, i.e.
Ct = {Ct1, ..., CtK}. Similarly, we define It+1 = {It+1

1 , ..., It+1
K }.

A.3 STEP 1: TRUE DISENTANGLEMENT IS ONE OF THE GLOBAL MAXIMA OF THE
CONDITIONAL LIKELIHOOD

We start by proving the following Lemma:

Lemma A.1. The true disentanglement function δ∗ that correctly disentangles the true causal factors
Ct+1

1 , ..., Ct+1
K from observations Xt, Xt+1 using the true ψ∗ assignment function on the true latent

variables Zt+1 is one of the global maxima of the likelihood of p(Xt+1|Xt, It+1).

We are interested in optimizing p(Xt+1|Xt, It+1). We can first try to simplify this equation with
the knowledge of the causal graph in Figure 2, i.e. using the true underlying generative model, since
we aim to show that learning the causal factors and aligning them correspondingly in the prior of
Equation (2) represents a global optimum of maximizing p(Xt+1|Xt, It+1). Using the conditional
independence relations of the graph in Figure 2, we write the joint distribution of all the variables in
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the true generative model as:

p(Xt, Xt+1, Ct, Ct+1, It+1) = p(Xt+1|Ct+1)·
[
K∏

i=1

p(Ct+1
i |Ct, It+1

i )

]
·p(Xt|Ct)·p(Ct)·p(It+1)

(6)
We can now condition on Xt and It+1, marginalize out Ct and Ct+1 and write the conditional
likelihood as:

p(Xt+1|Xt, It+1) =

∫

Ct+1

∫

Ct

p(Xt+1|Ct+1) ·
[
K∏

i=1

p(Ct+1
i |Ct, It+1

i )

]
· p(Ct|Xt)dCtdCt+1

(7)
In our assumptions of Section 2.1, we have defined the observation function h to be bijective, meaning
that there exists an inverse f that can identify the causal factors Ct and noise variable Eto from
Xt. Thus, we can write p(Ct|Xt) = δf(Xt)=Ct , where δ is a Dirac delta. Since the noise on the
observations, Eto, is said to be independent of Xt+1 and Ct+1, we can remove it from being in the
conditioning set. This leads us to:

p(Xt+1|Xt, It+1) =

∫

Ct+1

[
K∏

i=1

p(Ct+1
i |Ct, It+1

i )

]
· p(Xt+1|Ct+1)dCt+1 (8)

Since we have assumed h to be bijective, we know that for each Xt+1, there exist only one combi-
nation of Ct+1 and Et+1

o . Thus, by using the change of variables formula, we can rewrite aboves
equation by:

p(Xt+1|Xt, It+1) = |Jh|−1 ·
[
K∏

i=1

p(Ct+1
i |Ct, It+1

i )

]
· p(Et+1

o ) (9)

where Jh =
∂h(Ct+1,Et+1

o )

∂Ct+1∂Et+1
o

denotes the Jacobian of the bijective/invertible observation function h.
Equation (9) constitutes a global optimum of the maximum likelihood, since it represents the true
underlying dynamics.

We relate this conditional likelihood to the prior setup of CITRIS. We show that assigning Ct+1
i to

zt+1
ψi

, i.e., learning the true assignment function ψ∗, provides us with the same maximum likelihood
solution as in Equation (9). We have defined our objective in Section 2 in Equation (2) as:

pϕ
(
zt+1|zt, It+1

)
=

K∏

i=0

pϕ

(
zt+1
ψi

|zt, It+1
i

)
(10)

Since we know that g∗θ is an invertible function between X and Z , we know that zt must include all
information of Xt. Thus, we can also replace it with zt = [Ct, Eto], giving us:

pϕ
(
zt+1|Ct, Eto, It+1

)
=

K∏

i=0

pϕ

(
zt+1
ψi

|Ct, Eto, It+1
i

)
(11)

The optimal assignment function ψ∗ assigns sufficient dimensions to each causal factor C1, ..., CK .
Since Z can have a larger space than E × C, but E × C is sufficient to describe X , we know that the
remaining dimensions of Z do not contain any information. Thus, the assignment function ψ∗ can
map them to any causal factor without a change in distribution. Using this assignment function, we
now consider zt+1

ψ∗
i

= Ct+1
i for i = 1, ...,K. Then, Equation (11) becomes:

pϕ
(
zt+1|Ct, Eto, It+1

)
=

[
K∏

i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, It+1
i

)]
· p(zt+1

ψ∗
0
|Ct, Eto) (12)

where we remove Eto from the conditioning set for the causal factors, since know that Ct+1 and Et+1
o

is independent of Eto. We further simplify by noting that zt+1
ψ∗

0
= Et+1

o is independent of any other
factor.

pϕ
(
zt+1|Ct, Eto, It+1

)
=

[
K∏

i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, It+1
i

)]
· p(zt+1

ψ∗
0

= Et+1
o ) (13)
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Ct

It+1
i

Ct+1
i

(a) Original causal graph of Ci

Ct

It+1
i svari

(
Ct+1
i

)

sinvi
(
Ct+1
i

)

(b) Minimal causal split graph of Ci

Figure 3: Splitting the causal variable Ci in its minimal causal split. (a) In the original causal graph,
Ct+1
i has Ct (or an eventual subset of it) and It+1

i as its parents. (b) In the minimal causal split,
only the variable part svari (Ct+1

i ) depends on the intervention. The invariable part, sinvi (Ct+1
i ), is

independent of It+1
i , hence giving us an additional conditional independence. Note that svari (Ct+1

i )

and sinvi (Ct+1
i ) are conditionally independent.

Finally, by using g∗θ , we can replace the distribution on zt+1 by a distribution on Xt+1 by the change
of variables formula:

pϕ
(
Xt+1|Ct, Eto, It+1

)
=

∣∣∣∣
∂g∗θ(z

t+1)

∂zt+1

∣∣∣∣ ·
[
K∏

i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, It+1
i

)]
· p(zt+1

ψ∗
0

= Et+1
o )

(14)

Thereby, it is apparent that g∗θ is equal to h−1, since both are identical invertible functions between
the same spaces (Z becomes E ×C here). Hence, Equation (14) represents the exact same distribution
as Equation (9). Therefore, we have shown that the function δ∗ that disentangles the true latent
variables C1, ..., CK and assigns them to the corresponding sets zψ1

, ..., zψK
constitutes a global, but

not necessarily unique, optimum for maximizing the likelihood of Equation (2).

Note that while assigning Ct+1
i to zt+1

ψi
provides us with the same maximum likelihood solution as in

Equation (9), this is not the the only possible representation. Additional possible representation will
be discussed in Step 2.

A.4 STEP 2: CHARACTERIZING THE DISENTANGLEMENT CLASS

Showing that the correct disentanglement constitutes a global optimum is not sufficient for showing
that a model trained on solving the maximum likelihood solution converges to it, since there might
potentially be multiple global optima. Hence, this section discusses the class of causal representation
functions δ ∈ ∆∗ which can achieve the same maximum likelihood optimum as the true causal
factor disentanglement discussed in Appendix A.3. For this, we first need to distinguish between the
variable and invariable information of a causal variable Ci, which is introduced in Appendix A.4.1.
Next, we will discuss the causal representation function class ∆ for the setting where interventions
are independent, i.e. It+1

i ⊥⊥ It+1
j |Ct for any i ̸= j, and finally extend it to confounded interventions.

A.4.1 INTERVENTION-INDEPENDENT VARIABLES

Interventions allow us to identify a causal variable by seeing the caused change in its conditional
distribution. However, especially when talking about multidimensional causal variables, one might
have interventions that only affect a subset of the actual causal variable dynamics, while the rest
remains independent of the intervention. As we will see later, this can have an influence on the
identifiability result, making the found causal factors intervention-dependent.

We start by considering a single causal factor Ci ∈ DMi
i in the setup of Figure 2 under our previously

discussed assumptions. Suppose for each causal factor Ci ∈ DMi , there exists an invertible map
si : DMi

i → Dvar
i ×Dinv

i that splits the domain DMi of Ci into a part that is invariant and a part that
is variant under intervention. We denote the two parts of this map as

si(C
t
i ) = (svari (Cti ), s

inv
i (Cti )) (15)

The split s must be invertible, so that we can map back and forth between DMi
i and Dvar

i × Dvar
i

13
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x

y

0

1

2

Figure 4: Example for splitting a causal variable into an intervention-dependent and -independent
part. The two ground truth causal variables are the x and y positions of the ball. See Appendix A.4.1
for details.

without losing information. Furthermore, to be called a split, s must satisfy sinvi (Cti ) ⊥⊥ Iti | pa(Cti ),
i.e., sinvi (Cti ) is independent of the intervention variable Iti given the parents of Cti . Further, both
parts of the split must be conditionally independent, i.e. sinvi (Cti ) ⊥⊥ svari (Cti ) | pa(Cti ), I

t
i . Hence,

we can write their distributions as:

p
(
si(C

t+1
i )|Ct, It+1

i

)
= p

(
svari (Ct+1

i )|Ct, It+1
i

)
· p

(
sinvi (Ct+1

i )|Ct
)

(16)

This means that svari (Cti ) will contain the manipulable, or variable, part of Cti . In contrast, sinvi (Cti )
is the invariable part of Cti which is independent of the intervention. This relation is visualized in
Figure 3.

For any causal variable, there may exist multiple possible splits, but there is always at least the trivial
split where Dvar

i = DMi
i is the original domain of Ci, and Dinv

i = {0} is the one-element set (no
invariant information). However, there might also exist splits in which sinvi (Ct+1

i ) ̸= ∅. For instance,
in a multidimensional causal variable Ĉ ∈ R3, if an intervention only affects the first two dimensions
while the last one remains unaffected, we obtain the split svar([Ĉ1, Ĉ2]), s

inv(Ĉ3). Nonetheless, this
can even happen for scalar variables, since we do not constraint the possible distributions of Ci. We
give an example for such a case below.

Example 1 Consider the scenario in Figure 4 where we have a ball with its two positional dimensions
x and y as its causal factors. For now, we only focus on its x position (in the remainder of the section,
xt refers to the position of the ball on the x-axis, not the full observation Xt which we denote by a
capital letter). Over time, the ball moves within one of the two boxes, but cannot jump in between
boxes. An example of such a conditional could be:

p(xt+1|xt, It+1
x = 0) =

{
min(max(xt + ϵ, 0), 1) if xt < 1

min(max(xt + ϵ, 1), 2) otherwise
(17)

with ϵ ∼ N (0, 0.1). Intuitively, the ball therefore moves randomly around its previous position,
while being bounded by the box it is in. Due to its modular conditional distribution, we can rewrite
the causal variable x and its distribution in terms of two different variables: its position within its
current box, u ∈ [0, 1], and a binary variable indicating in which box the ball is, b ∈ 0, 1 (left/blue vs
right/orange in Figure 4). Then, its conditional distribution becomes:

p(xt+1|xt, Itx) = p
(
bt+1|xt, It+1

x

)
· p

(
ut+1|xt, It+1

x

)
(18)

Now, suppose that an intervention It+1
x changes the box the ball is in, while the relative position

keeps evolving as it would under no intervention, i.e. still depending on its parents. Then, we can yet
write its conditional distribution as:

p(xt+1|xt, Itx) = p
(
bt+1|xt, It+1

x

)
· p

(
ut+1|xt

)
(19)

Using the notation above, we therefore can define the split svar(x) = b, sinv(x) = u, where b depends
on the intervention, while u does not. Note that svar(x) = x, sinv(x) = ∅ is yet another valid split in
this case.

Example 2 Consider the same example as before, however, now with a different intervention
setup. Suppose that an intervention It+1

x constitutes a perfect intervention on x, under which
xt+1 ⊥⊥ xt|It+1

x = 1. Then, the previous split svar(x) = b, sinv(x) = u is not valid anymore, if the
intervention target It+1

x cannot be deterministically deduced from xt, since an intervention changes

14
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the distribution of the relative position ut+1. Hence, the only valid split is svar(x) = x, sinv(x) = ∅.
This shows that the possible space of such splits depends on the available interventions.

Minimal causal variables In the examples above, one can see that for certain situations, a causal
variable can have multiple valid splits svari (Ci), s

inv
i (Ci) since intervention-independent information

can be modeled in either svari (Ci) or sinvi (Ci). The split that will be the most relevant for the
identifiability discussion here is the one that assigns only the intervention-dependent information to
svari (Ci), and the rest to sinvi (Ci). We define this as follows:
Definition A.2. The minimal causal split of a variable Cti with respect to its intervention variable
Iti is the split si which maximizes the entropy of H(sinvi (Cti )|pa(Cti )). Under this split, svari (Cti ) is
defined as the minimal causal variable and denoted by svar

∗

i (Cti ).

Additionally, we also define:
Definition A.3. The minimal causal mechanism of a variable Ci with respect to its intervention Ii is
defined as the conditional distribution p

(
svar

∗

i (Cti )|pa(Ct+1
i ), It+1

i

)
.

We refer to p
(
svar

∗

i (Cti )|Ct, It+1
i

)
as minimal causal mechanism, since it is the distribution for

which as little as possible information depends on It+1
i . Hence, the definition of this mechanism

depends on the characteristics of the provided intervention. As we will see later, while we cannot
guarantee to find the full causal mechanism, we can yet identify the minimal causal mechanism.

The existence of a split where sinv(Ci) ̸= ∅ for any causal factor Ci creates additional, possible
solutions that obtain the same maximum likelihood as the true split. This is because sinv(Ci) is
independent of the intervention target Ii, allowing it to be modeled by any set zψj

without losing
information. The following subsections further characterize the space of new solutions with the
existence of such splits.

A.4.2 INDEPENDENT INTERVENTIONS

In this section, we show by which class of disentanglement functions ∆ a maximum likelihood
solution of the generative model can be found.

However, to simplify the first steps, we assume that all intervention targets are independent of each
other given the causal factors of the previous time step, i.e. It+1

i ⊥⊥ It+1
j |Ct for any i ̸= j ∈ 1, . . . ,K.

By construction, we also assume It+1
0 = 0 for all t. We will extend it afterwards in Appendix A.4.3.

Solutions for sinvi (Ci) = ∅ for all i ∈ J1..KK As a first step, we assume that for all causal factors
C1, ..., CK , there does not exist any minimal causal mechanism split besides sinvi (Ci) being the empty
set. Therefore, all of Ci is dependent on It+1

i . For this case, consider an arbitrary partition of Ci,
s0(Ci), s

1(Ci), with the same invertibility constraints as svar, sinv and conditionally independence
between s0(Ci), s1(Ci), but with a non-empty invariable part, i.e., s1(Ci) ̸= ∅. For this partition, the
conditional entropy of s1(Ci) given Ct must be strictly lower when conditioning also on It+1

i :

H
(
s1(Ct+1

i )|Ct, It+1
i

)
< H

(
s1(Ct+1

i )|Ct
)

(20)

If the conditional entropy was equal, then s1(Ct+1
i ) would be independent of It+1

i given Ct, which
is only true for sinvi (Ci). Since we assume sinvi (Ci) is empty, while s1(Ct+1

i ) is not, this can
never happen. Thus, to model a causal factor Ci where sinvi (Ci) = ∅, a maximum likelihood
solution can only be found if all of svari (Ci) is conditioned on It+1. Further, since in this setting
Ct+1
j ⊥⊥ Ct+1

i |Ct, It+1 for all i, j ∈ J1..KK, i ̸= j, there cannot exist any split across multiple
causal factors that violate the entropy inequality above for It+1

i and It+1
j while still modeling the

true conditional distributions.

Similarly, in this setting under the specified assumptions, the information of It+1
i cannot be deter-

mined by any other target variable It+1
j , i ̸= j, since otherwise, the targets would not be independent.

Hence, we can write the following entropy inequality for any i ̸= j:

H
(
Ct+1
i |Ct, It+1

i

)
< H

(
Ct+1
i |Ct

)
= H

(
Ct+1
i |Ct, It+1

j

)
(21)

Therefore, one can only achieve the maximum likelihood solution (i.e., the minimum entropy solution)
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if all information of Ct+1
i is conditioned on It+1

i for i = 1, ...,K in addition to Ct. This implies that
each factor pϕ(zt+1

ψi
|zt, It+1

i ) described in Equation (2) will have p(Ct+1
i |zt, It+1

i ), and therefore
zt+1
ψi

= Ct+1
i as its maximum likelihood solution.

Nonetheless, this excludes zψ0 , i.e. the factors independent of any intervention, in this case being
the noise Et+1

o . Since it is independent of any interventions, any distribution of Et+1
o across the

different causal factor sets zψ0 , ..., zψK
will achieve the same likelihood score, as long as the part of

Et+1
o across factors is independent. Hence, in conclusion for this scenario, we can guarantee that

zψi
will model all information of Ci and no other causal factor Cj , i ̸= j, but can contain additional

information from Et+1.

Solutions with invariable parts Next, we consider the scenario where there exists a split with
sinvi (Ci) ̸= ∅ for some causal variables in i ∈ J1..KK. For this case, we can write the maximum
likelihood solution of Equation (9) as:

p(Xt+1|Xt, It+1) =

∣∣∣∣
∂g∗θ(z

t+1)

∂zt+1

∣∣∣∣ ·
[
K∏

i=1

p(Ct+1
i |It+1

i , Ct)

]
· p(Et+1) (22)

=

∣∣∣∣
∂g∗θ(z

t+1)

∂zt+1

∣∣∣∣ ·
[
K∏

i=1

p(svari (Ct+1
i )|It+1

i , Ct)

]
·
[
K∏

i=1

p(sinvi (Ct+1
i )|Ct)

]
· p(Et+1)

(23)

This equation shows that one can assign sinv1 (C1), ..., s
inv
K (CK) to any latent variable set zψ0

, ..., zψK

or split it across, while achieving the same optimal likelihood, since they are independent of any
intervention target. The remaining information in sinv1 (C1), ..., s

inv
K (CK) thereby acts the same way

as the noise variable Et+1. Thus, there exist multiple maximum likelihood solutions with different
splits of information to causal factors.

However, on the other hand, the solution space is yet restricted by the assignment of svari (Ci). In
particular, if svari (Ci) cannot be split further into an invariable/intervention-independent part, we
can rely on the same results from the previous setting, when considering svari (Ci) as new causal
variables. In case there exist another split of Ci which would add more information to sinvi (Ci), this
part could not be guaranteed to be matched to the causal factor Ci due to its independence. Hence, in
conclusion here, we can guarantee that zψi will model all information of svar(Ci) and no other causal
factor svar(Cj), i ̸= j, if there does not exist another split of svar(Ci). The additional information
of Et+1 as well as sinv(Cj) can be assigned to any causal variable. In the third step of the proof
(Appendix A.5), we discuss how one can yet obtain a unique solution.

A.4.3 CONFOUNDED INTERVENTIONS

In the previous discussion, we have used the assumption that interventions are independent of each
other: It+1

i ⊥⊥ It+1
j |Ct. This assumption was required for showing that conditioning informa-

tion of Ct+1 on any other target will lead to the same entropy as having it without a target, i.e.
H

(
Ct+1
i |Ct, It+1

j

)
= H

(
Ct+1
i |Ct

)
. In this section, however, we consider a wider range of interven-

tions. Specifically, we assume that the intervention targets It+1
1 , ..., It+1

K are confounded by some un-
observed variable Rt+1 besides Ct. This allows the modeling of, for example, single-target interven-
tions or groups of interventions, e.g. It+1 ∈ {[0, 0, 0], [1, 1, 0], [0, 1, 1]} for a three-variable case. Un-
der such a setup, the entropy equation from before, i.e. H

(
Ct+1
i |Ct, It+1

j

)
̸= H

(
Ct+1
i |Ct

)
, is not

valid anymore since It+1
j and It+1

i are not necessarily independent anymore and hence Ct+1
i ̸⊥⊥ It+1

j

can occur for some i, j ∈ J1..KK, i ̸= j.

Despite that, a causal factor Ct+1
i is still independent of any other target It+1

j , i ̸= j, as long as it is
conditioned on its true target and previous time step: Ct+1

i ⊥⊥ It+1
j |Ct, It+1

i . This is because Ct and
It+1
i are all the parents of Ct+1

i , as shown in the causal graph of Figure 2. Further, suppose that there
exist information of Ct+1

i which is statistically independent of the intervention It+1
i , i.e.sinvi (Ci) ̸= ∅.

Then, this will also be independent of any other intervention target It+1
j , since sinvi (Ci) ⊥⊥ It+1

i |Ct,
and all paths from Ci to It+1

j include It+1
i . Hence, our discussion of the intervention-independent
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parts follow the same logic as in Appendix A.4.2, and we are left with showing that svari (Ci) is
modeled by zψi

in any maximum likelihood solution.

For this, we consider a pair of variables Ci, Cj , for which It+1
i ̸⊥⊥ It+1

j |Ct, and show under which
circumstances we can guarantee that no information of svari (Ci) will be modeled in zψj . It is
sufficient to limit the discussion to pairs of variables, since one latent variable can be only assigned to
a single causal variable, hence to the actual one it belongs to, Ci, or any other variable Cj here. A
crucial insight to the discussion will be that the influence of It+1

j to Ct+1
i solely relies on It+1

i being
correlated to both variables. Further, one requirement is that no additional conditional independence
relations exist, such as svari (Ci) ⊥⊥ It+1

i |It+1
j , Ct, which is covered by our faithfulness assumption.

Now, under this setup, we consider three cases:

1. for every time step t, the two variables Ci, Cj have always been intervened on together, i.e.
It+1
i = It+1

j for any t;

2. there exist a time step t at which It+1
i = 0, It+1

j = 1;

3. there exist a time step t at which It+1
i = 1, It+1

j = 0.

Note that the only excluded case is when for every time step t, It+1
i = 0, It+1

j = 0. This case refers
to not having observed interventions for any of the two variables, and goes back to Appendix A.4.2,
where the variable part of Ci is empty, i.e. svari (Ci) = ∅. Hence, in that case, svari (Ci) would have
no influence on the modeled solution.

In the first case, since the two factors have always been intervened on together, we know that
It+1
i = It+1

j for any time step t. Hence, one can assign the information of svari (Ct+1
i ), svarj (Ct+1

j ),
or the union of both to either intervention target It+1

i or It+1
j , without losing any information.

Moreover, if svari (Ct+1
i ) has multiple independent dimensions, i.e. can be written as a product of

multiple, conditionally independent variables, one can even split information of Ci over the two
targets. This shows that in the general case, we cannot disentangle between two variables which have
always been intervened on together. Similarly, if more than 2 variables have always been intervened
on together, we cannot disentangle among all those variables.

For the second case, we can deduce that there must be interventions provided for at least the
observational case, i.e. It+1

i = 0, It+1
j = 0, the case where Cj is intervened on but not Ci, i.e.

It+1
i = 0, It+1

j = 1, and either the joint intervention on both Ci, Cj or only interventions on Ci,
not Cj . The reason why one of the two latter cases needs to exist is that if it would not be the
case, It+1

i = 0 would be zero for any t. In that case, the minimal causal mechanism of Ci uses
svari (Ci) = ∅, hence making the modeling of svari (Ci) irrelevant for the maximum likelihood solution.

Thus, from these different intervention settings, it is apparent that there cannot exist a deterministic
function f with which we can determine It+1

i from seeing It+1
j . If we observe joint interventions on

both variables, then for It+1
j = 1, both It+1

i = 0 and It+1
i = 1 can occur. Similarly, if we observe

interventions on Ci when Cj is not intervened on, then both It+1
i = 0 and It+1

i = 1 can occur for
It+1
j = 0. If both joint interventions and single interventions on Ci have been observed, we cannot

determine It+1
i from It+1

j at either It+1
j = 0 or It+1

j = 1. Since svari (Ct+1
i ) ⊥⊥ It+1

j |Ct, It+1
i by

definition and svari (Ct+1
i ) ̸⊥⊥ It+1

i |Ct, It+1
j (the latter because It+1

i is not a deterministic function of
It+1
j , and therefore the dependence holds), we can write:

H
(
svari (Ct+1

i )|Ct, It+1
i

)
= H

(
svari (Ct+1

i )|Ct, It+1
i , It+1

j

)
< H

(
svari (Ct+1

i )|Ct, It+1
j

)
(24)

In conclusion, we cannot find the maximum likelihood solution if any information of Ct+1
i , which

depends on It+1
i , is assigned to latent variables zψj

. Hence, the maximum likelihood solution will
strictly model svari (Ci) in zψi

.

Finally, in the third case, we can take a similar argument as for the second case. The only difference
is that any of the additional intervention cases (joint or single on Cj), we have that from It+1

j = 0,
both It+1

i = 0 and It+1
i = 1 can occur. Hence, the inequality in Equation (24) is still valid, and we

cannot replace It+1
i by It+1

j for any subset of information of svari (Ci). In summary, the maximum
likelihood solution will strictly model svari (Ci) in zψi

also for this case.
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Therefore, we can summarize the results in the following statement. We can disentangle the
intervention-dependent part of any two variables Ci, Cj , if there does not exist a deterministic func-
tion f for which Iti = f(Itj) holds for every time step t.

A.5 STEP 3: DERIVING THE FINAL THEOREM

Now that we have discussed the class of disentanglement functions ∆∗ with their corresponding solu-
tions, we can take the final step by adding constraints that ensure a unique solution. In all the settings
discussed in Appendix A.4.2 and Appendix A.4.3, the problem is that intervention-independent infor-
mation can be represented in any of the latent sets zψ0 , ..., zψK

without affecting the optimal likeli-
hood. However, our main goal in getting a causal representation is that we disentangle information
from different causal factors, meaning that we want to guarantee that the latents of zψi will only model
information of the causal factor Ci, and no other causal factor Cj , i ̸= j. Thus, we can do this by col-
lecting all intervention-independent information in zψ0

. In other words, our ideal solution would be
to have the latents of zψi

model svari (Ci) (i = 1, ...,K), and zψ0
to model {sinv1 (C1), ..., s

inv
K (CK)},

where the split svari , sinvi was chosen to maximize the entropy of p(sinvi (Ct+1
i )|Ct). To find both the

right splits and collecting all intervention-independent information in zψ0 , we thus want to find the
representation function δ̂ ∈ ∆∗ which maximizes the entropy of zψ0

while maintaining the optimal
likelihood. If any intervention-independent information would not be modeled in zψ0

, it implies that
there must exist another solution with greater entropy in zψ0 , since all sinv1 (C1), ..., s

inv
K (CK) as well

as svar1 (C1), ..., s
var
K (CK) are conditionally independent of each other (i.e. adding parts to zψ0 cannot

reduce the entropy). Further, since we try to maximize the entropy of zψ0 , we find the information
splits svari , sinvi that maximize the entropy of its intervention-independent part. This is the same split
as we had defined as minimal causal mechanisms in Appendix A.4.1. Thus, we can summarize this
result as follows:
Theorem A.4. Suppose that ϕ∗, θ∗ and ψ∗ are the parameters that, under the constraint of maxi-
mizing the likelihood pϕ(gθ(xt+1)|gθ(xt), It+1), maximize the entropy of pϕ(zt+1

ψ0
|zt, It+1). Then,

with sufficient latent dimensions, the model ϕ∗, θ∗, ψ∗ learns a latent structure where zt+1
ψi

models
the minimal causal variable of Ci if Ct+1

i ̸⊥⊥ It+1
i |Ct, It+1

j for any i ̸= j. All remaining information
independent of any interventions is modeled in zψ0

.

The conditional independence Ct+1
i ̸⊥⊥ It+1

i |Ct, It+1
j ensures that there exists no deterministic

function f for which It+1
i = f(It+1

j ). This also includes when It+1
i is constant, i.e., when Ci is

intervened all the time or not at all, since then, Ci becomes independent of It+1
i .
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(a) Teapot (b) Cow (c) Head (d) Horse (e) Armadillo (f) Dragon (g) Hare

Figure 5: An example image for each object shape in the Temporal-Causal3DIdent dataset.

pos x pos y pos z rot α rot β rot s hue s hue b hue o obj s

Figure 6: Visualizing the different factors of variation in the Temporal Causal3DIdent dataset. Each
column represents one dimension of a causal factor, and the different rows show the original image
(first row) with only the corresponding causal factor being changed.

B TEMPORAL CAUSAL3DIDENT DATASET

The creation of the Temporal Causal3DIdent dataset closely followed the setup of von Kügelgen et al.
(2021). We used the code provided by Zimmermann et al. (2021)1 to render the images via Blender
(Blender Online Community, 2021). We will publish the adapted code for this dataset generation as
well as the full datasets used here upon publication with an accompanying license.

B.1 CAUSAL FACTOR DESCRIPTION

To begin with, we give a more detailed description of the 7 causal factors here, and provide examples
of varying individual factors in Figure 6:

• The object position (pos o) is modeled in 3 dimensions (x - depth dimension, y - horizontal,
z - vertical). All values are scaled between -2 as minimum and a maximum of 2, following
Zimmermann et al. (2021). For the y and z dimension, this ensures that the object stays
within the frame. For the x dimensions, it ensures that the object does not cover the whole
camera image, but also does not become too small in resolution for recognizing rotations
and shapes.

• The object rotation (rot o) is modeled in 2 dimensions (α - roll angle, β - pitch angle). All
dimensions use circular values of [0, 2π), meaning that in distributions, we consider values
close to 0 and 2π as close as well. The rotation is restricted to two dimensions to guarantee
that every object rotation has a unique value assignment of the angles. This can be violated
when modeling three angles with a value range of [0, 2π).

• The spotlight rotation (rot s) is the positioning of the spotlight as an angle. The value range
is [0, 2π), where, similarly as the object rotation, we consider it to be circular.

• The spotlight hue is the color of the spotlight. The value range is, again, [0, 2π), where 0
corresponds to red. Note that the color appearance of the spotlight changes with the object
and background color, since we only see the combined reflected color.

1https://github.com/brendel-group/cl-ica
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pos x pos y pos z rot α rot βrot s hue s hue b hue o obj s

pos x pos y pos z rot α rot βrot s hue s hue b hue o obj s

Figure 7: Causal relations between all dimensions of the causal factors of the Temporal Causal3DIdent
dataset. The causal graph of Section 4 summarizes pos x, pos y, pos z into pos o and rot α, rot β
into rot o. See Appendix B.3 for details on the conditional distributions.

• The background hue (hue b) is the color of the background. The value range is [0, 2π)
with the same color spectrum as the spotlight hue.

• The object hue (hue o) is the color of the object, and follows the same setup as the
background hue.

• The object shape (obj s) is a categorical variable describing the object shape. For the 7-
shape dataset version, we consider the same object shapes as von Kügelgen et al. (2021):
Cow (Crane, 2021), Head (Rusinkiewicz et al., 2021), Dragon (Curless & Levoy, 1996),
Hare (Turk & Levoy, 1994), Armadillo (Krishnamurthy & Levoy, 1996), Horse (Praun et al.,
2000), Teapot (Newell, 1975). An example image for each of the objects is shown in Figure 5.

B.2 DATASET GENERATION

The datasets are generated by starting at a random sample of all causal factors. For each next
time step, we generate a sample according to the conditional distributions of each causal factor
(see Appendix B.3 for details on the distributions). Additionally, we sample intervention targets
It+1
1 , ..., It+1

7 for all 7 causal factors. For the datasets in Section 4, we sample the targets from
It+1
i ∼ Bernoulli(0.1). For each causal factor for which the intervention target is one, we replace its

previously sampled value with a new value randomly sampled from a uniform distribution. For angles
and hues, the distribution is U(0, 2π), while for the positions, we use U(−2, 2). For the object shape,
we uniformly sample one out of the seven shapes. After performing the interventions, the sampled
vector of causal factors is used to generate an image of a resolution of 64× 64 using Blender. Note
that for visualization purposes, the depicted images in this section are shown in higher resolution
(256× 256). This makes it easier to recognize the object shapes and their rotations. However, we
use a resolution of 64 × 64 in experiments to keep the computational cost of the experiments in a
reasonable range.

Repeating this generation procedure for several steps results in one long sequence, which we use
as a dataset. For the experiments on Temporal-Causal3DIdent Teapot, we generate a sequence of
150,000 images. For the experiments on Temporal-Causal3DIdent 7-shapes, the chosen dataset size
was 250,000 images. The large dataset sizes were chosen to prevent any sampling bias and focus the
experiments on general identifiability. We noticed that smaller dataset sizes such as 50,000 images
still gave good scores on the correlation metrics, but a decrease in the triplet evaluation was noticeable
for most causal factors, especially the position and rotation.

B.3 TEMPORAL CAUSAL RELATIONS

Below, we define the transition functions used in the causal graph of Temporal Causal3DIdent dataset
(see Figure 7 for the relations on individual causal dimensions). The chosen function forms are
inspired by the ones defined by von Kügelgen et al. (2021) for the Causal3DIdent dataset.

For the position, rotation, and hue values, we sample new values over time with the following
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(1) - (2) rot-α (3) pos-x (4) pos-y, hue-b (5) rot-α

(6) pos-y (7) - (8) - (9) - (10) hue-b, obj-s

(11) rot-β (12) - (13) rot-β (14) rot-β (15) -

(16) pos-y, rot-β (17) - (18) - (19) - (20) rot-s

Figure 8: An example sequence with 20 frames in the Temporal Causal3DIdent 7-shapes dataset with
higher resolution (from left to right, top to bottom). The causal variables denoted below each image
indicate the variables which were intervened on at this time step. For instance, when transitioning
from the first to the second image, all variables were sampled according to their temporal dependency
except rot-α.

functions:
pos xt+1 = f

(
1.5 · sin(rot βt), pos xt, ϵtx

)
(25)

pos yt+1 = f
(
1.5 · sin(rot αt), pos yt, ϵty

)
(26)

pos zt+1 = f
(
1.5 · cos(rot αt), pos zt, ϵtz

)
(27)

rot αt+1 = f
(
hue bt, rot αt, ϵtα

)
(28)

rot βt+1 = f
(
hue ot, rot βt, ϵtβ

)
(29)

rot st+1 = f
(
atan2(pos xt, pos yt), rot st, ϵtrs

)
(30)

hue st+1 = f
(
2π − hue bt, hue st, ϵths

)
(31)

hue bt+1 = hue bt + ϵtb (32)

where f(a, b, c) = a−b
2 + c, and all ϵ-variables being independent samples from a Gaussian distribu-

tion with standard deviation 0.1 for positions, and 0.15 for angles and hues. Intuitively, the function
f represents that we create a ’goal’ position for each variable based on its parents, and move towards
the goal by taking the average between goal and current position, with additive noise. This gives us a
simulation of a moving system, which, however, also permits large changes without interventions.

The function of the object hue depends on the categorical object shape, which is outlined in Table 3.
We use the same setup as von Kügelgen et al. (2021), where the hare is trying to blend into the
background and spotlight, while the dragon tries to stand out. The colors of the other objects are
spread out across the color ring.

Finally, for the object shape, we use a noisy identity map over time. With a probability of 5%,
we change the current object shape with a newly sampled one from a uniform distribution. This
introduces additional noise to the object shape besides the interventions.

To showcase the dependency among causal variables, we plot the marginal distribution of tuples of
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Object shape Object hue goal

Teapot 0
Armadillo 1

5 · 2π
Hare avg(hue spot, hue back)
Cow 2

5 · 2π
Dragon π + avg(hue spot, hue back)
Head 3

5 · 2π
Horse 4

5 · 2π

Table 3: The causal relation of the object shape, background hue, and spotlight hue to the object hue
goal g with which we determine the next step as hue ot+1 = f

(
g, hue ot, ϵtho

)
. The angle mean is

defined as avg(α, β) = atan2
(

sin(α)+sin(β)
2 , cos(α)+cos(β)

2

)
.
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Figure 9: Overview of the joint marginal distributions of selected variables in the Temporal
Causal3DIdent dataset, showcasing the correlations among variables. The figures show histograms
over the two variables, where yellow indicates a high likelihood/frequency, while dark blue has close
to zero samples. (a) The two causal variables pos y and pos z share a common confounder, rot α,
which causes them to follow a circle with radius 1.5. (b) rot α is a parent of pos y, and one can see
that the marginal closely follows its functional form (see Appendix B.3). (c) The hue of the back-
ground is an ancestor of pos z, with rot α in between the two variables. Yet, the marginal clearly
follows the cosine signal, showing that the correlation goes beyond parents.

variables in Figure 9. The distributions are plotted based on a histogram of a dataset with 250,000
samples. Despite the occasional interventions, a clear correlation among variables with a confounder
and ancestor-descendant relations can be seen. Overall, this shows that the chosen functions in
Equation 25 to 32 introduce strong correlations among variables, which makes disentangling the
factors a difficult task.
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