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Abstract

We consider a Continuum-Armed Bandit problem with an additional monotonicity
constraint (or “markdown” constraint) on the actions selected. This problem faith-
fully models a natural revenue management problem, called “markdown pricing”,
where the objective is to adaptively reduce the price over a finite horizon to maxi-
mize the expected revenues. Chen ([3]) and Jia et al ([9]) recently showed a tight
T

3/4 regret bound over T rounds under minimal assumptions of unimodality and
Lipschitzness in the reward function. This bound shows that markdown pricing is
strictly harder than unconstrained dynamic pricing (i.e., without the monotonicity
constraint), which admits T 2/3 regret under the same assumptions ([11]). However,
in practice, demand functions are usually assumed to have certain functional forms
(e.g. linear or exponential), rendering the demand learning easier and suggesting
better regret bounds. In this work we introduce a concept, markdown dimension,
that measures the complexity of a parametric family, and present optimal regret
bounds that improve upon the previous T 3/4 bound under this framework.

1 Introduction

Dynamic pricing under unknown demand arises naturally for the sale of new products, where
the demand function is not available in advance. The seller in this case has to learn the demand
function over time and hence faces a learning-vs-earning trade-off. This problem is therefore usually
formulated as a Multi-Armed Bandit (MAB) model. Although bandit problems have been well
understood theoretically, in practice, however, we rarely see retailers implement such policies. This
is a largely because some practical constraints which can potentially cause customer dissatisfaction
are overlooked. For example, a price increase may sometimes create a manipulative image of the
retailer and negatively impact their ratings. For example, [13] analyzed the online menu prices of
a set of restaurants and concluded that “on average, a 1% price increase leads to 3-5% decrease in
online ratings”. Therefore, retailers sometimes implicitly face a monotonicity constraint (which we
call “markdown constraint”), which requires that the prices selected be non-increasing. A pricing
policy that satisfies such a constraint is usually referred to as markdown pricing policy.

Thus motivated, in this work, we consider the markdown pricing problem with unknown demand,
under various assumptions. Although unconstrained dynamic pricing under unknown demand has
been extensively studied, little is known about markdown pricing under unknown demand. Recently,
[3] and [9] independently showed that unimodality and Lipschitzness in the revenue function (defined
as the product of the price and the mean demand) are necessary to achieve sublinear regret. In this
setting, any reasonable policy must reduce the price at a moderate rate and stop only when there
is sufficient evidence for overshooting the optimal price. By selecting suitable parameters, [3, 9]
showed that the above policy is indeed optimal, achieving a tight T 3/4 regret bound.
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However, in practice, it is usually assumed that the demand function has a certain parametric form,
such as linear, exponential or logit form. Intuitively, this extra structure enables faster learning rate
and suggests better regret bounds. This motivates our first question:

Q1) Can we improve the T
3/4 regret bound for markdown pricing for parametric demand families?

Noticeably, there is a known separation result between under the assumption that the corresponding
reward function is Lipschitz and unimodal. In fact, [3, 9] showed a tight T 3/4 regret bound, which is
asymptotically higher than T

2/3, the optimal regret bound for unconstrained pricing ([11]) under the
same assumptions. This highlights the extra complexity caused by the monotonicity constraint, and
motivates the next question:

Q2) Is there still a provable “separation” between markdown and unconstrained pricing under
parametric assumptions?

While one can answer the Q1 and Q2 for specific parametric families, we aim at finding a unified
framework that captures the hardness of demand learning for a given parametric family. This
motivates the following question:

Q3) Can we find a general framework to unify the regret bounds for different categories of families,
rather than specific results for specific families?

In this work, we propose such a framework by introducing a concept called markdown dimension.
We provide efficient markdown policies for each markdown dimension, which we also show to be
best possible, thereby completely settling the problem.

1.1 Our Contributions.

In this work, we make the following contributions.

1. New Complexity Measure for Demand Learning. We introduce a new concept called
markdown dimension, which captures the complexity of performing markdown pricing on
a family, answering Q3. Within this framework, we provide a complete settlement of the
problem as specified below.

2. Markdown Policies with Theoretical Guarantees. For each finite markdown dimension
d � 0, we present an efficient markdown pricing policy with sublinear regret. The explo-
ration proceeds in phases of varying lengths. In each phase j, the policies derive a confidence
interval Ij ✓ Ij�1 for the optimal price p⇤ based on observations from evenly spaced prices,
which are lower than the prices used in phase j � 1. The exploration terminates if there
is sufficient evidence that the current price is lower than p

⇤. We show that for d = 0 and
d � 1, our policies achieve regret O(log2 T ) and Õ(T

d
d+1 ) respectively, settling Q1.

3. Separation From Unconstrained Pricing: Tight Lower Bounds. We complement our
upper bounds with a matching lower bound for each integer d. More precisely, we show
an tight ⌦(log2 T ) lower bound for d = 0, which is lower than the known O(log T ) regret
bound without this monotonicity constraint (see [2]). For finite d � 1, we show an ⌦(T

d
d+1 )

lower bound, which not only matches our upper bound but is also higher than the tight
⇥̃(T 1/2) bound without markdown constraint (see [2, 10]). These lower bound results
combined settle Q2.

4. Impact of Smoothness: We go further to refine our bounds and investigate the impact of
smoothness of reward function around the optimal price. We consider a sensitivity parameter
s, which essentially says that the reward function is only O("s) suboptimal if the price is
at an " distance away from the optimal price. For both finite and infinite d, we extend our
upper bounds to incorporate s.

As the most basic case, one can verify from Taylor’s Theorem that when the demand function is
assumed to admit (i) a continuous second derivative, and (ii) an optimal price in the interior of the
domain, then s = 2. We highlight our results for s = 2 in red in Table 1, where ⇥ denotes tight upper
and lower bounds.
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Markdown Dimension Markdown Pricing Unconstr. Pricing
d = 0 ⇥(log2 T ) ⇥(log T ) [2]
1  d <1 ⇥̃(T d/(d+1)) ⇥̃(

p
T ) [2]

d =1 ⇥̃(T 3/4) [3, 9] ⇥̃(T 2/3) [11]
Table 1: Regret bounds for s = 2.

1.2 Related Work

In the Multi-Armed Bandit (MAB) problem, the player is offered a finite set of arms, with each
arm providing a random revenue from an unknown probability distribution specific to that arm.
The objective of the player is to maximize the total revenue earned by pulling a sequence of arms
(e.g. [12]). Our pricing problem generalizes this framework by using an infinite action space [0, 1]
with each price p corresponding to an action whose revenue is drawn from an unknown distribution
with mean R(p). In the Lipschitz Bandit problem (see, e.g., [1]), it is assumed that each x 2 [0, 1]
corresponds to an arm with mean reward µ(x), where µ is an unknown L-Lipschitz function. For the
one-dimensional case, [11] showed a tight ⇥̃(T 2/3) regret bound.

Recently there is an emerging line of work on bandits with monotonicity constraint. [3] and [9]
recently independently considered the dynamic pricing problem with monotonicity constraint under
unknown demand function, and proved nearly-optimal T 3/4 regret bound assuming the reward
function is Lipschitz and unimodal. Moreover, they also showed that these assumptions are indeed
minimal, in the sense that no markdown policy achieves o(T ) regret without any one of these two
assumptions. Motivated by fairness constraints, [8] and [15] considered a general online convex
optimization problem where the action sequence is required to be monotone.

Other constraints on the arm sequence motivated by practical problems are also considered in the
literature. For example, motivated by the concern that customers are hostile to frequent price changes
(see e.g. [5]), [4, 14] and [16] considered pricing policies with a given budget in the number of price
changes . Motivated by clinical trials, [6] studied the best arm identification problem when the reward
of the arms are monotone and the goal is to identify the arm closest to a threshold.

2 Model and Assumptions

We begin by formally stating our model. In this work we assume an unlimited supply of a single
product. Given a discrete time horizon of T rounds, in each round t, the policy (representing the
“seller”) selects a price pt (the particular interval [0, 1] is without loss of generality, by scaling). The
demand Dt in this round is then independently drawn from a fixed distribution with unknown mean
D(pt), and the policy receives revenue (or reward, which we will use interchangeably) pt for each
unit sold, and hence a total of pt · Dt revenue in this round. The only constraint the policy must
satisfy is the markdown constraint: p1 � · · · � pT with probability 1.

The function D(p) which maps each price p to the mean demand at this price is known as the demand
function. For any policy1

⇡ and demand function D(·), we use r(⇡, D) to denote the expected
total reward of ⇡ under D. Rather than evaluating policies directly in terms of r(⇡, D), it is more
informative (and ubiquitous in the literature on MAB) to measure performance using the notion of
regret with respect to a certain idealized benchmark. Specifically, since we assumed unlimited supply,
when the true reward function is known, the seller simply always selects a revenue-maximizing
price p

⇤
D = argmaxp2[0,1] p · D(p) at each round, and we denote this maximal reward rate to be

r
⇤
D = maxp2[0,1] p ·D(p). The regret of a policy is then defined with respect to this quantity, and we

seek to bound the worst-case value over a given family of demand functions.

Definition 1 (Regret). For any policy ⇡ and demand function D, define the regret of policy ⇡ under
D as Reg(⇡, D) := r

⇤
D · T � r(⇡, D). For any given family F of demand functions, the worst-case

regret (or simply regret) of policy ⇡ for family F is Reg(⇡,F) := supD2F Reg(⇡, D).

1Formally, a policy is a sequence ⇡ = (⇡t)t2[T ] of mappings where ⇡t : [0, 1]t�1 ⇥ Rt�1
�0 ! [0, 1]

corresponds to the decision made at time t, based on the realized demands and prices selected up till time t� 1.
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2.1 Basic Assumptions

Now we state the common assumptions that all of our results rely on. A demand function D(·) is
associated with a revenue function (or, reward function) R(p) = p · D(p). Sometimes it is more
convenient to work directly with the revenue functions, in which cases we abuse the notations and
denote by Reg(⇡, R) the regret of under reward function R.
Definition 2 (Optimal Price Mapping). Let F be a set of functions defined on S ✓ R. For any
function R : S ! R, let M(R) be the subset of its global maxima on S. The optimal price mapping
p
⇤ : F ! S is defined as p⇤(R) = infM(R).

We first introduce a standard assumption (see e.g. [2]) that the derivative of R vanishes at p⇤(R).
Assumption 1 (First Order Optimality). We assume that every reward function R is differentiable
on its domain, and moreover, R0(p⇤(R)) = 0.

If, in addition, R is twice continuously-differentiable, then by Taylor expansion around p
⇤, |R (p⇤)�

R (p⇤ + ") | = 1
2R

00(p⇤) · "2 + o("2). Thus, if a policy overshoots the optimal price by ", then only
an O("2) loss is incurred in each round. We next introduce a distributional assumption.
Definition 3 (Subgaussian Random Variable). Define the subgaussian norm of a random variable X

as kXk 2 := inf{c > 0 : E[eX2/c2 ]  2}. Say X is subgaussian if kXk 2 <1.
Assumption 2 (Subgaussian noise). There exists a constant Csg > 0 such that under any true demand
function and any price p, the random demand X at price p satisfies kXk 2  Csg .

2.2 Warm-up: Markdown Pricing on Linear Demand

To introduce the key concept, markdown dimension, let’s take linear demand as a warm-up.
Consider D(x; ✓) = ✓1 � ✓2x for x 2

⇥
1
2 , 1

⇤
and the following natural markdown policy for

F =
�
D(x; ✓) : ✓1, ✓2 2

⇥
1
2 , 1

⇤ 
: collect a number of samples at two prices p1, p2 close to 1, and

denote by d̄1, d̄2 the empirical mean demands. By the Fundamental Theorem of Algebra, since a
degree-d polynomial can be uniquely determined by its value at d distinct points, there is a ✓̂ 2 R2

satisfying D(pi; ✓̂) = d̄i for i = 1, 2. Finally, select the optimal price of D(·; ✓̂) in remaining rounds.

This policy is “robust” in the following sense. Suppose d̄i deviates from the mean D(pi; ✓) by ⇠ �,
then the estimation error in ✓ is ⇠ �

|p1�p2| , i.e., proportional to � and inverse proportional to the gap
between the two sample prices.

For more complex demand models, the dependence on the “divergence” of the sample prices changes.
To characterize such dependence, we introduce the notion of markdown dimension. Informally, a
parameterized family has markdown dimension d if for any set of d prices at distance h apart, an
O(�) error on the estimated demands results in an O

�
�
hd

�
estimation error on the model parameter.

We make this idea formal in the subsequent sections.

2.3 Identifiability and Robust Parametrization

Intuitively, the exploration-exploitation trade-off for markdown pricing becomes harder to manage as
the given family becomes more complex. Consider, for example, linear demand functions. If each
function takes the form D(p; c) = 1 + cp where only c 2 (0, 1) is unknown and p 2 [0, 1], then the
seller simply needs to estimate the price elasticity c by sampling sufficiently many times at p = 1.

In contrast, if the demand function is D(p; a, b) = a�bp where both a, b are unknown, then sampling
at one price would not suffice. Rather, one needs to select (at least) two distinct prices, say p and p

0,
to fit a linear function, thereby facing the following dilemma. Suppose p < p

0 are far apart, then, p
may be far away from the optimal price p

⇤ if p⇤ is close to p
0, resulting in high regret. Otherwise,

when p, p
0 are close-by, the demand learning requires a high volume of samples, which also leads to

a high regret.

Thus we reach a natural question: can we introduce a notion of complexity to measure the difficulty
of performing markdown pricing on a given family, and then provide tight regret bounds in terms
for each level of complexity? In this work, we propose a novel concept of markdown dimension and
provide nearly-optimal regret bounds in terms of this complexity metric. The formal definition relies
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on two other concepts which we introduce in the next two subsections: the identifiability of a family,
and the robustness of a parametrization.

Identifiability Our notion of identifiability generalizes a key property of single-variable polynomi-
als, that every degree-d polynomial can be uniquely determined by its values at any (d+ 1) points.
To present the formal definition, we first introduce a mapping which, for a fixed subset of prices,
assigns each demand function a profile based on its values at those prices.
Definition 4 (Profile Mapping). Consider a set F of real-valued functions defined on A ✓ R. For
any p = (p0, p1, ..., pd) 2 A

d+1, the profile-mapping at prices p is defined as

�p : F ! Rd+1
,

D 7! (D(p0), D(p1), ..., D(pd)) .

We may subsequently call �p(D) the profile of function D at p.

Informally, a family of functions is said to be d-identifiable, if the graphs of any two functions
intersect for at most d times. For example, the family of all degree d polynomials is d-identifiable.
Definition 5 (Identifiability). A family F of functions defined on S ✓ R is d-identifiable, if for
any distinct p0, p1..., pd 2 S, the profile mapping �p0,...,pd is injective, i.e. F(f) 6= F(f̃) for any
distinct f, f̃ 2 F .

We will soon use the following fact: if a family is d-identifiable, then for any distinct p0, p1..., pd the
inverse profile-mapping ��1

p : Rp ! F exists, where Rp is the range of the mapping �p.

Robust Parametrization We first formally define a parametrization.
Definition 6 (Parametrization). An order-m parametrization for a family F of functions is a one-to-
one mapping from some set ⇥ ✓ Rm to F . Moreover, each ✓ 2 ⇥ is called a parameter.

We use D(p; ✓) to denote the function in F that parameter ✓ corresponds to. For example, for
D(p; ✓1, ✓2) = ✓1 � ✓2 · p is a parametrization of the family of linear functions. As a standard
assumption (see e.g. [2]), we assume ⇥ to be compact, which leads to many favorable properties.
Assumption 3 (Compact Domain). The domain ⇥ of the parametrization is compact.

Under this assumption, the demand functions in F are bounded, and thus we may without loss of
generality scale the range (i.e. target space) of those functions to be [0, 1].
Assumption 4 (Smoothness). The mapping D : [0, 1]⇥⇥! R is twice continuously differentiable.
In particular, since [0, 1]⇥⇥ is compact, under the above assumption, there exist constants C(j)

> 0
such that |D(j)(p, ✓)|  C

(j) for any (p, ✓) 2 [0, 1]⇥⇥ and j = 0, 1, 2.

By abuse of notation, we view the optimal price mapping p
⇤ as being defined on ⇥, rather than on F

as before. Formally, let M(✓) be the set of global maxima of R(x; ✓), then p
⇤(✓) = inf R(x; ✓). For

example, for D(p; ✓1, ✓2) = ✓1 � ✓2 · p one can verify that p⇤ = ✓1
2✓2

. The next assumption allows us
to “propagate” the estimation error in ✓ to that of p⇤(✓).
Assumption 5 (Lipschitz Optimal Price Mapping). The optimal price mapping p

⇤ : ⇥! [0, 1] is
C

⇤-Lipschitz for some constant C⇤
> 0.

This assumption has appeared in the previous literature on parametric demand learning, see e.g.
Assumption 1(c) of [2]. Moreover, it is satisfied by many basic demand functions such as linear,
exponential and logit demand. For instance, let D(p; c) = 1� cp where p, c 2 [0, 1], then p

⇤(c) =
min{ 1

2c , 1}, which is 1-Lipschitz. Nonetheless, this assumption is somewhat unnatural as it is not
made on the parametrization directly, we leave it open whether there is an assumption imposed
directly on F that implies this assumption.

The final ingredient for robust parametrization is motivated by a nice property of the natural
parametrization D(p; ✓) =

Pd
j=0 ✓jp

j for polynomials. Consider any distinct p0, p1, ..., pd, and
distinct real numbers y0, y1, ..., yd representing, for example, the mean reward at each pi. We can
then uniquely determine a degree-d polynomial by solving the linear equation Vp✓ = y where
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✓ = (✓0, ✓1..., ✓d)T , y = (y0, y1, ..., yd)T and Vp := V (p0, ..., pd) is the Vandermonde matrix. One
can easily verify that Vp is invertible if and only if pi’s are distinct, in which case we have ✓ = V

�1
p y.

Next we consider the effect of a perturbation on y, in terms of the following separability parameter.
Definition 7 (Separability). For any p = (p0, ..., pd) 2 Rd+1, define h(p) := mini 6=j |pi � pj |.

To motivate the general definition of robustness, first consider a result specific to polynomials. Recall
that Rp is range of the profile mapping �p.
Proposition 1 (The Natural Parametrization for Polynomials is Robust). There exist constants
C1, C2 > 0 such that for any p 2 [0, 1]d+1 with 0 < h(p)  C1, and y, ŷ 2 Rp with ky � ŷk1 
C1, it holds that kV �1

p y � V
�1
p ŷk1  C2 · ky � ŷk1 · h(p)�d

.

More concretely, let D(p; ✓) be the underlying polynomial demand function, then y = Vp✓ are the
mean demands at the prices in p. Suppose we observe empirical mean demands ŷ = (ŷ0, ŷ1, ..., ŷd)
at prices p, then we have a reasonable estimation ✓̂ = V

�1
p ŷ. Our Proposition 1 can then be viewed

as an upper bound on the estimation error k✓ � ✓̂k1 in terms of h(p) and y � ŷ.

In order to achieve sublinear regret, we need to ensure h(p) = o(1) as T !1. Moreover, the rate
of this convergence crucially affects our regret bounds. Proposition 1 establishes a nice property for
polynomials, that the estimation error scales as h�d, as h! 0+. We introduce robust parametrization
by generalizing this property beyond polynomials. Loosely, an order-d parametrization is robust, if
the bound in Proposition 1 holds.
Definition 8 (Robust Parametrization). An order-d parametrization ✓ : ⇥! F is robust, if
(1) it satisfies Assumptions 3, 4 and 5, and
(2) there exist constants C1, C2 > 0 such that for any p 2 Rd+1 with 0 < h(p)  C1 and any
y, y

0 2 Rp with ky�y0k1  C1, it holds that k��1
p (y)���1

p (y0)k1  C2 ·ky�y0k1 ·h(p)�d
.

In particular, when d = 0, this inequality simply says �p
�1 is C2-Lipschitz.

2.4 Markdown Dimension

Now we are ready to define the markdown dimension.
Definition 9 (Markdown Dimension). The markdown dimension (or simply dimension) for a family
F of functions, denoted d(F), is the minimum integer d � 0 such that F is (i) d-identifiable, and (ii)
admits a robust order-d parametrization. If no finite d satisfies the above conditions, then d(F) =1.

We further illustrate our definition by considering the dimensions of some basic families. As the
simplest family, one may verify that our definition of 0-dimensional family is equivalent to the
separable family as defined in Section 4 of [2]. We provide more concrete examples below. Details
can found in Appendix A.

Proposition 2. Let D(x; ✓) =
Pd

j=0 ✓jx
j and suppose F = {D(x; ✓) : ✓ 2 ⇥} satisfies Assump-

tions 3, 4 and 5. Then, d(F) = d.
Proposition 3 (0-Dimensional Families). The following families F1,F2 and F3 are 0-dimensional.
(1) [Single-Parameter Linear Demand] Let Da(x) = 1 � ax for x 2 [ 12 , 1] and F1 = {Da(x) :
a 2

⇥
1
2 , 1

⇤
}.

(2) [Exponential Demand] Let Da(x) = e
1�ax for x 2 [ 12 , 1] and F2 =

�
Da(x) : a 2

⇥
1
2 ,

3
4

⇤ 
.

(3) [Logit Demand] Let Da(x) =
e1�ax

1+e1�ax for x 2
⇥
1
2 , 1

⇤
and F3 =

�
Da(x) : a 2

⇥
1
2 , 1

⇤ 
.

Finally, we observe that by our definition, if a family of functions is not d-identifiable for any d, then
d(F) = 1. For example, for any d distinct prices, there exist multiple (more precisely, infinitely
many) Lipschitz functions having the same values on these d prices.
Proposition 4. Let F be the set of 1-Lipschitz functions from [0, 1] to [0, 1], then d(F) =1.

2.5 Sensitivity

Consider the Taylor expansion of a reward function R(x) around an optimal price p
⇤: R(p) =

R(p⇤) + 0 + 1
2!R

00(p⇤)(p� p
⇤)2 + 1

3!R
(3)(p⇤)(p� p

⇤)3 + ... Suppose the first nonzero derivative
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is R(k)(p⇤). Then, the higher k, the less sensitive the revenue is to the estimation error in p
⇤. We

capture this aspect in the following notion of sensitivity.
Definition 10 (Sensitivity). A reward function R is s-sensitive if it is (s + 1)-times continuously
differentiable with R

(1) (p⇤(R)) = · · · = R
(s�1) (p⇤(R)) = 0 and R

(s) (p⇤(R)) < 0. A family F
of reward functions is called s-sensitive if
(a) every R 2 F is s-sensitive,
(b) it admits a parametrization R(x; ✓) satisfying Assumptions 3 to 5,
(c) there is a constant C6 > 0 such that R(s) (p⇤(R))  �C6 < 0 for any R 2 F , and
(d) for each 0  j  s, there exists a constant C(j) s.t. |R(j)(x; ✓)|  C

(j), 8x 2 [0, 1], ✓ 2 ⇥.

For example, let s � 3 and R(x; ✓) = ✓ � | 12 � x|s for x 2 [0, 1] and any ✓ 2 R, then {R(x; ✓) :
✓ 2 [ 12 , 1]} is an s-sensitive family. Note that by Taylor’s Theorem, |R(p⇤ + ")�R(p⇤)|  O("s).
Consequently, if a policy errs by " in the optimal price, the regret per round is O("s), lower than the
per-round regret O("2) in the basic case. In each of the next three sections, we will first present the
regret bounds for the basic case s = 2, and then characterize how this bound improves as s increases.

3 Zero-Dimensional Family

We start with the simplest case, 0-dimensional demand functions. As opposed to the optimism in the
face of uncertainty in UCB policies, our Cautious Myopic policy (Algorithm 1) adopts conservatism
in the face of uncertainty. More precisely, we partition the time horizon into phases where phase
j consists of tj = d9j log T e rounds, and thus in total there are K = O(log T � log log T ) phases.
In each phase, the policy builds a confidence interval Ij for the true parameter using the samples
collected in this phase, and sets the price for phase j + 1 to be the largest optimal price of any
“surviving” parameter ✓ 2 Ij . We write t

(j) :=
Pj

k=0 tk and for convenience t
(0) = 0.

Algorithm 1 Cautious Myopic (CM) Policy.
1: Input: a family F of demand functions and time horizon T .
2: p1  1 % Initialization
3: for j = 1, ...,K do
4: for t = t

(j�1) + 1, · · · , t(j�1) + tj do
5: xt  pj % Select pj for tj times in phase j

6: Observe realized demand Dt

7: end for
8: d̄j =

1
tj

Ptj
⌧=1 Dt(j�1)+⌧ % Empirical mean demand in phase j

9: ✓̂j  ��1
pj

(d̄j) % Estimate parameter

10: wj  4C2 · Csg

q
log T
tj

% Width of the confidence interval

11: p̃j+1  max
n
p
⇤(✓) : |✓ � ✓̂j |  wj

o
% Conservative estimation of the optimal price

12: pj+1  min {p̃j+1, pj} % Ensure monotonicity
13: end for

Theorem 1 (Zero-Dimensional Upper Bound). Let F be any 0-dimensional, s-sensitive family of
demand functions. Then the Cautious Myopic (CM) Policy has regret

Reg(CM,F) =

⇢
O(log2 T ), if s = 2,
O(log T ), if s > 2.

Remark 1. It is worth noting that this bound is asymptotically higher than the O(log T ) upper
bound for unconstrained pricing ([2]). Intuitively, this is because the CM policy purposely makes
conservative choices of prices to avoid overshooting.

But can we achieve o(log2 T ) regret by behaving less conservatively? We answer this question
negatively, and provide a separation between markdown and unconstrained pricing for dimension 0.
Theorem 2 (Zero-Dimensional Lower Bound). There exists a 0-dimensional 2-sensitive family F
such that for any policy ⇡, we have Reg(⇡,F) = ⌦(log2 T ).
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4 Finite-Dimensional Family

For dimension d, the learner needs d+ 1 distinct sample prices, as opposed to just one price when
d = 0. This, however, incurs extra regret, since the optimal price may lie between these sample
prices. A policy faces the following trade off. If the gap is large, the policy may learn the parameter
efficiently, but there is potentially a higher regret due to overshooting, if the true optimal price lies
between the sample prices. On the other extreme, if the gap is small, there is less risk of overshooting
but a slower rate of learning.

We introduce our Iterative Cautious Myopic (ICM) Policy (Algorithm 2) that hits the sweet spot. The
policy consists of m phases. In phase j 2 [m], it selects pj , pj � h, ..., pj � dh each for Tj times.
Based on the observed demands at these prices, the policy computes an estimated optimal price p̂j

and a confidence interval [Lj , Uj ]. To determine the initial price pj+1 of the next phase, we consider
the relationship between the confidence interval [Lj , Uj ] and pj � dh. There are three cases:
1. Good Event. If pj � dh > Uj , then we get closer to the optimal price by setting pj+1 = Uj .
2. Dangerous Event. If Lj  pj � dh  Uj , i.e. the current price is already within the confidence
interval, the policy needs to behave conservatively by setting pj+1 = pj � dh to prevent from
overshooting further.
3. Overshooting Event. If Lj > pj � dh, i.e., the current price has already “overshot”, the policy
exits the exploration phase and selects the current price in the remaining rounds.

Algorithm 2 Iterative Cautious Myopic (ICM) Policy.
1: Input: F ,m, {Tj}j2[m], T

2: p1  1, L0  0, U0  1 Initialization
3: for j = 1, 2, ...m do
4: for k = 0, 1, ..., d do
5: Select price pj � kh for Tj times and observe D1, ..., DTj

6: D̄k  1
Tj

PTj

i=1 Di % Mean demand at pj � kh

7: end for
8: ✓̂  ��1

pj ,...,pj�dh

�
D̄0, ..., D̄d

�
% Estimate the parameter

9: wj  2h�d · C2 · Csg

q
d log T

Tj
% Width of confidence interval

10: Lj  min
n
p
⇤(✓) :

���✓ � p
⇤
⇣
✓̂

⌘���
2
 wj

o
% Lower confidence bound

11: Uj  max
n
p
⇤(✓) :

���✓ � p
⇤
⇣
✓̂

⌘���
2
 wj

o
% Upper confidence bound

12: if Uj > pj � dh then
13: pj+1  Uj % Good event
14: end if
15: if Uj � pj � dh � Lj then
16: pj+1  pj � dh % Dangerous event
17: end if
18: if pj � dh < Lj then
19: Break % Overshooting event
20: end if
21: end for
22: Select the current price in every future round % Exploitation

Theorem 3 (Upper Bound for Finite d � 1). Suppose s = 2, then for h = T
m

m(d+1)+1 , Tj =

T
md+j

m(d+1)+1 and m = log T , we have Reg (ICM,F) = Õ

⇣
T

d
d+1

⌘
. More generally, for any s � 2

and m = Õ(1), there exist T1 < ... < Tm such that Reg(ICM,F) = Õ
�
T
⇢(m,s,d)

�
where

⇢(m, s, d) =
1 +

�
1 + s

2 + ...+ ( s2 )
m�1

�
d

�
s
2

�m
+
�
1 + s

2 + ...+ ( s2 )
m�1

�
· (d+ 1)

.

We complement the upper bound with a nearly tight lower bound for s = 2, as stated below.
Theorem 4 (Lower Bound for Finite d � 1). For any d � 2, there exists a d-dimensional family F
of demand functions such that for any markdown policy ⇡, we have Reg(⇡,F) = ⌦(T

d
d+1 ).
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In our proof, for each d � 1 we construct a family of (d+1)-degree, decreasing polynomial functions
– which is also d-dimensional – on which any policy suffers regret ⌦(T

d
d+1 ).

Remark 2. At first glance, when d � 4 this result seems to contradict the T
3/4 upper bound for

unimodal, Lipschitz reward family ([3, 9]). This is not a contradiction because the unimodality
assumption no longer holds. In fact, a degree-d polynomial with d � 4 is in general not unimodal.

Remark 3. An interesting case is d = 1. In this case, the revenue function is unimodal, so the T
3
4

upper bound from [3, 9] applies, but Theorem 3 gives a stronger T 1
2 upper bound.

We conclude the section by pointing out a limitation of our results. For each d � 1, our regret bounds
is tight in the exponent of T , however, the constants in the big-O have different dependence on d. In
fact, the upper and lower bound become exponentially higher and lower in d respectively as d grows.

5 Infinite Dimensional Family

When d =1, it is more convenient to work with the reward function R(x) = x ·D(x) instead of
the demand function. In contrast to unconstrained pricing, there is no markdown policy that achieves
o(T ) regret on the family of Lipschitz reward functions ([3, 9]), since the reward function may have
multiple local maxima. Nonetheless, [3] and [9] showed that if in addition we assume the reward
function to be unimodal, then the optimal regret is T 3/4. Specifically, the lower bound is established
by considering reward functions that may change abruptly at p⇤. We next show that the regret bound
can be improved if we instead assume the reward function changes smoothly. In spirit, our policy is
similar to that of [3] and [9]: reduce the price at uniform speed and terminate when there is sufficient
evidence for “overshooting”, but we will achieve improved guarantee by choosing a different step
size � that decreases in the smoothness s.

Algorithm 3 Uniform Elimination Policy (UEm,�).
1: Input: T,�,m > 0

2: Initialize: Lmax  0, w  2Csg

q
log T
m

3: for j = 0, 1, 2, ..., d��1e do
4: xj  1� j�

5: Select price xj for the next m rounds and observe rewards Zj
1 , ..., Z

j
m

6: µ̄j  1
m

Pm
i=1 Z

j
i % Empirical mean reward

7: [Lj , Uj ] [µ̄j � w, µ̄+ w] % Compute confidence interval
8: if Lj > Lmax then
9: Lmax  Lj % Keep track of the highest Lj

10: end if
11: if Uj < Lmax then
12: h j % Exploration ends, define the halting price xh

13: Break
14: end if
15: end for
16: Select price xh in all remaining rounds. % Exploitation phase

Theorem 5 (Upper Bound for Infinite-Dimensional Family). Let FU
s be the family of unimodal,

s-sensitive reward functions. For any s � 2, there exist m,� with Reg(UEm,�,FU
s ) = O(T

2s+1
3s+1 ).

We complement the above upper bound with a matching lower bound for every s � 2.

Theorem 6 (Lower Bound for s-Sensitive Family). For any s � 2, there is a family F of s-sensitive
unimodal revenue functions such that any markdown policy ⇡ satisfies Reg(⇡,F) = ⌦(T

2s+1
3s+1 ).

Remark 4. As a final remark, we point out that all our results assume d is given. If instead the
learner only has knows an upper bound dmax on d, then she can simply choose the policy for dmax.
We leave it open whether a best-of-all-worlds algorithm exists.
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