
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

P(all-atom) IS UNLOCKING NEW PATH FOR PROTEIN DE-
SIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Pallatom, an innovative protein generation model capable of producing pro-
tein structures with all-atom coordinates. Pallatom directly learns and models the joint
distribution P (structure, seq) by focusing on P (all-atom), effectively addressing the in-
terdependence between sequence and structure in protein generation. To achieve this,
we propose a novel network architecture specifically designed for all-atom protein gen-
eration. Our model employs a dual-track framework that tokenizes proteins into token-
level and atomic-level representations, integrating them through a multi-layer decoding
process with “traversing” representations and recycling mechanism. We also introduce
the atom14 representation method, which unifies the description of unknown side-chain
coordinates, ensuring high fidelity between the generated all-atom conformation and its
physical structure. Experimental results demonstrate that Pallatom excels in key metrics
of protein design, including designability, diversity, and novelty, showing significant im-
provements across the board. Our model not only enhances the accuracy of protein gener-
ation but also exhibits excellent training efficiency, paving the way for future applications
in larger and more complex systems.

1 INTRODUCTION

The theoretical foundation of protein modeling has been built upon two key conditional probability distri-
butions: P (structure | seq) and P (seq | backbone). The former, P (structure | seq), corresponds to the
all-atom protein structure prediction task, which involves determining the three-dimensional structure of a
protein given its amino acid sequence (Abramson et al., 2024; Jumper et al., 2021; Lin et al., 2023; Baek
et al., 2023). The latter, P (seq | backbone), underpins the fixed-backbone design task, where the goal is to
identify a sequence that will fold into a given protein backbone structure (Dauparas et al., 2022; Hsu et al.,
2022). In summary, these probability distributions has successfully advanced the field of protein engineering.

With the advancement of deep learning in protein science, two distinct approaches for protein design
have emerged. One approach is the protein hallucination (Anishchenko et al., 2021), which explores the
landscape of a P (structure | seq) model using Monte Carlo or gradient-based optimization techniques.
This method yields valid protein structures, but requires an additional P (seq) model, such as protein lan-
guage models (Rives et al., 2021), to correct or redesign the sequence. Essentially, this approach can be
viewed as optimization process of P (structure | seq) · P (seq). Another approach attempts to explore the
P (backbone) distribution. a series of protein generation models based on SE(3) invariance or equivariance
networks (Jing et al., 2020; Satorras et al., 2021) have recently emerged, these method rely on an additional
P (seq | backbone) process to determine the protein sequence. This optimization strategy can be regarded as
P (backbone) · P (seq | backbone).

This step-wise design process has limitation in approximating the joint distribution through marginal distri-
butions. The P (structure | seq) · P (seq) strategy faces challenges when sampling in the high-dimensional

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

sequence space, while the P (backbone) · P (seq | backbone) strategy fails to account for explicit side-chain
interactions and is bottlenecked by the capability of the fixed-backbone design model.

The ultimate goal of protein generation is to directly obtain a sequence along with its correspond-
ing structure, i.e., to develop a model capable of describing the joint distribution P (structure, seq) or
P (backbone, seq). Recently, some studies have started to adopt co-generation approaches, such as model
based on co-diffusion (Campbell et al., 2024) or co-design (Ren et al., 2024). While these methods pri-
marily rely on SE(3) networks, they still separately model the backbone and sequence, without considering
side-chain conformations and leading to an insufficient description of the structure. Protpardelle (Chu et al.,
2024), an all-atom protein diffusion model, similarly adopts co-generation approaches with an explicit all-
atom representation, taking a step further in the field. However, the experimental results indicate that the
generated sequence fails to accurately encode the intended fold, necessitating an additional round of se-
quence redesign and side-chain refinement.

In this study, we introduce a novel approach for all-atom protein generation called Pallatom. Our extensive
experiments show that by learning P (all-atom), high-quality all-atom proteins can be successfully gener-
ated, eliminating the need to learn marginal probabilities separately. Inspired by AlphaFold3 (Abramson
et al., 2024), we adopt a dual-track framework that tokenizes proteins into residues or atoms, and develop
a novel module incorporating “traversing” representations and multi-layer decoding units. This module ef-
ficiently integrates and updates token-level and atomic-level representations through a dual-track recycling
mechanism, enabling self-conditioned inferencing and enhancing information flow between blocks. Addi-
tionally, we propose a new amino acid coordinates representation, atom14, to address the challenge of
representing unknown side-chain coordinates. Introducing virtual atoms to all amino acids type prevents se-
quence information leakage problem. The key insight of Pallatom is recognizing that all-atom coordinates of
a protein inherently encode both structural and sequence information. Directly learning P (all-atom) opens
a new path for co-generative modeling of structure and sequence.

Our contributions are summarized as follows:

• We develop a network architecture for all-atom protein generation tasks, which effectively repre-
sents both protein backbones and sidechains.

• We explore the atom14 representation to achieve a unified description of unknown amino acid
side-chain coordinates in generative tasks.

• We use our framework to develop Pallatom, a state-of-the-art all-atom protein generative model.

2 PRELIMINARIES

2.1 ALL-ATOM MODELING AND REPRESENTATION

The all-atom protein generation model faces many challenges in constructing both backbone and side-chain
atoms. A pivotal initial question arises: “How to represent a system with a variable number of atoms?”. At
the initial sampling stage, both the backbone and sequence are unknown, however, the atom number of a
system depends on unique sequence, once the sequence is determined, it also dictates the structure.

To avoid potential conflicts arising from the simultaneous design of sequence and structure, we define a
representation called atom14, which pads the initial protein with L residues as x = {xl}Ll=1 → x0,
considering it as a 3D point cloud distribution P (x0) ∈ RL×14×3. For example, if residue xl is CYS, its
coordinates [N,Cα,C,O,Cβ ,Sγ] ∈ R6×3 is padded with 8 virtual atoms that coincide with its Cα position,
resulting in xl → xl

0 ∈ R14×3.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

Our approach assumes that the all-atom distribution of the protein sidechains, including properties such as
hydrophobicity, polarity, and even hydrogen bonds and salt bridges, are inherently encoded within the all-
atom coordinates distribution. Even without knowing the specific element atom type, the conformationally
similar amino acids, such as CYS and SER, can be distinguished from atomic-level features. Therefore,
we additionally trained a single “visualization” head to predict the corresponding amino acid type. With
discarding the redundant virtual atoms based on the predicted amino acid type as a post-processing step,
we can generate all-atom proteins with corresponding sequences from a 3D point cloud. Additionally, we
provide the alanine reference conformer features to guide the network in forming a stable backbone frame
conformation.

2.2 DIFFUSION MODELING ON ALL-ATOM PROTEIN

The use of all-atom representation eliminates the constraints imposed by the complex forms of the SE(3)
frame (Yim et al., 2023b) and the Riemannian diffusion framework (De Bortoli et al., 2022). Diffusion-
based generative models using Gaussian noise distribution have a strong theoretical foundation, with various
adaptations influenced by factors such as the sampling schedule, training dynamics (Song et al., 2021). We
adopt the EDM framework (Karras et al., 2022) with slight modifications and employed a Gaussian diffusion
model on RL×14×3.

Assuming the data distribution of protein coordinates under the atom14 representation as pdata(x) with
standard deviation σdata, the forward process involves adding Gaussian noise of varying scales to generate
a series of noised distributions p(x;σ) = N (x, σ2I). When σmax ≫ σdata, p(x;σmax) approximates pure
Gaussian noise. For a noise schedule σ(t) = t (following EDM notation where σ(t) indicates the noise
schedule and σt represents the noise level sampled from ptrain(t) at time t), the probability flow ordinary
differential equation (ODE) is given by:

dx = −σ(t)∇x log p(x;σ(t))dt (1)

Here, ∇x log p(x;σ) is the score function, which does not depend on the normalization constant of the
underlying density function p(x;σ). A neural network Dθ(x, σ) is typically trained for each σt using the
following loss function to match the score function (Song et al., 2021):

Ex0∼pdata,xt∼p(x0;σt)[λ(σ)||Dθ(xt, σt)− x0||22], ∇x log p(x;σ) = (Dθ(xt, σt)− xt)/σ
2
t (2)

Practically, we employed the EDM preconditioning technique, which resulted in improved generation per-
formance. Consequently, we can derive Dθ and the loss function as:

Dθ = cskip(σ)xt + cout(σ)Fθ(cin(σ)xt, cnoise(σ)) (3)

Ex0,xt
[λ(σ)||cout(σ)Fθ(cin(σ) · xt, cnoise(σ))− (x0 − cskip(σ) · xt)||22] (4)

where cskip(σ) = σ2
data/(σ

2 + σ2
data), cout(σ) = σ · σdata/

√
σ2
data + σ2, cin(σ) = 1/

√
σ2 + σ2

data,
cnoise(σ) = 1

4 ln(σ) represent skip scaling, output scaling, input scaling, and noise conditioning, respec-
tively. We set λ(σ) = 1/cout(σ)

2.

2.3 FRAMEWORK FOR ALL-ATOM PROTEIN GENERATION

AlphaFold3 provided an excellent initial framework for all-atom protein generation. However, the gen-
eration task fundamentally differs from the structure prediction task, requiring us to tailor the structure
prediction framework with several modifications. In structure prediction, numerous co-evolutionary signals
can typically be extracted from homologous sequences, which can then be decoded into a three-dimensional

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

AtomDecoder
Unit(1)

AtomFeature
Encoder

AtomDecoder
Unit(K)

Traversing
AtomFeatures

Pair

Single

AtomCondition

Single

AtomCondition

......

Denoised
Coordinates

Backbone
Conformer

Noised Coordinates

Distogram Prediction

PairSelf-Condition

MainTrunk

Sequence
Logits

Figure 1: Pallatom model framework.

structure. In contrast, the generation task begins with noised coordinates, requiring the model to learn how
to extract structural information iteratively.

Providing self-conditions (Chen et al., 2022) is an effective way to enhance generation performance. A sim-
ple approach is to integrate the information extraction modules directly into the structural decoder, allowing
the partially denoised information from each block to be used as self-conditions for the subsequent block.
More specifically, in our modifications, the denoised coordinates from each block are converted into a pair-
wise feature, which is reinjected into pair representation and used as self-conditions in the next block to
update single representation. These modifications effectively address the self-conditioning pipeline between
blocks.

In practice, the interaction and updating of dual-track protein representations within multiple decoder units
present new challenges. We find that if residual connections are used simultaneously for both token-level and
atomic-level representations across multiple decoder units, the token-level representation tends to be repeat-
edly broadcast and inappropriately accumulated. This not only leads to numerical instability in atomic-level
representations but also disrupts the model’s performance. Therefore, we propose using traversal atomic-
level representations to carry the token-level representations within the current decoding unit. These two
modifications enable the new framework to effectively generate all-atom protein structures. Details can be
found at Figure 1 and 3.

3 METHOD

3.1 MAINTRUNK : THE DENOISNG NETWORK

We refer to the protein generation task as the generation of all-atom coordinates. In the atom14 repre-
sentation, a protein with L residues can be expressed as x0 = {xl

0}Ll=1, which xl
0 ∈ R14×3 represents the

all-atom coordinates of a residue. For each time step t in the diffusion process, the network predicts the
updated coordinates from the input xt ∼ N (x0, σ

2
t I).

The network comprises two main components: an input encoding module and multiple iterative decoding
units. Figure 1 illustrates the main architecture. We adopt the dual-track framework, the atomic-level rep-
resentation for atoms using local attention mechanisms and the token-level representation for residues using
global attention mechanisms.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

For feature initialization and encoding, we utilize coordinates feature from the standard conformation of
alanine, the positional encoding within the residues and the noisy coordinates vector to initialize 1D atomic-
level representations. The 1D representations are then updated using a 3-layer AtomTransformer encoder,
with the initial atomic pair representations as attention bias. These atomic-level representations were re-
garded as static traversing atomic-level representations (cskip

l , qskip
l and pskip

lm in Figure 3). The single repre-
sentation initialization is performed using the diffusion timestep feature and the positional embedding. The
pair representation is initialized using the relative positional embedding introduced in AlphaFold2 (Jumper
et al., 2021) and a self-conditioned template distogram feature from the previous prediction. The interac-
tion between token-level and atomic-level information is propagated through broadcasting and aggregation.
Detailed features are recorded in Appendix Table 3.

For the decoding part, we employ an iterative update mechanism where token-level representations are
broadcast to the atomic level, and atomic information is then fed back through a recycling process. To
address the issue of residual connections in the atomic representation mentioned earlier, for each block, we
use an intermediate atomic-level representations, which is composed of broadcast token-level representations
and traversing atomic-level representations, to predict coordinates updates x

(k)
update, the current predicted

structure x(k)
0 using the cumulative updates from the first k units: x(k)

0 = cskip(σt) ·xt+cout(σt) ·x(k)
updates.

After the coordinates are denoised, they are transformed to relative distance matrix x
(k)
0 and recycled back

into the pair representation via triangle attention layer, effectively addressing the challenges of updating pair
representations. In practice, we found that recycling pair information accelerates model training and en-
hances inference capabilities. Utilizing the minimal decoding unit and supervised training on intermediate
coordinates simplifies the scaling of the network and allows for increasing its depth. Through the iterative
8-layer decoder, we effectively updated the atomic-level and token-level representations. The cumulative
updating mechanism for coordinates prediction allows the model to gradually refine these predictions, ul-
timately leading to the realistic all-atom protein structure. Details can be found at Appendix Algorithm
2.

3.2 SEQHEAD : SEQUENCE DECODER

To convert the generated coordinates into a real protein, we need a module that translates the position infor-
mation into an amino acid sequence. We add a SeqHead to each decoding unit. Specifically, we aggregate
the updated 1D atomic-level representations from the AtomAttentionDecoder corresponding to each token
and then employ a linear layer to predict the logits for the 20 amino acid types â(k) ∈ RL×20. We take the
predictions from the last unit as the final sequence logits, â = â(K).

3.3 TRAINING LOSS

Our training method mainly follows the application and improvements of the EDM framework. The de-
noising all-atom positions score-matching losses are described according to Eq.(2). Given that the network
architecture lacks inherent equivariance constraints and iteratively refines coordinates across multiple decod-
ing stages, it is imperative that the coordinates transformations between these stages remain invariant under
changes in orientation to ensure consistent geometric interpretations. Therefore, we employ an aligned MSE
loss similar to that in Alphafold3. We first perform a rigid alignment of the ground truth x0 on the denoised
structure x̂0 as xaligned

0 . The MSE loss is then defined as:

Latom =
||x̂0 − xaligned

0 ||2

3L

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

For sequence decoding, we use the standard cross-entropy loss function to evaluate the difference between
the predicted sequence â and the true sequence a0. The loss function is defined as Lseq = CE(â,a0). The
basic loss function of the network is:

L0 = λ(σt) · Latom + α0 · Lseq

To capture the fine-grained characteristics of the all-atom structure, we introduce the smooth local distance
difference test (LDDT) loss Lsmooth lddt(x̂0,x0) from AlphaFold3. The specific algorithm can be found in
the Appendix Algorithm 8. To supervise the updating of pair-wise features, we employ the distogram head
loss to constrain the global distance distribution at the token level. The pair representation is symmetrized
and projected into 64 distance bins with probability pbij , and supervised with one-hot encoded target bins ybij .
Similarly, to supervise the local relative distance distribution at the atomic-level, we project the 2D features
from local atomic attention into 22 distance bins from 0 Å to 10 Å with qbnm, and construct the loss with
one-hot encoded target bins at the atomic-level. Here, the local region corresponds to the area calculated
within the local attention on the 14L× 14L atomic-level map.

Ldist token = − 1

L2

∑
i,j

64∑
b=1

ybij log p
b
ij , Ldist atom = − 1

NM

∑
n,m∈local

22∑
b=1

ybnm log qbnm

In the early stages of development, we discovered that supervising the intermediate sequences and structures
predicted by each decoder unit significantly enhanced both network performance and inference stability. Fur-
thermore, we introduced a loss weight decay mechanism with γ = 0.99 between different blocks, assigning
greater weight to the later layers.

Lk
med = λ(σt) ·

||x(k)
0 − xaligned

0 ||2

3L
+ α0 · CE(a(k)0 ,a0), Lmed =

1

K

K∑
k=1

γK−k · Lk
med

The total loss can be written as:
L = L0 + α1 · Lsmooth lddt + α2 · Ldist token + α3 · Ldist atom + α4 · Lmed

3.4 SAMPLING

The sampling process is described in Algorithm 1. The modules highlighted in blue are identical to those
proposed in AlphaFold3. The initial atoms are sampled from a Gaussian distribution on RL×14×3. We only
use the first-order Euler method as the ODE solver with T steps for discretization. Optionally, additional
noise can be injected during the sampling steps to introduce stochasticity into the ODE solving process.
We focus only on the sequence distribution decoded by the network in the final sampling step, employing
a low-temperature softmax strategy to derive an approximate discrete one-hot amino acid sequence as the
final sequence.

4 EXPERIMENTS

4.1 TRAINING SETTING

The training dataset of the model includes the PDB (Zardecki et al., 2022) and AlphaFold Database (AFDB)
(Varadi et al., 2021). We performed rigorous data cleaning on augmented data from AFDB to obtain high-
quality results. Detailed descriptions can be found in the appendix. We focus on small monomer proteins
that can be easily synthesized using commercial oligo-pool method and the models are trained on crops of
lengths up to 128. The model training utilized the Adam optimizer Kingma & Ba (2017) with a learning rate
of 1e-3, β1 = 0.9, β2 = 0.999, and a batch size of 32. Details are provided in the Appendix.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

Algorithm 1 Pallatom Inference
1: def SampleDiffusion ({f∗}, T = 200, λ = 1.003, η = 2.25, γ0 = 0.2, tmin = 0.01, tmax = 1.0):
2: δt = 1/T
3: cT = GetNoiseSchedule(1− uniform(0, 1) · δt)
4: r⃗l ∼ cT · N (⃗0, I3)
5: for all t ∈ {T, . . . , 1} do
6: tp = t/T − uniform(0, 1) · δt
7: cτ = GetNoiseSchedule(tp)
8: cτ−1 = GetNoiseSchedule(tp − δt)
9: r⃗l ← CentreRandomAugmentation(r⃗l)

10: γ = γ0 if tmin ≤ t/T ≤ tmax else 0
11: t̂ = cτ (γ + 1)

12: r⃗l
nosiy = r⃗l + λ

√
t̂2 − c2τ · N (⃗0, I3)

13: r⃗l
denoised, f seq logits

i = MainTrunk({f∗}, r⃗lnosiy, t̂, tp)
14: δ⃗l = (r⃗l

nosiy − r⃗l
denoised)/t̂

15: dt = cτ−1 − t̂

16: r⃗l ← r⃗l
noisy + η · dt · δ⃗l

17: end for
18: return {r⃗l}, {f seq logits

i }

4.2 METRICS

While some evaluation criteria used for protein backbone generation are not suited for the new task, we
propose new metrics specifically designed for assessing all-atom protein generation.

The first criterion is structure designability. The traditional self-consistency process assesses the designabil-
ity of protein backbones (DES-bb). This involves using a fixed-backbone design model (e.g., ProteinMPNN
(Dauparas et al., 2022)) to generate Nseq sequences for the backbone, which are then folded by structure
prediction models like ESMfold (Lin et al., 2023). The backbone’s designability is evaluated by the optimal
TM-score or Cα-RMSD between the folded and original backbones. However, this metric is not suitable for
evaluating all-atom proteins, which include side-chain atoms. Therefore, we similarly define the designabil-
ity of all-atom protein generation, denoted as DES-aa. For the all-atom proteins, the sequence is used to
predict the structure, and the sample is considered designable if the mean pLDDT of the predicted structure
exceeds 80 and the all-atom RMSD (aaRMSD) is less than 2 Å. This metric ensures high atomic-level ac-
curacy and provides strong confidence in the structural integrity and designability of the predicted protein,
indicating that the sequence is likely to adopt its intended native fold.

The second criterion is structure diversity, denoted as DIV-str. This can be quantified by calculating the
clusters number of the designable structures using Foldseek (Van Kempen et al., 2024). For all-atom proteins,
we use a similar diversity evaluation method for the generated sequences, denoted as DIV-seq. Specifically,
we use MMseq2 (Steinegger & Söding, 2017) to calculate the clusters number of the designable sequences.

The last criterion is structure novelty, which evaluates the structural similarity between the generated back-
bones and natural proteins in the PDB, denoted as NOV-str. This is calculated by the TM-score of the
generated designable backbones compared to the most similar proteins in the PDB.

In our evaluation, we use the following two modes:

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Table 1: Comparison of various methods. Protpardelle utilized ProteinMPNN as an auxiliary tool in all-atom
proteins generation, resulting in identical results for CO-DESIGN 1 and PMPNN 1. In the case of Multiflow,
which can only generate protein backbones and sequences without side chains, the reported DES-aa metric
is based on CαRMSD rather than aaRMSD.

Method CO-DESIGN 1 PMPNN 1

DES-aa (↑) DIV-str/seq (↑) NOV-str (↓) DES-bb (w/wo) (↑) DIV-str (↑) NOV-str (↓)

Protpardelle* 30.00% 15 / 26 0.747 30.00% (80.23%) 15 0.747
ProteinGenerator 43.14% 83 / 706 0.791 93.14% (96.34%) 151 0.785
Multiflow* 62.74% 134 / 1042 0.753 84.69% (95.43%) 184 0.744
RFdiffusion N/A N/A N/A 78.29% (84.40%) 165 0.805

Pallatom 85.03% 291 / 1466 0.719 89.89% (94.46%) 318 0.716

all atom RMSD: 0.842
mean pLDDT: 84.42
maxTM-score: 0.633

all atom RMSD: 0.423
mean pLDDT: 90.71
maxTM-score: 0.61

all atom RMSD: 0.640
mean pLDDT: 90.72
maxTM-score: 0.54

all atom RMSD: 0.806
mean pLDDT: 89.08
maxTM-score: 0.53

A B C

D

Figure 2: Evaluation of proteins sampled from Pallatom. (A) Boxplot of aaRMSD for proteins sampled by
various methods under the CO-DESIGN 1 mode. Multiflow exhibits the CαRMSD. (B, C) The proportions
of secondary structures in designable proteins across different lengths are presented for CO-DESIGN 1 and
PMPNN 1 modes across various methods, with the total height of the y-axis representing the designability.
(D) Examples of high-quality, novel all-atom proteins sampled by Pallatom.

• CO-DESIGN 1: For methods that can predict both all-atom coordinates and sequences, DES-aa is
used. Diversity and novelty are evaluated based on the all-atom designable proteins.

• PMPNN 1: Other methods use DES-bb with Nseq = 1. Specifically, we calculate and display the
two DES-bb (w/wo) under conditions with and without the pLDDT > 80 constraint. Diversity and
novelty are evaluated based on the proteins filtered by DES-bb (w).

4.3 RESULTS

We sample Pallatom with 200 time steps using a noise scale γ0 = 0.2, a step scale η = 2.25 and evaluate
250 proteins sampled for each length L = 60, 70, 80, 90, 100, 110, 120. Our primary comparisons are with
state-of-the-art methods capable of generating all-atom proteins, such as Protpardelle (Chu et al., 2024) and

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

ProteinGenerator (Lisanza et al., 2023). For backbone generation, we compare with RFdiffusion (Watson
et al., 2023). We also compared Multiflow (Campbell et al., 2024), which is capable of simultaneously
generating both backbones and sequences. All methods are evaluated using their open-source code and
default parameters.

As shown in Table 1, Pallatom surpasses previous methods in the CO-DESIGN 1 evaluation for generating
all-atom proteins. After incorporating pLDDT filter to ensure sequence quality, we observed that sequences
generated by Pallatom are comparable to those generated by ProteinMPNN. Remarkably, even though Pal-
latom has not undergone any training in fixed-backbone design tasks, it achieves this performance by pre-
dicting sequences using a single linear layer derived from aggregated atomic-level features. This remarkable
achievement stands out as the only high-performance method capable of designing all-atom structure among
existing approaches. This supports our hypothesis that learning P (all-atom) can effectively capture the
relationship between protein structure and sequence.

Furthermore, the all-atom protein structures generated by Pallatom show greater structural diversity. With
the same number of samples, Pallatom achieves twice the diversity of Multiflow and three times that of
ProteinGenerator. This highlights Pallatom’s enhanced ability to explore a wider range of conformations.
Likewise, Pallatom achieves the highest level of sequence diversity among all existing methods.

In the evaluation of backbone generation, we observed that without the pLDDT quality constraint, the DES-
bb metric is always overestimated, as evidenced by the substantial discrepancy between the two designability
metrics in Protpardelle for the same task. ProteinGenerator achieves an almost perfect backbone designabil-
ity, significantly surpassing other models. This indicates that sequence-based generative models can capture
highly designable backbone structures. However, its performance in structural diversity falls short com-
pared to structure-based generative models, highlighting a subtle trade-off between designability (DES-bb)
and structural diversity (DIV-str). Protpardelle performs below its counterparts across all metrics, suggesting
that network architecture and atomic representation play a crucial role in generative capability. Similar to the
results of the CO-DESIGN 1 evaluation, Pallatom not only generates protein structures with higher diversity
but also maintains strong designability and novelty.

We present a more detailed analysis in Figure 2. Pallatom maintains stable performance across all tested pro-
tein lengths, showing a balanced distribution of secondary structures. In the secondary structure distribution
of designable proteins under CO-DESIGN 1 and PMPNN 1 illustrated in Figures 2B and 2C, we observe that
comparative methods exhibit a limited preference for secondary structures, particularly in failing to generate
proteins with predominantly β-sheet structures. For example, the ProteinGenerator model shows a marked
preference for generating proteins with α-helical structures. This excessive tendency to produce a single
type of secondary structure deviates from our expectations.

Several designable all-atom proteins for case studies in Figure 2D. These highly novel proteins designed by
Pallatom show a highly ordered side-chain distribution, with hydrophobic side-chain concentrated internally
to form a stable hydrophobic core, and the surface covered by hydrophilic polar residues. This distribution
is consistent with the side-chain distribution of high pLDDT structures predicted by ESMFold, demonstrat-
ing that Pallatom has learned the physical and chemical properties that govern protein folding and residue
distribution from the all-atom distribution.

We further analyzed the performance of Pallatom on out-of-distribution (OOD) lengths. Specifically, we
conducted sampling and evaluation for lengths from 150 to 400. The results demonstrate that Pallatom
exhibits exceptional scalability, achieving the highest designability even at over twice the maximum training
length (L = 128). Detailed results are provided in the appendix.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

Table 2: Pallatom sample metrics.
Noise Level γ0 0.2 0.2 0.1 0.2 0.2
Step Scale η 1.75 2.25 2.25 2.75 3.25
Nsteps 200 200 200 200 200

DES-aa (↑) 57% 87% 89% 94% 93%
DIV-str (↑) 56 64 52 55 46

HHH(%) 28% 28% 45% 35% 38%
HEL(%) 56% 54% 44% 47% 51%
EEE(%) 16% 18% 11% 18% 11%

4.4 HYPERPARAMETER

We analyzed the impact of the sampling parameters and Table 5 presents the metrics for Pallatom when
sampling 250 proteins with L = 100. We observed that, under the same noise scale, increasing the step
scale η leads to a corresponding rise in designability, as well as an increase in the proportion of all-helix
structures within the secondary structure. However, this improvement in designability comes at the cost of
reduced structural diversity, indicating a trade-off between these two metrics. We further demonstrated the
impact of varying step scales on the sampling of OOD-length proteins, with detailed results provided in
the appendix. Furthermore, we found that reducing the additional noise level to γ = 0.1 slightly enhances
designability but also significantly decreases structural diversity, consistent with the findings of previous
work (Yim et al., 2023b).

5 DISCUSSION

We introduce Pallatom, a highly efficient end-to-end all-atom protein generation framework that simulta-
neously captures the relationship between sequence and structure, enabling state-of-the-art performance.
Our modification of the atom14 representation removes the limitations of explicitly defining all amino
acid types during generation and provides a more accurate method for representing all-atom system coor-
dinates. We redesign the dual-track architecture of AlphaFold3 diffusion module, by developing a novel
mechanism comprising “ traversing” representations and dual-track recycling method. The new framework
efficiently adapts to all-atom protein structure diffusion generation. The results demonstrate that models
learning P (all-atom) exhibit strong performance and diversity in de novo protein generation, unlocking new
pathways for protein design. Future work includes developing a more generalized model architecture, ex-
panding our system to support the representation of small molecules, DNA, and non-standard amino acids,
and further enhancing the model’s capabilities in designing large complex systems, such as antibody com-
plexes and self-assembling materials.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger,
Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Bodenstein, David A. Evans,
Chia-Chun Hung, Michael O’Neill, David Reiman, Kathryn Tunyasuvunakool, Zachary Wu, Akvilė
Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridgland, Alexey Cherepanov, Miles
Congreve, Alexander I. Cowen-Rivers, Andrew Cowie, Michael Figurnov, Fabian B. Fuchs, Hannah Glad-
man, Rishub Jain, Yousuf A. Khan, Caroline M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savy,
Sukhdeep Singh, Adrian Stecula, Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D.
Zhong, Michal Zielinski, Augustin Žı́dek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis,

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

and John M. Jumper. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature,
630(8016):493–500, June 2024. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-024-07487-w.

Ivan Anishchenko, Samuel J. Pellock, Tamuka M. Chidyausiku, Theresa A. Ramelot, Sergey Ovchinnikov,
Jingzhou Hao, Khushboo Bafna, Christoffer Norn, Alex Kang, Asim K. Bera, Frank DiMaio, Lauren
Carter, Cameron M. Chow, Gaetano T. Montelione, and David Baker. De novo protein design by deep
network hallucination. Nature, 600(7889):547–552, December 2021. ISSN 0028-0836, 1476-4687. doi:
10.1038/s41586-021-04184-w.

JL Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Minkyung Baek, Ivan Anishchenko, Ian R. Humphreys, Qian Cong, David Baker, and Frank DiMaio. Effi-
cient and accurate prediction of protein structure using RoseTTAFold2, May 2023.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative Flows on
Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=kQwSbv0BR4.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using diffusion
models with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.

Alexander E. Chu, Jinho Kim, Lucy Cheng, Gina El Nesr, Minkai Xu, Richard W. Shuai, and Po-Ssu
Huang. An all-atom protein generative model. Proceedings of the National Academy of Sciences, 121
(27):e2311500121, July 2024. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2311500121.

J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky, A. Courbet, R. J.
De Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan, B. Koepnick, H. Nguyen,
A. Kang, B. Sankaran, A. K. Bera, N. P. King, and D. Baker. Robust deep learning–based protein sequence
design using ProteinMPNN. Science, 378(6615):49–56, October 2022. ISSN 0036-8075, 1095-9203. doi:
10.1126/science.add2187.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and Arnaud
Doucet. Riemannian Score-Based Generative Modelling, November 2022.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander
Rives. Learning inverse folding from millions of predicted structures, April 2022.

Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat Islam,
Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, Alexander Tong, and
Avishek Joey Bose. Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Gen-
eration, May 2024.

John B. Ingraham, Max Baranov, Zak Costello, Karl W. Barber, Wujie Wang, Ahmed Ismail, Vincent Frap-
pier, Dana M. Lord, Christopher Ng-Thow-Hing, Erik R. Van Vlack, Shan Tie, Vincent Xue, Sarah C.
Cowles, Alan Leung, João V. Rodrigues, Claudio L. Morales-Perez, Alex M. Ayoub, Robin Green,
Katherine Puentes, Frank Oplinger, Nishant V. Panwar, Fritz Obermeyer, Adam R. Root, Andrew L.
Beam, Frank J. Poelwijk, and Gevorg Grigoryan. Illuminating protein space with a programmable gen-
erative model. Nature, 623(7989):1070–1078, November 2023. ISSN 0028-0836, 1476-4687. doi:
10.1038/s41586-023-06728-8.

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron Dror. Learn-
ing from protein structure with geometric vector perceptrons. In International Conference on Learning
Representations, 2020.

11

https://openreview.net/forum?id=kQwSbv0BR4
https://openreview.net/forum?id=kQwSbv0BR4

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub
Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin
Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals,
Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein
structure prediction with AlphaFold. Nature, 596(7873):583–589, August 2021. ISSN 0028-0836, 1476-
4687. doi: 10.1038/s41586-021-03819-2.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-Based
Generative Models, October 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

Rohith Krishna, Jue Wang, Woody Ahern, Pascal Sturmfels, Preetham Venkatesh, Indrek Kalvet, Gyu Rie
Lee, Felix S Morey-Burrows, Ivan Anishchenko, Ian R Humphreys, et al. Generalized biomolecular
modeling and design with RoseTTAFold All-Atom. Science, 384(6693):eadl2528, 2024.

Yeqing Lin, Minji Lee, Zhao Zhang, and Mohammed AlQuraishi. Out of Many, One: Designing and
Scaffolding Proteins at the Scale of the Structural Universe with Genie 2, 2024.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert
Verkuil, Ori Kabeli, Yaniv Shmueli, Allan Dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Salva-
tore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level protein structure with
a language model. Science, 379(6637):1123–1130, March 2023. ISSN 0036-8075, 1095-9203. doi:
10.1126/science.ade2574.

Sidney Lyayuga Lisanza, Jake Merle Gershon, Sam Tipps, Lucas Arnoldt, Samuel Hendel, Jeremiah Nel-
son Sims, Xinting Li, and David Baker. Joint Generation of Protein Sequence and Structure with
RoseTTAFold Sequence Space Diffusion, May 2023.

Milong Ren, Tian Zhu, and Haicang Zhang. CarbonNovo: Joint Design of Protein Structure and Sequence
Using a Unified Energy-based Model. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=FSxTEvuFa7.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott,
C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences,
118(15):e2016239118, April 2021. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2016239118.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks. In
International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-Based Generative Modeling through Stochastic Differential Equations, February 2021.

Martin Steinegger and Johannes Söding. MMseqs2 enables sensitive protein sequence searching for the
analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

Wouter G Touw, Coos Baakman, Jon Black, Tim AH Te Beek, Elmar Krieger, Robbie P Joosten, and Gert
Vriend. A series of PDB-related databanks for everyday needs. Nucleic acids research, 43(D1):D364–
D368, 2015.

12

https://openreview.net/forum?id=FSxTEvuFa7

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee, Cameron LM
Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein structure search with Fold-
seek. Nature biotechnology, 42(2):243–246, 2024.

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina Yor-
danova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, Augustin Žı́dek, Tim Green, Kathryn
Tunyasuvunakool, Stig Petersen, John Jumper, Ellen Clancy, Richard Green, Ankur Vora, Mira Lutfi,
Michael Figurnov, Andrew Cowie, Nicole Hobbs, Pushmeet Kohli, Gerard Kleywegt, Ewan Birney,
Demis Hassabis, and Sameer Velankar. AlphaFold Protein Structure Database: massively expand-
ing the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Re-
search, 50(D1):D439–D444, 11 2021. ISSN 0305-1048. doi: 10.1093/nar/gkab1061. URL https:
//doi.org/10.1093/nar/gkab1061.

Chentong Wang, Yannan Qu, Zhangzhi Peng, Yukai Wang, Hongli Zhu, Dachuan Chen, and Longxing Cao.
Proteus: Exploring Protein Structure Generation for Enhanced Designability and Efficiency, February
2024.

Guoli Wang and Roland L Dunbrack Jr. PISCES: a protein sequence culling server. Bioinformatics, 19(12):
1589–1591, 2003.

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E. Eisenach,
Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Nikita Hanikel,
Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham Venkatesh, Isaac Sappington,
Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile Mathieu, Sergey Ovchinnikov, Regina
Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung Baek, and David Baker. De novo design of protein
structure and function with RFdiffusion. Nature, 620(7976):1089–1100, August 2023. ISSN 0028-0836,
1476-4687. doi: 10.1038/s41586-023-06415-8.

Jason Yim, Andrew Campbell, Andrew Y. K. Foong, Michael Gastegger, José Jiménez-Luna, Sarah Lewis,
Victor Garcia Satorras, Bastiaan S. Veeling, Regina Barzilay, Tommi Jaakkola, and Frank Noé. Fast
protein backbone generation with SE(3) flow matching, October 2023a.

Jason Yim, Brian L. Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay, and
Tommi Jaakkola. SE(3) diffusion model with application to protein backbone generation, May 2023b.

Christine Zardecki, Shuchismita Dutta, David S Goodsell, Robert Lowe, Maria Voigt, and Stephen K Bur-
ley. PDB-101: Educational resources supporting molecular explorations through biology and medicine.
Protein Science, 31(1):129–140, 2022.

13

https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

A RELATED WORK

Backbone Generation. Diffusion models based on SE(3)-equivariant network architectures and protein
representations using rigid frames have achieved significant success in protein generation, as evidenced by
models like Chroma (Ingraham et al., 2023), Genie2 (Lin et al., 2024), RFdiffusion (Watson et al., 2023),
FrameDiff (Yim et al., 2023b), FrameFlow (Yim et al., 2023a), Proteus (Wang et al., 2024), and FoldFlow2
(Huguet et al., 2024). These models now support multi-condition controlled generation and have been
extensively validated through both in-silico and wet-lab experiments.

Codesign Models. Recent methods have explored a co-design approach that simultaneously designs both
the backbone and sequence. Multiflow (Campbell et al., 2024) utilizes a diffusion process that jointly op-
erates on discrete sequences and continuous SE(3) backbones, eliminating the need for sequence redesign
with ProteinMPNN (Dauparas et al., 2022). CarbonNovo (Ren et al., 2024) employs a similar approach,
using SE(3) diffusion on the protein backbone while simultaneously designing a sequence at each step with
the MRF decoder. The sequence information is then embeded using the protein language model ESM2-3B
(Rives et al., 2021) to guide structural generation.

All-Atom Generation. Recent research teams have begun exploring fully all-atom generative representa-
tion systems. For instance, Protpardelle (Chu et al., 2024) employs a coordinates diffusion model to support
the generation of all-atom protein structures. ProteinGenerator (Lisanza et al., 2023) applies Euclidean dif-
fusion on one-hot encoded sequences, combined with a structure prediction module to obtain all-atom struc-
ture. RFdiffusionAA (Krishna et al., 2024), based on fine-tuning the RoseTTAFold2 (Baek et al., 2023), can
produce backbone structures of proteins and small molecule complexes but lacks side-chain conformations
for standard amino acids. We focus on the methods directly generate all-atom protein structures, the most
relevant work is Protpardelle, which uses an end-to-end approach to generate all-atom structures.

B TRAINING DATASETS

B.1 PDB DATA

We used PISCES (Wang & Dunbrack Jr, 2003) to obtain the required PDB list. For training, we selected a
subset of PDB entries with a resolution of <3Å and a 95% sequence identity threshold. We then performed
standard filtering to remove any proteins with >50% loops and applied a series of folding quality filters
(described below). This process resulted in 7,459 structures.

B.2 AUGMENTED DATA

Augmented data are widely used in protein modeling-related work. Consequently, we supplemented our
dataset with the AlphaFold Database (AFDB) (Varadi et al., 2021). The AlphaFold2 predicted structure
database is available under a CC-BY-4.0 license for both academic and commercial uses. The AFDB con-
tains a total of 214 million data points. By applying an average pLDDT threshold of >80 and limiting the
sequence length to a maximum of 128, we obtained 582,652 structures. In addition, we employed more
sophisticated filtering strategies to acquire designable and high-quality data, assessing the average neighbor-
ing atomic density for each residue to determine whether they are core residues. We found that with this
filter, core residue content >30% allows us to identify tightly packed structures. Furthermore, the number
and distribution of secondary structures can define the compactness and diversity of folding. We used DSSP
(Touw et al., 2015) to assign the protein secondary structures and removing structures with loop content
>50%. We also apply filter on the total number of continuous segments of β-sheet and α-helix to maintain
structural diversity. For highly extended structures, we limited the radius of gyration (Rg) to less than 25.0.
To avoid overly long continuous unstructured regions within the protein structures, we restricted the maxi-

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

mum length of each loop to 15. Finally, we used the FoldSeek easycluster algorithm to remove redundant
structures, setting a TM score threshold of 0.8 and a coverage of 0.9, which removed approximately 30%
of highly similar structures. After applying these stringent filters, only 27,697 protein structures remained.
These structures typically exhibit good folding and high designability.

C ALGORITHMS

We provide a detailed description of the Pallatom modules and algorithm workflow below. In the pseu-
docode, the algorithms highlighted in blue are nearly identical to those of AlphaFold3 and are not expanded
to avoid unnecessary repetition.

C.1 MAINTRUNK

Algorithm 2 details the denoising process of the Pallatom MainTrunk network. Figure 3 displays the
detailed computational workflow for the AtomDecoder unit.

AtomAttention
Decoder

Attention
WithBias

Broadcast

si

Broadcast Broadcast

plm
skip

Triangle
Update

“incoming”

Recycling Pair

zij Attention Bias

cl
skip

Transition

rl
updated

Triangle
Update

“outgoing”

cl

si

zij

cl

+

+

+

+

+

+

Attention Bias

Transition +

+

AtomDecoder

si

ql
skip

plm
skip

Figure 3: The detail architecture of the AtomDecoder unit.

C.2 TEMPLATEEMBEDDER

In the TemplateEmbedder module, we retained only the necessary mask and distogram features, and addi-
tionally included the timestep feature for self-conditioning.

C.3 ATOMFEATUREENCODER

The core of the AtomFeatureEncoder is derived from AlphaFold3, and we made two adjustments based on
specific tasks. First, To process standard protein residue conformations, we reduced the 20 original amino
acid conformations to a single backbone conformation, represented by alanine. Additionally, each residue

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

Algorithm 2 MainTrunk

def MainTrunk ({f∗}, {rinputl }, t̂, t, catom = 128, cpair = 128, ctoken = 256, catompair = 16,
σdata = 16):
Initialize positions and conditions embedding

1: r⃗l
scaled = r⃗l

intput/
√
σ2

data + t̂2 r⃗l
scaled ∈ R3

2: siniti = LinearNoBias((f residue idx
i)) siniti ∈ Rctoken

3: ti = TimeFourierEmbedding(14 log(t̂/σdata)) ti ∈ Rctoken

4: siniti += ti
5: zinitij = RelativePositionEncoding(f∗) zinitij ∈ Rcpair

6: zij = zinitij + TemplateEmbedder({f∗}, zinitij , t, Nblock = 2, c = 64, d = cpair)
Initialise single and atom embeddings
7: {si}, {qskip

l }, {cskipl }, {pskip
lm }, {cl} = AtomFeatureEncoder({f∗}, siniti , zij , r⃗l

scaled, ctoken, catompair, catom)
8: si += LinearNoBias(LayerNorm(siniti))
AtomDecoder Units
9: r⃗l

updates = 0 r⃗l
updates ∈ R3

10: for all unit ∈ {1, . . . ,Kunit} do
11: si = NodeUpdate(si, ti, zij , c = ctoken)

12: {qupdated
l }, {r⃗lupdate}, {cl} = AtomAttentionDecoder(qskip

l ,pskip
lm , cskipl , cl, si, zij)

13: r⃗l
updates += r⃗l

update

14: r⃗l
denoised = σ2

data/(σ
2
data + t̂2) · r⃗lintput + σdata · t̂/

√
σ2

data + t̂2 · r⃗lupdates

15: r⃗i
center = r⃗l

denoised[center uid]

16: zij = PairUpdate(zij , r⃗i
center, c = cpair)

17: end for
SeqHead for amino acid decoding
18: ai = mean

l∈{1,...,Natoms}
tok idx(l)=i

(
ReLU(LinearNoBias({qupdated

l })
)

ai ∈ Rctoken

19: f seq logits
i = LinearNoBias(ai) f seq logits

i ∈ R20

return {r⃗ldenoised}, {f seq logits
i }

Algorithm 3 Template Embedder
def TemplateEmbedder ({f∗}, {zij}, t, Nblock = 2, c = 64, d = 128):
Concat template features
1: btemplate pseudo beta mask

ij = f template pseudo beta mask
i · f template pseudo beta mask

j

2: btime
ij = t⊙ f template pseudo beta mask

ij t ∼ [0, 1)

3: aij = concat(f template distogram
ij , btemplate pseudo beta mask

ij , btime
ij)

Embed self-condition positions
4: vij = LinearNoBias(LayerNorm(zij)) + LinearNoBias(aij) vij ∈ Rc

5: vij = PairformerStack(vij , Nblock)
6: uij ← LinearNoBias(ReLU(LayerNorm(vij))) uij ∈ Rd

return {uij}

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

(token) was standardized to have 14 atoms, represented in the atom14 format. To prevent information leak-
age from the virtual atoms, they were defined based on the Cα atom. Secondly, to accommodate the recycling
update mechanism between blocks, we utilized traversing atomic-level representations, these features flow
between blocks and only integrate with token-level information during the decoding phase.

Algorithm 4 AtomFeatureEncoder

def AtomFeatureEncoder ({f∗}, sinputi , zinputij , r⃗l
scaled, c = 256, d = 16, m = 128):

Create the atom single conditioning: weighted by sequence
1: fref = concat(⃗f ref pos, f ref element) fref ∈ R14×7

2: cl = LinearNoBias(tile(fref)) cl ∈ Rm

3: f⃗ ref pos
l = tile(⃗f ref pos) f⃗ ref pos

l ∈ R3

4: cskipl = cl
Embed offsets between atom reference positions
5: d⃗lm = f⃗ ref pos

l − f⃗ ref pos
m d⃗lm ∈ R3

6: vlm = (f ref space uid
l == f ref space uid

m) vlm ∈ R
7: plm = LinearNoBias(d⃗lm) · vlm plm ∈ Rd

8: plm += LinearNoBias
(
1/(1 + ∥d⃗lm∥2)

)
· vlm

9: plm += LinearNoBias(vlm) · vlm
10: plm += LinearNoBias(ReLU(cl)) + LinearNoBias(ReLU(cm))

11: pskip
lm = plm

Initialise the atom single representation as the single conditioning
12: qskip

l = cl + LinearNoBias(r⃗l
scaled) ql ∈ Rm

Add atom positional and time conditioning
13: cl += LinearNoBias(LayerNorm(sinittok idx(l)))

14: plm += LinearNoBias(LayerNorm(zinittok idx(l)tok idx(m))

15: plm += LinearNoBias(ReLU(LinearNoBias(ReLU(LinearNoBias(ReLU(plm)))))))
Cross attention transformer
16: qskip

l = AtomTransformer(qskip
l , cl,plm, Nblock = 3, Nhead = 4)

Aggregate per-atom representation to per-token representation
17: si = mean

l∈{1,...,Natoms}
tok idx(l)=i

(
ReLU(LinearNoBias(qskip

l))
)

si ∈ Rc

return {si}, {qskip
l }, {cskipl }, {pskip

lm }, {cl}

C.4 ATOMATTENTIONDECODER

We established a method for managing token-level and atomic-level information in the decoder layer. The
updated single- and pair-representations are simultaneously injected into the traversing atomic-level repre-
sentations, effectively preventing the repeated accumulation of redundant structural information.

C.5 NODEUPDATE

In AlphaFold3’s diffusion module, the single representation is updated by both the AttentionPairBias and
ConditionTransition algorithms, which use pre-defined structural representations as conditions. The Atten-
tionPairBias algorithm, which can be viewed as a conditional version of the RowAttentionWithBias algo-
rithm from AlphaFold2, additionly employs Adaptive LayerNorm (Ba, 2016) and SwiGLU (Shazeer, 2020)

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2025

Algorithm 5 AtomAttentionDecoder

def AtomAttentionDecoder (qskip
l , pskip

lm , cskipl , cl, si, zij):
Add trunk embeddings
1: ql = LinearNoBias(LayerNorm(stok idx(l))) + qskip

l

2: plm = LinearNoBias(LayerNorm(ztok idx(l)tok idx(m)) + pskip
lm

3: plm += LinearNoBias(ReLU(LinearNoBias(ReLU(LinearNoBias(ReLU(plm)))))))
Cross attention transformer
4: ql = AtomTransformer(ql, cl,plm, Nblock = 3, Nhead = 4)
Map to positions update
5: r⃗l

update = LinearNoBias(LayerNorm(ql))
Update trunk embeddings to atom condition
6: cl = LinearNoBias(LayerNorm(stok idx(l))) + cskip

l

return {r⃗lupdate},{cl}

techniques to conditionally scale the representation values. The ConditionTransition algorithm acts as a
gate. Due to the lack of structural condition representation in generative models, we replace the structural
condition with time-based condition in the AttentionPairBias. This allows for adaptive scaling of network
updates based on the level of noise. Furthermore, we considered updating the single information between
blocks using residual connections instead of ConditionTransition. Our preliminary tests indicate that this
update method prevents the degradation of the single representation. We also used dropout during training
to mitigate the risk of overfitting and enhance the model’s robustness.

Algorithm 6 NodeUpdate
def NodeUpdate (si, ti, zij , c = 256):
AttentionPairBias with updated pair bias
1: si += DropoutRowwise0.25(AttentionPairBias(si, ti, zij , βij = 0,Nhead = 8))
2: si += Transition(si)
return {si}

C.6 PAIRUPDATE

In the PairUpdate module, to minimize the number of parameters and maximize network depth, we opted
to use only the TriangleAttention algorithm, omitting TriangleMultiplication. Ablation studies from Al-
phaFold2 suggest that relying solely on TriangleAttention still enables accurate protein structure prediction.
We used a modified TriangleAttention algorithm, which uses the pair representation from the recycling struc-
ture as attention bias. To maintain consistency in the pair feature space, we binned the recycling structure
using the same parameters as in the TemplateEmbedder module, with a total of 39 bins ranging from 3.25 to
50.75 Å.

C.7 SMOOTH LDDT LOSS FUNCTION

During the training, we adopt the smooth LDDT loss as proposed by AlphaFold3, and implement a simplified
version specifically for all-atom proteins.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2025

Algorithm 7 PairUpdate
def PairUpdate (zij , rcenteri , c = 128):
Obtaining the pairwise distance matrix through RBF discretization
1: dij =

∥∥r⃗icenter − r⃗j
center

∥∥ dij ∈ R
2: bij = LinearNoBias(Transform RBF(dij)) bij ∈ Rc

TriangleAttention with coordinates pair bias
3: zij += DropoutRowwise0.25(TriangleAttentionStartingNodeWithBias(zij ,bij))
4: zij += DropoutColumnwise0.25(TriangleAttentionEndingNodeWithBias(zij ,bij))
5: zij += Transition(zij)
return {zij}

Algorithm 8 Smooth LDDT loss
def SmoothLDDTLoss (⃗rl, r⃗GT

l):
Compute distances between all pairs of atoms
1: δrlm ← ||⃗rl − r⃗m||
2: δrGT

lm ← ||⃗rGT
l − r⃗GT

m ||
Compute distance difference
3: δlm = abs(δrGT

lm − δrlm)
4: ϵlm = 1

4 [sigmoid(12 − δlm) + sigmoid(1− δlm) + sigmoid(2− δlm) + sigmoid(4− δlm)]
Set the radius threshold and compute mean
5: clm ← 1(δxGT

lm < 15Å)
5: lddt = mean

l ̸=m
(clmϵlm)/mean

l ̸=m
(clm)

return 1 - lddt

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

Table 3: Input Feature Descriptions
Input Feature Dimension Description

ref pos (14, 3) Atom positions in the reference conformer are given in Å.
The backbone atoms (N, C, Cα, O, Cβ) are listed in the first
five columns, while all side-chain atoms are moved to the
Cα atom position.

ref element (14, 4) We encode the backbone atoms based on their elemental
types [N, C, O], while the side-chain atoms are encoded as
a single class using ‘UNK’ (unknown).

ref space uid (Natom,) Numerical encoding of the residue index associated with
this reference conformer.

ref center mask (Natom,) Masks indicating the center atom of the residue.

residue index (Ntoken,) The pdb residue number for calculating relative positional
embedding

residx embedding (Ntoken, 32) The absolute position embedding by sinusoidal positional
encoding.

template distogram (Ntoken, Ntoken, 39) Pairwise distogram of pseudo Cβ are discretized into
38 bins of equal width between of bin min=3.25Å,
bin max=50.75Å, one more bin contains any larger dis-
tances.

template cb mask (Ntoken,) Mask indicating if the Cβ atom has coordinates for the tem-
plate at this residue, where 1 indicates existing tokens and
0 is used for padding tokens.

template time (Ntoken, Ntoken, 1) Normalized pairwise time-step feature, ranging from 0 to 1.

all atom positions (Natom, 3) The noisy position of all atoms in the system.
all atom mask (Natom,) Mask indicating which atom slots are used in the the sys-

tem.
t hat (1,) The noise level value for adding noise.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2025

D EXPERIMENT DETAILS

D.1 MODEL DETAILS

Table 4 provides a detailed list of the hyperparameters used for training.

Table 4: Pallatom training hyperparameters.
Parameter name Value
Batch size 32
Learning rate 0.001, No warm-up.
Examples per epoch 35156
Crop size 128
Loss weights Sequence loss weight α0 = 0.25,

Smooth lddt loss weight α1 = 1.0,
Token-level distogram loss weight α2 = 0.5,
Atomic-level distogram loss weight α3 = 0.5,
Intermediate loss weight α4 = 1.0
In the basic loss L0, weight allocation was applied to
residue types, with a weight of 2.0 assigned to polar
residues, and 1.0 to the others.

Diffusion timesteps (Nsteps or
T)

200

Self-condition rate 100%
EDM Noise schedule lognormal. ln(σ) ∼

N (Pmean, P
2
std), Pmean = −1.2, Pstd = 1.5,

σdata = 16,
Stochastic sampler tmin = 0.01, tmax = 1.0, noise
level γ0 = 0.2, noise scale λ = 1.003, step scale
η = 2.25

Transformer single representation dimension = 256, pair represen-
tation dimension=128, number of heads = 8, number
of decoder units = 8

Training Steps 3× 105

Training time ≈ 10 days
Device 4× A6000

D.2 ADDITIONAL RESULTS

D.2.1 OUT-OF-DISTRIBUTION PERFORMANCE

Evaluation of Metrics We conducted a comparative evaluation of Pallatom on longer sequence lengths
not encountered during training. Specifically, we sampled 250 proteins for each of the lengths L =
150, 200, 250, 300, 350, 400 for assessment. Notably, the maximum sequence length in Pallatom’s train-
ing set was 128, whereas in all comparison methods, the training data includes proteins with a maximum
length of up to 384. Figures 4 illustrate the designability, structural diversity, and structural novelty for each
length under the CO-DESIGN 1 and PMPNN 1 modes, respectively.

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2025

We observed that in both evaluation modes, Pallatom exhibited the highest designability below twice the
maximum training length (L = 150−250), with structural diversity and novelty significantly surpassing the
Multiflow. At L = 300, Pallatom demonstrated designability comparable to Multiflow while outperforming
it in diversity and novelty. Even when extending to more than three times the maximum training length at
L = 350 and L = 400, Pallatom, although less advantageous in backbone design, still maintained the ability
to generate all-atom proteins, a feat unachievable by the other two comparison methods, Protpardelle and
ProteinGenerator.

A B

Figure 4: Comparison of Evaluation Metrics for Sampled Proteins at Longer Lengths. (A) and (B) respec-
tively show the designability, structural diversity, and structural novelty under the CO-DESIGN 1 mode and
the PMPNN 1 mode.

Secondary Structure Analysis We further analyzed the secondary structure preferences of sampled struc-
tures from all methods. Specifically, we utilized DSSP to classify the secondary structure of each residue in
the proteins. If the number of α-helix residues is more than five times the number of β-sheet residues, the
protein is classified as HHH, indicating an all-helix structure. Conversely, if the number of β-sheet residues
exceeds five times the number of helix residues, the protein is classified as EEE, indicating an all-β-sheet
structure. In other cases, where the proportions of the two secondary structures are balanced, the protein is
classified as HEL, representing a αβ mixed structure.

Figure 5 shows the secondary structure distributions of each method in the two evaluation modes, as well as
the secondary structure distributions of the designable proteins. This result indicates the ProteinGenerator,
multiflow, and Pallatom exhibit similar secondary structure preferences within the length range of 150-
400, with a roughly equal distribution between HEL and HHH structures. In contrast, RFdiffusion and

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2025

Protpardelle show a stronger preference for HEL structures. Within the 150-400 length range, all models
rarely succeed in generating EEE structures.

A B C

Figure 5: Secondary Structure Distribution of Sampled Proteins at Longer Lengths. Figures (A), (B), and (C)
show the secondary structure distribution of all sampled proteins across all methods, the designable proteins
in CO-DESIGN 1 mode, and the designable proteins in PMPNN 1 mode, respectively.

All these experimental results demonstrate the superiority of the Pallatom model framework, highlighting its
remarkable scalability and generalization capabilities. We present additional case studies of proteins sampled
by Pallatom. Figure 7 presents additional examples of novel designable proteins sampled by Pallatom.
Figure 8 illustrates the high-quality designable proteins sampled by Pallatom under length distributions not
included in the training set.

Analysis of Sampling Hyperparameters We analyzed the effect of the step scale η on sampling proteins
of unseen longer lengths. In Table 5, the left column for each length corresponds to η = 2.5, while the right
column corresponds to η = 3.0. We observed that a larger step size in the gradient update direction improves
the designability of proteins, and as the number of designable samples increases, the structural diversity of
generated proteins also increases, with only a slight decrease in novelty. Additionally, consistent with the
observations in the main text regarding the impact of sampling hyperparameters on secondary structure
distribution, a larger step size is associated with a more pronounced preference for all-helix structures.

Table 5: Pallatom sample metrics with step scale η = 2.5 (left) and η = 3.0 (right).
Length 150 200 250 300 350 400

DES-aa 88% 93% 79% 93% 69% 81% 35% 66% 19% 41% 4% 18%
DIV-str 131 125 153 184 149 190 73 162 38 104 9 45
NOV-str 0.650 0.656 0.618 0.636 0.594 0.610 0.576 0.589 0.551 0.574 0.525 0.554

HHH(%) 44% 53% 53% 64% 54% 70% 60% 77% 64% 85% 69% 92%
HEL(%) 53% 44% 47% 36% 46% 30% 40% 23% 36% 15% 31% 8%
EEE(%) 2.8% 2.7% 0.0% 0.4% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

D.2.2 SEQUENCE QUALITY OF DESIGNABLE PROTEINS

We compared the quality of the sequences generated by Pallatom with those produced by ProteinMPNN for
the same protein structures designed by Pallatom. Figure 6 shows the pLDDT scores of the two sequences
predicted by ESMfold. We found that the sequence confidence score of Pallatom is slightly lower than that
of ProteinMPNN, with the maximum mean pLDDT difference not exceeding 2. We attribute this differ-
ence to both the training data and the tasks. Regarding training data, Pallatom was trained on a monomer
protein dataset, whereas ProteinMPNN was trained on a more diverse dataset that includes both monomer
and multichain structures. Additionally, when preparing the training set, ProteinMPNN focused more on the

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2025

sequence diversity under the same structure, while Pallatom needed to consider both sequence and structure
diversity. In terms of training tasks, the objectives of the two models are fundamentally different. Protein-
MPNN is concerned solely with sequence design given a real backbone, whereas Pallatom must balance the
dual objectives of structure generation and sequence generation from pure noise.

50 100 150 200 250 300 350 400
Length

50

60

70

80

90

100
pL

DD
T

Pallatom (PMPNN)
Pallatom (CO-DESIGN)

Figure 6: Comparison of pLDDT between sequences designed by Pallatom and ProteinMPNN across dif-
ferent lengths. Sequences designed by Pallatom are labeled as “Pallatom (CO-DESIGN),” while sequences
designed by ProteinMPNN based on the backbone are labeled as “Pallatom (PMPNN).”

D.2.3 ANALYSIS OF SAMPLING TIME

We conducted a comparative analysis of sampling times for each method. Specifically, we standardize the
diffusion sampling steps to T = 200 and sample 100 proteins for each length, calculating the mean and
standard deviation. All methods were tested on the same hardware: CPU: AMD EPYC 7402 @2.8GHz,
GPU: NVIDIA GeForce RTX 4090 with 24GB VRAM.

Table 6 presents the results. Thanks to JAX’s JIT compilation and our optimizations at the atom level
of Attention, Pallatom achieved the second fastest sampling speeds for lengths ranging from 100 to 350,
outperforming all methods except Protpardelle. At L = 400, even with the atomic-level length reaching
(14× 400)× (14× 400), Pallatom’s performance remains comparable to the second-fastest method, Multi-
flow, and is 5 times faster than RFdiffusion and 16 times faster than ProteinGenerator.

Table 6: Sampling Time (in seconds). The shortest time is highlighted in bold, and the second shortest is
indicated in italics.

Length 100 150 200 250 300 350 400

Protpardelle 10.9±0.1 11.3±0.2 11.7±0.2 12.5±0.2 24.5±0.5 26.3±0.6 27.6±0.9
ProteinGenerator 414.1±107.5 389.5±2.3 388.8±1.3 477.6±1.7 624.0±4.1 796.3±4.6 950.3±5.3
Multiflow 25.3±0.4 25.3±0.6 27.1±0.3 29.4±0.2 35.1±0.6 40.5±0.2 46.6±0.5
RFdiffusion 95.5±14.6 93.9±1.0 106.3±0.9 138.5±0.8 183.0±0.8 230.7±1.6 287.4±6.5
Pallatom* 10.2±0.1 12.1±0.1 18.2±0.1 21.9±0.1 33.3±0.1 40.4±0.1 57.5±0.1

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2025

TM-Score: 0.619
RMSD: 2.86

TM-Score: 0.397
RMSD: 3.26

TM-Score: 0.523
RMSD: 2.86

TM-Score: 0.63
RMSD: 2.14

TM-Score: 0.49
RMSD: 3.19

TM-Score: 0.56
RMSD: 3.09

TM-Score: 0.484
RMSD: 3.42

TM-Score: 0.602
RMSD: 2.83

TM-Score: 0.542
RMSD: 2.74

TM-Score: 0.66
RMSD: 2.47

TM-Score: 0.60
RMSD: 3.66

TM-Score: 0.533
RMSD: 3.28

TM-Score: 0.655
RMSD: 3.01

TM-Score: 0.598
RMSD: 3.02

TM-Score: 0.439
RMSD: 3.8

TM-Score: 0.637
RMSD: 3.11

TM-Score: 0.514
RMSD: 4.12

TM-Score: 0.435
RMSD: 4.86

TM-Score: 0.566
RMSD: 3.6

TM-Score: 0.591
RMSD: 3.61

TM-Score: 0.457
RMSD: 3.36

TM-Score: 0.605
RMSD: 2.83

TM-Score: 0.517
RMSD: 3.54

TM-Score: 0.581
RMSD: 2.79

Figure 7: Additional novel designable proteins generated by Pallatom. The blue structures in the figure
represent the designable protein sequences generated by Pallatom, which have been predicted using ESMfold
and colored based on pLDDT scores. The white structures are the nearest neighbors from the Foldseek
database (using the default eight databases on the Foldseek web server), with the distances between the two
sets of structures evaluated using TM-Score and RMSD.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2025

L=150

L=200

L=250

L=300

L=350

L=400

Figure 8: Additional all-atom protein structures generated by Pallatom for longer sequence lengths. The
white structures represent those generated by Pallatom, while the colored structures are predicted by ESM-
fold and are colored according to pLDDT values, with bluer hues indicating higher pLDDT scores.

26

	Introduction
	Preliminaries
	All-atom modeling and representation
	Diffusion modeling on all-atom protein
	Framework for all-atom protein generation

	Method
	MainTrunk: the denoisng network
	SeqHead: sequence decoder
	Training Loss
	Sampling

	Experiments
	Training setting
	Metrics
	Results
	Hyperparameter

	Discussion
	Related work
	Training Datasets
	PDB Data
	Augmented Data

	Algorithms
	MainTrunk
	TemplateEmbedder
	AtomFeatureEncoder
	AtomAttentionDecoder
	NodeUpdate
	PairUpdate
	Smooth LDDT loss function

	Experiment Details
	Model Details
	Additional Results
	Out-of-distribution performance
	Sequence Quality of Designable Proteins
	Analysis of Sampling Time

