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ABSTRACT

We introduce Pallatom, an innovative protein generation model capable of producing pro-
tein structures with all-atom coordinates. Pallatom directly learns and models the joint
distribution P (structure, seq) by focusing on P (all-atom), effectively addressing the in-
terdependence between sequence and structure in protein generation. To achieve this,
we propose a novel network architecture specifically designed for all-atom protein gen-
eration. Our model employs a dual-track framework that tokenizes proteins into token-
level and atomic-level representations, integrating them through a multi-layer decoding
process with “traversing” representations and recycling mechanism. We also introduce
the atom14 representation method, which unifies the description of unknown side-chain
coordinates, ensuring high fidelity between the generated all-atom conformation and its
physical structure. Experimental results demonstrate that Pallatom excels in key metrics
of protein design, including designability, diversity, and novelty, showing significant im-
provements across the board. Our model not only enhances the accuracy of protein gener-
ation but also exhibits excellent training efficiency, paving the way for future applications
in larger and more complex systems.

1 INTRODUCTION

The theoretical foundation of protein modeling has been built upon two key conditional probability distri-
butions: P (structure | seq) and P (seq | backbone). The former, P (structure | seq), corresponds to the
all-atom protein structure prediction task, which involves determining the three-dimensional structure of a
protein given its amino acid sequence (Abramson et al., 2024; Jumper et al., 2021; Lin et al., 2023; Baek
et al., 2023). The latter, P (seq | backbone), underpins the fixed-backbone design task, where the goal is to
identify a sequence that will fold into a given protein backbone structure (Dauparas et al., 2022; Hsu et al.,
2022). In summary, these probability distributions has successfully advanced the field of protein engineering.

With the advancement of deep learning in protein science, two distinct approaches for protein design
have emerged. One approach is the protein hallucination (Anishchenko et al., 2021), which explores the
landscape of a P (structure | seq) model using Monte Carlo or gradient-based optimization techniques.
This method yields valid protein structures, but requires an additional P (seq) model, such as protein lan-
guage models (Rives et al., 2021), to correct or redesign the sequence. Essentially, this approach can be
viewed as optimization process of P (structure | seq) · P (seq). Another approach attempts to explore the
P (backbone) distribution. a series of protein generation models based on SE(3) invariance or equivariance
networks (Jing et al., 2020; Satorras et al., 2021) have recently emerged, these method rely on an additional
P (seq | backbone) process to determine the protein sequence. This optimization strategy can be regarded as
P (backbone) · P (seq | backbone).

This step-wise design process has limitation in approximating the joint distribution through marginal distri-
butions. The P (structure | seq) · P (seq) strategy faces challenges when sampling in the high-dimensional
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sequence space, while the P (backbone) · P (seq | backbone) strategy fails to account for explicit side-chain
interactions and is bottlenecked by the capability of the fixed-backbone design model.

The ultimate goal of protein generation is to directly obtain a sequence along with its correspond-
ing structure, i.e., to develop a model capable of describing the joint distribution P (structure, seq) or
P (backbone, seq). Recently, some studies have started to adopt co-generation approaches, such as model
based on co-diffusion (Campbell et al., 2024) or co-design (Ren et al., 2024). While these methods pri-
marily rely on SE(3) networks, they still separately model the backbone and sequence, without considering
side-chain conformations and leading to an insufficient description of the structure. Protpardelle (Chu et al.,
2024), an all-atom protein diffusion model, similarly adopts co-generation approaches with an explicit all-
atom representation, taking a step further in the field. However, the experimental results indicate that the
generated sequence fails to accurately encode the intended fold, necessitating an additional round of se-
quence redesign and side-chain refinement.

In this study, we introduce a novel approach for all-atom protein generation called Pallatom. Our extensive
experiments show that by learning P (all-atom), high-quality all-atom proteins can be successfully gener-
ated, eliminating the need to learn marginal probabilities separately. Inspired by AlphaFold3 (Abramson
et al., 2024), we adopt a dual-track framework that tokenizes proteins into residues or atoms, and develop
a novel module incorporating “traversing” representations and multi-layer decoding units. This module ef-
ficiently integrates and updates token-level and atomic-level representations through a dual-track recycling
mechanism, enabling self-conditioned inferencing and enhancing information flow between blocks. Addi-
tionally, we propose a new amino acid coordinates representation, atom14, to address the challenge of
representing unknown side-chain coordinates. Introducing virtual atoms to all amino acids type prevents se-
quence information leakage problem. The key insight of Pallatom is recognizing that all-atom coordinates of
a protein inherently encode both structural and sequence information. Directly learning P (all-atom) opens
a new path for co-generative modeling of structure and sequence.

Our contributions are summarized as follows:

• We develop a network architecture for all-atom protein generation tasks, which effectively repre-
sents both protein backbones and sidechains.

• We explore the atom14 representation to achieve a unified description of unknown amino acid
side-chain coordinates in generative tasks.

• We use our framework to develop Pallatom, a state-of-the-art all-atom protein generative model.

2 PRELIMINARIES

2.1 ALL-ATOM MODELING AND REPRESENTATION

The all-atom protein generation model faces many challenges in constructing both backbone and side-chain
atoms. A pivotal initial question arises: “How to represent a system with a variable number of atoms?”. At
the initial sampling stage, both the backbone and sequence are unknown, however, the atom number of a
system depends on unique sequence, once the sequence is determined, it also dictates the structure.

To avoid potential conflicts arising from the simultaneous design of sequence and structure, we define a
representation called atom14, which pads the initial protein with L residues as x = {xl}Ll=1 → x0,
considering it as a 3D point cloud distribution P (x0) ∈ RL×14×3. For example, if residue xl is CYS, its
coordinates [N,Cα,C,O,Cβ ,Sγ ] ∈ R6×3 is padded with 8 virtual atoms that coincide with its Cα position,
resulting in xl → xl

0 ∈ R14×3.
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Our approach assumes that the all-atom distribution of the protein sidechains, including properties such as
hydrophobicity, polarity, and even hydrogen bonds and salt bridges, are inherently encoded within the all-
atom coordinates distribution. Even without knowing the specific element atom type, the conformationally
similar amino acids, such as CYS and SER, can be distinguished from atomic-level features. Therefore,
we additionally trained a single “visualization” head to predict the corresponding amino acid type. With
discarding the redundant virtual atoms based on the predicted amino acid type as a post-processing step,
we can generate all-atom proteins with corresponding sequences from a 3D point cloud. Additionally, we
provide the alanine reference conformer features to guide the network in forming a stable backbone frame
conformation.

2.2 DIFFUSION MODELING ON ALL-ATOM PROTEIN

The use of all-atom representation eliminates the constraints imposed by the complex forms of the SE(3)
frame (Yim et al., 2023b) and the Riemannian diffusion framework (De Bortoli et al., 2022). Diffusion-
based generative models using Gaussian noise distribution have a strong theoretical foundation, with various
adaptations influenced by factors such as the sampling schedule, training dynamics (Song et al., 2021). We
adopt the EDM framework (Karras et al., 2022) with slight modifications and employed a Gaussian diffusion
model on RL×14×3.

Assuming the data distribution of protein coordinates under the atom14 representation as pdata(x) with
standard deviation σdata, the forward process involves adding Gaussian noise of varying scales to generate
a series of noised distributions p(x;σ) = N (x, σ2I). When σmax ≫ σdata, p(x;σmax) approximates pure
Gaussian noise. For a noise schedule σ(t) = t (following EDM notation where σ(t) indicates the noise
schedule and σt represents the noise level sampled from ptrain(t) at time t), the probability flow ordinary
differential equation (ODE) is given by:

dx = −σ(t)∇x log p(x;σ(t))dt (1)

Here, ∇x log p(x;σ) is the score function, which does not depend on the normalization constant of the
underlying density function p(x;σ). A neural network Dθ(x, σ) is typically trained for each σt using the
following loss function to match the score function (Song et al., 2021):

Ex0∼pdata,xt∼p(x0;σt)[λ(σ)||Dθ(xt, σt)− x0||22], ∇x log p(x;σ) = (Dθ(xt, σt)− xt)/σ
2
t (2)

Practically, we employed the EDM preconditioning technique, which resulted in improved generation per-
formance. Consequently, we can derive Dθ and the loss function as:

Dθ = cskip(σ)xt + cout(σ)Fθ(cin(σ)xt, cnoise(σ)) (3)

Ex0,xt
[λ(σ)||cout(σ)Fθ(cin(σ) · xt, cnoise(σ))− (x0 − cskip(σ) · xt)||22] (4)

where cskip(σ) = σ2
data/(σ

2 + σ2
data), cout(σ) = σ · σdata/

√
σ2
data + σ2, cin(σ) = 1/

√
σ2 + σ2

data,
cnoise(σ) = 1

4 ln(σ) represent skip scaling, output scaling, input scaling, and noise conditioning, respec-
tively. We set λ(σ) = 1/cout(σ)

2.

2.3 FRAMEWORK FOR ALL-ATOM PROTEIN GENERATION

AlphaFold3 provided an excellent initial framework for all-atom protein generation. However, the gen-
eration task fundamentally differs from the structure prediction task, requiring us to tailor the structure
prediction framework with several modifications. In structure prediction, numerous co-evolutionary signals
can typically be extracted from homologous sequences, which can then be decoded into a three-dimensional
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Figure 1: Pallatom model framework.

structure. In contrast, the generation task begins with noised coordinates, requiring the model to learn how
to extract structural information iteratively.

Providing self-conditions (Chen et al., 2022) is an effective way to enhance generation performance. A sim-
ple approach is to integrate the information extraction modules directly into the structural decoder, allowing
the partially denoised information from each block to be used as self-conditions for the subsequent block.
More specifically, in our modifications, the denoised coordinates from each block are converted into a pair-
wise feature, which is reinjected into pair representation and used as self-conditions in the next block to
update single representation. These modifications effectively address the self-conditioning pipeline between
blocks.

In practice, the interaction and updating of dual-track protein representations within multiple decoder units
present new challenges. We find that if residual connections are used simultaneously for both token-level and
atomic-level representations across multiple decoder units, the token-level representation tends to be repeat-
edly broadcast and inappropriately accumulated. This not only leads to numerical instability in atomic-level
representations but also disrupts the model’s performance. Therefore, we propose using traversal atomic-
level representations to carry the token-level representations within the current decoding unit. These two
modifications enable the new framework to effectively generate all-atom protein structures. Details can be
found at Figure 1 and 3.

3 METHOD

3.1 MAINTRUNK : THE DENOISNG NETWORK

We refer to the protein generation task as the generation of all-atom coordinates. In the atom14 repre-
sentation, a protein with L residues can be expressed as x0 = {xl

0}Ll=1, which xl
0 ∈ R14×3 represents the

all-atom coordinates of a residue. For each time step t in the diffusion process, the network predicts the
updated coordinates from the input xt ∼ N (x0, σ

2
t I).

The network comprises two main components: an input encoding module and multiple iterative decoding
units. Figure 1 illustrates the main architecture. We adopt the dual-track framework, the atomic-level rep-
resentation for atoms using local attention mechanisms and the token-level representation for residues using
global attention mechanisms.
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For feature initialization and encoding, we utilize coordinates feature from the standard conformation of
alanine, the positional encoding within the residues and the noisy coordinates vector to initialize 1D atomic-
level representations. The 1D representations are then updated using a 3-layer AtomTransformer encoder,
with the initial atomic pair representations as attention bias. These atomic-level representations were re-
garded as static traversing atomic-level representations (cskip

l , qskip
l and pskip

lm in Figure 3). The single repre-
sentation initialization is performed using the diffusion timestep feature and the positional embedding. The
pair representation is initialized using the relative positional embedding introduced in AlphaFold2 (Jumper
et al., 2021) and a self-conditioned template distogram feature from the previous prediction. The interac-
tion between token-level and atomic-level information is propagated through broadcasting and aggregation.
Detailed features are recorded in Appendix Table 3.

For the decoding part, we employ an iterative update mechanism where token-level representations are
broadcast to the atomic level, and atomic information is then fed back through a recycling process. To
address the issue of residual connections in the atomic representation mentioned earlier, for each block, we
use an intermediate atomic-level representations, which is composed of broadcast token-level representations
and traversing atomic-level representations, to predict coordinates updates x

(k)
update, the current predicted

structure x(k)
0 using the cumulative updates from the first k units: x(k)

0 = cskip(σt) ·xt+cout(σt) ·x(k)
updates.

After the coordinates are denoised, they are transformed to relative distance matrix x
(k)
0 and recycled back

into the pair representation via triangle attention layer, effectively addressing the challenges of updating pair
representations. In practice, we found that recycling pair information accelerates model training and en-
hances inference capabilities. Utilizing the minimal decoding unit and supervised training on intermediate
coordinates simplifies the scaling of the network and allows for increasing its depth. Through the iterative
8-layer decoder, we effectively updated the atomic-level and token-level representations. The cumulative
updating mechanism for coordinates prediction allows the model to gradually refine these predictions, ul-
timately leading to the realistic all-atom protein structure. Details can be found at Appendix Algorithm
2.

3.2 SEQHEAD : SEQUENCE DECODER

To convert the generated coordinates into a real protein, we need a module that translates the position infor-
mation into an amino acid sequence. We add a SeqHead to each decoding unit. Specifically, we aggregate
the updated 1D atomic-level representations from the AtomAttentionDecoder corresponding to each token
and then employ a linear layer to predict the logits for the 20 amino acid types â(k) ∈ RL×20. We take the
predictions from the last unit as the final sequence logits, â = â(K).

3.3 TRAINING LOSS

Our training method mainly follows the application and improvements of the EDM framework. The de-
noising all-atom positions score-matching losses are described according to Eq.(2). Given that the network
architecture lacks inherent equivariance constraints and iteratively refines coordinates across multiple decod-
ing stages, it is imperative that the coordinates transformations between these stages remain invariant under
changes in orientation to ensure consistent geometric interpretations. Therefore, we employ an aligned MSE
loss similar to that in Alphafold3. We first perform a rigid alignment of the ground truth x0 on the denoised
structure x̂0 as xaligned

0 . The MSE loss is then defined as:

Latom =
||x̂0 − xaligned

0 ||2

3L

5
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For sequence decoding, we use the standard cross-entropy loss function to evaluate the difference between
the predicted sequence â and the true sequence a0. The loss function is defined as Lseq = CE(â,a0). The
basic loss function of the network is:

L0 = λ(σt) · Latom + α0 · Lseq

To capture the fine-grained characteristics of the all-atom structure, we introduce the smooth local distance
difference test (LDDT) loss Lsmooth lddt(x̂0,x0) from AlphaFold3. The specific algorithm can be found in
the Appendix Algorithm 8. To supervise the updating of pair-wise features, we employ the distogram head
loss to constrain the global distance distribution at the token level. The pair representation is symmetrized
and projected into 64 distance bins with probability pbij , and supervised with one-hot encoded target bins ybij .
Similarly, to supervise the local relative distance distribution at the atomic-level, we project the 2D features
from local atomic attention into 22 distance bins from 0 Å to 10 Å with qbnm, and construct the loss with
one-hot encoded target bins at the atomic-level. Here, the local region corresponds to the area calculated
within the local attention on the 14L× 14L atomic-level map.

Ldist token = − 1

L2

∑
i,j

64∑
b=1

ybij log p
b
ij , Ldist atom = − 1

NM

∑
n,m∈local

22∑
b=1

ybnm log qbnm

In the early stages of development, we discovered that supervising the intermediate sequences and structures
predicted by each decoder unit significantly enhanced both network performance and inference stability. Fur-
thermore, we introduced a loss weight decay mechanism with γ = 0.99 between different blocks, assigning
greater weight to the later layers.

Lk
med = λ(σt) ·

||x(k)
0 − xaligned

0 ||2

3L
+ α0 · CE(a(k)0 ,a0), Lmed =

1

K

K∑
k=1

γK−k · Lk
med

The total loss can be written as:
L = L0 + α1 · Lsmooth lddt + α2 · Ldist token + α3 · Ldist atom + α4 · Lmed

3.4 SAMPLING

The sampling process is described in Algorithm 1. The modules highlighted in blue are identical to those
proposed in AlphaFold3. The initial atoms are sampled from a Gaussian distribution on RL×14×3. We only
use the first-order Euler method as the ODE solver with T steps for discretization. Optionally, additional
noise can be injected during the sampling steps to introduce stochasticity into the ODE solving process.
We focus only on the sequence distribution decoded by the network in the final sampling step, employing
a low-temperature softmax strategy to derive an approximate discrete one-hot amino acid sequence as the
final sequence.

4 EXPERIMENTS

4.1 TRAINING SETTING

The training dataset of the model includes the PDB (Zardecki et al., 2022) and AlphaFold Database (AFDB)
(Varadi et al., 2021). We performed rigorous data cleaning on augmented data from AFDB to obtain high-
quality results. Detailed descriptions can be found in the appendix. We focus on small monomer proteins
that can be easily synthesized using commercial oligo-pool method and the models are trained on crops of
lengths up to 128. The model training utilized the Adam optimizer Kingma & Ba (2017) with a learning rate
of 1e-3, β1 = 0.9, β2 = 0.999, and a batch size of 32. Details are provided in the Appendix.
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Algorithm 1 Pallatom Inference
1: def SampleDiffusion ({f∗}, T = 200, λ = 1.003, η = 2.25, γ0 = 0.2, tmin = 0.01, tmax = 1.0):
2: δt = 1/T
3: cT = GetNoiseSchedule(1− uniform(0, 1) · δt)
4: r⃗l ∼ cT · N (⃗0, I3)
5: for all t ∈ {T, . . . , 1} do
6: tp = t/T − uniform(0, 1) · δt
7: cτ = GetNoiseSchedule(tp)
8: cτ−1 = GetNoiseSchedule(tp − δt)
9: r⃗l ← CentreRandomAugmentation(r⃗l)

10: γ = γ0 if tmin ≤ t/T ≤ tmax else 0
11: t̂ = cτ (γ + 1)

12: r⃗l
nosiy = r⃗l + λ

√
t̂2 − c2τ · N (⃗0, I3)

13: r⃗l
denoised, f seq logits

i = MainTrunk({f∗}, r⃗lnosiy, t̂, tp)
14: δ⃗l = (r⃗l

nosiy − r⃗l
denoised)/t̂

15: dt = cτ−1 − t̂

16: r⃗l ← r⃗l
noisy + η · dt · δ⃗l

17: end for
18: return {r⃗l}, {f seq logits

i }

4.2 METRICS

While some evaluation criteria used for protein backbone generation are not suited for the new task, we
propose new metrics specifically designed for assessing all-atom protein generation.

The first criterion is structure designability. The traditional self-consistency process assesses the designabil-
ity of protein backbones (DES-bb). This involves using a fixed-backbone design model (e.g., ProteinMPNN
(Dauparas et al., 2022)) to generate Nseq sequences for the backbone, which are then folded by structure
prediction models like ESMfold (Lin et al., 2023). The backbone’s designability is evaluated by the optimal
TM-score or Cα-RMSD between the folded and original backbones. However, this metric is not suitable for
evaluating all-atom proteins, which include side-chain atoms. Therefore, we similarly define the designabil-
ity of all-atom protein generation, denoted as DES-aa. For the all-atom proteins, the sequence is used to
predict the structure, and the sample is considered designable if the mean pLDDT of the predicted structure
exceeds 80 and the all-atom RMSD (aaRMSD) is less than 2 Å. This metric ensures high atomic-level ac-
curacy and provides strong confidence in the structural integrity and designability of the predicted protein,
indicating that the sequence is likely to adopt its intended native fold.

The second criterion is structure diversity, denoted as DIV-str. This can be quantified by calculating the
clusters number of the designable structures using Foldseek (Van Kempen et al., 2024). For all-atom proteins,
we use a similar diversity evaluation method for the generated sequences, denoted as DIV-seq. Specifically,
we use MMseq2 (Steinegger & Söding, 2017) to calculate the clusters number of the designable sequences.

The last criterion is structure novelty, which evaluates the structural similarity between the generated back-
bones and natural proteins in the PDB, denoted as NOV-str. This is calculated by the TM-score of the
generated designable backbones compared to the most similar proteins in the PDB.

In our evaluation, we use the following two modes:

7
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Table 1: Comparison of various methods. Protpardelle utilized ProteinMPNN as an auxiliary tool in all-atom
proteins generation, resulting in identical results for CO-DESIGN 1 and PMPNN 1. In the case of Multiflow,
which can only generate protein backbones and sequences without side chains, the reported DES-aa metric
is based on CαRMSD rather than aaRMSD.

Method CO-DESIGN 1 PMPNN 1

DES-aa (↑) DIV-str/seq (↑) NOV-str (↓) DES-bb (w/wo) (↑) DIV-str (↑) NOV-str (↓)

Protpardelle* 30.00% 15 / 26 0.747 30.00% (80.23%) 15 0.747
ProteinGenerator 43.14% 83 / 706 0.791 93.14% (96.34%) 151 0.785
Multiflow* 62.74% 134 / 1042 0.753 84.69% (95.43%) 184 0.744
RFdiffusion N/A N/A N/A 78.29% (84.40%) 165 0.805

Pallatom 85.03% 291 / 1466 0.719 89.89% (94.46%) 318 0.716

all atom RMSD: 0.842
mean pLDDT:    84.42
maxTM-score:   0.633

all atom RMSD: 0.423
mean pLDDT:    90.71
maxTM-score:   0.61

all atom RMSD: 0.640
mean pLDDT:    90.72
maxTM-score:   0.54

all atom RMSD: 0.806
mean pLDDT:    89.08
maxTM-score:   0.53

A B C

D

Figure 2: Evaluation of proteins sampled from Pallatom. (A) Boxplot of aaRMSD for proteins sampled by
various methods under the CO-DESIGN 1 mode. Multiflow exhibits the CαRMSD. (B, C) The proportions
of secondary structures in designable proteins across different lengths are presented for CO-DESIGN 1 and
PMPNN 1 modes across various methods, with the total height of the y-axis representing the designability.
(D) Examples of high-quality, novel all-atom proteins sampled by Pallatom.

• CO-DESIGN 1: For methods that can predict both all-atom coordinates and sequences, DES-aa is
used. Diversity and novelty are evaluated based on the all-atom designable proteins.

• PMPNN 1: Other methods use DES-bb with Nseq = 1. Specifically, we calculate and display the
two DES-bb (w/wo) under conditions with and without the pLDDT > 80 constraint. Diversity and
novelty are evaluated based on the proteins filtered by DES-bb (w).

4.3 RESULTS

We sample Pallatom with 200 time steps using a noise scale γ0 = 0.2, a step scale η = 2.25 and evaluate
250 proteins sampled for each length L = 60, 70, 80, 90, 100, 110, 120. Our primary comparisons are with
state-of-the-art methods capable of generating all-atom proteins, such as Protpardelle (Chu et al., 2024) and

8
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ProteinGenerator (Lisanza et al., 2023). For backbone generation, we compare with RFdiffusion (Watson
et al., 2023). We also compared Multiflow (Campbell et al., 2024), which is capable of simultaneously
generating both backbones and sequences. All methods are evaluated using their open-source code and
default parameters.

As shown in Table 1, Pallatom surpasses previous methods in the CO-DESIGN 1 evaluation for generating
all-atom proteins. After incorporating pLDDT filter to ensure sequence quality, we observed that sequences
generated by Pallatom are comparable to those generated by ProteinMPNN. Remarkably, even though Pal-
latom has not undergone any training in fixed-backbone design tasks, it achieves this performance by pre-
dicting sequences using a single linear layer derived from aggregated atomic-level features. This remarkable
achievement stands out as the only high-performance method capable of designing all-atom structure among
existing approaches. This supports our hypothesis that learning P (all-atom) can effectively capture the
relationship between protein structure and sequence.

Furthermore, the all-atom protein structures generated by Pallatom show greater structural diversity. With
the same number of samples, Pallatom achieves twice the diversity of Multiflow and three times that of
ProteinGenerator. This highlights Pallatom’s enhanced ability to explore a wider range of conformations.
Likewise, Pallatom achieves the highest level of sequence diversity among all existing methods.

In the evaluation of backbone generation, we observed that without the pLDDT quality constraint, the DES-
bb metric is always overestimated, as evidenced by the substantial discrepancy between the two designability
metrics in Protpardelle for the same task. ProteinGenerator achieves an almost perfect backbone designabil-
ity, significantly surpassing other models. This indicates that sequence-based generative models can capture
highly designable backbone structures. However, its performance in structural diversity falls short com-
pared to structure-based generative models, highlighting a subtle trade-off between designability (DES-bb)
and structural diversity (DIV-str). Protpardelle performs below its counterparts across all metrics, suggesting
that network architecture and atomic representation play a crucial role in generative capability. Similar to the
results of the CO-DESIGN 1 evaluation, Pallatom not only generates protein structures with higher diversity
but also maintains strong designability and novelty.

We present a more detailed analysis in Figure 2. Pallatom maintains stable performance across all tested pro-
tein lengths, showing a balanced distribution of secondary structures. In the secondary structure distribution
of designable proteins under CO-DESIGN 1 and PMPNN 1 illustrated in Figures 2B and 2C, we observe that
comparative methods exhibit a limited preference for secondary structures, particularly in failing to generate
proteins with predominantly β-sheet structures. For example, the ProteinGenerator model shows a marked
preference for generating proteins with α-helical structures. This excessive tendency to produce a single
type of secondary structure deviates from our expectations.

Several designable all-atom proteins for case studies in Figure 2D. These highly novel proteins designed by
Pallatom show a highly ordered side-chain distribution, with hydrophobic side-chain concentrated internally
to form a stable hydrophobic core, and the surface covered by hydrophilic polar residues. This distribution
is consistent with the side-chain distribution of high pLDDT structures predicted by ESMFold, demonstrat-
ing that Pallatom has learned the physical and chemical properties that govern protein folding and residue
distribution from the all-atom distribution.

We further analyzed the performance of Pallatom on out-of-distribution (OOD) lengths. Specifically, we
conducted sampling and evaluation for lengths from 150 to 400. The results demonstrate that Pallatom
exhibits exceptional scalability, achieving the highest designability even at over twice the maximum training
length (L = 128). Detailed results are provided in the appendix.
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Table 2: Pallatom sample metrics.
Noise Level γ0 0.2 0.2 0.1 0.2 0.2
Step Scale η 1.75 2.25 2.25 2.75 3.25
Nsteps 200 200 200 200 200

DES-aa (↑) 57% 87% 89% 94% 93%
DIV-str (↑) 56 64 52 55 46

HHH(%) 28% 28% 45% 35% 38%
HEL(%) 56% 54% 44% 47% 51%
EEE(%) 16% 18% 11% 18% 11%

4.4 HYPERPARAMETER

We analyzed the impact of the sampling parameters and Table 5 presents the metrics for Pallatom when
sampling 250 proteins with L = 100. We observed that, under the same noise scale, increasing the step
scale η leads to a corresponding rise in designability, as well as an increase in the proportion of all-helix
structures within the secondary structure. However, this improvement in designability comes at the cost of
reduced structural diversity, indicating a trade-off between these two metrics. We further demonstrated the
impact of varying step scales on the sampling of OOD-length proteins, with detailed results provided in
the appendix. Furthermore, we found that reducing the additional noise level to γ = 0.1 slightly enhances
designability but also significantly decreases structural diversity, consistent with the findings of previous
work (Yim et al., 2023b).

5 DISCUSSION

We introduce Pallatom, a highly efficient end-to-end all-atom protein generation framework that simulta-
neously captures the relationship between sequence and structure, enabling state-of-the-art performance.
Our modification of the atom14 representation removes the limitations of explicitly defining all amino
acid types during generation and provides a more accurate method for representing all-atom system coor-
dinates. We redesign the dual-track architecture of AlphaFold3 diffusion module, by developing a novel
mechanism comprising “ traversing” representations and dual-track recycling method. The new framework
efficiently adapts to all-atom protein structure diffusion generation. The results demonstrate that models
learning P (all-atom) exhibit strong performance and diversity in de novo protein generation, unlocking new
pathways for protein design. Future work includes developing a more generalized model architecture, ex-
panding our system to support the representation of small molecules, DNA, and non-standard amino acids,
and further enhancing the model’s capabilities in designing large complex systems, such as antibody com-
plexes and self-assembling materials.
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A RELATED WORK

Backbone Generation. Diffusion models based on SE(3)-equivariant network architectures and protein
representations using rigid frames have achieved significant success in protein generation, as evidenced by
models like Chroma (Ingraham et al., 2023), Genie2 (Lin et al., 2024), RFdiffusion (Watson et al., 2023),
FrameDiff (Yim et al., 2023b), FrameFlow (Yim et al., 2023a), Proteus (Wang et al., 2024), and FoldFlow2
(Huguet et al., 2024). These models now support multi-condition controlled generation and have been
extensively validated through both in-silico and wet-lab experiments.

Codesign Models. Recent methods have explored a co-design approach that simultaneously designs both
the backbone and sequence. Multiflow (Campbell et al., 2024) utilizes a diffusion process that jointly op-
erates on discrete sequences and continuous SE(3) backbones, eliminating the need for sequence redesign
with ProteinMPNN (Dauparas et al., 2022). CarbonNovo (Ren et al., 2024) employs a similar approach,
using SE(3) diffusion on the protein backbone while simultaneously designing a sequence at each step with
the MRF decoder. The sequence information is then embeded using the protein language model ESM2-3B
(Rives et al., 2021) to guide structural generation.

All-Atom Generation. Recent research teams have begun exploring fully all-atom generative representa-
tion systems. For instance, Protpardelle (Chu et al., 2024) employs a coordinates diffusion model to support
the generation of all-atom protein structures. ProteinGenerator (Lisanza et al., 2023) applies Euclidean dif-
fusion on one-hot encoded sequences, combined with a structure prediction module to obtain all-atom struc-
ture. RFdiffusionAA (Krishna et al., 2024), based on fine-tuning the RoseTTAFold2 (Baek et al., 2023), can
produce backbone structures of proteins and small molecule complexes but lacks side-chain conformations
for standard amino acids. We focus on the methods directly generate all-atom protein structures, the most
relevant work is Protpardelle, which uses an end-to-end approach to generate all-atom structures.

B TRAINING DATASETS

B.1 PDB DATA

We used PISCES (Wang & Dunbrack Jr, 2003) to obtain the required PDB list. For training, we selected a
subset of PDB entries with a resolution of <3Å and a 95% sequence identity threshold. We then performed
standard filtering to remove any proteins with >50% loops and applied a series of folding quality filters
(described below). This process resulted in 7,459 structures.

B.2 AUGMENTED DATA

Augmented data are widely used in protein modeling-related work. Consequently, we supplemented our
dataset with the AlphaFold Database (AFDB) (Varadi et al., 2021). The AlphaFold2 predicted structure
database is available under a CC-BY-4.0 license for both academic and commercial uses. The AFDB con-
tains a total of 214 million data points. By applying an average pLDDT threshold of >80 and limiting the
sequence length to a maximum of 128, we obtained 582,652 structures. In addition, we employed more
sophisticated filtering strategies to acquire designable and high-quality data, assessing the average neighbor-
ing atomic density for each residue to determine whether they are core residues. We found that with this
filter, core residue content >30% allows us to identify tightly packed structures. Furthermore, the number
and distribution of secondary structures can define the compactness and diversity of folding. We used DSSP
(Touw et al., 2015) to assign the protein secondary structures and removing structures with loop content
>50%. We also apply filter on the total number of continuous segments of β-sheet and α-helix to maintain
structural diversity. For highly extended structures, we limited the radius of gyration (Rg) to less than 25.0.
To avoid overly long continuous unstructured regions within the protein structures, we restricted the maxi-
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mum length of each loop to 15. Finally, we used the FoldSeek easycluster algorithm to remove redundant
structures, setting a TM score threshold of 0.8 and a coverage of 0.9, which removed approximately 30%
of highly similar structures. After applying these stringent filters, only 27,697 protein structures remained.
These structures typically exhibit good folding and high designability.

C ALGORITHMS

We provide a detailed description of the Pallatom modules and algorithm workflow below. In the pseu-
docode, the algorithms highlighted in blue are nearly identical to those of AlphaFold3 and are not expanded
to avoid unnecessary repetition.

C.1 MAINTRUNK

Algorithm 2 details the denoising process of the Pallatom MainTrunk network. Figure 3 displays the
detailed computational workflow for the AtomDecoder unit.

AtomAttention
Decoder

Attention
WithBias

Broadcast

si

Broadcast Broadcast
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Update
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Recycling Pair
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Figure 3: The detail architecture of the AtomDecoder unit.

C.2 TEMPLATEEMBEDDER

In the TemplateEmbedder module, we retained only the necessary mask and distogram features, and addi-
tionally included the timestep feature for self-conditioning.

C.3 ATOMFEATUREENCODER

The core of the AtomFeatureEncoder is derived from AlphaFold3, and we made two adjustments based on
specific tasks. First, To process standard protein residue conformations, we reduced the 20 original amino
acid conformations to a single backbone conformation, represented by alanine. Additionally, each residue
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Algorithm 2 MainTrunk

def MainTrunk ({f∗}, {rinputl }, t̂, t, catom = 128, cpair = 128, ctoken = 256, catompair = 16,
σdata = 16):
# Initialize positions and conditions embedding

1: r⃗l
scaled = r⃗l

intput/
√
σ2

data + t̂2 r⃗l
scaled ∈ R3

2: siniti = LinearNoBias((f residue idx
i )) siniti ∈ Rctoken

3: ti = TimeFourierEmbedding( 14 log(t̂/σdata)) ti ∈ Rctoken

4: siniti += ti
5: zinitij = RelativePositionEncoding(f∗) zinitij ∈ Rcpair

6: zij = zinitij + TemplateEmbedder({f∗}, zinitij , t, Nblock = 2, c = 64, d = cpair)
# Initialise single and atom embeddings
7: {si}, {qskip

l }, {cskipl }, {pskip
lm }, {cl} = AtomFeatureEncoder({f∗}, siniti , zij , r⃗l

scaled, ctoken, catompair, catom)
8: si += LinearNoBias(LayerNorm(siniti ))
# AtomDecoder Units
9: r⃗l

updates = 0 r⃗l
updates ∈ R3

10: for all unit ∈ {1, . . . ,Kunit} do
11: si = NodeUpdate(si, ti, zij , c = ctoken)

12: {qupdated
l }, {r⃗lupdate}, {cl} = AtomAttentionDecoder(qskip

l ,pskip
lm , cskipl , cl, si, zij)

13: r⃗l
updates += r⃗l

update

14: r⃗l
denoised = σ2

data/(σ
2
data + t̂2) · r⃗lintput + σdata · t̂/

√
σ2

data + t̂2 · r⃗lupdates

15: r⃗i
center = r⃗l

denoised[center uid]

16: zij = PairUpdate(zij , r⃗i
center, c = cpair)

17: end for
# SeqHead for amino acid decoding
18: ai = mean

l∈{1,...,Natoms}
tok idx(l)=i

(
ReLU(LinearNoBias({qupdated

l })
)

ai ∈ Rctoken

19: f seq logits
i = LinearNoBias(ai) f seq logits

i ∈ R20

return {r⃗ldenoised}, {f seq logits
i }

Algorithm 3 Template Embedder
def TemplateEmbedder ({f∗}, {zij}, t, Nblock = 2, c = 64, d = 128):
# Concat template features
1: btemplate pseudo beta mask

ij = f template pseudo beta mask
i · f template pseudo beta mask

j

2: btime
ij = t⊙ f template pseudo beta mask

ij t ∼ [0, 1)

3: aij = concat(f template distogram
ij , btemplate pseudo beta mask

ij , btime
ij )

# Embed self-condition positions
4: vij = LinearNoBias(LayerNorm(zij)) + LinearNoBias(aij) vij ∈ Rc

5: vij = PairformerStack(vij , Nblock)
6: uij ← LinearNoBias(ReLU(LayerNorm(vij))) uij ∈ Rd

return {uij}
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(token) was standardized to have 14 atoms, represented in the atom14 format. To prevent information leak-
age from the virtual atoms, they were defined based on the Cα atom. Secondly, to accommodate the recycling
update mechanism between blocks, we utilized traversing atomic-level representations, these features flow
between blocks and only integrate with token-level information during the decoding phase.

Algorithm 4 AtomFeatureEncoder

def AtomFeatureEncoder ({f∗}, sinputi , zinputij , r⃗l
scaled, c = 256, d = 16, m = 128):

# Create the atom single conditioning: weighted by sequence
1: fref = concat(⃗f ref pos, f ref element) fref ∈ R14×7

2: cl = LinearNoBias(tile(fref )) cl ∈ Rm

3: f⃗ ref pos
l = tile(⃗f ref pos) f⃗ ref pos

l ∈ R3

4: cskipl = cl
# Embed offsets between atom reference positions
5: d⃗lm = f⃗ ref pos

l − f⃗ ref pos
m d⃗lm ∈ R3

6: vlm = (f ref space uid
l == f ref space uid

m ) vlm ∈ R
7: plm = LinearNoBias(d⃗lm) · vlm plm ∈ Rd

8: plm += LinearNoBias
(
1/(1 + ∥d⃗lm∥2)

)
· vlm

9: plm += LinearNoBias(vlm) · vlm
10: plm += LinearNoBias(ReLU(cl)) + LinearNoBias(ReLU(cm))

11: pskip
lm = plm

# Initialise the atom single representation as the single conditioning
12: qskip

l = cl + LinearNoBias(r⃗l
scaled) ql ∈ Rm

# Add atom positional and time conditioning
13: cl += LinearNoBias(LayerNorm(sinittok idx(l)))

14: plm += LinearNoBias(LayerNorm(zinittok idx(l)tok idx(m))

15: plm += LinearNoBias(ReLU(LinearNoBias(ReLU(LinearNoBias(ReLU(plm)))))))
# Cross attention transformer
16: qskip

l = AtomTransformer(qskip
l , cl,plm, Nblock = 3, Nhead = 4)

# Aggregate per-atom representation to per-token representation
17: si = mean

l∈{1,...,Natoms}
tok idx(l)=i

(
ReLU(LinearNoBias(qskip

l ))
)

si ∈ Rc

return {si}, {qskip
l }, {cskipl }, {pskip

lm }, {cl}

C.4 ATOMATTENTIONDECODER

We established a method for managing token-level and atomic-level information in the decoder layer. The
updated single- and pair-representations are simultaneously injected into the traversing atomic-level repre-
sentations, effectively preventing the repeated accumulation of redundant structural information.

C.5 NODEUPDATE

In AlphaFold3’s diffusion module, the single representation is updated by both the AttentionPairBias and
ConditionTransition algorithms, which use pre-defined structural representations as conditions. The Atten-
tionPairBias algorithm, which can be viewed as a conditional version of the RowAttentionWithBias algo-
rithm from AlphaFold2, additionly employs Adaptive LayerNorm (Ba, 2016) and SwiGLU (Shazeer, 2020)
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Algorithm 5 AtomAttentionDecoder

def AtomAttentionDecoder (qskip
l , pskip

lm , cskipl , cl, si, zij):
# Add trunk embeddings
1: ql = LinearNoBias(LayerNorm(stok idx(l))) + qskip

l

2: plm = LinearNoBias(LayerNorm(ztok idx(l)tok idx(m)) + pskip
lm

3: plm += LinearNoBias(ReLU(LinearNoBias(ReLU(LinearNoBias(ReLU(plm)))))))
# Cross attention transformer
4: ql = AtomTransformer(ql, cl,plm, Nblock = 3, Nhead = 4)
# Map to positions update
5: r⃗l

update = LinearNoBias(LayerNorm(ql))
# Update trunk embeddings to atom condition
6: cl = LinearNoBias(LayerNorm(stok idx(l))) + cskip

l

return {r⃗lupdate},{cl}

techniques to conditionally scale the representation values. The ConditionTransition algorithm acts as a
gate. Due to the lack of structural condition representation in generative models, we replace the structural
condition with time-based condition in the AttentionPairBias. This allows for adaptive scaling of network
updates based on the level of noise. Furthermore, we considered updating the single information between
blocks using residual connections instead of ConditionTransition. Our preliminary tests indicate that this
update method prevents the degradation of the single representation. We also used dropout during training
to mitigate the risk of overfitting and enhance the model’s robustness.

Algorithm 6 NodeUpdate
def NodeUpdate (si, ti, zij , c = 256):
# AttentionPairBias with updated pair bias
1: si += DropoutRowwise0.25(AttentionPairBias(si, ti, zij , βij = 0,Nhead = 8))
2: si += Transition(si)
return {si}

C.6 PAIRUPDATE

In the PairUpdate module, to minimize the number of parameters and maximize network depth, we opted
to use only the TriangleAttention algorithm, omitting TriangleMultiplication. Ablation studies from Al-
phaFold2 suggest that relying solely on TriangleAttention still enables accurate protein structure prediction.
We used a modified TriangleAttention algorithm, which uses the pair representation from the recycling struc-
ture as attention bias. To maintain consistency in the pair feature space, we binned the recycling structure
using the same parameters as in the TemplateEmbedder module, with a total of 39 bins ranging from 3.25 to
50.75 Å.

C.7 SMOOTH LDDT LOSS FUNCTION

During the training, we adopt the smooth LDDT loss as proposed by AlphaFold3, and implement a simplified
version specifically for all-atom proteins.
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Algorithm 7 PairUpdate
def PairUpdate (zij , rcenteri , c = 128):
# Obtaining the pairwise distance matrix through RBF discretization
1: dij =

∥∥r⃗icenter − r⃗j
center

∥∥ dij ∈ R
2: bij = LinearNoBias(Transform RBF(dij)) bij ∈ Rc

# TriangleAttention with coordinates pair bias
3: zij += DropoutRowwise0.25(TriangleAttentionStartingNodeWithBias(zij ,bij))
4: zij += DropoutColumnwise0.25(TriangleAttentionEndingNodeWithBias(zij ,bij))
5: zij += Transition(zij)
return {zij}

Algorithm 8 Smooth LDDT loss
def SmoothLDDTLoss (⃗rl, r⃗GT

l ):
# Compute distances between all pairs of atoms
1: δrlm ← ||⃗rl − r⃗m||
2: δrGT

lm ← ||⃗rGT
l − r⃗GT

m ||
# Compute distance difference
3: δlm = abs(δrGT

lm − δrlm)
4: ϵlm = 1

4 [sigmoid( 12 − δlm) + sigmoid(1− δlm) + sigmoid(2− δlm) + sigmoid(4− δlm)]
# Set the radius threshold and compute mean
5: clm ← 1(δxGT

lm < 15Å)
5: lddt = mean

l ̸=m
(clmϵlm)/mean

l ̸=m
(clm)

return 1 - lddt
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Table 3: Input Feature Descriptions
Input Feature Dimension Description

ref pos (14, 3) Atom positions in the reference conformer are given in Å.
The backbone atoms (N, C, Cα, O, Cβ) are listed in the first
five columns, while all side-chain atoms are moved to the
Cα atom position.

ref element (14, 4) We encode the backbone atoms based on their elemental
types [N, C, O], while the side-chain atoms are encoded as
a single class using ‘UNK’ (unknown).

ref space uid (Natom,) Numerical encoding of the residue index associated with
this reference conformer.

ref center mask (Natom,) Masks indicating the center atom of the residue.

residue index (Ntoken,) The pdb residue number for calculating relative positional
embedding

residx embedding (Ntoken, 32) The absolute position embedding by sinusoidal positional
encoding.

template distogram (Ntoken, Ntoken, 39) Pairwise distogram of pseudo Cβ are discretized into
38 bins of equal width between of bin min=3.25Å,
bin max=50.75Å, one more bin contains any larger dis-
tances.

template cb mask (Ntoken,) Mask indicating if the Cβ atom has coordinates for the tem-
plate at this residue, where 1 indicates existing tokens and
0 is used for padding tokens.

template time (Ntoken, Ntoken, 1) Normalized pairwise time-step feature, ranging from 0 to 1.

all atom positions (Natom, 3) The noisy position of all atoms in the system.
all atom mask (Natom,) Mask indicating which atom slots are used in the the sys-

tem.
t hat (1,) The noise level value for adding noise.
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D EXPERIMENT DETAILS

D.1 MODEL DETAILS

Table 4 provides a detailed list of the hyperparameters used for training.

Table 4: Pallatom training hyperparameters.
Parameter name Value
Batch size 32
Learning rate 0.001, No warm-up.
Examples per epoch 35156
Crop size 128
Loss weights Sequence loss weight α0 = 0.25,

Smooth lddt loss weight α1 = 1.0,
Token-level distogram loss weight α2 = 0.5,
Atomic-level distogram loss weight α3 = 0.5,
Intermediate loss weight α4 = 1.0
In the basic loss L0, weight allocation was applied to
residue types, with a weight of 2.0 assigned to polar
residues, and 1.0 to the others.

Diffusion timesteps (Nsteps or
T )

200

Self-condition rate 100%
EDM Noise schedule lognormal. ln(σ) ∼

N (Pmean, P
2
std), Pmean = −1.2, Pstd = 1.5,

σdata = 16,
Stochastic sampler tmin = 0.01, tmax = 1.0, noise
level γ0 = 0.2, noise scale λ = 1.003, step scale
η = 2.25

Transformer single representation dimension = 256, pair represen-
tation dimension=128, number of heads = 8, number
of decoder units = 8

Training Steps 3× 105

Training time ≈ 10 days
Device 4× A6000

D.2 ADDITIONAL RESULTS

D.2.1 OUT-OF-DISTRIBUTION PERFORMANCE

Evaluation of Metrics We conducted a comparative evaluation of Pallatom on longer sequence lengths
not encountered during training. Specifically, we sampled 250 proteins for each of the lengths L =
150, 200, 250, 300, 350, 400 for assessment. Notably, the maximum sequence length in Pallatom’s train-
ing set was 128, whereas in all comparison methods, the training data includes proteins with a maximum
length of up to 384. Figures 4 illustrate the designability, structural diversity, and structural novelty for each
length under the CO-DESIGN 1 and PMPNN 1 modes, respectively.
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We observed that in both evaluation modes, Pallatom exhibited the highest designability below twice the
maximum training length (L = 150−250), with structural diversity and novelty significantly surpassing the
Multiflow. At L = 300, Pallatom demonstrated designability comparable to Multiflow while outperforming
it in diversity and novelty. Even when extending to more than three times the maximum training length at
L = 350 and L = 400, Pallatom, although less advantageous in backbone design, still maintained the ability
to generate all-atom proteins, a feat unachievable by the other two comparison methods, Protpardelle and
ProteinGenerator.

A B

Figure 4: Comparison of Evaluation Metrics for Sampled Proteins at Longer Lengths. (A) and (B) respec-
tively show the designability, structural diversity, and structural novelty under the CO-DESIGN 1 mode and
the PMPNN 1 mode.

Secondary Structure Analysis We further analyzed the secondary structure preferences of sampled struc-
tures from all methods. Specifically, we utilized DSSP to classify the secondary structure of each residue in
the proteins. If the number of α-helix residues is more than five times the number of β-sheet residues, the
protein is classified as HHH, indicating an all-helix structure. Conversely, if the number of β-sheet residues
exceeds five times the number of helix residues, the protein is classified as EEE, indicating an all-β-sheet
structure. In other cases, where the proportions of the two secondary structures are balanced, the protein is
classified as HEL, representing a αβ mixed structure.

Figure 5 shows the secondary structure distributions of each method in the two evaluation modes, as well as
the secondary structure distributions of the designable proteins. This result indicates the ProteinGenerator,
multiflow, and Pallatom exhibit similar secondary structure preferences within the length range of 150-
400, with a roughly equal distribution between HEL and HHH structures. In contrast, RFdiffusion and
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Protpardelle show a stronger preference for HEL structures. Within the 150-400 length range, all models
rarely succeed in generating EEE structures.

A B C

Figure 5: Secondary Structure Distribution of Sampled Proteins at Longer Lengths. Figures (A), (B), and (C)
show the secondary structure distribution of all sampled proteins across all methods, the designable proteins
in CO-DESIGN 1 mode, and the designable proteins in PMPNN 1 mode, respectively.

All these experimental results demonstrate the superiority of the Pallatom model framework, highlighting its
remarkable scalability and generalization capabilities. We present additional case studies of proteins sampled
by Pallatom. Figure 7 presents additional examples of novel designable proteins sampled by Pallatom.
Figure 8 illustrates the high-quality designable proteins sampled by Pallatom under length distributions not
included in the training set.

Analysis of Sampling Hyperparameters We analyzed the effect of the step scale η on sampling proteins
of unseen longer lengths. In Table 5, the left column for each length corresponds to η = 2.5, while the right
column corresponds to η = 3.0. We observed that a larger step size in the gradient update direction improves
the designability of proteins, and as the number of designable samples increases, the structural diversity of
generated proteins also increases, with only a slight decrease in novelty. Additionally, consistent with the
observations in the main text regarding the impact of sampling hyperparameters on secondary structure
distribution, a larger step size is associated with a more pronounced preference for all-helix structures.

Table 5: Pallatom sample metrics with step scale η = 2.5 (left) and η = 3.0 (right).
Length 150 200 250 300 350 400

DES-aa 88% 93% 79% 93% 69% 81% 35% 66% 19% 41% 4% 18%
DIV-str 131 125 153 184 149 190 73 162 38 104 9 45
NOV-str 0.650 0.656 0.618 0.636 0.594 0.610 0.576 0.589 0.551 0.574 0.525 0.554

HHH(%) 44% 53% 53% 64% 54% 70% 60% 77% 64% 85% 69% 92%
HEL(%) 53% 44% 47% 36% 46% 30% 40% 23% 36% 15% 31% 8%
EEE(%) 2.8% 2.7% 0.0% 0.4% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

D.2.2 SEQUENCE QUALITY OF DESIGNABLE PROTEINS

We compared the quality of the sequences generated by Pallatom with those produced by ProteinMPNN for
the same protein structures designed by Pallatom. Figure 6 shows the pLDDT scores of the two sequences
predicted by ESMfold. We found that the sequence confidence score of Pallatom is slightly lower than that
of ProteinMPNN, with the maximum mean pLDDT difference not exceeding 2. We attribute this differ-
ence to both the training data and the tasks. Regarding training data, Pallatom was trained on a monomer
protein dataset, whereas ProteinMPNN was trained on a more diverse dataset that includes both monomer
and multichain structures. Additionally, when preparing the training set, ProteinMPNN focused more on the

23



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2025

sequence diversity under the same structure, while Pallatom needed to consider both sequence and structure
diversity. In terms of training tasks, the objectives of the two models are fundamentally different. Protein-
MPNN is concerned solely with sequence design given a real backbone, whereas Pallatom must balance the
dual objectives of structure generation and sequence generation from pure noise.

50 100 150 200 250 300 350 400
Length

50

60

70

80

90

100
pL

DD
T

Pallatom (PMPNN)
Pallatom (CO-DESIGN)

Figure 6: Comparison of pLDDT between sequences designed by Pallatom and ProteinMPNN across dif-
ferent lengths. Sequences designed by Pallatom are labeled as “Pallatom (CO-DESIGN),” while sequences
designed by ProteinMPNN based on the backbone are labeled as “Pallatom (PMPNN).”

D.2.3 ANALYSIS OF SAMPLING TIME

We conducted a comparative analysis of sampling times for each method. Specifically, we standardize the
diffusion sampling steps to T = 200 and sample 100 proteins for each length, calculating the mean and
standard deviation. All methods were tested on the same hardware: CPU: AMD EPYC 7402 @2.8GHz,
GPU: NVIDIA GeForce RTX 4090 with 24GB VRAM.

Table 6 presents the results. Thanks to JAX’s JIT compilation and our optimizations at the atom level
of Attention, Pallatom achieved the second fastest sampling speeds for lengths ranging from 100 to 350,
outperforming all methods except Protpardelle. At L = 400, even with the atomic-level length reaching
(14× 400)× (14× 400), Pallatom’s performance remains comparable to the second-fastest method, Multi-
flow, and is 5 times faster than RFdiffusion and 16 times faster than ProteinGenerator.

Table 6: Sampling Time (in seconds). The shortest time is highlighted in bold, and the second shortest is
indicated in italics.

Length 100 150 200 250 300 350 400

Protpardelle 10.9±0.1 11.3±0.2 11.7±0.2 12.5±0.2 24.5±0.5 26.3±0.6 27.6±0.9
ProteinGenerator 414.1±107.5 389.5±2.3 388.8±1.3 477.6±1.7 624.0±4.1 796.3±4.6 950.3±5.3
Multiflow 25.3±0.4 25.3±0.6 27.1±0.3 29.4±0.2 35.1±0.6 40.5±0.2 46.6±0.5
RFdiffusion 95.5±14.6 93.9±1.0 106.3±0.9 138.5±0.8 183.0±0.8 230.7±1.6 287.4±6.5
Pallatom* 10.2±0.1 12.1±0.1 18.2±0.1 21.9±0.1 33.3±0.1 40.4±0.1 57.5±0.1
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TM-Score: 0.619
RMSD: 2.86

TM-Score: 0.397
RMSD: 3.26

TM-Score: 0.523
RMSD: 2.86

TM-Score: 0.63
RMSD: 2.14

TM-Score: 0.49
RMSD: 3.19

TM-Score: 0.56
RMSD: 3.09

TM-Score: 0.484
RMSD: 3.42

TM-Score: 0.602
RMSD: 2.83

TM-Score: 0.542
RMSD: 2.74

TM-Score: 0.66
RMSD: 2.47

TM-Score: 0.60
RMSD: 3.66

TM-Score: 0.533
RMSD: 3.28

TM-Score: 0.655
RMSD: 3.01

TM-Score: 0.598
RMSD: 3.02

TM-Score: 0.439
RMSD: 3.8

TM-Score: 0.637
RMSD: 3.11

TM-Score: 0.514
RMSD: 4.12

TM-Score: 0.435
RMSD: 4.86

TM-Score: 0.566
RMSD: 3.6

TM-Score: 0.591
RMSD: 3.61

TM-Score: 0.457
RMSD: 3.36

TM-Score: 0.605
RMSD: 2.83

TM-Score: 0.517
RMSD: 3.54

TM-Score: 0.581
RMSD: 2.79

Figure 7: Additional novel designable proteins generated by Pallatom. The blue structures in the figure
represent the designable protein sequences generated by Pallatom, which have been predicted using ESMfold
and colored based on pLDDT scores. The white structures are the nearest neighbors from the Foldseek
database (using the default eight databases on the Foldseek web server), with the distances between the two
sets of structures evaluated using TM-Score and RMSD.
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L=150

L=200

L=250

L=300

L=350

L=400

Figure 8: Additional all-atom protein structures generated by Pallatom for longer sequence lengths. The
white structures represent those generated by Pallatom, while the colored structures are predicted by ESM-
fold and are colored according to pLDDT values, with bluer hues indicating higher pLDDT scores.
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