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Abstract
Recent developments in large language models
(LLMs) have led to their widespread usage for
various tasks. The prevalence of LLMs in society
implores the assurance on the reliability of their
performance. In particular, risk-sensitive applica-
tions demand meticulous attention to unexpect-
edly poor outcomes, i.e., tail events, for instance,
toxic answers, humiliating language, and offen-
sive outputs. Due to the costly nature of acquiring
human annotations, general-purpose scoring mod-
els have been created to automate the process of
quantifying these tail events. This phenomenon in-
troduces potential human-machine misalignment
between the respective scoring mechanisms. In
this work, we present a lightweight calibration
framework for blackbox models that ensures the
alignment of humans and machines with provable
guarantees. Our framework provides a rigorous
approach to controlling any distortion risk mea-
sure that is characterized by a weighted average
of quantiles of the loss incurred by the LLM with
high confidence. The theoretical foundation of our
method relies on the connection between confor-
mal risk control and a traditional family of statis-
tics, i.e., L-statistics. To demonstrate the utility of
our framework, we conduct comprehensive exper-
iments that address the issue of human-machine
misalignment.

1. Introduction
Large Language Models (LLMs) have proven to be per-
vasive in society with applications across various settings,
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including those of high sensitivity. While LLMs generally
perform quite well, there remains a low probability associ-
ated with the event that the models generate undesirable and
even catastrophic outputs, including misinformation, ma-
licious use cases, and harmful/toxic comments. Although
these responses are relatively rare, each occurrence has the
potential to cause significant harm to individuals or even
society as a whole.

Quantitative notions of disutility, such as toxicity, are typi-
cally based on human annotations that are costly to acquire.
To reduce labor cost, general purpose models, for exam-
ple, Detoxify (Hanu & Unitary team, 2020), have been
created to automatically generate disutility measures for
LLM outputs. Given the existence of both human and ma-
chine assessments, a common issue is the misalignment
of the two metrics, which might be caused by distribution
shift of human opinions when deploying the model. This
is further complicated by the lack of an inherent scale that
governs machine scores. While many techniques, such as,
Reinforcement Learning from Human Feedback (RLHF),
have been proposed to improve alignment, these approaches
typically do not provide guarantees regarding the alignment
of machine-generated scores. Even when such guarantees
exist, they often rely on assumptions that are hard to defend.
Moreover, many RLHF approaches require computationally
intensive model refitting (Christiano et al., 2017; Ziegler
et al., 2019; Casper et al., 2023).

In this work, we address the issue of misalignment through
the lens of risk control. In particular, we treat the human-
annotated disutility score as the ground-truth risk measure
and calibrate the raw outputs generated by the LLM to
control certain functionals of the risk distribution at a pre-
specified level. Unlike existing methods, our method does
not involve model refitting and provides finite-sample guar-
antees of risk control under no assumptions about the LLM
or the underlying data generation process.

The proposed framework substantially generalizes the exist-
ing literature in conformal risk control (Bates et al., 2021;
Angelopoulos et al., 2021; 2023), which only holds for tra-
ditional risk measures characterized by the expectation of
a loss function common in supervised learning problems.
These risk measures are not suitable for tail risks associated
with low probability events. By contrast, other works only
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Figure 1. Examples of distortion risk measures: Value-at-Risk
(VaRβ) and Conditional Value-at-Risk (CVaRβ).

consider risk measures that are quantiles of a loss function
on the human scores of the outputs (Mohri & Hashimoto,
2024; Cherian et al., 2024; Quach et al., 2024). While
taking into account the rare events, quantile risk measures
often underestimate the tail risk because they do not account
for information from the more extreme quantiles. A bet-
ter suited metric is the Conditional Value-at-Risk (CVaR)
(Rockafellar & Uryasev, 2000), which measures the average
of a range of upper quantiles. The CVaR is a special case
of distortion risk measures, defined as weighted averages
of loss quantiles, which is considered by Snell et al. (2022)
and Zollo et al. (2023), and shown in (Fig. 1). In this work,
we explore how distortion risk control can be applied to
align LLMs with respect to any disutility metric and lever-
age techniques from the theory of L-estimators in statistics
(van der Vaart, 1998) to achieve finite-sample control of any
distortion risk measure.

1.1. Related works and contribution

Quantile Risk Control. Traditionally, conformal risk con-
trol is characterized by bounding the expected loss of a given
predictor to obtain provable guarantees (Bates et al., 2021;
Angelopoulos et al., 2021). Recent work has extended the
class of loss functions to a wider class of functions defined
by the loss for the quantiles of the data distribution, i.e.,
distortion risks (Snell et al., 2022). Existing methods rely
on replacing all quantiles by their confidence envelope to
form an upper confidence bound (UCB) on the true risk,
as described in (Bates et al., 2021). These procedures are
presented in more detail in 3.4. In our work, we directly
estimate any given distortion risk measure via L-statistics to
derive tight risk control bounds.

Connection to Best-of-N . Our work differs from
inference-time alignment strategies, such as, best-of-N ,
a fixed-sample inference-time heuristic. In contrast, our
method is an adaptive, risk-controlling strategy. In partic-

ular, best-of-N uses a fixed generation count N , meaning
that it always samples N responses for each prompt. Con-
versely, our framework uses an adaptive number of samples,
Nx, depending on the prompt and desired risk level. For ex-
ample, when a prompt is non-toxic, best-of-N generates N
responses, while our method may only require one, yielding
a lower average inference cost. We illustrate this difference
between the two methods in 4.2. Furthermore, best-of-N
implicitly assumes that the disutility function in the LLM
framework is well-aligned with the human user. Not only
does our method not make such assumptions, but we also
extend the problem of alignment by introducing and tuning
a parameter that effectively controls the human distuility of
an LLM generated response.

2. A risk-controlling approach for LLM
alignments

2.1. Problem setup

An LLM produces a response y(x) ∈ Y for any given user
prompt x ∈ X from a distribution p(y | x). The response
y(x) could be an answer to a question or a response to a
comment made by the user. To evaluate the disutility of
y(x), human-annotators are enlisted to rate different as-
pects of y(x), for instance, misinformation and toxicity. Let
r(y(x)) denote the human rating of y(x), which is generally
random due to cognitive uncertainty. Throughout the paper
we assume that r(y(x)) = 0 when the LLM declines to
respond. An example of a disutility measure is illustrated
in the Jigsaw Unintended Bias in Toxicity Classification
(cjadams et al., 2019) dataset, which provides toxicity labels
from up to 10 human-annotators for each of the 2 million
comments on a Civil Comments platform. The total score
r(y(x)) can be obtained by averaging over the ratings of
the annotators. For general disutility metrics, r(y(x)) can
also be defined as the negative reward estimated using the
Bradley-Terry model, as done in RLHF.

In most applications, one can leverage historical data to
train a model that estimates the human-rated disutility. For
example, Detoxify (Hanu & Unitary team, 2020) is a ma-
chine learning model that assesses the toxicity of responses.
Denote rm(y(x)) as the machine-generated disutility score
for a response y. Note that rm(y(x)) typically differs from
r(y(x)) and may even lack monotonicity with respect to
r(y(x)). Although machine ratings are inexpensive and
scalable, the misalignment, or lack of rank preservation
between the machine and human ratings diminishes its re-
liability. Moreover, it is often hard to interpret the scale
of the score and choose the right cut-off to decide whether
the generated data should be accepted, especially when ap-
plied to different contexts. For example, a sentence with
a toxicity score of 0.85 could be very toxic for workplace
conversations but acceptable in historian studies. Similarly,
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the RLHF reward only captures ordinal preferences rather
than cardinal values.

Given any generative model or sampler p(y | x), an aligned
model seeks to produce an output ỹ(x) in a way such that
the overall human-rated disutility, r(ỹ(x)), is minimized.
We call ỹ(x) a calibrated model.

Let x be a random draw from the population of prompts of
interest, and Fr(ỹ(x)) denote the distribution of r(ỹ(x)) over
x, which depends on the randomness of ỹ(·), and cognitive
uncertainty of r(·). To aggregate over different prompts
and integrate out the randomness of responses and cognitive
uncertainty, we can define a summary measure R

(
Fr(ỹ(x))

)
where Fr(ỹ(x)) denotes the cumulative distribution function
(CDF) of r(ỹ(x)) with x being a draw from a population of
prompts, and R(·) being a functional that maps any distri-
bution to a non-negative number. We denote R

(
Fr(ỹ(x))

)
usingR(F ) as a notational shorthand. As an example,R(F )
can be chosen as the mean disutility.

To achieve alignment, we aim to control the risk
R
(
Fr(ỹ(x))

)
at a pre-specified level α. This objective is

very different from existing practices (e.g., RLHF) that tar-
get the risk associated with the machine disutility rather
than the human disutility scores. It is a challenging task
because the human rating function r(·) operates as a black
box, and researchers can only observe its output for a given
set of prompt-response pairs.

Note that any risk level α can be achieved by abstaining
from responding to any prompts. Clearly, this should be
avoided. As will be seen later, the deployment cost of our
calibrated LLM increases as α decreases and could grow
to infinity as α → 0, if no abstention is allowed. As a
result, though being conservative may appear innocuous, it
is unnecessarily costly. To minimize deployment costs, we
would want R

(
Fr(ỹ(x))

)
to be as close to α as possible.

2.2. Choice of risk functions

In classical statistical decision theory, risk is often defined as
the expectation of a loss function, i.e. R(F ) = Er∼F [L(r)],
where L(·) is a loss function. However, considering that
the majority of generated data is normal, traditional risk
measures may fail to capture the disutility as these events
are only manifested in the tail.

Instead, we choose R(F ) to be a distortion risk measure
(e.g. Balbás et al., 2009; Snell et al., 2022), defined as a
weighted average of quantiles,

Rψ(F ) :=

∫ 1

0

F−1(p) dψ (1)

where F−1(p)
∆
= inf{x : F (x) ≥ p} denotes the p-th

quantile of F , and ψ(·) is a weighting measure such that

ψ(p) ≥ 0 and
∫ 1

0
dψ(p) = 1. An example of a distortion

risk measure is the widely-used CVaRβ (Rockafellar &
Uryasev, 2000) where ψ is the uniform measure on [β, 1].
Other examples include mean (with ψ the uniform measure
on [0, 1]) and β-th quantile, also known as Value-at-Risk, for
any β (with ψ the point mass at p). Examples of distortion
risk measures are shown in (Fig. 1). We also want to remark
that expected mean and quantiles are also special cases of
distortion risk measures.

2.3. Augmentation of LLM outputs

If the original output y(x) does not control the risk at α,
we need to refine it. Instead of modifying the underly-
ing data generating process p(y | x) based on the score
by retraining the model, we adopt a light-weight calibra-
tion approach that amounts to tuning a one-dimensional
parameter instead of the high-dimensional model parame-
ters. Specifically, for every prompt x, we request a response
from the LLM multiple times to generate a candidate set
C(x) = {y1(x). . . . , yN (x)}, where N denotes the set size.
To maximize the information content, we follow Quach et al.
(2024) in eliminating responses to ensure diversity, quality,
and set-confidence; see Appendix A.1 for details.

Our idea is to generate a nested sequence of subsets of C(x)
that have increasing disutility. Since we are not allowed
to collect human ratings on the fly, we use the machine
disutility score as a proxy. In particular, for each λ in the
range of machine scores Λ, we generate a set

Cλ(x) = {y(x) ∈ C(x) : rm(y) < λ}

by using the machine disutility score rm(·). Without loss
of generality, we assume Λ = [λmin, λmax]. We assign a
disutility score rλ(x) for Cλ(x) as the worst human rating,
i.e.,

rλ(x) = max
y∈Cλ(x)

r(y).

By design, rλ(x) is non-decreasing in λ, a key property that
our method leverages. Moreover, Cλmin(x) = ∅ for any x
and hence rλmin

(x) = 0. The process of generating Cλ(x)
and rλ(x) is illustrated in Figure 2.

Notably, Cλ(x) can be computed for any x and λ, because
it relies solely on machine disutility scores, whereas rλ(x)
is a black-box function that is only available for prompts
with collected human ratings. Our goal is to choose λ̂ based
on human-annotated data such that R(Frλ̂(x)) ≤ α. Since
rλ̂(x) is defined as the worst human score in Cλ̂(x), we
can pick any candidate ỹ(x) ∈ Cλ̂(x) and the resulting
risk R(Fr(ỹ(x))) will be controlled at level α. When Cλ̂(x)
is empty, the calibrated LLM simply declines to respond.
Importantly, the selection can be arbitrary – for example, we
could choose the response from Cλ̂(x) that has the minimal
machine disutility score or maximal information content
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Figure 2. Illustration of the process to generate C(x), Cλ(x), and rλ(x). We sample N responses yi, i = 1, . . . , N from the LLM
p(y | x). Each response is associated with a machine disutility score rm(yi(x)), and a human-rated disutility score r(yi(x)). To construct
Cλj (x), we keep the responses such that the machine toxicity score satisfies rm(yi(x)) ≤ λj for each λj ∈ Λ. Finally, we compute the
induced score rλ(x) by taking the maximum human disutility score of each Cλj (x).

measured by another metric. To summarize, we reduce
the task from retraining a calibrated LLM ỹ(x) with high-
dimensional model parameters to searching for a univariate
parameter λ̂.

3. Distortion risk control via L-statistics
3.1. Theoretical setting

Suppose we sample n prompts x1, . . . , xn i.i.d. from a
distribution. For each prompt, we generate the candidate
set C(xi) as described in Section 2.3, then recruit human
raters to score all responses in the set. Following the pro-
cedure in Section 2.3, we can obtain a dataset D that in-
cludes (xi, {rλ(xi)) : λ ∈ Λ}) for i = 1, . . . , n. We
assume that the machine disutility score model is pretrained
and independent of our dataset D. Then the data points
(xi, {rλ(xi)) : λ ∈ Λ}) remain i.i.d. Throughout the rest
of the section we denote a generic draw from the prompt
distribution by x.

For each λ ∈ Λ, we use the shorthand notation Rψ(λ)
for Rψ(Frλ(x)), where Rψ is the distortion risk measure
defined in (1) with a user-chosen weight measure ψ. Our
goal is to learn λ̂ from D such that

PD(Rψ(λ̂) ≤ α) ≥ 1− δ,

for some pre-specified (α, δ). Above, PD accounts for the
randomness inD. The parameter α represents the target risk
level and 1 − δ corresponds to the confidence level. This
formulation aligns with the standard objective of probably
approximately correct (PAC) learning and has also been

studied in the context of conformal risk control (Bates et al.,
2021; Angelopoulos et al., 2021).

3.2. L-statistics

L-statistics refers to the class of estimators expressed as
linear combinations of order statistics originating from
(Mosteller, 1946). Notable examples include the sam-
ple quantile, the trimmed mean, and the winsorized mean
(Tukey, 1962). Fixing λ ∈ Λ, let rλ,(1) ≤ rλ,(2) ≤ . . . ≤
rλ,(n) denote the ordered statistics of (rλ(x1), . . . , rλ(xn)).
Furthermore, let Fλ and F̂n,λ be the true and empirical
distributions of (rλ(x1), . . . , rλ(xn)), respectively. For a
given distortion risk measure, the plug-in estimator that re-
places the true distribution F by the empirical distribution
F̂n,λ is

R̂ψ(λ) = Rψ(F̂n,λ) =

∫
F̂−1
n,λ(p)dψ(p). (2)

By definition, F̂−1
n,λ(p) = rλ,(i) for any p ∈

(
i−1
n , in

]
, thus

it can be written as an L-statistic

R̂ψ(λ) =

n∑
i=1

{
ψ

(
i

n

)
− ψ

(
i− 1

n

)}
rλ,(i).

Theorem 22.3 of van der Vaart (1998) describes the asymp-
totic normality of L-statistics. Given this result, we show
that R̂ψ(λ) is an asymptotically normal estimator of Rψ(λ)
for any fixed λ ∈ Λ and we can find a consistent variance es-
timator. The proof of Theorem 3.1 is presented in Appendix
C.
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Theorem 3.1. Assume rλ(x) ∈ [a, b] almost surely for some
−∞ < a < b <∞, Fλ is continuous and strictly increas-
ing. Further, assume that ψ(y) =

∫ y
0
ψ′(z)dz for some

ψ′ that is bounded and continuous at Fλ(r) for Lebesgue
almost-every r. Then,

√
n(R̂ψ(λ)−Rψ(λ))

σ̂(λ)

d→ N(0, 1),

where

σ̂2(λ) =

∫ ∫
ψ′(F̂n,λ(r))ψ

′(F̂n,λ(r̃))Dλ(r, r̃) dr dr̃,

with F̂n,λ being the empirical distribution of
rλ(x1), . . . , rλ(xn) and

Dλ(r, r̃) = F̂n,λ(r ∧ r̃)− F̂n,λ(r)F̂n,λ(r̃).

Equivalently,

σ̂2(λ) =
1

n2

n∑
i,j=1

ψ′
(
i

n

)
ψ′

(
j

n

)(
i ∧ j
n
− ij

n2

)
. (3)

We assume the boundedness of rλ(xi) for simplicity. It is a
reasonable assumption for ratings which are often designed
to be bounded. It can be relaxed with more involved proof
techniques (Gardiner & Kumar Sen, 1979; Stigler, 1974).

Among all distortion risk measures, CVaRβ is the most
interpretable and widely-used metric. For CVaRβ , we can
find a much simpler variance estimator.

Corollary 3.2. For CVaRβ with ψ(p) = max{p −
β, 0}/(1− β), Theorem 3.1 holds with

σ̂2(λ) =
1

(1− β)2
V̂ar

(
{max{rλ(xi), rλ,(⌈nβ⌉)}ni=1}

)
,

where V̂ar denotes the sample variance.

Another important example is VaRβ . While the VaR is not
a distortion risk measure with a differentiable ψ, we develop
parallel theory in Appendix D based on the asymptotic the-
ory of empirical quantiles. Unlike CVaRβ , the asymptotic
variance depends on the density F ′

λ of ri and hence harder
to estimate. We apply the bootstrap technique (Efron &
Tibshirani, 1994) instead to estimate σ̂2(λ).

3.3. Conformal distortion risk control via L-statistics

By design, Rψ(λ) is monotonic in λ. This allows us to
apply the method of Bates et al. (2021) to achieve risk
control by inverting a pointwise upper confidence bound
(UCB). Specifically, we choose

λ̂ = max{λ ∈ Λ : R̂+
ψ (λ

′) ≤ α, ∀λ′ ≤ λ}, (4)

Figure 3. Illustration of λ̂. We choose λ̂ as the last λ such that
the (asymptotic) upper confidence bound R̂+

ψ (λ) falls below α.

where
R̂+
ψ (λ) = R̂ψ(λ) + z1−δ · σ̂(λ),

and z1−δ is the (1−δ)-th quantile of the standard normal dis-
tribution, as illustrated in Fig. 3. In practice, we discretize
Λ to avoid checking the condition R̂+

ψ (λ) ≤ α for infinitely
many points. Our procedure is outlined in Algorithm 1 and
illustrated in Fig. 2.

By Theorem 3.1, R̂+
ψ (λ) is an asymptotic (1− δ) UCB. Al-

though Bates et al. (2021) focus on traditional risk measures
that are expressed as expected loss, we can easily extend
their result (Theorem 6) to distortion risk measures.
Theorem 3.3. Let λ̂ be defined in (4). Assume Rψ(λ) is
continuous and strictly increasing. In the same setting as
Theorem 3.1

lim inf
n→∞

PD

(
Rψ

(
λ̂
)
≤ α

)
≥ 1− δ. (5)

As a consequence, for any selection mechanism that picks
ỹ(x) from Cλ̂(x),

lim inf
n→∞

PD
(
Rψ

(
Fr(ỹ(x))

)
≤ α

)
≥ 1− δ.

Remarkably, this result does not involve any assumption on
the underlying LLM p(y | x) or machine disutility score
model rm(x). In particular, it allows the machine ratings to
be arbitrarily misaligned with human ratings.

3.4. Alternative (conservative) approaches for distortion
risk control

Another strategy to construct pointwise UCBs for Rψ(λ)
is to replace all quantiles by their confidence envelopes.
Specifically, if we have statistics {q̂+p (λ) : p ∈ [0, 1]} such
that

P(qp(λ) ≤ q̂+p (λ), ∀p ∈ [0, 1]) ≥ 1− δ, (6)

then
∫ 1

0
q̂+p (λ)dψ(p) is a valid (1 − δ) UCB for Rψ(λ).

Following Snell et al. (2022), we consider two confidence
envelopes based on the Dvoretzky-Kiefer-Wolfowitz (DKW)
inequality and Berk-Jones (BJ) statistics, respectively. For
simplicity, we assume Fλ is continuous.
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Algorithm 1 Conformal distortion risk control
Input: machine-scoring model rm(·), discrete subset of
its range Λ, human-annotated scores r(·), set of prompts
X = (xi)

n
i=1, target level α, tolerance level δ, weighting

function ψ.
function DRC(X ,Λ, rm(·), r(·), α, δ, ψ)
for xi ∈ X do
C ← CANDIDATESET(xi) {See Algorithm 2}
for λ ∈ Λ do
Cλ(xi) = {}
for yk ∈ C(xi) do

if rm(yk) < λ then
Cλ(xi)← Cλ(xi) ∪ {yk}

end if
rλ(xi)← max{r(yj) : yj ∈ Cλ(xi)}

end for
end for

end for
for λ ∈ Λ do

(rλ,(1), . . . , rλ,(n))← SORT(rλ(x1), . . . , rλ(xn))

R̂ψ(λ)←
∑n
i=1

{
ψ
(
i
n

)
− ψ

(
i−1
n

)}
rλ,(i)

σ̂2(λ)← Eq. (3)
R̂+
ψ (λ)← R̂ψ(λ) + z1−δ · σ̂(λ)√

n
{UCB}

end for
λ̂← max

{
λ ∈ Λ : R̂+

ψ (λ
′) ≤ α, ∀λ′ ≤ λ

}
return λ̂

DKW inequality. The DKW inequality implies that, for
any λ ∈ Λ and ϵ > 0,

P
(
sup
r∈R
| F̂n,λ(r)− Fλ(r) |≥ ϵ

)
≤ 2e−2nϵ2 .

Letting ϵn,δ =
√
log(2/δ)/2n and r = qp(λ) for p ∈ [0, 1],

we obtain that, with probability at least 1− δ,

|F̂n,λ(qp(λ))− p| ≤ ϵn,δ, ∀p ∈ [0, 1].

This implies an upper confidence envelope as q̂+p (λ) =
rλ,(kn,p), where kn,p = ⌈n(p + ϵn,δ)⌉. Here, if kn,p > n,
we set rλ,(kn,p) = λmax, the upper bound of Λ.

Berk-Jones Statistics. As pointed out by Snell et al.
(2022) and Bates et al. (2023), the DKW inequality is overly
conservative for p close to 0 and 1. The BJ statistic uses
the fact that Fr(λλ,(i)) ∼ Beta(i, n − i + 1), where Beta
denotes a Beta-distribution. Let Bi,n−i+1 denote the cumu-
lative distribution function of Beta(i, n − i + 1). The BJ
statistic is then defined as

M+
n = max

1≤i≤n
Gi,n−i+1(Fr(rλ,(i))).

Let sδ be the δ-th quantile of M+
n . Clearly, sδ does not de-

pend on Fr becauseFr(rλ,i) ∼ Unif([0, 1]) whenFr is con-

tinuous. It can be computed in polynomial time (Moscovich
& Nadler, 2017). Let si = G−1

i,n−i+1(sδ). Then

P(qsi(λ) ≤ rλ,(i), ∀i ≤ n) ≥ 1− δ.

This yields an upper confidence envelope q̂+p (λ) = rλ,(i)
for any p ∈ (si−1, si]. For p > sn, we set q̂+p (λ) = λmax.

While both DKW and BJ approaches yield finite-sample
valid UCBs for Rψ(λ), they are conservative because they
do not target the specific choice of ψ. In fact, (6) implies
that

∫ 1

0
q̂+p (λ)dψ(p) is a uniform UCB across all weight

functions, i.e.,

P
(
Rψ(λ) ≤

∫ 1

0

q̂+p (λ)dψ(p), ∀ψ
)
≥ 1− δ.

Therefore, the actual coverage (i.e., probability that Rψ(λ)
is less than or equal to the above UCB) is typically much
higher than 1 − δ. By contrast, the UCB given by the L-
statistic is tailored to Rψ(λ) and the coverage converges to
1− δ as n→∞.

3.5. Deployment of the calibrated model

Recall that any choice of ỹ(x) ∈ Cλ̂(x) controls the risk
Rψ(Fỹ(x)). For a new prompt x, the most cost-effective
approach is to sample candidate responses y1, y2, . . . from
the underlying LLM p(y | x) until the first time the machine
disutility score is below λ̂. Suppose each sample incurs a
unit of computational cost. Given a prompt x, the sampling
cost follows a geometric distribution with rate P(rm(y) <

λ̂ | x, λ̂). Therefore, on average, for a given prompt x, we
expect the number of samples needed to generate a response
with disutility score less than λ̂ is

Nx =
1

P(rm(y) < λ̂ | x, λ̂)
.

This demonstrates that the number of responses generated
by our method, CDRC-L, is adaptive to the given prompt
x, unlike best-of-N . In other words, the (unconditional)
expected cost is

Cost(λ̂) = Ex

[
1

P(rm(y) < λ̂ | x, λ̂)

]
.

Suppose we have a hold-out set of prompts D′ that is in-
dependent of the dataset D defined in Section 3.1, Cost(λ̂)
can be estimated by

1

|D′|
∑
x∈D′

1

P̂(rm(y) < λ̂ | x, λ̂)
, (7)

where the probability is estimated by the Monte-Carlo
method.
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Figure 4. LLaMA2-7B: Realized CVaRβ vs. α (row 1) and average sampling cost vs. α (row 2) for Spearman correlation between
human and machine toxicity scores at ρ = 0.57 evaluated on held-out dataset with |D| = 6000. The confidence band is computed
by taking the mean estimate plus/minus one standard error estimated from the results across independent experiments. Each subplot in
the respective rows illustrates a different setting of β ∈ {0.5, 0.75, 0.9}. From the panels in the first row, we observe that our method,
CDRC-L (orange), is an improvement to CDRC-DKW (green) and CDRC-BJ (blue), as it is able to achieve risk control (shown in the
black dotted line) while being less conservative than both baseline methods. Evident from the panels in the second row, our method is
more cost efficient and least conservative in generating a risk-controlled LLM response than DKW or BJ.

4. Experiments
In this section, we perform experiments to investigate the
issue of human-machine misalignment by implementing our
conformal distortion risk control method to mitigate toxicity
of LLM-generated reseponses. This is a critical application,
as toxic outputs may cause severely negative impacts on
impressionable populations, moreover, propagate across
wide audiences, leading to misinformation and harm.

4.1. Experimental setup

Datasets and models. We randomly draw 10K prompts
from the REALTOXICITYPROMPTS dataset (Gehman et al.,
2020) . For each selected prompt xi, we generate 40 re-
sponses yj(xi) using the LLaMA2-7B model (Touvron
et al., 2023). Given the initial responses, we apply the
sequential algorithm described in Algorithm 2 to construct
the candidate response sets C(xi), ensuring the quality of
the selected responses. Specifically, we use perplexity (PPL)
to evaluate response quality, ROUGE-L to assess similarity
between responses, and restrict the maximum set size to
32 as a stopping criterion. More details can be found in
Appendix A.1.

Toxicity scores. To apply our method, we need a human
toxicity score function r(·) and a machine toxicity score
function rm(·). Human-annotated data can be costly and
time-consuming to acquire. To evaluate our method, we
create a cheap semi-synthetic benchmark using an existing
machine scoring model as the “human annotator,” and a
biased model as the “machine assessor.” Specifically, we
use the Detoxify model (Hanu & Unitary team, 2020) for
r(·) and retrain the Detoxify model for rm(·) on a biased
subset of the Jigsaw Unintended Bias in Toxicity Classi-
fication dataset (cjadams et al., 2019) that consists of the
c% most and least toxic instances. The goal is to design
rm(·) with varying degrees of misalignment from r(·). This
allows us to study the effect of misalignment on λ̂ and hence
the cost of tail risk control. In particular, we quantify the
misalignment between human and machine scoring mod-
els by the Spearman correlation coefficient ρ between the
scores across all candidate responses. In our experiment, we
train three models for rm(·) with c% ∈ {15%, 30%, 70%}.
The Spearman correlation coefficients are 0.57, 0.68, 0.78,
respectively. More details about these models can be found
in Appendix A.2.1.
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Figure 5. LLaMA2-7B: Spearman correlation vs. average sampling cost for CVaRβ with |D| = 6000.

Choices of parameters. We consider both CVaRβ and
VaRβ control with β ∈ {0.5, 0.75, 0.9}. We fix the con-
fidence parameter 1 − δ = 0.95. To determine a rea-
sonable target level α, we compute the empirical CVaRq
on human scores of all candidate responses with q ∈
{1%, 5%, 10%, 15%, 20%}; see Appendix A.3. This sug-
gests a range of reasonable target levels. In particular, we
consider α ∈ {0.15, 0.2, 0.25, 0.3, 0.35}.

Evaluation. We randomly split the prompts, using |D| ∈
{50, 100, 200, 1000, 6000} to determine the optimal thresh-
old λ̂ and the remaining as a held-out test dataset. For each
method, after selecting λ̂, we deploy the calibrated model on
the held-out dataset. We then evaluate the realized CVaRβ
and VaRβ of human scores and estimate the sampling cost
following (7). We apply all three versions of conformal dis-
tortion risk control based on L-statistics, DKW inequality,
and BJ statistics. We refer to them as CDRC-L, CDRC-
DKW, and CDRC-BJ, respectively, where CDRC stands for
conformal distortion risk control. For CDRC-L and CDRC-
DKW, we repeat for 15 times, and for CDRC-BJ, we repeat
for 3 times due to computational complexity to compute sδ .

Additional models. We conduct additional experiments
using the LLaMA3.2-3B, and LLaMA3.1-8B models. Fol-
lowing the same implementation details as described, we
obtain results that are highlighted in Appendix E.

4.2. Results

Realized risk and average cost analysis. Fig. 4 shows
the realized CVaRβ of human scores and the average sam-
pling cost with ρ = 0.57 on the held-out dataset as functions
of α for β ∈ {0.5, 0.75, 0.9} with |D| = 6000. The panels
in the first row shows that all methods control the risk at
the target level and CDRC-L is least conservative, as dis-

cussed in Section 3.4. As a result, it incurs the smallest
deployment cost among all three methods. Moreover, as
β increases, the advantage of CDRC-L is more prominent.
Although CDRC-BJ improves upon CDRC-DKW due to the
tighter bounds for extreme quantiles, it still underperforms
CRDC-L. On the other hand, the gap between the target and
realized CVaRβ stays nearly constant for CDRC-L across
different values of β, suggesting that L-statistics are adap-
tive to different choices of ψ. Results for ρ = 0.68, and
ρ = 0.78 are presented in Appendix B.1, showing similar
patterns.

We present the results for VaRβ control with ρ ∈
{0.57, 0.68, 0.78} in Appendix D. The comparison between
CDRC-L, CDRC-DKW, and CDRC-BJ are qualitatively
similar to CVaRβ control. Notably, the realized VaRβ of
CDRC-L is extremely close to the target level with low sam-
pling cost, demonstrating that it is not conservative while
remaining the most cost effect among all methods.

Cost and misalignment. Next, we examine how the de-
ployment cost varies with the misalignment between human
and machine ratings. Fig. 5 demonstrates that, for all set-
tings of β, as the Spearman correlation coefficient increases,
the cost of generating a CVaRβ-controlled LLM response
drops. This confirms our intuition that better-aligned ma-
chine ratings reduces the cost of calibration. Similar trends
are observed for VaRβ control, as shown in Appendix D.

Performance in small samples. Human annotations are
the primary contributors to the calibration cost in our frame-
work. Nevertheless, we demonstrate that our method retains
statistical efficiency even with smaller calibration sets, such
as, |D| ∈ {50, 100, 200, 1000}

From Fig. 6, it is evident that CDRC-L is consistently the
least conservative among all methods, while still maintain-
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Figure 6. LLaMA2-7B: Realized CVaRβ vs. calibration set
size for β = 0.5, α = 0.25, ρ = 0.57. The confidence bands
are constructed by taking the mean estimate ± one standard error
estimated from the results across 15 independent experiments.

Figure 7. LLaMA2-7B: Average sampling cost for CVaRβ con-
trol vs. calibration set size for β = 0.5, α = 0.25, ρ = 0.57.
The confidence bands are constructed by taking the mean estimate
± one standard error estimated from the results across 15 indepen-
dent experiments.

ing the guaranteed CVaRβ control. Furthermore, from Fig.
7, we observe that CDRC-L is consistently the most cost
effective among all methods. In particular, it is significantly
less expensive in comparison to other methods in settings
with small calibration set sizes. We show qualitatively equiv-
alent results for VaRβ in Appendix D.

Comparison to best-of-N . We compared the two meth-
ods under a controlled setup: setting β = 0.5, using
N ∈ 3, 5 for best-of-N , and calibration set size n = 1000.
Following the procedure in 4.1, we evaluated the realized
CVaRβ of human-annotated toxicity scores using the re-
sponse with the lowest machine score from each group of
N samples:

Best-of-N Mean CVaRβ ± standard deviation
Best-of-3 0.2427± 0.0068
Best-of-5 0.2015± 0.007

Table 1. Beta CVaRβ Human Scores with standard deviation
across trials.

The results in Table 1 demonstrate that our method achieves
comparable CVaRβ control with lower average inference
cost than best-of-N (see Fig. 4). In particular, on average,
for β = 0.5, best-of-3 controls CVaRβ at approximately
level α = 0.25, and CDRC-L can achieve the same level of
control by generating less than 3 LLM responses. Further-
more, on average, for β = 0.5, best-of-5 controls CVaRβ at
approximately level α = 0.20, while CDRC-L can achieve
the same level of control by generating less than 3.5 re-
sponses.

5. Discussion
We close the paper by discussing a few potential generaliza-
tions and extensions of our method.

Theorem 3.3 only works for the population of prompts that
has the same distribution as the data the method operates
on. In the presence of distribution shifts, we can potentially
adapt the reweighting technique for traditional expected
risk measures (Tibshirani et al., 2019; Lei & Candès, 2021;
Candès et al., 2023) to correct for bias for L-statistics.

Due to the rise of RLHF, preference data has become in-
creasingly prevalent. While the above method only works
with direct human ratings, there is a potential of adapta-
tion to handle preference data, which exhibits a U-statistic
structure.
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Impact Statement
This paper presents work whose goal is to advance the field
of machine learning by ensuring safe deployment and align-
ment of large language models (LLMs). There are many
potential societal consequences of our work, for instance,
addressing the potential misalignment between human and
machines, recalibrating machines such that they are better
aligned with humans, and controlling the tail risks asso-
ciated with language models. In this project, we did not
use directly use data from humans. There are not negative
impacts which we feel must be specifically highlighted here.
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Supplementary Materials
In the supplementary materials, we provide implementation details, additional experimental results, and formalized proofs.
Code repository can be found at https://github.com/jy-evangeline/DRC.

Notation

Table 2. Summary of notation used in the paper.

Symbol Meaning

X User prompt space.
Y LLM output space.
x User prompt drawn from X .
y(x) LLM response given a user prompt x ∈ X .
ỹ(x) Calibrated LLM response given a user prompt x ∈ X .
p(x | y) Data generating process of LLM.
C(x) Set of uncalibrated responses generated by an LLM, where |C(x)| = N for a given prompt x.
Cλ(x) Set of responses y generated by an LLM satisfying rm(y) < λ for a given prompt x.
r(y) Human-generated disutility score of response y(x).
rm(y) Machine-generated disutility score of response y(x).
rλ(x) Disutility score for Cλ(x) as the worst human rating, i.e. rλ(x) = maxy∈Cλ(x) r(y).
Fr(ỹ(x)) Cumulative distribution function (CDF) of r(ỹ(x)) over x.
R(Fr(ỹ(x))) Summary measure of Fr(ỹ(x)), where R(·) is a functional that maps any distribution to a non-negative

number. Denote as R(F ) as a shorthand.
Λ Range of machine scores with Λ = [λmin, λmax]
D Dataset of (xi, {rλ(xi) : λ ∈ Λ}) for n i.i.d. prompts x1, . . . , xn.
Rψ(Fr(ỹ(x))) Distortion risk measure, where ψ(·) is a weighting measure such that ψ(p) ≥ 0, and

∫ 1

0
dψ(p) = 1.

Denote as Rψ(λ) as a shorthand.
Fλ True distribution of (rλ(x1), . . . , rλ(xn)).
F̂n,λ Empirical distribution of (rλ(x1), . . . , rλ(xn)).
R̂ψ(λ) Empirical distortion risk measure of (rλ(x1), . . . , rλ(xn)) with

R̂ψ(λ) = R̂ψ(F̂n,λ) =
∫
F̂−1
n,λ(p)dψ(p).

α Prespecified risk control level.
1− δ Prespecified confidence level.

A. Implementation Details
A.1. Algorithm to generate the candidate set C

Following the original implementation of LLAMA-2-7B-HF model, we set the generation temperature at 0.8 and the top-p
parameter at 0.95. We generate candidate response sets for our DRC framework using Algorithm 2, following Quach et al.
(2024). To ensure quality and diversity of generated candidates, we filter responses by retaining only those with a Perpexity
less than 2.61 while ensuring that the ROUGE-L scores between samples in the candidate set is not greater than 0.26. Table
3 presents the percentiles of these metrics across all generated responses. Fig. 8 outlines the cardinality of the sets generated
by various combinations of γ.

Table 3. Percentiles of different hyperparameters.

Percentile 50 75 80 85 90 95

ROUGE-L 0.26 0.39 0.43 0.47 0.52 0.59
Perplexity 2.61 3.07 3.18 3.31 3.48 3.76
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Algorithm 2 Generation of the candidate set C(x)
Input: input prompt x, set-based confidence function F , text similarity function S, sample quality estimator Q, fixed
threshold configuration γ = (γ1, γ2, γ3), sampling budget kmax, with conditional output pθ(y | x) from a generative
model.
function CANDIDATESET(x,F ,S,Q,γ, kmax)
C = {}
for k = 1 to kmax do
yk ← y ∼ pθ(y | x) {Sample from generative model}
if Q(x, yk) < γ1 and max{S(yk, yj) : yj ∈ C} > γ2 then
C ← C ∪ {yk} {Quality and similarity control}

end if
if F(C) ≥ γ3 then

break{Set-based confidence guarantee}
end if

end for
return C

Figure 8. Size of generated sets under different combinations of hyperparameters. γ = (γ1, γ2, γ3) refers to (preplexity, similarity,
stopping threshold), respectively.

A.2. Detoxify model for r(·) and rm(·)

We use the original Detoxify model as a proxy for human annotator scores, then finetune this base model with various
sample sizes, a learning rate of 0.0001, a batch size of 16, and a weight decay of 3× 10−6 on a single Nvidia A40 GPU.
The Adam optimizer was employed with α = 0.9, β = 0.999, and ϵ = 10−8. We exclusively use the Detoxify framework
to evaluate the text generated by our model without the prompts.

A.2.1. A SEMI-SYNTHETIC EXERCISE RESULTS

To study the effect of human-machine misalignment, we create a semi-synthetic data set of human and machine-generated
toxicity scores. We use the Detoxify (Hanu & Unitary team, 2020) model as our “human” annotator, and a Detoxify model
finetuned on a biased subsample of toxic instances as our “machine” annotator. For details about implementation, see
Section 4.1. Table 4 outlines ROC-AUC (Area Under ROC Curve) comparison between the original Detoxify model, and the
finetuned model, which illustrates that the original Detoxify model outperforms the finetuned model in predicting toxicity.
Fig. 9 illustrates the distribution of human and machine-assigned scores for responses generated by the LLaMA2-7B
model across all sampled prompts. Both human and machine toxicity scores exhibit a long-tailed distribution in the
real-world dataset. Due to the Detoxify model being fine-tuned with an emphasis on “severe toxicity” samples, its scores are
predominantly concentrated in the lower range, highlighting a misalignment between human and machine assessments.

Table 4. Performance comparison of detoxify models.

Model ROC-AUC

Detoxify (original) 0.97
Finetuned Detoxify (ρ = 0.57) 0.86
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Figure 9. Distribution of toxicity scores assigned by humans (i.e., original Detoxify model) and machine (i.e., fine-tuned Detoxify model)
for responses generated by the LLaMA2-7B model across all prompts. The main plot shows the density of scores, highlighting a
long-tailed distribution in both human and machine evaluations. The zoomed-in plot illustrates that human scores have a heavier tail than
machine scores.

A.3. Choices of α

To select an appropriate value of α, we arrange rλ(x) in increasing order then rule out the top q% responses, and compute the
desired distortion risk of the lower (1− q)%. The calculated value is used as the target α. For details about implementation,
see Section 4.1. Table 5 outlines the rational α values under different settings of λ for different q% given that we are
interested in studying CVaR.

Table 5. Choice of α with different q% under various settings of γ for CVaR.

γ = (γ1, γ2, γ3) q = 1% q = 5% q = 10% q = 15% q = 20%

(3.07, 0.26, 32) 0.815 0.580 0.356 0.217 0.145
(3.18, 0.26, 32) 0.809 0.578 0.356 0.216 0.140
(3.31, 0.26, 32) 0.815 0.574 0.354 0.219 0.142
(3.48, 0.26, 32) 0.807 0.578 0.359 0.217 0.141
(3.76, 0.26, 32) 0.815 0.589 0.352 0.221 0.141

B. Additional experimental results for CVaRβ control
B.1. Impact of Human-Machine Misalignment

We evaluate the performance, i.e., average sampling cost, and realized CVaRβ on a held-out dataset, of our framework
CDRC-L, against baseline methods CDRC-DKW and CDRC-BJ. Fig. 4, Fig. 10, and Fig. 11 illustrate the setting when the
Spearman correlation (ρ) between the human and machine scores is 0.57, 0.68, and 0.78, respectively. From these figures, it
is evident that all methods effectively control the risk at the specified level α, given that they all fall below the black dotted
line (where α = CVaRβ). Our method, CDRC-L, is consistently the least conservative of all methods across different
values of β, and ρ. Conversely, baseline methods appear to grow increasingly conservative as β increases. As a consequence,
we see that our method is consistently the least costly across all settings of β, and ρ.

C. Proofs
C.1. Proof of Theorem C.1

We decompose the proof into two parts.

Theorem C.1 (Asymptotic normality of L-statistics). Let fλ, Fλ denote the PDF and CDF of the score ri, respectively, and
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Figure 10. Realized CVaRβ and average sampling cost on held-out dataset for ρ = 0.68 with |D| = 6000.

Figure 11. Realized CVaRβ and average sampling cost on held-out dataset for ρ = 0.78 with |D| = 6000.

F̂n,λ denote the empirical CDF of the scores r1, . . . , rn. Further, let

Rψ(λ) =

∫ 1

0

F−1
λ (p)dψ(p) and R̂ψ(λ) =

∫
F̂−1
n,λ(p)dψ(p),

for any measure ψ that may not have a density (e.g., ψ can be a point mass at p0 ∈ (0, 1)). Suppose
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1. ri ∈ [a, b] for some −∞ < a < b <∞ almost surely, with infr∈[a,b] fλ(r) > 0, and supr∈[a,b] f
′
λ(r) <∞.

2.
∫ dψ(t)

fλ(F
−1
λ (t))

<∞.

then
√
n(R̂ψ(λ)−Rψ(λ))

d→ N(0, σ2(λ)) where

σ2(λ) =

∫ 1

0

∫ 1

0

p ∧ p′ − p · p′

fλ(F
−1
λ (p))fλ(F

−1
λ (p′))

dψ(p)dψ(p′) <∞.

Proof. By the Bahadur-Kiefer representation (Kiefer, 1970) (see also Theorem E of (Csörgő & Révész, 1978)) of sample
quantiles we can write

∆n
∆
= sup
p∈[0,1]

|(F−1
n,λ(p)− F

−1
λ (p))fλ(F

−1
λ (p))− (Fn,λ(F

−1
λ (p))− p)|

= Op

(
log(n)1/2(log log n)1/4

n3/4

)
= Op

(
log(n)

n3/4

)
,

equivalently, ∣∣∣∣(F̂−1
n,λ(p)− F

−1
λ (p))−

Fn,λ(F
−1
λ (p))− p

fλ(F
−1
λ (p))

∣∣∣∣ = ∆n

fλ(F
−1
λ (p))

.

Given this, we have that

R̂ψ(λ)−Rψ(λ) =
∫ 1

0

(F̂−1
n,λ(p)− F

−1
λ (p))dψ(p)

=

∫ 1

0

Fn,λ(F
−1
λ (p))− p

fλ(F
−1
λ (p))

dψ(p) + δn

where

|δn| ≤ ∆n ·
∫ 1

0

1

fλ(F
−1
λ (p))

dψ(p) = Op

(
log(n)

n3/4

)
holds by assumption 2.

Thus we have that

√
n(R̂ψ(λ)−Rψ(λ)) =

√
n · 1

n

n∑
i=1

∫ 1

0

1{ri ≤ F−1
λ (p)} − p

fλ(F
−1
λ (p))

dψ(p) + op(1)

∆
=

1√
n

n∑
i=1

S(ri) + op(1)

By assumption 2,

S(ri) =

∫ 1

0

1{ri ≤ F−1
λ (p)} − p

fλ(F
−1
λ (p))

dψ(p) ≤
∫ 1

0

1

fλ(F
−1
λ (p))

dψ(p) <∞.

It remains to prove E[S(ri)] = 0 and Var(S(ri)) = E[S2(ri)] <∞.

To study the mean, note that by assumption 1, F−1
λ (p) is uniquely defined and P(ri ≤ F−1

λ (p)) = p. Thus,

E[S(ri)] =
∫ 1

0

E[1{ri ≤ F−1
λ (p)} − p]

fλ(F
−1
λ (p))

dψ(p) = 0
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To study the variance, observe that the second moment can be expressed as follows

E[S2(ri)] = E

[(∫ 1

0

1{ri ≤ F−1
λ (p)} − p

fλ(F
−1
λ (p))

dψ(p)

)2
]

= E
[∫ 1

0

1{ri ≤ F−1
λ (p)} − p

fλ(F
−1
λ (p))

dψ(p) ·
∫ 1

0

1{ri ≤ F−1
λ (p′)} − p′

fλ(F
−1
λ (p′))

dψ(p′)

]
=

∫ 1

0

∫ 1

0

E
[
(1{ri ≤ F−1

λ (p)} − p) · (1{ri ≤ F−1
λ (p′)} − p′)

]
fλ(F

−1
λ (p))fλ(F

−1
λ (p′))

dψ(p)dψ(p′)

Let B(p) = 1{ri ≤ F−1
λ (p)}. Notice that E[B(p)] = p, thus

E [(B(p)− p) · (B(p′)− p′)] = Cov(B(p), B(p′))

= E [B(p) ·B(p′)]− p · p′

=

{
p− p · p′ , if p ≤ p′

p′ − p · p′ , if p > p′

= p ∧ p′ − p · p′

Therefore,

Var(S(ri)) =

∫ 1

0

∫ 1

0

p ∧ p′ − p · p′

fλ(F
−1
λ (p))fλ(F

−1
λ (p′))

dψ(p)dψ(p′)

By assumption 2,

Var(S(ri)) ≤
∫ 1

0

∫ 1

0

1

fλ(F
−1
λ (p))fλ(F

−1
λ (p′))

dψ(p)dψ(p′) =

∣∣∣∣∫ 1

0

1

fλ(F
−1
λ (p))

dψ(p)

∣∣∣∣2 <∞.
Theorem C.2 (Consistent variance estimate for L-Statistics). In the same setting as Theorem C.1, assume the assumption 1
holds and that ψ(y) =

∫ y
0
ψ′(z)dz for some ψ′ that is bounded and continuous at Fλ(r) for Lebesgue almost-every r.

Let

σ̂2
n(λ) =

∫ b

a

∫ b

a

ψ′(F̂n, λ(r))ψ
′(F̂n, λ(r̃))(F̂n, λ(r ∧ r̃)− F̂n, λ(r)F̂n, λ(r̃)) dr dr̃.

If ψ′ is bounded, then σ̂2
n(λ)

a.s.−→ σ2(λ) as n→∞.

Proof. We first verify assumption 2. Take p = Fλ(x),∫ 1

0

1

fλ(F
−1
λ (p))

dψ(p) =

∫
ψ′(p)

fλ(F
−1
λ (p))

dp

=

∫ b

a

ψ′(Fλ(x))

fλ(x)
dFλ(x)

=

∫ b

a

ψ′(Fλ(x))dx.

The integral is bounded since ψ′ is bounded and a, b are both finite. Let p = Fλ(r), and p′ = Fλ(r̃) in the double integral
of σ2(λ), then

σ2(λ) =

∫ 1

0

∫ 1

0

p ∧ p′ − p · p′

fλ(F
−1
λ (p))fλ(F

−1
λ (p′))

dψ(p)dψ(p′)

=

∫ b

a

∫ b

a

Fλ(r ∧ r̃)− Fλ(r)Fλ(r̃)

�����fλ(r)fλ(r̃)
ψ′(Fλ(r))ψ

′(Fλ(r̃)) ·�����fλ(r)fλ(r̃) dr dr̃.
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By the Glivenko-Centelli Theorem, F̂n,λ(r)
a.s.−→ Fλ(r) for every r ∈ [a, b], thus, for any r, r′ ∈ [a, b],

F̂n, λ(r ∧ r̃)− F̂n, λ(r)F̂n, λ(r̃)
a.s.−→ Fλ(r ∧ r̃)− Fλ(r)Fλ(r̃).

Furthermore, since ψ′ is continuous at F (r) for almost every r under the Lebesgue measure, by the continuous mapping
theorem,

ψ′(F̂n, λ(r))
a.s.−→ ψ′(Fλ(r))

for almost every r under Lebesque measure. Suppose that ψ′ is bounded above by B, then

ψ′(F̂n, λ(r))ψ
′(F̂n, λ(r̃))(F̂n, λ(r ∧ r̃)− F̂n, λ(r)F̂n, λ(r̃)) ≤ B2,

thus
σ̂2
n(λ)

a.s.−→ σ2(λ)

by the Dominated Convergence Theorem.

C.2. Proof of Corollary 3.2

For CVaRβ , ψ(p) = max{p− β, 0}/(1− β) and hence ψ′ = I(p ≥ β)/(1− β). By (C.2),

σ2(λ) =
1

(1− β)2

∫ b

a

∫ b

a

(Fλ(r ∧ r̃)− Fλ(r)Fλ(r̃))I(Fλ(r) ≥ β)I(Fλ(r̃) ≥ β)drdr̃

=
1

(1− β)2

∫ b

F−1
λ (β)

∫ b

F−1
λ (β)

(Fλ(r ∧ r̃)− Fλ(r)Fλ(r̃))drdr̃.

Let Gλ be the CDF of r′i ≜ max{ri, β}. Then

Gλ(r) = Fλ(r)I(r ≥ F−1
λ (β)).

By Hoeffding’s covariance identity (Hoeffding, 1940),

Var(r′i) =

∫ b

a

∫ b

a

(Gλ(r ∧ r̃)−Gλ(r)Gλ(r̃))drdr̃ =
∫ b

F−1
λ (β)

∫ b

F−1
λ (β)

(Fλ(r ∧ r̃)− Fλ(r)Fλ(r̃))drdr̃.

Thus,

σ2(λ) =
1

(1− β)2
Var(r′i).

Since r′i is bounded, the Law of Large number implies that Var(r′i) can be estimated consistently by the empirical variance
of (r′1, . . . , r

′
n).

C.3. Proof of Theorem 3.3

The proof is very similar to Bates et al. (2021), except that they only consider expected risk measures. If Rψ(λ) ≤ α for all
λ ∈ Λ, then the result obviously holds. Assume supλ∈ΛRψ(λ) > α. Since Rψ(λ) is continuous and strictly increasing, it
crosses α exactly once. Let λ∗ denote the crossing point, i.e., Rψ(λ∗) = α. Then

Rψ(λ̂) > α⇐⇒ λ̂ > λ∗ =⇒ R̂+
ψ (λ

∗) ≤ α,

where the last line is due to the definition of λ̂. By Theorem 3.1,

lim
n→∞

P(R̂+
ψ (λ

∗) < Rψ(λ
∗)) = δ.

Since Rψ(λ∗) = α, we have

lim sup
n→∞

P(Rψ(λ̂) > α) ≥ lim sup
n→∞

P(R̂+
ψ (λ

∗) < Rψ(λ
∗)) = δ.

The proof is then completed.
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D. Distortion Risk Control for VaRβ

D.1. Asymptotics of empirical quantiles

Take ψ(q) = δβ(q), we obtain VaRβ(λ) = F−1
λ (β). Theorem 3.1 implies that the empirical β-th quantile is asymptotically

normal with variance

σ2
VaRβ

(λ) =
β(1− β)

f2λ(F
−1
λ (β))

.

Empirically, we use the standard Bootstrap procedure to estimate σ2
VaRβ

(λ) with 1000 samples.

D.2. Additional experimental results for VaRβ

We evaluate the performance, i.e., average sampling cost, and realized VaRβ on a held-out dataset with |D| = 6000, of
our framework CDRC-L, against baseline methods CDRC-DKW and CDRC-BJ. See Fig. 13 for ρ = 0.68, and Fig. 14
for ρ = 0.78. Similar to what we observe with CVaRβ , it is evident from the plots that all methods control the risk at the
specified level α since they fall below the black dotted line (where α = VaRβ) within the margin of error. Again, our
method, CDRC-L, is consistently the least conservative of all methods across different values of β, and ρ. As a result, we
see that our method is consistently the least costly across all settings of β, and ρ. Fig. 15 illustrates that for all settings of β,
as the Spearman correlation coefficient increases, the cost of generating a VaRβ-controlled LLM response decreases.

Figure 12. Realized VaRβ vs. α (row 1) and average sampling cost vs. α (row 2), and for Spearman correlation between human
and machine toxicity scores at ρ = 0.57 evaluated on held-out dataset with |D| = 6000. The confidence band is computed by
taking the mean estimate plus/minus one standard error estimated from the results across the independent experiments. Each panel in the
respective rows illustrates a different setting of β ∈ {0.5, 0.75, 0.9}. CDRC-L (orange), is an improvement to CDRC-DKW (green) and
CDRC-BJ (blue), as it is able to achieve risk control within the margin of error (shown in the black dotted line) while being more cost
efficient and less conservative than both baseline methods.
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Figure 13. Average cost and realized VaRβ on held-out dataset for ρ = 0.68 with |D| = 6000.

Figure 14. Average cost and realized VaRβ on held-out dataset for ρ = 0.78 with |D| = 6000.

Similar to the results for CVaRβ , from Fig. 16, it is evident that CDRC-L is consistently the least conservative among
all methods, while still maintaining the guaranteed VaRβ control within the margin of error. Furthermore, from Fig. 17,
we observe that CDRC-L is consistently the most cost effective among all methods. In particular, it is significantly less
expensive in comparison to other methods in settings with small calibration set sizes.

20



Conformal Tail Risk Control for Large Language Model Alignment

Figure 15. Spearman correlation vs. average sampling cost for VaRβ with |D| = 6000.

Figure 16. Realized VaRβ vs. calibration set size for β = 0.5,
α = 0.25, ρ = 0.57.

Figure 17. Average sampling cost for VaRβ control vs. calibra-
tion set size for β = 0.5, α = 0.25, ρ = 0.57.

E. Additional model results
E.1. LLaMA3.1-8B

To evaluate our tail risk control framework using the LlaMA3.1-8B model, we choose α ∈ {0.125, 0.15, 0.2, 0.25, 0.3}
for β ∈ {0.5, 0.75}, and α ∈ {0.2, 0.25, 0.3} for β = 0.9 for testing CVaRβ control. In addition, we choose α ∈
{0.05, 0.075, 0.1} for β = 0.5, and α ∈ {0.1, 0.15, 0.2, 0.25, 0.3} for β ∈ {0.75, 0.9} for testing VaRβ control. Using
ρ = 0.57, we illustrate the results for CVaRβ and VaRβ control in 18 and 19, respectively for |D| = 6000.

We examine the performance, i.e. the realized CVaRβ and VaRβ , and average sampling cost of our framework, CDRC-L, on
a held-out dataset against baseline methods CDRC-DKW and CDRC-BJ. Similar to what we observe with the LlaMA2-7B
model, it is evident from the plots that all methods control the risk at the specified level α since they fall below the black
dotted line (where α = CVaRβ or VaRβ) within the margin of error. Meanwhile, our method, CDRC-L, is consistently the
least conservative and hence most cost efficient of all methods across different values of β.
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Figure 18. LLaMA3.1-8B:Realized CVaRβ vs. α (row 1), and average sampling cost vs. α (row 2) for Spearman correlation
between human and machine toxicity scores at ρ = 0.57 evaluated on held-out dataset with |D| = 6000. Each panel in the respective
rows illustrates a different setting of β ∈ {0.5, 0.75, 0.9}. CDRC-L (orange), is an improvement to CDRC-DKW (green) and CDRC-BJ
(blue), as it is able to achieve risk control within the margin of error (shown in the black dotted line) while being more cost efficient and
less conservative than both baseline methods.

E.2. Llama3.2-3B

To evaluate our tail risk control framework using the LlaMA3.2-3B model, we choose α ∈ {0.15, 0.2, 0.25, 0.3, 0.35}
for β ∈ {0.5, 0.75}, and α ∈ {0.2, 0.25, 0.3} for β = 0.9 for testing CVaRβ control. In addition, we choose α ∈
{0.15, 0.2, 0.25, 0.3, 0.35} for β ∈ {0.5, 0.75, 0.9} for testing VaRβ control. Using ρ = 0.57, we illustrate the results for
CVaRβ and VaRβ control in 20 and 21, respectively for |D| = 6000.

Again, we examine the performance, i.e. the realized CVaRβ and VaRβ , and average sampling cost of our framework,
CDRC-L, on a held-out dataset against baseline methods CDRC-DKW and CDRC-BJ. Similar to what we observe with the
LlaMA2-7B and LlaMA3.1-8B model, it is evident from the plots that all methods control the risk at the specified level
α since they fall below the black dotted line (where α = CVaRβ or VaRβ) within the margin of error. Meanwhile, our
method, CDRC-L, is consistently the least conservative and therefore, the most least costly of all methods across different
values of β.
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Figure 19. LLaMA3.1-8B: Realized VaRβ vs. α (row 1), and average sampling cost vs. α (row 2), and for Spearman correlation
between human and machine toxicity scores at ρ = 0.57 evaluated on held-out dataset with |D| = 6000. Each panel in the respective
rows illustrates a different setting of β ∈ {0.5, 0.75, 0.9}. CDRC-L (orange), is an improvement to CDRC-DKW (green) and CDRC-BJ
(blue), as it is able to achieve risk control within the margin of error (shown in the black dotted line) while being more cost efficient and
less conservative than both baseline methods.

Figure 20. Llama3.2-3B: Realized CVaRβ vs. α (row 1), and average sampling cost vs. α (row 2) for Spearman correlation between
human and machine toxicity scores at ρ = 0.57 evaluated on held-out dataset with |D| = 6000. Each panel in the respective rows
illustrates a different setting of β ∈ {0.5, 0.75, 0.9}. CDRC-L (orange), is an improvement to CDRC-DKW (green) and CDRC-BJ (blue),
as it is able to achieve risk control within the margin of error (shown in the black dotted line) while being more cost efficient and less
conservative than both baseline methods.
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Figure 21. Llama3.2-3B: Realized VaRβ vs. α (row 1), and average sampling cost vs. α (row 2) for Spearman correlation between
human and machine toxicity scores at ρ = 0.57 evaluated on held-out dataset with |D| = 6000. Each panel in the respective rows
illustrates a different setting of β ∈ {0.5, 0.75, 0.9}. CDRC-L (orange), is an improvement to CDRC-DKW (green) and CDRC-BJ (blue),
as it is able to achieve risk control within the margin of error (shown in the black dotted line) while being more cost efficient and less
conservative than both baseline methods.
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