
Under review as submission to TMLR

Data Budgeting for Machine Learning

Anonymous authors
Paper under double-blind review

Abstract

Data is the fuel powering AI and creates tremendous value for many domains. However,
collecting datasets for AI is a time-consuming, expensive, and complicated endeavor. For
practitioners, data investment remains to be a leap of faith in practice. In this work, we
study the data budgeting problem and formulate it as two sub-problems: predicting (1) what
is the saturating performance if given enough data, and (2) how many data points are needed
to reach near the saturating performance. Different from traditional dataset-independent
methods like PowerLaw, we proposed a learning method to solve data budgeting problems.
To support and systematically evaluate the learning-based method for data budgeting, we
curate a large collection of 383 tabular ML datasets, along with their data vs performance
curves. Our empirical evaluation shows that it is possible to perform data budgeting given
a small pilot study dataset with as few as 50 data points.

1 Introduction

Collecting the appropriate training and evaluation data is often the biggest challenge in developing AI in
practice. While the emerging data-centric AI movement has garnered tremendous interest and excitement
in the research of the best practices of curating, cleaning, annotating, and evaluating datasets for AI, a
critically important piece in the data-for-AI pipeline that is still under-explored is data budgeting: Currently,
the investment of data remains to be a leap of faith: practitioners estimate their AI data budget mostly
based on their experience. Systematic and principled approaches for estimating the number of data points
needed for a given ML task are still lacking.

Throughout this work, we formulate Data Budgeting as two closely-related research problems: The first
research problem, Final Performance Prediction, is to predict the saturating ML performance that
we can achieve if given sufficient training data. This allows practitioners to gain insights on whether the
ML tasks they are handling are ML feasible in their current forms. The second research problem, Needed
Amount of Data Prediction, is to predict the minimum amounts of data to achieve nearly the saturating
performance as if we are given sufficient data. This allows practitioners to know whether their ML tasks are
practically feasible given their real-world data budget on data collection and data annotation.

Theoretical scientists have made great efforts to find the lower and upper boundaries for data budgeting
problems on whatever common learning models or specific models. In application field, Power-law-related
methods(fitting curves by y = a + b × xc, where y represents the test result and x represents the number
of data points for training) are prevalent in solving such problems as introduced in Rosenfeld et al. (2019)
and Johnson et al. (2018). Also, many works focus on problems requiring large training datasets such as
Sun et al. (2017) and Kaplan et al. (2020) targeting deep learning models and language models, respectively.
They tend to fit the accuracy curve and use the fitted curve to estimate the training effect with enough
data. However, throughout our work, we investigate how we can learn from existing datasets and make
data budgeting predictions for a brand new dataset. Our experiments show that there are common features
regarding the datasets with similar data budgeting results. Another difference is that existing work on data
scaling laws on pre-training foundation models on natural language and computer vision mostly looked at
web-scale datasets. At the same time, we focus on tabular datasets, which often have smaller sizes and are
more common in science and social science.

1

Under review as submission to TMLR

We have built a dataset of tabular datasets which contains 383 datasets for binary classification and multi-
classification tasks. The sources of these datasets are from OpenML and Kaggle. We use the built dataset
to verify that we can give the estimation of the two data budgeting problems for a new dataset through
learning from other datasets. Then we propose a new method called Multiple Splitting to make up the lack
of the test data in the research of pilot data and generate an array for each dataset. Later, we employ the
machine learning method to explore the relationship between the basic features of the dataset and its real
data budgeting.

Through the experiments, we find that learning from other datasets can help us make the prediction for the
new datasets. Our empirical evaluation shows that it is possible to perform data budgeting given a small
pilot study dataset with as few as 50 data points. What’s more, we analyze the valuation of different features
in solving these problems. Finally, we find some reasons that may lead to the wrong estimation of the final
performance and some conditions where our methods don’t perform very well.

2 Problem and Method

We formulate the data budgeting problem as: (1) Predicting final performance: what is the saturating
ML performance that we can achieve if given sufficient training data, (2) Predicting the needed amount
of data: the minimum amounts of data to achieve nearly the saturating performance as if we are given
sufficient data. For a machine learning task T , we want to enable the prediction given only a tiny pilot study
dataset (e.g., 50 labeled data, same distribution as whole dataset). The overview of the problem and the
method is shown in Figure 1.

Pilot
data

All data

Pilot
data

All data

Pilot
data

All data

Pilot
data

All data

Pilot
data

All data

Pilot
data

All data
Pilot
data

All data

Pilot
data

All data

Pilot
data

All data

D1
D5

D2

D3

D4

D6

D7

D8

D9

Pilot data All data

a b

c

Figure 1: Data Budgeting: Problem and Method. (a) For a machine learning task, when we only have
a few data points, we are curious about what will happen if we obtain more data points. (b) To solve such
problems, we can refer to other existing big datasets. (c) We can abstract the problem as final performance
and the needed amount of data prediction and quantify the pilot data by generating a learning curve related
to the number of data points we use for train. Then we can learn two models to map the learning curves
to final performance and needed amount of data separately. Therefore, we can give the prediction for tasks
with only a few data points.

2

Under review as submission to TMLR

Formally, for one big tabular dataset D with training set Dtrain and test set Dtest, we define the final
performance of such dataset as the result of AutoML model trained on Dtrain and tested on Dtest. Though
many AutoML Models with good performance exist, their difference is small compared to our estimation
task. Here we utilize the combination of Autogluon library Erickson et al. (2020) and Auto-sklearn Feurer
et al. (2015) by choosing the larger test result as the final test result. And the needed amount of data is
the minimum amount of data that is sampled from Dtrain where learning from such data can get nearly the
same result as the final performance when tested on Dtest.

Then we sample a few data points as a pilot dataset from each big dataset, and learn the relation between
the pilot dataset and final performance / needed amount of data. In order to quantify the pilot data, we use
an array s⃗ to represent it where sx represents the training performance when training with x data points.
Then we use the learning models such as linear models (linear regression model or logistic regression model)
and RandomForest models to find the mapping from s⃗ to the final performance / needed amount of data.

The generation of s⃗ Since s⃗ should be generated with only pilot data, boosting the credibility of each
sx is of great importance. Single Splitting method splits the pilot dataset once by sampling x data points
from the pilot data as train set and letting the remaining data points as test set. Multiple Splitting
method repeats such operations for many times and calculates the average. Figure 2 suggests the number
of repetitions be at least 500. We know that increasing the number of data for training will improve the
training result. However, if we don’t repeat sampling enough times, we will observe the fluctuation in the
curve where training with more data will not contribute to better results, which means the result we obtain
is not robust. And consider the efficiency, we don’t find much difference between sampling for 500 and 1000
times. Therefore, repeating for 500 times is enough. Formally, for a pilot dataset P ,

sx = avgd⊆P,|d|=xResult(Test on P\d, Train on d)

We choose RandomForest Method as the training method(Train on d). We explain why we choose Ran-
domForest Method in the appendix: AutoML method doesn’t work when data size is small; AutoML tends
to choose RandomForest-related model as the best model.

Repeat for 10 times Repeat for 100 times Repeat for 500 times Repeat for 1000 times

Train Set Size Train Set Size Train Set Size Train Set Size

F1
 m

ac
ro

0.85

0.80

0.75

0.70

0.65

0.60

0.85 0.85 0.85

0.80 0.80 0.80

0.75 0.75 0.75

0.70 0.70 0.70

0.65 0.65 0.65
0.60 0.60 0.60

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Figure 2: The curves generated by repeating for different numbers of times. We know that more
data points for train lead to better test results. The fluctuation of the curve means that we haven’t gotten
robust results. We can see that increasing the number of repetitions will decrease it. And considering the
trade-off between the curve quality and time spent, it is reasonable to repeat for 500 times.

Final Performance Prediction For a dataset D with training set Dtrain and test set Dtest, we use
Model O (AutoML) to train it and calculate F1macro on Dtest where the metric F1macro is suitable for the
real-world datasets which are commonly unbalanced. Finally, the final performance

OD = F1macro(Dtest)

Then we use linear regression model or RandomForest model to find the relation between s⃗ and OD.

Needed Amount of Data Prediction We define NeedD as the amounts of data we need to get nearly
the same result as the final performance. That is to say, if we randomly choose a subdataset of Dtrain whose

3

Under review as submission to TMLR

size is Needn, we will get similar test results on Dtest when training with either this subdataset or Dtrain.
Formally,

NeedD = argminnavgd⊆D,|d|=nf(d) > 0.99f(Dtrain)

where f(d) means the result tested on Dtest after training on d. Similar to the generation of s⃗, we use
RandomForest model to train. Moreover, f is not limited to the metric F1macro. We extend it into a
vector by adding the metrics Accuracy, F1_macro, Recall and Precision and redefine a⃗ > b⃗ as each item of
a⃗ is larger than the corresponding one of b⃗. By this way, we can give more stringent requirements for the
subdatset.

3 Data Budgeting Benchmark

To support and systematically evaluate the learning-based method for data budgeting, we curate a large
collection of 383 tabular ML datasets. The datasets are selected from OpenML(Vanschoren et al., 2013) and
Kaggle(kag), which are two big repositories for machine learning and consist of a lot of tabular datasets. All
the datasets’ corresponding tasks are binary classification tasks or multi-classification tasks. We selected the
datasets with more than 3000 pieces of data and the feature number of them is smaller than 50. The feature
number should be smaller than expected pilot data size to avoid underfitting in the process of learning.
Specifically, for the regression dataset, we change it to a binary classification task by dividing the labels into
two bins from the median of the label.

Datasets Summary In total, we have collected 383 datasets, covering diverse domains, including geo-
science domains like volcano and finance domains like credit card application. These datasets constitute the
new datasets D. Among them, 330 datasets are from OpenML including 170 binary classification datasets,
95 multi classification datasets and 65 regression datasets. Moreover, 53 datasets are from Kaggle, including
42 binary classification datasets and 11 multi classification datasets.

Datasets Preprocessing We first organized the datasets collected into the same format. Then for each
dataset, we randomly chose 3000 data points, 500 of which were then selected as the test set Dtest to simulate
the data distribution in reality. The remaining data points constituted the train set Dtrain. We used the
test set Dtest to evaluate the power with one learned model. We kept the test set untouched when training
the learned model. Then for each dataset, we generated a curve to depict the relationship between the power
of the learned model and the number of data points to train such model. The curve’s x-axis is the train set
size while the y-axis is F1macro. For x = p on the curve, we randomly sampled p data points from train set
Dtrain, trained them with RandomForest Model, and finally tested the model on test set Dtest. We repeated
the process above multiple times and calculated the average of test results for each p and each evaluation
metric. We saved them for the experiments and possible future study.

4 Experiments and Analysis

4.1 Experiment Result

Evaluation Method We split the datasets D for the verification of our method. Considering the similarity
of some datasets’ names and the possibility that their sources are the same, we divide the datasets into 100
clusters to ensure that similar datasets belong to one cluster. The details for clustering can be found in the
Appendix. In the testing phase, we choose 80 clusters for training and 20 clusters for the test. Due to the
limitation of current dataset D size, we employ bootstrapping by repeating choosing clusters for train and
test for 40 times and calculating the average as the result.

In terms of metrics, for the final performance prediction problem, we calculate the R2 value between the
estimated value and the final performance OD. For the needed amount of data prediction, we formulate it as
a classification task where we predict the range of the needed amount of data for each datasets. We assign
each dataset to one bin according to its needed amount of data. Specifically, we divide 0 − 2000 into five
bins: [0 − 104, 105 − 227, 228 − 430, 430 − 805, 805 − 2000]. And each bin contains nearly the same number

4

Under review as submission to TMLR

of datasets. We define Acc0 as the accuracy of predicting the correct bin for the datasets. Moreover, we
define Acc1 as the ratio of the datasets where we mispredict them but the predicted bins are one bin near
the correct bin.

Baseline: Dataset-independent Method Similar to the Powerlaw method introduced in Johnson et al.
(2018). For one dataset, we fit sx into the function f(x) = 1.0 − b ∗ xc where x is the number of data
points for train and f(x) is learning performance with such data points. We use this fitted function f(x) to
predict the final performance and estimate the needed amount of data. Specifically, we use f(2500) as final
performance and find the minimal x such that f(x) > 0.99 × f(2500) as the needed amount of data.

Learning based Method We use array s⃗ (sx = avgd⊆P,|d|=xResult(Test on P\d, Train on d)) to predict
the final performance and needed amount of data. We use two learning methods, linear regression and
RandomForest, to find the relation between the s⃗ and final performance. For linear regression model , we
fit the function y = k⃗s⃗ + b to find the k⃗ and b where y is OD, as introduced in 2. And for RandomForest
Model, we fit the tree to find the relation between s⃗ and final performance y = OD.

Similarly, we can also find the relation between needed amount of data and s⃗. For logistic regression model,
we learn the classification function y = g(k⃗s⃗ + b) where y is the corresponding bin of needed amount of data
introduced in 2. And for RandomForest model, we fit the RandomForest classifier to calculate the tree for
s⃗ and y.

The comparison of Powerlaw method and learning method result is shown in Table 1 with different pilot
data size. We find that learning method performs better than PowerLaw method, especially when pilot data
size is small. Linear model outperforms RandomForest on final performance prediction while RandomForest
has better performance on Needed Amount of Data Prediction.

When pilot data size is big, we tend to get more information about the datasets from the pilot data, thus
the difference between Powerlaw and Learning is small. However, when pilot data size is small, though
the information we can get is limited, we can refer to other datasets and learn some useful information for
prediction. Therefore there is big difference between Powerlaw method and Learning method.

Though the performance of linear models and RandomForest is different, they all outperform PowerLaw.
However, Linear models have better interpretability than RandomForest. We can choose to use linear model
or RandomForest model according to our actual needs.

Pilot Size Final Performance
Prediction (R2)

Needed Amount of Data
Prediction (Acc0)

Powerlaw Learning(LR) Learning(RF) Powerlaw Learning(LR) Learning(RF)
50 0.1714 0.5095 0.5188 0.1762 0.3673 0.4023
100 0.5500 0.6303 0.5687 0.1770 0.3988 0.4590
200 0.7465 0.7594 0.7385 0.2046 0.3961 0.4545

Table 1: Comparison of Power-law method and Learning method for different pilot data size. LR rep-
resents using Linear Regression/Logistic Regression model to fit whereas RF means using RandomFor-
est/RandomForestClassifier to fit. We can see that learning method performs better than PowerLaw method,
especially when pilot data size is small. Linear model outperforms RandomForest on final performance pre-
diction while RandomForest has better performance on Needed Amount of Data Prediction.

4.2 Analysis

We will show some findings when doing the experiments. The results shown are under the setting that pilot
data size is 100. However, the results under other pilot data sizes are similar to those under 100.

Splitting the dataset more times leads to better results. First we fix the pilot data size m = 100.
We find the gap between the learning performance trained on 80 data points and the final performance. As
shown in Figure 3(a), we compare four methods: (1) Single-Splitting: split the pilot data once, train on 80

5

Under review as submission to TMLR

Single Splitting Five-Fold Multiple Splitting Full Test Set

0.00

0.25

0.50

0.75

1.00

1.25

1.50

E
rr

o
r

R
a
te

(a) Comparison of Single-Splitting,Five-fold and Multiple
Splitting and Full Test Method

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

Absolute difference

Mi
n L

ab
el

Ra
tio

(b) The relation between prediction
error and the balance.

(c) One point prediction

Co
ef

1.5

1.0

0.5

0.0

-0.5

S_1
0
S_1

4
S_1

9
S_2

4
S_2

8
S_3

3
S_3

8
S_4

3
S_4

8
S_4

7
S_5

2
S_6

1
S_6

6
S_7

1
S_7

6
S_8

0
S_8

5

-1.0

(d) Visualization of the linear model’s coefficients.

Figure 3: The Analysis of Data Budgeting Prediction. (a) Comparison of Single-Splitting, Five-
fold and Multiple Splitting and Full Test Method We define the error rate to be abs(MD/OD − 1)
where MD means the value under different method and OD is the final performance of dataset D. From the
violin plot, we can see that methods except Single splitting tend to have smaller error rate. This indicates
that adding test set size will decrease the gap between pilot data result and real final performance. (b) The
relation between the prediction error and the balance. The x-axis represents the gap between the
prediction value and real value (abs(ypredict − ytrue)) while the y-axis represents the ratio of the minority
label in the pilot data (the proportion of the smallest category data in the overall data). Bigger y-axis
value means more balance. The blue line fits these dots and shows that the proportional relation between
the balance and error.(c) One point prediction.The picture shows the power of using linear model to
map one sx to the model O (AutoML). The y-axis indicates the R2 between our prediction value and the
O (AutoML). The power of sx reaches the highest when x is around 60 where the train set size is nearly
the same as test set size. (d)Visualization of the linear model’s coefficients.One point (s_x, ycoef)
represents the coefficient of s_x when using linear models to train the s⃗ array. For one certain dataset, if sx

is large when x is small, it tends to belong to class-0 (needed amount of data is small). On the other hand,
is sx is small when x is small and large when x is big, it tends to belong to class-4(needed amount of data
is big). Besides, we can see big difference for different classes in the early part of the curves. This indicates
that the performance trained with minor data points is important.

data points and test on 20 data points; (2)Five-Fold: Split 100 data points into 5 folds and do the valuation
for each fold; (3) Multiple Splitting, s80 as is defined before; (4) Full Test Set: sample 80 data points from
pilot data and test them on Dtest(500 data points). We find that Full Test Set result is closer to the final
performance where they share the same test set. This implies that the inaccuracy of predicting the final
performance may come from the lack of test set. Without enough test data, it is hard to tell how it performs
on the real data, let alone how close it is to the real result. Five-Fold method or Multiple Splitting method
serves as the method to increase the test set size. Actually, they compensated for the lack of test data to
some extent. Besides, Multiple Splitting Method can also generate an array and fully exploit the pilot data
in the process of assigning data points to either train or test sets.

6

Under review as submission to TMLR

The most informative part of the curve s⃗ is the center right. Apart from using the whole s⃗ array
for learning, we first use the simplest model: y = ksx + b for every chosen x to learn the relation between sx

and the final performance. From the observation in Figure3(c), we tend to easily find the relation between
sx and the final performance when the training and test set size are nearly the same. On the other hand,
when the difference of the train set size and the test set size is big, the power of prediction tends to decrease.

Inspired by such findings, we try to optimize the learning for the whole array. We print the coefficients for
each sx and select some of the sx smartly based on the absolute value of their coefficients, i.e the importance
of each sx. We choose five sx(s10, s14, s19, s52, s61) with maximal absolute value for learning and get better
R2 = 0.6634. One possible explanation of the improvement generated by choosing sx with smaller x is that
training with minor points helps us know the primary power of the data, i.e., whether we can easily study
the corresponding tasks. Besides, when balancing the train and test set size, we tend to have more accurate
test results and know more accurate training effects. Another reason the result improves is that there may
exist overfitting problems during the training.

Imbalanced Datasets are harder to predict We analyze which datasets are predicted incorrectly. As
is shown in Figure 3(b), the imbalanced datasets tend to be mispredicted. The reason is that we will have
few data for the minority label in the pilot data, thus lacking the cognition of these categories.

Early part of the curve s⃗ is important for needed amount prediction. To explain the power of
our prediction, we visualize the linear model’s coefficients in Figure 3(d). The 0-class, 1-class, ..., 4-class
represent 5 bins [0 − 104, 105 − 227, 228 − 430, 430 − 805, 805 − 2000] respectively to classify the datasets
according to their needed amount of data. We find that if we can already achieve a high F1macro in the
early part of the curve, then the needed amount of training data tends to be small. In contrast, if we observe
significant performance improvement when adding more data points, the needed amount tends to be large.
Besides, we can see a big difference for different classes in the early part of the curves. Such phenomenon,
along with the findings in the property of s⃗, indicates that the performance trained with minor data points
is important for data budgeting.

4.3 Generalization to Varying Pilot Study Dataset Size

The experiments in our previous experiments fix the size of the pilot data. However, in reality, the pilot
data size is not fixed. We generate the pilot data for one dataset D by first randomizing the pilot size m
and then sample m data points from Dtrain. When solving the generalized problems, we treat pilot size as
a new feature for training. Also, we define sx% = s⌊x%×m⌋. Therefore for different datasets, we can generate
the curves of the same length. For needed amount prediction, we redefine the label to be the needed number
divided by the pilot size, i.e., the times of the size of the pilot data we need. Furthermore, we divide the
datasets into 5 bins the same way as before. The result for the final performance prediction is 0.6997. For
the needed amount of data prediction, the accuracy Acc0 is 39.2% and Acc0 + Acc1 is 75%. The results
reflect that our method can also tackle the situation when the pilot data size is not fixed.

5 Related Works

In the theoretical field, VC dimension (Wikipedia contributors, 2021) measures the power of a binary classifier
by defining the VC dimension m as the largest possible value m where the classifier can separate m arbitrary
points. Also, VC dimension theorem gives the probabilistic upper bound on the model’s test error related
to the training set size. Meanwhile, sample complexity (Wikipedia contributors, 2022) gives the polynomial
bound for the needed number of samples when the VC dimension of the model is finite. The required number
of samples can be polynomial probabilistically bounded by test error. However, statistical learning theory
proves that the upper bound of the difference between training error and generation error will be enlarged
by the increase of capacity of the model(Goodfellow et al., 2016). That is to say, if the model is complex, it
is less likely to give an estimation of the discrepancy between training and testing error. Moreover, though
Kong & Valiant (2018) successfully estimates the accuracy when training with fix-distributed data on a linear

7

Under review as submission to TMLR

model, the actual data distribution seems like a black box to people. The judgment of the quality of data is
also hard for people. Therefore, more application methods have been introduced.

In the application field, power law function has always been a good tool to fit the curves that depict the
relationship between the number of samples and the performance, such as loss or error rate. Hashimoto (2021)
gives evidence of the possibility of such a scaling model for the linear model and general M-estimators. And
many works have been done to improve power-law model or make it more accurate for specific models.
Hestness et al. (2017) shows the generalization error and model size growth has the scaling correlation
with the size of training sets. Such scaling relationships give more insights for deep learning models on data
budgeting problems. Rosenfeld et al. (2019) focuses on the neural network model by approximating the error
rate with the number of samples and the width and depth of the neural network model. Such approximation
derives from power-law. Besides, Johnson et al. (2018) introduces hyperparameters and proposes inverse
square-root and biased power law in addition to traditional power law to give a more accurate estimation for
NLP or ML model. What’s more, Hashimoto (2021) refines the method of using log function to approximate
the error function related to sample number, which gives a good method of predicting the simple model
behavior.

For complex models, in the computer vision field, Sun et al. (2017) proves that increasing the number of
samples can increase the performance of vision tasks by either directly feeding more data points into the
model or training a better base model. It finds that the model performance increases logarithmically based
on the training data size for tasks including image classification and object detection. Moreover, Kaplan
et al. (2020) observes consistent scalings of language model log-likelihood loss with model size, dataset size,
and the amount of compute used for training. It also points to the log relation between the dataset size and
the performance in language models such as WebText2.

Besides log-linear related models, estimating Bayesian error rate(BER) of data distribution can help give
the upper bound of the performance with enough data. The estimation of BER is difficult. Renggli et al.
(2020) suggests using a simple 1-nearest-neighbor estimator on top of pre-trained embeddings to estimate
it without introducing hyperparameters. And BER estimation not only helps predict the final performance
but also serves as guarantees for website fingerprinting defences (Cherubin, 2017).

However, all the application methods introduced above are independent of other datasets. They seldom use
the experiences of predicting data budgeting from other datasets while our work utilizes the information of
those datasets.

6 Conclusion and Discussion

We discussed “data budgeting for Machine Learning”, which consists of two questions: final performance
prediction and needed amount of data prediction. Traditional methods are independent of other datasets.
To address this limitation, we build a benchmark consisting of over 300 tabular datasets to make it possible
to learn from other datasets. Our experiments verify that learning from other datasets has better effects
than traditional dataset-independent methods. Also from the analysis, we find that the performance when
training with minor data points is important for data budgeting prediction. The test set size and the balance
of the labels also influence the prediction. Finally, data budgeting problems are complex because they are
limited by the size of the pilot data and its incomplete display of real-world data. Such problems require
further exploration by refining the model or introducing more datasets with the help of Active Learning.

Broader Impact Statement

Our work recognizes the ability to predict the data budgeting for one dataset from learning other irrelevant
datasets. However, when evaluating the learning performance, we didn’t carefully distinguish the datasets
according to their label distribution, sources, etc. Actually, we can not guarantee that our method works
well for all the datasets, especially those whose label distribution is severely uneven or whose features have
too many dimensions. Moreover, the tabular datasets in our experiments are only subpopulations of all
the tabular datasets. There may exist some datasets with specific properties being ignored by us. And
sometimes the pilot data we get for a dataset doesn’t have the same population as real data population.

8

Under review as submission to TMLR

Therefore people should keep eyes on the pilot data distribution when they use our method. In the future,
more representative datasets should be intensively studied. Also, we can build and improve our model on
more fine-grained objectives.

Admittedly, in the process of our experiments, we need to train the machine learning model many times
to generate the training curve, which is vital for evaluation. However, generating the learning curves is
also unavoided when using power-law methods. In the future, one possible strategy is to build a library
containing the curves of those datasets to avoid double counting and help decrease the environment effect.

References
Kaggle. https://www.kaggle.com.

Giovanni Cherubin. Bayes, not naïve: Security bounds on website fingerprinting defenses. Proceedings
on Privacy Enhancing Technologies, 2017(4):215–231, 2017. doi: doi:10.1515/popets-2017-0046. URL
https://doi.org/10.1515/popets-2017-0046.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander Smola.
Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505,
2020.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter.
Efficient and robust automated machine learning. In Advances in Neural Information Processing Systems
28 (2015), pp. 2962–2970, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Tatsunori Hashimoto. Model performance scaling with multiple data sources. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 4107–4116. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/hashimoto21a.html.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory F. Diamos, Heewoo Jun, Hassan Kianinejad, Md.
Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable, empirically.
CoRR, abs/1712.00409, 2017. URL http://arxiv.org/abs/1712.00409.

Mark Johnson, Peter Anderson, Mark Dras, and Mark Steedman. Predicting accuracy on large datasets
from smaller pilot data. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 450–455, Melbourne, Australia, July 2018. Association for
Computational Linguistics. doi: 10.18653/v1/P18-2072. URL https://aclanthology.org/P18-2072.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020.

Weihao Kong and Gregory Valiant. Estimating learnability in the sublinear data regime. CoRR,
abs/1805.01626, 2018. URL http://arxiv.org/abs/1805.01626.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Cedric Renggli, Luka Rimanic, Luka Kolar, Wentao Wu, and Ce Zhang. Ease.ml/snoopy in action: Towards
automatic feasibility analysis for machine learning application development. In Proceedings of the VLDB
Endowment (VLDB 2020), July 2020.

Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction of the
generalization error across scales, 2019.

9

https://www.kaggle.com
https://doi.org/10.1515/popets-2017-0046
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://proceedings.mlr.press/v139/hashimoto21a.html
https://proceedings.mlr.press/v139/hashimoto21a.html
http://arxiv.org/abs/1712.00409
https://aclanthology.org/P18-2072
http://arxiv.org/abs/1805.01626

Under review as submission to TMLR

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effectiveness
of data in deep learning era, 2017.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science in machine
learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198. URL http://doi.
acm.org/10.1145/2641190.2641198.

Wikipedia contributors. Vapnik–chervonenkis dimension — Wikipedia, the free encyclope-
dia, 2021. URL https://en.wikipedia.org/w/index.php?title=Vapnik%E2%80%93Chervonenkis_
dimension&oldid=1057846532. [Online; accessed 17-February-2022].

Wikipedia contributors. Sample complexity — Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Sample_complexity&oldid=1068917677, 2022. [Online; accessed 6-March-
2022].

10

http://doi.acm.org/10.1145/2641190.2641198
http://doi.acm.org/10.1145/2641190.2641198
https://en.wikipedia.org/w/index.php?title=Vapnik%E2%80%93Chervonenkis_dimension&oldid=1057846532
https://en.wikipedia.org/w/index.php?title=Vapnik%E2%80%93Chervonenkis_dimension&oldid=1057846532
https://en.wikipedia.org/w/index.php?title=Sample_complexity&oldid=1068917677
https://en.wikipedia.org/w/index.php?title=Sample_complexity&oldid=1068917677

Under review as submission to TMLR

A Appendix

11

Under review as submission to TMLR

A.1 Dataset Splitting

When noticing the name of the datasets we have collected, we have found that many of them have similar
names. The source of data may be the same or they are describing the similar things. So if we want to verify
the effects of datasets-dependent algorithm, we should not to arrange the similar datasets in both training
and testing groups. For example, House8L and House are two similar datasets describing the house price,
we should put them either both in training set or in test set to assure that our training is robust.

To solve this problem, we first define the dataset similarity to be the SequenceMatcher value from difflib,
which aims to find the longest contiguous matching subsequence that contains no “junk” elements. The
sample heat map of the distance matrix can be shown in the Fig4. Then we do AgglomerativeClustering in
the package Pedregosa et al. (2011) from this distance matrix and then cluster the datasets into 100 groups.

Figure 4: Heatmap

A.2 AutoML and RandomForest

A.2.1 The selection of AutoML

There exist a lot of AutoML models. Here we show the difference between Autogluon and AutoSklearn on
the datasets we build in Figure 5. We can see that the performance of Autogluon and AutoSklearn is nearly
the same. Since our prediction is just to give a reference, the difference between different AutoML models
can be ignored. In our work, we use the combination of Autogluon and AutoSklearn.

Figure 5: Comparision between Autogluon and AutoSklearn

12

Under review as submission to TMLR

A.2.2 The reason we use RandomForest

In our work, we are required to generate curves. AutoML doesn’t work well when data size is small.
Therefore, to better know how AutoML works, we calculate the models selected in AutoML (Autogluon) for
one dataset in Table 2.

Table 2: The AutoML’s best model Statistics

Method Times to select as the best model
WeightedEnsemble_L2 323
RandomForestGini 14
RandomForestEntr 13
LightGBMXT 18
LightGBM 29
CatBoost 41
ExtraTreesGini 10
ExtraTreesEntr 10
XGBoost 25
LightGBMLarge 18
KNeighborsUnif 1
KNeighborsDist 1
NeuralNetFastAI 18
NeuralNetMXNet 12

We can see that Decision Tree based models(WeightedEnsemble_L2, RandomForestGini, Random-
ForestEntr’,LightGBMXT, LightGBM, CatBoost, ExtraTreesGini, ExtraTreesEntr) dominate the best mod-
els. Besides, RandomForest Result is closed to AutoML result with R2 = 0.8551. Since RandomForest is a
simple model, it’s easy to test, we choose RandomForest Model to approximate the training result(F1macros)
for pilot data.

A.3 Results for Other pilot size

To show the analysis in 4.2can be extended to the pilot data set size other than 100, we demonstrate the
results for pilot data set size 50 and 200. And we can get similar results as the results of pilot data set size
100.

Figure 6: Pilot data set size m = 50 Figure 7: Pilot data set size m = 200

Figure 8: One point prediction. The picture shows use linear model to map one sx to the oracle power . The
y-axis indicates the R2 between our prediction value and the oracle.

13

Under review as submission to TMLR

Figure 9: Pilot data set size m = 50 Figure 10: Pilot data set size m = 200

Figure 11: Visualization of the linear model’s coefficients. One point (sx , ycoef)represents the coefficient
of sx when using linear models to train the s array.

14

	Introduction
	Problem and Method
	Data Budgeting Benchmark
	Experiments and Analysis
	Experiment Result
	Analysis
	Generalization to Varying Pilot Study Dataset Size

	Related Works
	Conclusion and Discussion
	Appendix
	Dataset Splitting
	AutoML and RandomForest
	The selection of AutoML
	The reason we use RandomForest

	Results for Other pilot size

