

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TIKMIX: TAKE DATA INFLUENCE INTO DYNAMIC MIXTURE FOR LANGUAGE MODEL PRE-TRAINING

Anonymous authors

Paper under double-blind review

## ABSTRACT

The data mixture in language model pre-training is a cornerstone of its final performance. However, a static mixing strategy is suboptimal, as the model’s learning preferences for various data domains shift dynamically throughout training. Crucially, observing these evolving preferences in a computationally efficient manner remains a significant challenge. To tackle this, we propose TiKMIX, a method that dynamically adjusts the data mixture according to the model’s evolving preferences. Specifically, we introduce Group Influence for TiKMIX, an efficient metric for evaluating the impact of data domains on the language models, which can formulate the data mixing problem as a search for the optimal influence-maximizing distribution. We solve this via two approaches: TiKMIX-D for direct optimization, and TiKMIX-M, which uses a regression model to predict a superior mixture. We train language models with different parameter scales, on up to 1 trillion tokens. TiKMIX-D exceeds the performance of SOTA mixing strategies like REGMIX while using just 20% of the computational resources. TiKMIX-M leads to an average performance gain of 2% across 9 downstream benchmarks. Our experiments reveal that a model’s data preferences evolve with training progress and scale, and we demonstrate that dynamically adjusting the data mixture based on Group Influence, a direct measure of these preferences, significantly improves performance by mitigating the “under digestion” of data seen with static ratios.

## 1 INTRODUCTION

The availability of large-scale public datasets has been a key factor in the creation of Large Language Models (LLMs). The pre-training data for LLMs is predominantly sourced from the internet Wettig et al. (2025); Yu et al. (2025a), encompassing a wide range of materials such as academic papers Tirumala et al. (2023), books Tirumala et al. (2023), and more. The mixture ratio of data from different domains plays a crucial role in determining the capabilities of large language models (LLMs) Zhang et al. (2025b); Liu et al. (2025b); Bai et al. (2024a). For example, the developers of GPT-3 Floridi & Chiriatti (2020) regard Wikipedia as a source of exceptionally high-quality data and increase its proportion within the training dataset. REGMIX Liu et al. (2024) leverages results from small-scale experiments to automatically set its mixing ratios; however, it does not take into account dynamic changes in the model’s state during training Yu et al. (2024); Zhang et al. (2025a). This observation raises a critical research question: *How can we dynamically select training data for a model in accordance with its preferences, while ensuring both scalability and efficiency?*

Prior research Xie et al. (2023); Fan et al. (2023); Team (2024); Albalak et al. (2023) has leveraged small proxy models to determine domain weights for large-scale language models. However, this approach is computationally expensive, as it requires training proxy models on massive datasets, often exceeding 100 billion tokens. Some methods assume that the relative performance of data mixtures remains stable across different model scales and training durations Liu et al. (2024); nevertheless, they overlook the dynamic nature of a model’s data preferences as training progresses. Approaches such as ODM Albalak et al. (2023) attempt to address this issue by monitoring training dynamics to guide data allocation, but their iterative nature is inefficient when dealing with the ever-increasing scale of pre-training data Jin et al. (2024); Wang et al. (2025). A significant gap remains in current practices: leading LLMs Yang et al. (2025); Team et al. (2025); Dubey et al. (2024) typically employ multi-stage pre-training, yet lack mechanisms for rapid and dynamic data re-weighting between stages that can adapt to the model’s evolving preferences.

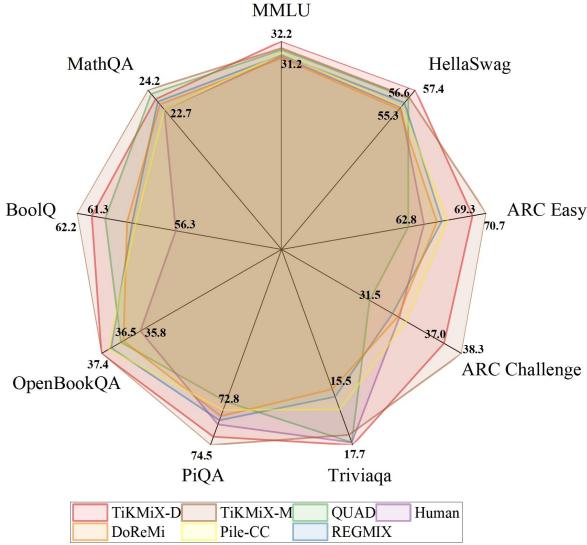


Figure 1: Performance comparisons of our TiKMiX with current state-of-the-art data mixing strategies for pre-training a 1B parameter Language Model with 1T tokens.

We propose a data mixing strategy that dynamically adjusts data proportions during training while incurring minimal computational overhead. Specifically, we introduce **Group Influence**, an efficient method for evaluating the collective impact of each domain on validation performance at low computational cost by leveraging gradient accumulation. This approach enables quantification of the model’s data preferences at any stage of training. Building on this foundation, we present **TiKMiX**, a method that formulates dynamic data mixing as an optimization problem: identifying the data combination that maximizes positive influence. To solve this, we develop two variants: **TiKMiX-D**, which directly optimizes a weighted sum of influences from individual domains to determine optimal mixing ratios; and the more advanced **TiKMiX-M**, which uses the output of TiKMiX-D as an initialization, performs perturbation experiments in its vicinity, and fits a regression model to characterize the relationship between mixing ratios and performance, thereby predicting a globally optimal mixture for subsequent large-scale training.

With the proposed TiKMiX framework, we are able to dynamically adjust the data mixture strategy throughout the entire pre-training cycle, adapting to changes in both model scale and training stage. In line with previous work Bai et al. (2024b); Kang et al. (2024); Diao et al. (2025); Tao et al. (2025), we conducted experiments on models with varying parameter sizes and scaled training up to 1 trillion tokens. TiKMiX-D surpasses state-of-the-art methods such as REGMIX, achieving comparable or superior performance while requiring only 20% of the computational resources. TiKMiX-M further yields an average performance improvement of 2% across nine downstream benchmarks, as illustrated in Fig. 1. Additionally, we discuss the feasibility and implications of applying TiKMiX to even larger-scale models. Our experiments reveal several key findings: (1) a model’s data preferences evolve as training progresses; (2) models of different scales exhibit distinct patterns of preference change; (3) dynamic adjustment of the data mixture facilitates more comprehensive learning of the data by the model. In summary, the main contributions of this paper are as follows:

- We propose **Group Influence**, a novel and efficient method for observing and quantifying the dynamic preferences of Large Language Models for different data domains during the pre-training process.
- We designed **TiKMiX**, a dynamic data mixture framework that leverages the observations from Group Influence to adaptively adjust data ratios, aiming to balance the model’s performance across multiple tasks.
- Extensive experiments demonstrate that our method not only significantly enhances model performance but also provides profound insights into how a model’s data preferences evolve with the training process and model scale, thereby validating the effectiveness of dynamically adjusting data proportions.

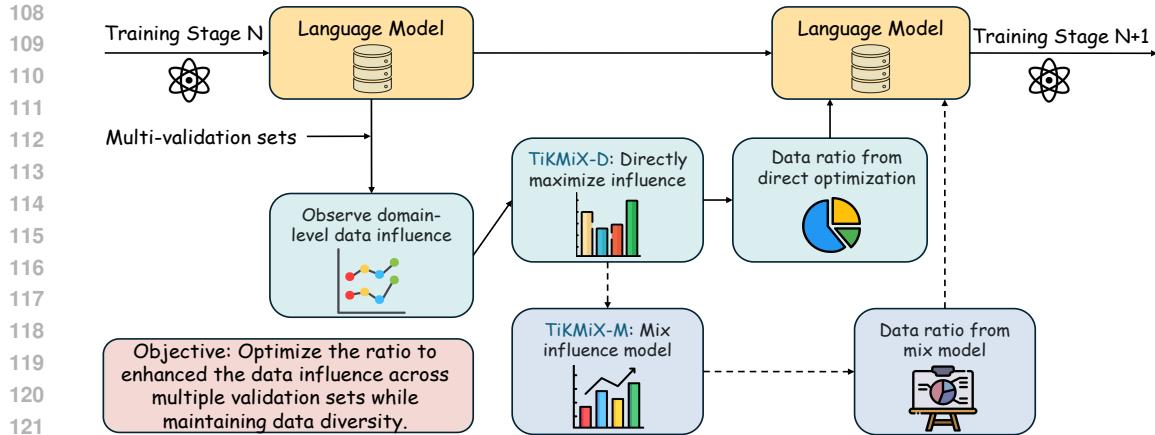


Figure 2: The process involves periodically measuring domain contributions via Group Influence and adjusting the data mixture to maximize learning efficiency.

## 2 RELATED WORK

### 2.1 INFLUENCE FUNCTION

Influence Functions offer a mathematically grounded method to estimate the effect of training data on model predictions without costly retraining Koh & Liang (2017). Their application to high-dimensional models like Large Language Models (LLMs) has been hampered by the computational challenge of inverting the Hessian matrix. Recent work has overcome this barrier through scalable approximation techniques. Notably, the work by Anthropic Grosse et al. (2023) adapted EK-FAC George et al. (2018), an efficient Hessian approximation, to successfully apply influence functions to 50B-parameter Transformer models. This breakthrough established influence functions as a viable tool for performing data attribution at the scale of modern LLMs, enabling the identification of specific pre-training data that drives model outputs Kou et al. (2025); Choe et al. (2024); Lin et al. (2024a). However, computation at the sample level incurs prohibitive overhead in large-scale pre-training scenarios. Therefore, we propose Group Influence, a method that extends influence functions to groups of data. By leveraging gradient accumulation techniques, Group Influence can efficiently evaluate the collective impact of an entire data domain with relatively low computational cost. This allows us to quantify the model’s current data preferences.

### 2.2 DATA SELECTION AND MIXING

Strategic curation of training data significantly enhances model performance Koh & Liang (2017); Albalak et al. (2023). For pre-training Large Language Models (LLMs), data curation methods are commonly categorized by granularity: **Token-level Selection**: The most fine-grained approach, which filters individual tokens according to specific criteria Lin et al. (2024b). **Sample-level Selection**: Methods include heuristic-based approaches Sharma et al. (2024); Soldaini et al. (2024) and learning-based techniques employing optimization algorithms Chen et al. (2024); Shao et al. (2024). Additionally, approaches such as MATES Yu et al. (2024) utilize model-derived signals to inform selection Marion et al. (2023); Ankner et al. (2024). **Group-level Selection**: Earlier work relied on manually defined ratios, while recent advances favor learning-based strategies. Offline methods like REGMIX Liu et al. (2024) and DoReMi Xie et al. (2023) use proxy models to assign static group weights, whereas dynamic methods such as Quad Zhang et al. (2025a) and ODM Albalak et al. (2023) iteratively adjust weights during training. Current mainstream pre-training pipelines are typically divided into multiple stages but often lack a mechanism to dynamically adjust the data mixture ratio based on the model’s state in different stages. Our proposed method, TiKMiX, is a semi-offline, group-level selection approach that dynamically adjusts the data mixture ratio across multiple training stages. Unlike fully dynamic methods that require repeated iterative updates, TiKMiX directly optimizes the mixture ratio based on the model’s current data preferences, enabling efficient adaptation without multiple rounds of adjustment.

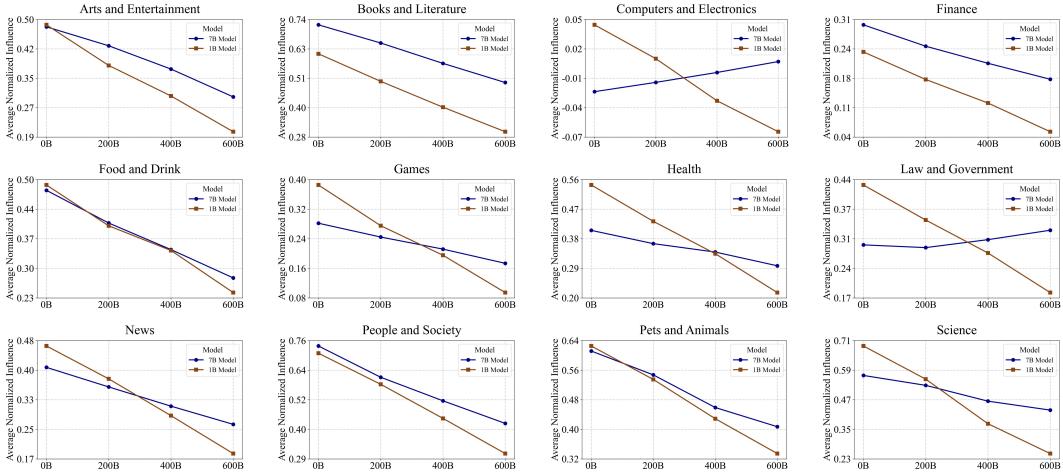


Figure 3: The influence of different domains on the validation set as the model training progresses.

### 3 METHODOLOGY

In this section, we introduce TiKMiX, a framework for dynamically optimizing the data mixture during large language model pre-training as shown in Fig. 2. Our approach is centered on a novel metric, Group Influence, designed to efficiently measure the real-time contribution of each data domain to the model’s learning. We formulate the dynamic data mixture problem as an optimization task aimed at maximizing this Group Influence. To solve this, we propose two distinct methods : TiKMiX-D, which directly optimizes the mixture based on influence scores, and TiKMiX-M, which leverages a regression model for a computationally efficient approximation. We first define the problem setup and Group Influence, then elaborate on these two optimization strategies.

#### 3.1 GROUP INFLUENCE

Group Influence extends the classical influence function framework from individual data points to cohesive groups of data. We first establish the theoretical motivation for this extension, then provide a mathematical derivation of Group Influence, and finally, discuss its computational properties.

Influence functions offer a principled and computationally efficient method for estimating the effect of a single training instance on a model’s parameters or predictions Koh & Liang (2017). By approximating the change in model parameters resulting from upweighting a training point  $z$ , they provide valuable insights into model behavior without the need for retraining. However, many complex model behaviors, such as systemic bias, factual recall, or vulnerability to specific adversarial attacks, are not attributable to a single, isolated training example. Instead, they often emerge from the collective effect of a *group* of semantically related instances. A linear summation of individual influence scores, i.e.,  $\sum_{z_i \in S} I(z_i)$ , is insufficient as it fails to capture the non-trivial interactions between data points during optimization. The collective gradient of a group can shape the loss landscape in a manner distinct from the sum of its constituent parts. To quantify the consolidated impact of a data subset  $S$  as a single entity, we define the Group Influence function. Let a model, parameterized by  $\theta \in \mathbb{R}^d$ , be trained on a dataset  $D = \{z_1, \dots, z_N\}$  by minimizing an empirical risk objective  $J(\theta)$ :

$$\theta^* = \arg \min_{\theta} J(\theta) = \arg \min_{\theta} \frac{1}{N} \sum_{i=1}^N \mathcal{L}(z_i, \theta), \quad (1)$$

where  $\mathcal{L}(z_i, \theta)$  is the loss function for instance  $z_i$ . To measure the influence of a subset  $S \subseteq D$ , we introduce a perturbed objective where every member of  $S$  is simultaneously upweighted by an infinitesimal positive value  $\epsilon$ . The new optimal parameters  $\theta_\epsilon^*$  are found by minimizing this perturbed

216 objective:

$$218 \quad \theta_\epsilon^* = \arg \min_{\theta} \left( \frac{1}{N} \sum_{i=1}^N \mathcal{L}(z_i, \theta) + \epsilon \sum_{z_j \in S} \mathcal{L}(z_j, \theta) \right). \quad (2)$$

219 This formulation models a scenario where the training process is nudged to place greater emphasis  
 220 on the group  $S$ . For  $\epsilon = 0$ , we recover the original optimal parameters,  $\theta_{\epsilon=0}^* = \theta^*$ . The influence  
 221 of group  $S$  on the model parameters is then defined as the rate of change of  $\theta_\epsilon^*$  with respect to  $\epsilon$ ,  
 222 evaluated at  $\epsilon = 0$ . A closed-form expression for this quantity can be derived using the implicit  
 223 function theorem. The first-order optimality condition for any  $\epsilon$  requires that the gradient of the  
 224 perturbed objective at its minimum  $\theta_\epsilon^*$  is zero, which can be formulated as:

$$227 \quad \nabla_{\theta} J_{\epsilon}(\theta_{\epsilon}^*, S) = \frac{1}{N} \sum_{i=1}^N \nabla_{\theta} \mathcal{L}(z_i, \theta_{\epsilon}^*) + \epsilon \sum_{z_j \in S} \nabla_{\theta} \mathcal{L}(z_j, \theta_{\epsilon}^*) = 0. \quad (3)$$

231 Differentiating this entire equation with respect to  $\epsilon$  via the chain rule yields:

$$232 \quad \frac{d}{d\epsilon} [\nabla_{\theta} J_{\epsilon}(\theta_{\epsilon}^*, S)] = \nabla_{\theta}^2 J_{\epsilon}(\theta_{\epsilon}^*, S) \frac{d\theta_{\epsilon}^*}{d\epsilon} + \frac{\partial}{\partial \epsilon} (\nabla_{\theta} J_{\epsilon}(\theta_{\epsilon}^*, S)) = 0. \quad (4)$$

235 Evaluating this expression at  $\epsilon = 0$  (where  $\theta_{\epsilon=0}^* = \theta^*$ ), the Hessian  $\nabla_{\theta}^2 J_{\epsilon}(\theta_{\epsilon}^*, S)$  simplifies to  
 236 the Hessian of the original objective,  $H_{\theta^*} \triangleq \nabla_{\theta}^2 J(\theta^*)$ . The partial derivative term becomes  
 237  $\sum_{z_j \in S} \nabla_{\theta} \mathcal{L}(z_j, \theta^*)$ . Substituting these into Equation 4 gives:

$$239 \quad H_{\theta^*} \frac{d\theta_{\epsilon}^*}{d\epsilon} \Big|_{\epsilon=0} + \sum_{z_j \in S} \nabla_{\theta} \mathcal{L}(z_j, \theta^*) = 0. \quad (5)$$

242 Assuming the Hessian  $H_{\theta^*}$  is positive definite and thus invertible, we can solve for the influence of  
 243 group  $S$  on the model parameters:

$$244 \quad I_{\text{param}}(S) \triangleq \frac{d\theta_{\epsilon}^*}{d\epsilon} \Big|_{\epsilon=0} = -H_{\theta^*}^{-1} \left( \sum_{z_j \in S} \nabla_{\theta} \mathcal{L}(z_j, \theta^*) \right). \quad (6)$$

247 A common practical application is to measure the influence of  $S$  on a scalar-valued function of the  
 248 parameters,  $f(\theta)$ , such as the loss on a test sample,  $f(\theta) = \mathcal{L}(z_{\text{test}}, \theta)$ . By applying the chain rule,  
 249 the influence of  $S$  on  $f$  is given by:

$$251 \quad I_f(S) \triangleq \frac{df(\theta_{\epsilon}^*)}{d\epsilon} \Big|_{\epsilon=0} = \nabla_{\theta} f(\theta^*)^T \frac{d\theta_{\epsilon}^*}{d\epsilon} \Big|_{\epsilon=0}. \quad (7)$$

253 Substituting Equation 6 into Equation 7 yields the final expression for the **Group Influence function**,  
 254 which can be formulated as:

$$256 \quad I_f(S) = -\nabla_{\theta} f(\theta^*)^T H_{\theta^*}^{-1} \left( \sum_{z_j \in S} \nabla_{\theta} \mathcal{L}(z_j, \theta^*) \right). \quad (8)$$

259 The scalar value  $I_f(S)$  quantifies the extent to which upweighting the group  $S$  during training would  
 260 increase ( $I_f(S) > 0$ ) or decrease ( $I_f(S) < 0$ ) the value of the function  $f$ . A significant computa-  
 261 tional advantage of Equation 8 is its structure. The  $\sum_{z_j \in S} \nabla_{\theta} \mathcal{L}(z_j, \theta^*)$  is the accumulated gradient  
 262 of the group  $S$ . This allows for an efficient implementation where the gradients for all samples  
 263 within the group are first computed and aggregated. Subsequently, the computationally intensive  
 264 Hessian-inverse-vector product is performed only once. This structure ensures the computation of  
 265 Group Influence is scalable, as its cost is not dominated by the cardinality of the group  $|S|$ .

### 267 3.2 TiKMiX-D: DIRECTLY MAXIMIZE INFLUENCE

268 Based on the Group Influence metric, which quantifies the effect of each data domain on model  
 269 performance, we aim to optimize the data mixture by determining a weight vector  $w$  that maximizes

overall influence. We propose TiKMiX-D, which formulates this as a multi-objective optimization problem, dynamically adjusting  $w$  during training to balance performance and maintain data diversity. The Group Influence scores are organized into an  $n \times m$  matrix  $S$ , where  $n$  is the number of validation tasks and  $m$  is the number of data domains, with  $S_{ij}$  denoting the influence of domain  $d_j$  on task  $v_i$ . The expected influence for each task is  $P = S \cdot w$ , and to ensure comparability across tasks, we normalize as follows:

$$\hat{P}_i = \frac{P_i}{\max_j S_{ij} + \epsilon}, \quad (9)$$

$\epsilon$  denotes a small positive constant added for numerical stability. The optimization objective of TiKMiX-D is defined as a unified function  $L(w)$  that integrates three components: (1) **influence uniformity**, measured by the standard deviation  $\text{std}(\hat{P})$ , promoting balanced improvements across tasks; (2) **overall influence gain**, quantified by the sum  $\sum \hat{P}_i$ , to maximize aggregate performance; and (3) **data diversity**, measured by the entropy  $H(w) = -\sum_{j=1}^m w_j \log(w_j)$ , encouraging a uniform weight distribution. The trade-offs among these objectives are controlled by hyperparameters  $\alpha, \beta$ , and  $\gamma$ , which are set to 1 in our experiments for equal weighting.

The complete optimization problem is subject to several constraints to ensure a valid and beneficial solution. The weights must be non-negative ( $w_j \geq 0$ ) and sum to one ( $\sum w_j = 1$ ). Furthermore, to guarantee continuous improvement, we enforce a Pareto improvement constraint, ensuring that the influence generated by the new mixture  $w$  is no less than that of the prior mixture  $w_{\text{prior}}$  for any task, i.e.,  $S \cdot w \geq S \cdot w_{\text{prior}}$ . This leads to the final constrained non-linear optimization problem:

$$\begin{aligned} \underset{w}{\text{minimize}} \quad & \alpha \cdot \text{std}(\hat{P}) - \beta \cdot \sum_{i=1}^n \hat{P}_i - \gamma \cdot H(w) \\ \text{subject to} \quad & \sum_{j=1}^m w_j = 1, \quad w_j \geq 0 \ \forall j \in \{1, \dots, m\}, \quad S \cdot w \geq S \cdot w_{\text{prior}}. \end{aligned} \quad (10)$$

We employ the Sequential Least Squares Quadratic Programming algorithm Gupta & Gupta (2018) to solve this problem, initializing the weights with a uniform distribution. The resulting optimal vector,  $w_{\text{best}}$ , serves as the dynamic data mixture for the subsequent training stage.

### 3.3 TiKMiX-M: MIX INFLUENCE MODEL

While TiKMiX-D provides an efficient strategy for data mixing through direct optimization, it operates on the assumption that the influences of data domains are linearly additive. This simplification may overlook the mix of different domain, non-linear cross-domain interactions that arise when different data sources are combined. We introduce TiKMiX-M, optimize mixture proportions by modeling the interactions within domain mixtures to more accurately capture these mixture effects.

To explore the model's performance across a diverse range of domain weightings, we generate a set of  $N$  candidate mixture vectors. Our approach is anchored by an empirically determined prior weight vector,  $w_{\text{orig}} \in \mathbb{R}^D$ , where  $D$  is the number of domains. For each domain  $i$ , we define a plausible sampling interval by scaling the original weight. We employ Latin Hypercube Sampling Loh (2021) within this  $D$ -dimensional hyperrectangle to efficiently generate candidate vectors, ensuring a uniform and non-collapsing coverage of the parameter space.

Each candidate vector  $w_{\text{cand}}$  is subsequently normalized to satisfy the constraint ( $\sum_{i=1}^D w_i = 1$ ), yielding a normalized vector  $w_{\text{norm}} = w_{\text{cand}} / \sum_{j=1}^D w_{\text{cand},j}$ . However, this normalization can shift components outside their predefined intervals. Therefore, we implement a rejection sampling scheme, where a normalized vector  $w_{\text{norm}}$  is accepted into our final set only if it satisfies the boundary constraints for all dimensions, i.e.,  $w_{\text{norm},i} \in [l_i, h_i]$  for all  $i \in \{1, \dots, D\}$ . This iterative process is repeated until  $N$  valid weight vectors that meet both the summation and boundary conditions have been collected, resulting in a robust and well-distributed set of weights for subsequent analysis. For each generated candidate mixture  $w_i$ , we calculate its true aggregate influence score,  $y_i$ , across all validation sets using the Group Influence evaluation method  $\sum \hat{P}_i$ .

---

324 **Algorithm 1** Iterative Search via TiKMiX-M  
325

---

326 **Input:** Surrogate  $f_{\text{sur}}$ , initial mix  $w^{(0)}$ , iters  $T$ , samples  $N$ , exploration  $[\alpha_{\min}, \alpha_{\max}]$ , top- $k$ .  
 327 **Output:** Optimized mixture  $w^*$ .  
 328  $w_{\text{best}} \leftarrow w^{(0)}$   
 329 Generate exploration strengths  $\{\alpha_t\}_{t=1}^T$  logarithmically from  $\alpha_{\max}$  to  $\alpha_{\min}$ .  
 330 **for**  $t = 1$  to  $T$  **do**  
 331     Sample  $N$  domain mixture candidates  $\{w_i\}$  around updated  $w_{\text{best}}$  via Dirichlet.  
 332     For each sampled  $w_i$ , compute its Group influence score  $y_i = f_{\text{sur}}(w_i)$ .  
 333     Select indices  $I_{\text{top-}k}$  of  $k$  mixtures with highest Group influence scores.  
 334     Update  $w_{\text{best}} = \frac{1}{k} \sum_{i \in I_{\text{top-}k}} w_i$ .  
 335 **end for**  
 336 **return**  $w_{\text{best}}$   


---

 337

338 Following these steps, we obtain a training set  $D_{\text{train}} = \{(w_i, y_i)\}_{i=1}^N$ . Inspired by REGMIXLiu  
 339 et al. (2024), we select LightGBM Ke et al. (2017), an efficient gradient boosting decision tree  
 340 model, as our regression surrogate. This model,  $f_{\text{LGBM}}$ , is trained to predict the aggregate influence  
 341  $y$  for given data mixture  $w$ , i.e.,  $y = f_{\text{LGBM}}(w)$ . We leverage it to efficiently explore the mixture space  
 342 without performing expensive, true influence evaluations. We design an iterative search algorithm  
 343 that balances exploration and exploitation to find the optimal mixture.

344 The process is detailed in Algorithm 1. We start from the ratio from TiKMiX-D,  $w_{\text{best-D}}$ . At each  
 345 step, we sample candidate mixtures on the current best solution. The distribution's concentration  
 346 parameter is annealed over steps, beginning with a large value to encourage global exploration and  
 347 gradually decreasing to promote local exploitation near the optimum. We employ the surrogate  
 348 model to evaluate all sampled candidates. The center for the next iteration is then updated to be  
 349 the average of the top- $k$  candidates with the highest predicted scores. This procedure is repeated  
 350 until convergence or a maximum number of iterations is reached. TiKMiX-M not only accounts for  
 351 non-linear cross-domain interactions but also significantly enhances search efficiency through the  
 352 surrogate model, enabling it to discover superior solutions within the vast mixture space.

353  
354 

## 4 EXPERIMENTS

  
355

356 This section presents a comprehensive set of experiments designed to validate the effectiveness of  
 357 our TiKMiX framework. We first outline the experimental setup, including evaluation benchmarks,  
 358 datasets, and baseline methods. Subsequently, we demonstrate that: (1) the pre-training data mixture  
 359 significantly impacts downstream task performance; (2) our proposed Group Influence is an effective  
 360 predictor of downstream performance; and (3) the TiKMiX framework, particularly TiKMiX-D and  
 361 TiKMiX-M, markedly improves model performance and surpasses existing SOTA methods.

362  
363 

### 4.1 EXPERIMENTAL SETUP

  
364

365 **Datasets and Models** Optimizing the data mixture of web-scale corpora is a crucial and highly  
 366 impactful step in pre-training performant LLMs. While the diversity of web data presents unique  
 367 challenges, effective mixing strategies can unlock significant performance gains. To systematically  
 368 investigate this, we conduct our experiments on the RefinedWeb dataset Penedo et al. (2023), which  
 369 comprises 26 distinct data domains. Following the baseline experimental setup, we adopt the model  
 370 architecture proposed by Zhang et al. (2024) and construct models with 1B and 7B parameters  
 371 and train on up to 1 trillion tokens. The training process is divided into two distinct stages, each  
 372 consisting of 500 billion tokens, with a strategic adjustment of the data mixture ratio at the transition  
 373 point between stages. We compare TiKMiX against several representative data mixing strategies:  
 374 **Pile-CC Gao et al. (2020)**: The original data mixture proposed by the authors of The Pile based on  
 375 heuristics. **REGMIX Liu et al. (2024)**: SOTA method that uses a regression model to predict and  
 376 optimize validation loss for determining the mixture. **DoReMi Xie et al. (2023)**: a classic dynamic  
 377 data mixing method that relies on a proxy model. **QUAD Zhang et al. (2025a)**: a method for  
 378 dynamic selection during training after clustering data. We use the best-reported mixture from their  
 379 paper, re-normalized to the domains available in our setup.

378 **Downstream Task Evaluation** To comprehensively evaluate our proposed method, we curated  
 379 a diverse set of 9 widely recognized downstream benchmarks, which were strategically divided  
 380 into two categories: in-domain and out-of-domain. This division allows for a rigorous assess-  
 381 ment of both the model’s core capabilities and its generalization prowess. Our **in-domain**  
 382 evaluation suite was designed to cover a wide spectrum of reasoning and knowledge-based tasks. It  
 383 includes **MMLU** Hendrycks et al. (2020), a challenging benchmark measuring knowledge; **Hel-  
 384 laSwag** Zellers et al. (2019), a commonsense reasoning task that involves choosing the most plau-  
 385 sible continuation for a given context; **ARC** Clark et al. (2018), which we evaluate on both the  
 386 Easy (ARC-E) and the more difficult Challenge (ARC-C) sets of grade-school science questions;  
 387 and **TriviaQA** Joshi et al. (2017), a reading comprehension benchmark requiring models to locate  
 388 answers within lengthy documents. To evaluate the generalization capabilities of our method, we se-  
 389 lected a set of out-of-domain benchmarks. These include **PiQA** Bisk et al. (2020), a commonsense  
 390 benchmark focused on physical interactions; **OpenBookQA** Mihaylov et al. (2018), a question-  
 391 answering task requiring reasoning over a given set of science facts; **BoolQ** Clark et al. (2019), a  
 392 dataset of naturally occurring yes/no questions; and **MathQA** Amini et al. (2019), a mathematical  
 393 reasoning benchmark with multi-step word problems.

#### 394 4.2 GROUP INFLUENCE AS AN EFFECTIVE PREDICTOR OF PERFORMANCE

395 The core hypothesis of our introduced TiKMiX framework is that maximizing Group Influence can  
 396 effectively enhance overall downstream task performance. To validate this hypothesis, we calculated  
 397 the impact of 10 different data mixtures on various benchmarks. As validation, we trained a 1B-  
 398 parameter model on 500B data using the corresponding mixtures. The normalized scores are shown  
 399 in Fig. 4. We observe a strong positive correlation (*i.e.*, Pearson correlation coefficient  $\rho = 0.789$ )  
 400 between the total Group Influence and the average downstream scores. This indicates that mixtures  
 401 generating higher total influence almost invariably lead to better downstream performance. This  
 402 finding not only confirms the validity of Group Influence as an optimization target but also provides  
 403 a solid theoretical foundation for the design of our proposed TiKMiX-D and TiKMiX-M.

| Benchmark                         | Human | DoReMi | Average | QUAD   | Pile-CC | REGMiX | TiKMiX-D    | TiKMiX-M    |
|-----------------------------------|-------|--------|---------|--------|---------|--------|-------------|-------------|
| <b>In-Domain Benchmarks</b>       |       |        |         |        |         |        |             |             |
| MMLU Hendrycks et al. (2020)      | 31.3  | 31.2   | 30.9    | 31.7   | 31.2    | 31.5   | <b>32.2</b> | 31.8        |
| HellaSwag Zellers et al. (2019)   | 55.5  | 55.3   | 55.9    | 56.5   | 55.6    | 56.0   | <b>57.4</b> | 56.6        |
| ARC Easy Clark et al. (2018)      | 64.4  | 65.7   | 64.1    | 62.8   | 63.2    | 66.2   | 69.3        | <b>70.7</b> |
| ARC Challenge Clark et al. (2018) | 33.7  | 33.6   | 32.1    | 33.5   | 32.7    | 33.2   | 37.0        | <b>38.3</b> |
| Triviaqa Joshi et al. (2017)      | 17.6  | 15.5   | 17.3    | 17.6   | 16.3    | 15.8   | <b>17.7</b> | 17.3        |
| <b>Out-of-Domain Benchmarks</b>   |       |        |         |        |         |        |             |             |
| PiQA Bisk et al. (2020)           | 73.5  | 73.1   | 71.5    | 72.4   | 69.2    | 73.3   | 74.1        | <b>74.5</b> |
| OpenBookQA Mihaylov et al. (2018) | 35.8  | 36.5   | 34.6    | 36.6   | 37.1    | 37.0   | <b>37.4</b> | <b>37.4</b> |
| BoolQ Clark et al. (2019)         | 56.3  | 59.2   | 58.3    | 60.5   | 58.7    | 58.9   | 61.3        | <b>62.2</b> |
| MathQA Amini et al. (2019)        | 22.7  | 23.1   | 23.7    | 23.9   | 22.5    | 23.3   | 23.5        | <b>24.2</b> |
| Estimated FLOPs                   | 0     | 4.2e19 | 0       | 2.3e18 | 0       | 3.7e18 | 7.2e17      | 3.2e18      |
| Average Perf.                     | 43.4  | 43.7   | 43.2    | 43.9   | 42.9    | 43.9   | 45.5        | 45.9        |
| Best On                           | 0/9   | 0/9    | 0/9     | 0/9    | 0/9     | 0/9    | 4/9         | 6/9         |

416 Table 1: Comparison of 1B Parameter Models Trained on 1T Tokens Across Various Benchmarks.  
 417 The best-performing model on each benchmark is highlighted in bold.  
 418

419 Building on the preceding findings, we formally evaluate the two implementations of our TiKMiX  
 420 framework: TiKMiX-D and TiKMiX-M. We first followed the natural data distribution, then using  
 421 TiKMiX adjusted the data mixture between two stages during the 1T-token pre-training process. As  
 422 shown in Table 1, both of our methods significantly outperform all baselines. On average, across 9  
 423 benchmarks, TiKMiX-D and TiKMiX-M improved performance by **1.6%** and **2.0%**, respectively,  
 424 over the strongest baseline, REGMiX. Notably, on challenging tasks like ARC Easy and ARC Chal-  
 425 lenge, TiKMiX-M achieved a performance advantage of over 4.8%. The results of experiments  
 426 conducted on larger-scale models are provided in Table 3

#### 427 4.3 ANALYSIS OF COMPUTATIONAL EFFICIENCY

428 The exact computation of the Hessian matrix in LLMs typically incurs extremely high computa-  
 429 tional costs. To mitigate this overhead, we draw upon recent studies on influence functions in  
 430 LLMs Grosse et al. (2023) and employ the Empirical Kronecker-Factored Approximate Curvature

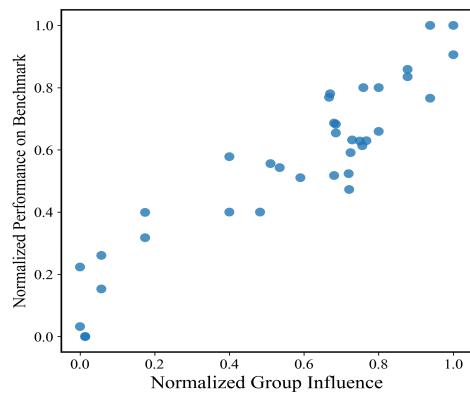


Figure 4: Analysis of the Group Influence and actual performance on the benchmark.

| Benchmark                         | Loss |      | TiKMiX-D |      |
|-----------------------------------|------|------|----------|------|
|                                   | 5B   | 10B  | 0.1B     | 0.5B |
| <b>In-Domain Benchmarks</b>       |      |      |          |      |
| MMLU Hendrycks et al. (2020)      | 31.4 | 31.2 | 32.2     | 32.1 |
| HellaSwag Zellers et al. (2019)   | 56.3 | 56.4 | 57.4     | 57.6 |
| ARC Easy Clark et al. (2018)      | 67.3 | 65.6 | 69.3     | 69.1 |
| ARC Challenge Clark et al. (2018) | 34.4 | 33.4 | 37.0     | 37.1 |
| TriviaQA Joshi et al. (2017)      | 16.5 | 16.9 | 17.7     | 17.9 |
| <b>Out-of-Domain Benchmarks</b>   |      |      |          |      |
| PiQA Bisk et al. (2020)           | 73.2 | 73.5 | 74.1     | 74.2 |
| OpenBookQA Mihaylov et al. (2018) | 36.4 | 36.6 | 37.4     | 37.3 |
| BoolQ Clark et al. (2019)         | 59.4 | 59.7 | 61.3     | 61.5 |
| MathQA Amini et al. (2019)        | 23.9 | 23.7 | 23.5     | 23.6 |
| Average Perf.                     | 44.3 | 44.1 | 45.5     | 45.6 |

Table 2: The ablation study of Loss and TiKMiX on different data sizes.

(EKFAC) method to approximate the Hessian matrix. EKFAC reduces computational and memory requirements by partitioning the Hessian and applying Kronecker factorization, thereby transforming complex high-dimensional matrix operations into computations within lower-dimensional subspaces.

Consequently, TiKMiX demonstrates superior computational efficiency. In contrast to methods such as MATESYu et al. (2024), Group-MATESYu et al. (2025b), and REGMIX, which require the additional overhead of training small proxy models, the Group Influence calculation and optimization process in TiKMiX is highly efficient and does not involve such auxiliary training procedures. In our 1B model experiments, the total computational overhead for **TiKMiX-D** to determine the next-stage mixture (including influence calculation and regression model inference) was only about **20%** of that required by the **RegMix** method, while achieving comparable or even superior performance. This high efficiency makes TiKMiX a practical and powerful tool for large scale LLM training.

#### 4.4 ABLATION STUDY

We conduct a series of ablation studies, with the results presented in Table 2. Our primary investigation focused on the efficacy of using **group influence** and **TiKMiX** for preference observation and data mixture adjustments. As shown in Table 2, our approach allows for the accurate observation of model preferences using only 0.1B tokens and requires no model training, leading to a significant performance improvement over the loss. This highlights the superiority of our method in efficiently identifying and correcting data biases. We further discuss the effectiveness of our model on a larger scale in the appendix.

## 5 CONCLUSION AND DISCUSSIONS

In this work, we address the suboptimality of static data mixing strategies in language model pre-training, demonstrating that a model’s learning preferences for different data domains evolve dynamically with its training progress. To tackle this, we introduce TiKMiX, a novel framework that dynamically adjusts the data mixture based on Group Influence, a highly efficient metric to evaluate the contribution of data domains to the model’s performance. By framing data mixing as an influence-maximization problem, we developed two approaches: TiKMiX-D, which directly optimizes the mixture and surpasses state-of-the-art methods like REGMIX using only 20% of the computational resources, and TiKMiX-M, which uses a regression model to predict superior mixtures, achieving an average performance gain of 2% across 9 downstream benchmarks. Our experiments confirm that dynamically adjusting the data mixture based on Group Influence significantly improves performance by mitigating the under-digestion of data seen with static ratios. We plan to conduct further experiments on larger-scale models and more diverse datasets to further validate the effectiveness of Group Influence and TiKMiX.

486 REPRODUCIBILITY STATEMENT  
487

488 We provide comprehensive details of the TiKMiX methodology, experimental setup, data processing  
489 procedures, and model training specifics in the main text, appendix, and supplementary materials.  
490 Specifically, the Methodology section (lines 211–258) systematically presents the mathematical def-  
491inition and derivation of Group Influence; the appendix further elaborates on the assumptions and  
492 provides complete theoretical proofs. The experimental section (lines 365–371) enumerates the  
493 datasets used as well as the model architectures and scales adopted in our study. The training pro-  
494cess is detailed in lines 419–423, while the Downstream Task Evaluation section (lines 378–392)  
495 describes the downstream evaluation benchmarks and baseline comparisons, with evaluation criteria  
496 clearly stated in both the main text and appendix. All procedures related to data processing, mix-  
497ture ratio adjustment, and hyperparameter settings are thoroughly documented in the main text and  
498 supplementary materials. The necessary source code is provided via an anonymous downloadable  
499 link in the supplementary materials. We believe these resources offer robust support for the research  
500 community to reproduce, validate, and further extend our work.

501 ETHICS STATEMENT  
502

503 This study strictly follows the ICLR Code of Ethics, upholds a responsible research attitude, and is  
504 dedicated to advancing trustworthy machine learning and artificial intelligence technologies while  
505 focusing on their positive impact on society and human well-being. Throughout our work, we fully  
506 considered ethical principles such as promoting social welfare, fairness and inclusiveness, scientific  
507 integrity, risk prevention, transparency, intellectual property, and privacy protection. All experiments  
508 are based on public datasets, with processes that are transparent and reproducible, and there is no  
509 fabrication or manipulation of data or results. We strictly adhere to data usage agreements without  
510 involving personal privacy.

512 REFERENCES  
513

514 Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing  
515 for language model pre-training. *arXiv preprint arXiv:2312.02406*, 2023.

516 Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-  
517 jishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-  
518 malisms. *arXiv preprint arXiv:1905.13319*, 2019.

519 Zachary Ankner, Cody Blakeney, Kartik Sreenivasan, Max Marion, Matthew L Leavitt, and Man-  
520 sheej Paul. Perplexed by perplexity: Perplexity-based data pruning with small reference models.  
521 *arXiv preprint arXiv:2405.20541*, 2024.

522 Tianyi Bai, Hao Liang, Binwang Wan, Yanran Xu, Xi Li, Shiyu Li, Ling Yang, Bozhou Li, Yifan  
523 Wang, Bin Cui, et al. A survey of multimodal large language model from a data-centric perspec-  
524 tive. *arXiv preprint arXiv:2405.16640*, 2024a.

525 Tianyi Bai, Ling Yang, Zhen Hao Wong, Jiahui Peng, Xinlin Zhuang, Chi Zhang, Lijun Wu, Jiantao  
526 Qiu, Wentao Zhang, Binhang Yuan, et al. Multi-agent collaborative data selection for efficient  
527 llm pretraining. *arXiv e-prints*, pp. arXiv–2410, 2024b.

528 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-  
529 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,  
530 volume 34, pp. 7432–7439, 2020.

531 Xuxi Chen, Zhendong Wang, Daouda Sow, Junjie Yang, Tianlong Chen, Yingbin Liang, Mingyuan  
532 Zhou, and Zhangyang Wang. Take the bull by the horns: Hard sample-reweighted continual  
533 training improves llm generalization. *arXiv preprint arXiv:2402.14270*, 2024.

534 Sang Keun Choe, Hwijeon Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya  
535 Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to  
536 gpt? Llm-scale data valuation with influence functions. *arXiv preprint arXiv:2405.13954*, 2024.

540 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina  
 541 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint*  
 542 *arXiv:1905.10044*, 2019.

543

544 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and  
 545 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.  
 546 *arXiv preprint arXiv:1803.05457*, 2018.

547

548 Shizhe Diao, Yu Yang, Yonggan Fu, Xin Dong, Dan Su, Markus Kliegl, Zijia Chen, Peter Belcak,  
 549 Yoshi Suhara, Hongxu Yin, et al. Climb: Clustering-based iterative data mixture bootstrapping  
 550 for language model pre-training. *arXiv preprint arXiv:2504.13161*, 2025.

551

552 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha  
 553 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.  
 554 *arXiv e-prints*, pp. arXiv–2407, 2024.

555

556 Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization  
 557 estimation. *arXiv preprint arXiv:2310.15393*, 2023.

558

559 Luciano Floridi and Massimo Chiratti. Gpt-3: Its nature, scope, limits, and consequences. *Minds*  
 560 and machines, 30(4):681–694, 2020.

561

562 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason  
 563 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text  
 564 for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

565

566 Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast approx-  
 567 imate natural gradient descent in a kronecker factored eigenbasis. *Advances in neural information*  
 568 *processing systems*, 31, 2018.

569

570 Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit  
 571 Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization  
 572 with influence functions. *arXiv preprint arXiv:2308.03296*, 2023.

573

574 Madhuri Gupta and Bharat Gupta. An ensemble model for breast cancer prediction using sequen-  
 575 tial least squares programming method (slsqp). In *2018 eleventh international conference on*  
 576 *contemporary computing (IC3)*, pp. 1–3. IEEE, 2018.

577

578 Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style  
 579 pre-training with gradient-disentangled embedding sharing. *arXiv preprint arXiv:2111.09543*,  
 580 2023.

581

582 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and  
 583 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*  
 584 *arXiv:2009.03300*, 2020.

585

586 Xin Jin, Hongyu Zhu, Siyuan Li, Zedong Wang, Zicheng Liu, Juanxi Tian, Chang Yu, Huafeng Qin,  
 587 and Stan Z Li. A survey on mixup augmentations and beyond. *arXiv preprint arXiv:2409.05202*,  
 588 2024.

589

590 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly  
 591 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

592

593 Feiyang Kang, Yifan Sun, Bingbing Wen, Si Chen, Dawn Song, Rafid Mahmood, and Ruoxi Jia.  
 594 Autoscale: Automatic prediction of compute-optimal data compositions for training llms. 2024.

595

596 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-  
 597 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural*  
 598 *information processing systems*, 30, 2017.

599

600 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In  
 601 *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.

594 Siqi Kou, Qingyuan Tian, Hanwen Xu, Zihao Zeng, and Zhijie Deng. Which data attributes  
 595 stimulate math and code reasoning? an investigation via influence functions. *arXiv preprint*  
 596 *arXiv:2505.19949*, 2025.

597 Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng Chua. Data-  
 598 efficient fine-tuning for llm-based recommendation. In *Proceedings of the 47th international ACM*  
 599 *SIGIR conference on research and development in information retrieval*, pp. 365–374, 2024a.

600 Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu  
 601 Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. *arXiv preprint*  
 602 *arXiv:2404.07965*, 2024b.

603 Fengze Liu, Weidong Zhou, Binbin Liu, Zhimiao Yu, Yifan Zhang, Haobin Lin, Yifeng Yu, Bingni  
 604 Zhang, Xiaohuan Zhou, Taifeng Wang, et al. Quadmix: Quality-diversity balanced data selection  
 605 for efficient llm pretraining. *arXiv preprint arXiv:2504.16511*, 2025a.

606 Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang,  
 607 Chenchen Zhang, Ge Zhang, Jiebin Zhang, et al. A comprehensive survey on long context lan-  
 608 guage modeling. *arXiv preprint arXiv:2503.17407*, 2025b.

609 Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing  
 610 Jiang, and Min Lin. Regmix: Data mixture as regression for language model pre-training. *arXiv*  
 611 *preprint arXiv:2407.01492*, 2024.

612 Wei-Liem Loh. On latin hypercube sampling. *The annals of statistics*, 2021.

613 Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.  
 614 When less is more: Investigating data pruning for pretraining llms at scale. *arXiv preprint*  
 615 *arXiv:2309.04564*, 2023.

616 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct  
 617 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,  
 618 2018.

619 Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,  
 620 Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refined-  
 621 web dataset for falcon llm: Outperforming curated corpora with web data only. *Advances in*  
 622 *Neural Information Processing Systems*, 36:79155–79172, 2023.

623 Yunfan Shao, Linyang Li, Zhaoye Fei, Hang Yan, Dahua Lin, and Xipeng Qiu. Balanced data  
 624 sampling for language model training with clustering. *arXiv preprint arXiv:2402.14526*, 2024.

625 Vasu Sharma, Karthik Padthe, Newsha Ardalani, Kushal Tirumala, Russell Howes, Hu Xu, Po-Yao  
 626 Huang, Shang-Wen Li, Armen Aghajanyan, Gargi Ghosh, et al. Text quality-based pruning for  
 627 efficient training of language models. *arXiv preprint arXiv:2405.01582*, 2024.

628 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Author,  
 629 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An open corpus of  
 630 three trillion tokens for language model pretraining research. *arXiv preprint arXiv:2402.00159*,  
 631 2024.

632 Zhixu Silvia Tao, Kasper Vinken, Hao-Wei Yeh, Avi Cooper, and Xavier Boix. Merge to mix:  
 633 Mixing datasets via model merging. *arXiv preprint arXiv:2505.16066*, 2025.

634 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,  
 635 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv*  
 636 *preprint arXiv:2507.20534*, 2025.

637 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

638 Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretrain-  
 639 ing via document de-duplication and diversification. *Advances in Neural Information Processing*  
 640 *Systems*, 36:53983–53995, 2023.

648 Kun Wang, Guibin Zhang, Zhenhong Zhou, Jiahao Wu, Miao Yu, Shiqian Zhao, Chenlong Yin,  
 649 Jinhu Fu, Yibo Yan, Hanjun Luo, et al. A comprehensive survey in llm (-agent) full stack safety:  
 650 Data, training and deployment. *arXiv preprint arXiv:2504.15585*, 2025.

651 Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini.  
 652 Organize the web: Constructing domains enhances pre-training data curation. *arXiv preprint*  
 653 *arXiv:2502.10341*, 2025.

654 Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,  
 655 Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up  
 656 language model pretraining. *Advances in Neural Information Processing Systems*, 36:69798–  
 657 69818, 2023.

658 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,  
 659 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*  
 660 *arXiv:2505.09388*, 2025.

661 Shi Yu, Zhiyuan Liu, and Chenyan Xiong. Craw4llm: Efficient web crawling for llm pretraining.  
 662 *arXiv preprint arXiv:2502.13347*, 2025a.

663 Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient  
 664 pretraining with data influence models. *Advances in Neural Information Processing Systems*, 37:  
 665 108735–108759, 2024.

666 Zichun Yu, Fei Peng, Jie Lei, Arnold Overwijk, Wen-tau Yih, and Chenyan Xiong. Data-efficient  
 667 pretraining with group-level data influence modeling. *arXiv preprint arXiv:2502.14709*, 2025b.

668 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-  
 669 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

670 Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang Chai, Rui Wang, Xinlin Zhuang, Tianyi Bai,  
 671 Qiu Jiantao, Lei Cao, Ju Fan, et al. Harnessing diversity for important data selection in pretraining  
 672 large language models. In *The Thirteenth International Conference on Learning Representations*,  
 673 2025a.

674 Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small  
 675 language model. *arXiv preprint arXiv:2401.02385*, 2024.

676 Xuanliang Zhang, Dingzirui Wang, Longxu Dou, Qingfu Zhu, and Wanxiang Che. A survey of table  
 677 reasoning with large language models. *Frontiers of Computer Science*, 19(9):199348, 2025b.

678  
 679  
 680  
 681  
 682  
 683  
 684  
 685  
 686  
 687  
 688  
 689  
 690  
 691  
 692  
 693  
 694  
 695  
 696  
 697  
 698  
 699  
 700  
 701

702 

## 6 APPENDIX

703 

### 6.1 EXPERIMENTAL SETUP

704 **Datasets and Models** Web data serves as one of the core sources for pre-training large language  
 705 models (LLMs), playing a crucial role in enhancing model capabilities due to its broad coverage and  
 706 diversity. However, precisely because web data encompasses a wide range of domains—including  
 707 news, encyclopedias, forums, and academic content—its highly diverse origins make it extremely  
 708 challenging to achieve a balanced mixture across different domains. We follow the same experi-  
 709 mental setup as prior studies on web data mixture Wettig et al. (2025); Liu et al. (2025a), utilize  
 710 the RefinedWeb dataset Penedo et al. (2023), and employ the domain classifier He et al. (2023) to  
 711 categorize the data into 26 distinct domains. Our models, ranging in size from 1B to 7B parameters,  
 712 are trained on up to 1 trillion tokens. The training process is divided into two distinct stages, each  
 713 consisting of 500 billion tokens, with a strategic adjustment of the data mixture ratio at the transition  
 714 point between stages. We compare TiKMiX against several representative data mixing strategies:  
 715 **Pile-CC Gao et al. (2020)**: The original data mixture proposed by the authors of The Pile based  
 716 on heuristics. **REGMIX Liu et al. (2024)**: SOTA method that uses a regression model to predict  
 717 and optimize validation loss for determining the mixture. **DoReMi Xie et al. (2023)**: a classic dy-  
 718 namic data mixing method that relies on a proxy model. **QUAD Zhang et al. (2025a)**: a method for  
 719 dynamic selection during training after clustering data We use the best-reported mixture from their  
 720 paper, re-normalized to the domains available in our setup.

721 Our proposed TiKMiX method achieves a balance between dynamic adaptability and computational  
 722 efficiency in data mixture strategies. Similar to other dynamic approaches such as DoReMi and  
 723 QUAD, TiKMiX adjusts the data mixture ratios according to the current state of the model. How-  
 724 ever, unlike these methods, TiKMiX does not require multiple iterations, which significantly im-  
 725 proves training efficiency. Furthermore, TiKMiX simplifies the data mixing process and reduces  
 726 engineering complexity without sacrificing model performance.

727 To systematically evaluate the effectiveness of different data mixing strategies, we conduct large-  
 728 scale experiments on the RefinedWeb dataset. Our models range in size from 1B to 7B parameters  
 729 and are trained on up to 1 trillion tokens. The training process is divided into two distinct stages, each  
 730 consisting of 500 billion tokens. At the transition point between these two stages, we strategically  
 731 adjust the data mixture ratios to further assess the impact of mixing strategies on model performance.

732 

### 6.2 DOWNSTREAM TASK EVALUATION

733 To conduct a comprehensive and rigorous evaluation of our proposed method, we curated a diverse  
 734 suite of nine widely-recognized downstream benchmarks. This evaluation matrix is strategically  
 735 divided into two categories: **in-domain** and **out-of-domain**. This bifurcation allows for a dual-  
 736 faceted assessment of our model’s capabilities: on one hand, to measure its proficiency on tasks  
 737 closely aligned with its training objectives, and on the other, to critically examine its ability to  
 738 generalize learned skills to novel tasks and knowledge domains. The consistent performance gains  
 739 observed across both categories underscore our method’s ability to enhance the model’s foundational  
 740 capabilities and foster robust generalization.

741 **In-Domain Evaluation** Our in-domain evaluation suite is designed to probe the model’s core  
 742 competencies in complex reasoning, commonsense understanding, and knowledge-intensive appli-  
 743 cations. These benchmarks are thematically aligned with our method’s primary optimization goals  
 744 and serve to quantify the depth of improvement in these critical areas.

- 745 • **MMLU (Massive Multitask Language Understanding)** Hendrycks et al. (2020): A  
 746 highly challenging multitask benchmark that assesses knowledge across 57 disparate sub-  
 747 jects, ranging from elementary mathematics and U.S. history to computer science and law.  
 748 MMLU demands not only a vast repository of knowledge but also the ability to perform  
 749 precise, domain-specific reasoning, making it a key indicator of a model’s comprehensive  
 750 intellectual and academic capabilities.
- 751 • **HellaSwag** Zellers et al. (2019): A commonsense reasoning benchmark that tasks the  
 752 model with selecting the most plausible continuation for a given context. HellaSwag is

756 distinguished by its use of adversarially-generated distractors, which are designed to be  
 757 highly confusable for models that rely on superficial statistical cues. It therefore serves as  
 758 a robust test of a model’s deeper understanding of causality and everyday situations.

759

- 760 • **ARC (AI2 Reasoning Challenge)** Clark et al. (2018): This benchmark evaluates reasoning  
 761 and comprehension on grade-school science questions. We assess performance on both  
 762 its subsets: **ARC-Easy (ARC-E)**, which contains questions often solvable via information  
 763 retrieval, and the more difficult **ARC-Challenge (ARC-C)**, which requires multi-step reasoning  
 764 and synthesis of knowledge. Evaluating on both allows for a fine-grained analysis of  
 765 the model’s capabilities, from basic knowledge retrieval to complex scientific inference.
- 766 • **TriviaQA** Joshi et al. (2017): A large-scale reading comprehension benchmark where  
 767 questions are authored by trivia enthusiasts, leading to a high degree of diversity and com-  
 768 plexity. The task requires models to locate answers within lengthy, evidence-rich docu-  
 769 ments, often amidst significant distractor information. It primarily evaluates the model’s  
 770 proficiency in long-context processing, precise information retrieval, and fact verification.

771 **Out-of-Domain Evaluation** To rigorously assess the generalization power of our method, we  
 772 selected a set of out-of-domain benchmarks that are distinct from the in-domain tasks in terms of  
 773 subject matter, format, or required reasoning skills. Performance on these benchmarks directly  
 774 reflects the model’s ability to transfer its learned meta-skills to new and unseen challenges.

775

- 776 • **PiQA (Physical Interaction QA)** Bisk et al. (2020): A commonsense benchmark focused  
 777 on physical reasoning. Presented in a question-answering format, it requires the model to  
 778 understand the properties and affordances of everyday objects (e.g., “How can you cool  
 779 a cup of water faster?”). PiQA probes the model’s intuitive grasp of how the physical  
 780 world operates, a domain of commonsense distinct from academic knowledge, making it  
 781 an excellent test of generalization.
- 782 • **OpenBookQA** Mihaylov et al. (2018): This benchmark simulates an “open-book” exam,  
 783 requiring the model to answer questions using a given set of elementary science facts.  
 784 Success demands not only reading comprehension but, more importantly, the ability to  
 785 reason over and combine these facts to answer questions whose solutions are not explicitly  
 786 stated. It critically evaluates the model’s capacity for multi-step reasoning and knowledge  
 787 application within a constrained context.
- 788 • **BoolQ (Boolean Questions)** Clark et al. (2019): A dataset of naturally occurring yes/no  
 789 questions, sourced from real user search queries. The challenge lies in the fact that the rela-  
 790 tionship between the question and the provided evidence passage is often implicit, requir-  
 791 ing sophisticated syntactic and semantic analysis to arrive at a correct Boolean judgment.  
 792 BoolQ effectively measures the model’s fine-grained comprehension of natural, conversa-  
 793 tional language.
- 794 • **MathQA** Amini et al. (2019): A mathematical reasoning benchmark featuring multi-step  
 795 word problems. The task requires models to parse natural language descriptions, formulate  
 796 a correct sequence of operations, and execute them to find a solution. Covering a diverse  
 797 range of mathematical reasoning categories, MathQA is a crucial benchmark for evaluat-  
 798 ing a model’s symbolic reasoning and logical chain-of-thought capabilities, representing a  
 799 significant test of higher-order cognitive skills.

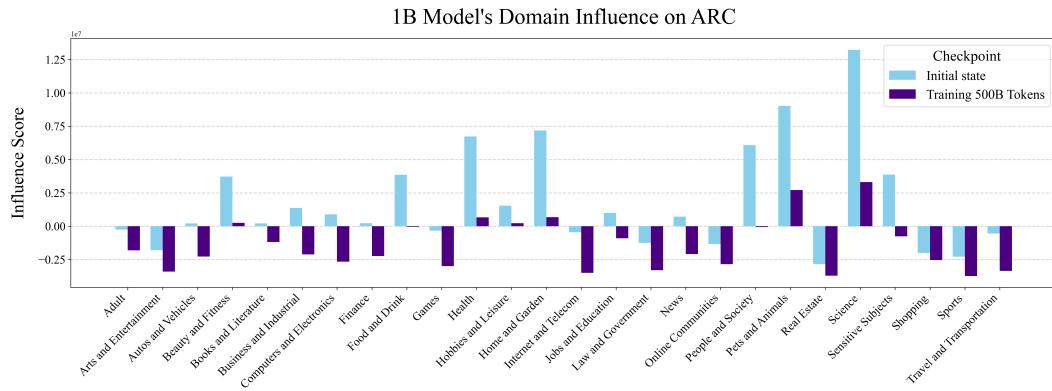
800 By systematically evaluating our method across this dual-category, nine-benchmark matrix, we  
 801 demonstrate that our approach not only enhances performance in core competency areas (as shown  
 802 by MMLU and ARC-C) but also significantly improves the transfer of these abilities to novel con-  
 803 texts (as evidenced by PiQA and MathQA). This comprehensive improvement across both in-domain  
 804 and out-of-domain tasks provides strong evidence for the effectiveness and generalizability of our  
 805 method.

806 To further investigate the impact of model scale on data utilization, we present a supplementary  
 807 analysis in Figures 5 to 11. Our key finding is that models of different scales (1B and 7B) exhibit  
 808 significantly different learning responses and form distinct preferences, even when trained on the  
 809 exact same data. This phenomenon reveals a complex interplay between data utility and model  
 810 scale. It provides a solid theoretical foundation for understanding and optimizing the data mixture  
 811 for models of varying sizes.

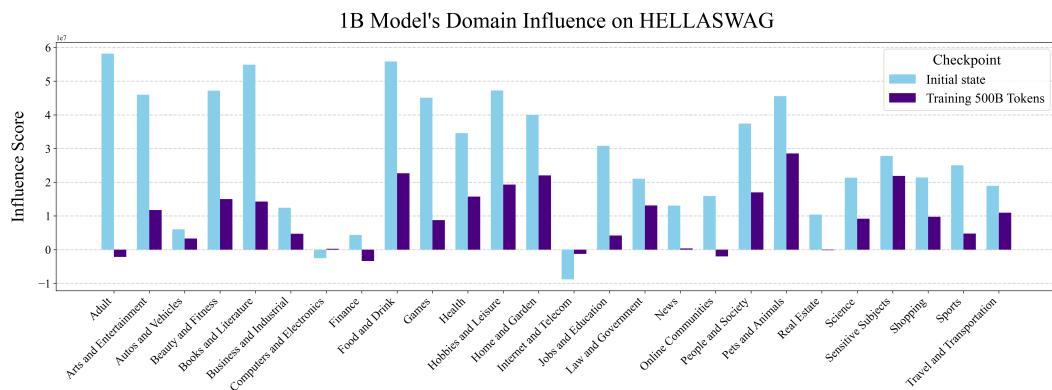
810  
811  
812 Table 3: Ablation study of REGMIX and TiKMiX on 1B and 7B models.  
813  
814  
815  
816  
817  
818  
819

| Benchmark                              | 1B Model |          | 7B Model |          |
|----------------------------------------|----------|----------|----------|----------|
|                                        | REGMIX   | TiKMiX-D | REGMIX   | TiKMiX-D |
| <b><i>In-Domain Benchmarks</i></b>     |          |          |          |          |
| MMLU Hendrycks et al. (2020)           | 31.5     | 32.2     | 40.7     | 41.5     |
| HellaSwag Zellers et al. (2019)        | 56.0     | 57.4     | 76.6     | 76.4     |
| ARC Easy Clark et al. (2018)           | 66.2     | 69.3     | 78.5     | 78.4     |
| ARC Challenge Clark et al. (2018)      | 32.2     | 37.0     | 49.4     | 50.2     |
| TriviaQA Joshi et al. (2017)           | 15.8     | 17.7     | 46.4     | 45.3     |
| <b><i>Out-of-Domain Benchmarks</i></b> |          |          |          |          |
| PiQA Bisk et al. (2020)                | 73.3     | 74.1     | 79.1     | 79.2     |
| OpenBookQA Mihaylov et al. (2018)      | 37.0     | 37.4     | 43.2     | 45.4     |
| MathQA Amini et al. (2019)             | 23.2     | 23.5     | 28.8     | 29.9     |
| Average Perf.                          | 43.9     | 45.5     | 55.3     | 56.0     |

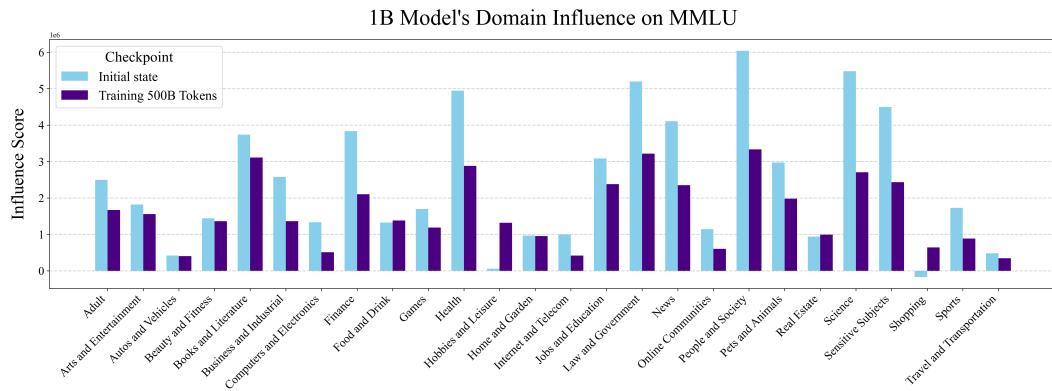
825  
826 6.3 EXPERIMENTS ON MODELS OF DIFFERENT SIZES  
827828  
829 Considering computational overhead, for the 7B model, we adopted an experimental design similar  
830 to REGMIXLiu et al. (2024), training with 500B tokens in the first stage and 200B tokens in the  
831 second stage. Table 3 presents the experimental results of our method on models of different scales.  
832 It can be observed that our proposed method significantly outperforms the current state-of-the-art  
833 approach, REGMIX, on both in-domain and out-of-domain benchmarks. The performance on the  
834 7B model effectively demonstrates the scalability of our approach. Furthermore, we note that unlike  
835 the 1B model, the 7B model’s performance on the benchmarks consistently improves throughout the  
836 training process. This suggests that the advantage of TiKMiX could be even more pronounced with  
837 additional training data.838 6.4 OBSERVATION OF DATA MIXING WITH GROUP INFLUENCE  
839840 To conduct a rigorous analysis of inter-domain interactions during mixed training, we designed an  
841 experiment to test the principle of influence additivity. Our hypothesis was that the influence of a  
842 mixed dataset on a validation set could be accurately predicted by a weighted sum of the influences  
843 from its individual constituent domains. To verify this, we first established a baseline mixing recipe  
844 using our TiKMiX-D method. We then systematically explored the local space around this recipe by  
845 generating 256 perturbed configurations, created by applying a random scaling factor between 0.5  
846 and 2.0 to each domain’s original proportion. After filtering out two sampling outliers, we proceeded  
847 with 254 unique data mixture configurations. For each of these 254 points, we sampled a correspond-  
848 ing 0.1B token dataset and measured its direct influence. We then compared this empirical influence  
849 value against a predicted influence, which was calculated by summing the pre-computed influences  
850 of each individual domain, weighted by their respective proportions in the mixture. As depicted  
851 in Fig 13 , this comparison revealed a strong linear correlation. Specifically, the Pearson corre-  
852 lation coefficients on the ARCClark et al. (2018), HellaswagZellers et al. (2019), and TriviaQAJoshi  
853 et al. (2017) benchmarks reached 0.845, 0.848, and 0.931, respectively, all of which are statistically  
854 highly significant ( $p < 0.0001$ ). This result provides compelling evidence that the outcome of data  
855 mixing is highly predictable and can be modeled as a linear combination of inter-domain influences.  
856 Consequently, this finding offers a solid empirical justification for the theoretical soundness of our  
857 proposed two-stage optimization framework, encompassing both TiKMiX-D and TiKMiX-M.  
858  
859  
860  
861  
862  
863



877 Figure 5: The impact of domains on a 1B model's performance on the ARC benchmark as training  
878 progresses.



893 Figure 6: The impact of domains on a 1B model's performance on the HELLASWAG benchmark  
894 as training progresses.



910 Figure 7: The impact of domains on a 1B model's performance on the MMLU benchmark as training  
911 progresses.

912  
913  
914  
915  
916  
917

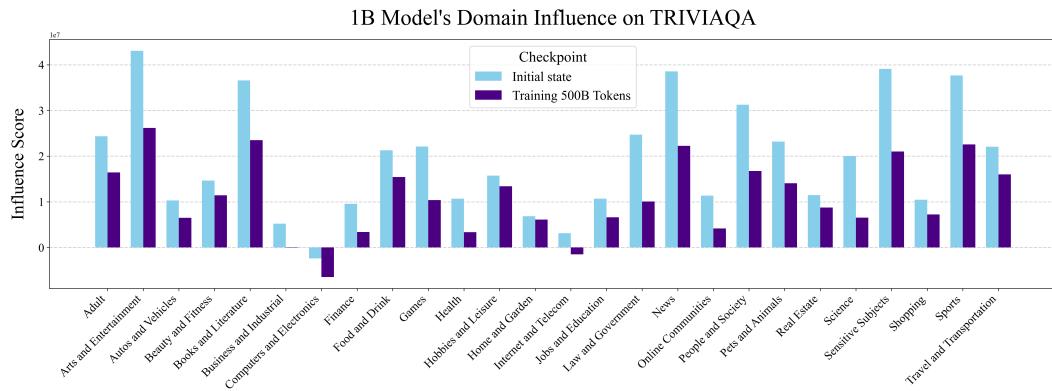


Figure 8: The impact of domains on a 1B model's performance on the TRIVIAQA benchmark as training progresses.

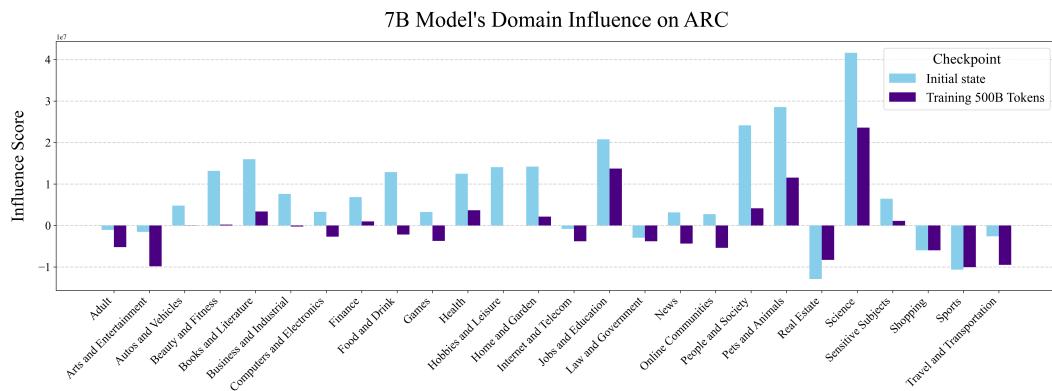


Figure 9: The impact of domains on a 7B model's performance on the ARC benchmark as training progresses.

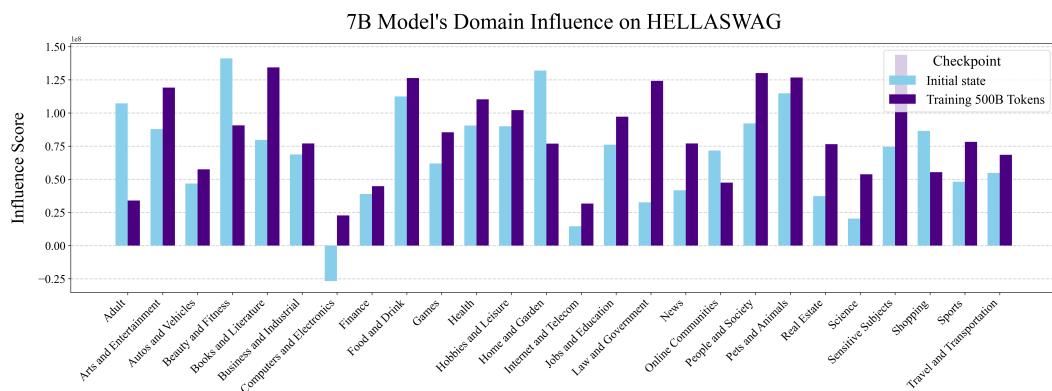


Figure 10: The impact of domains on a 7B model's performance on the HELLASWAG benchmark as training progresses.

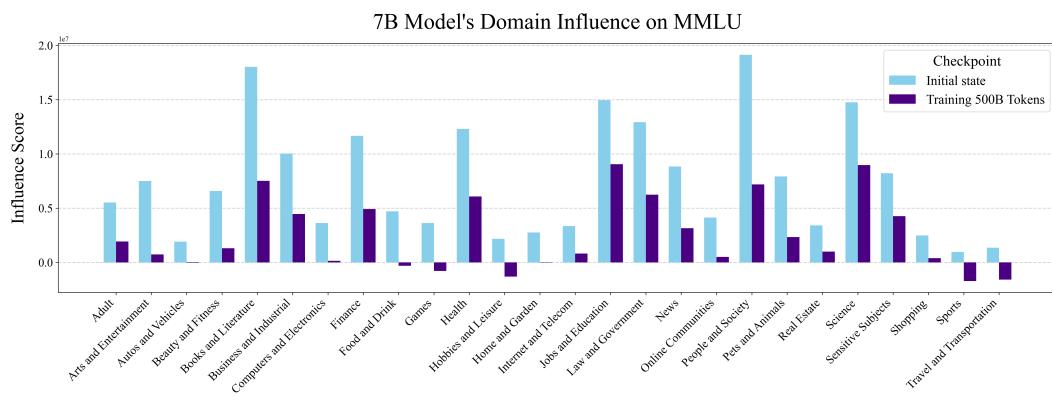


Figure 11: The impact of domains on a 7B model’s performance on the MMLU benchmark as training progresses.

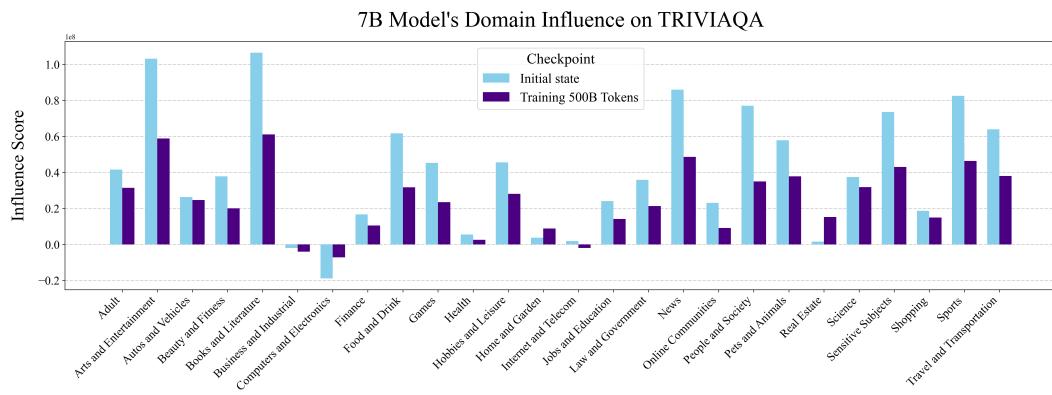


Figure 12: The impact of domains on a 7B model’s performance on the TRIVIAQA benchmark as training progresses.

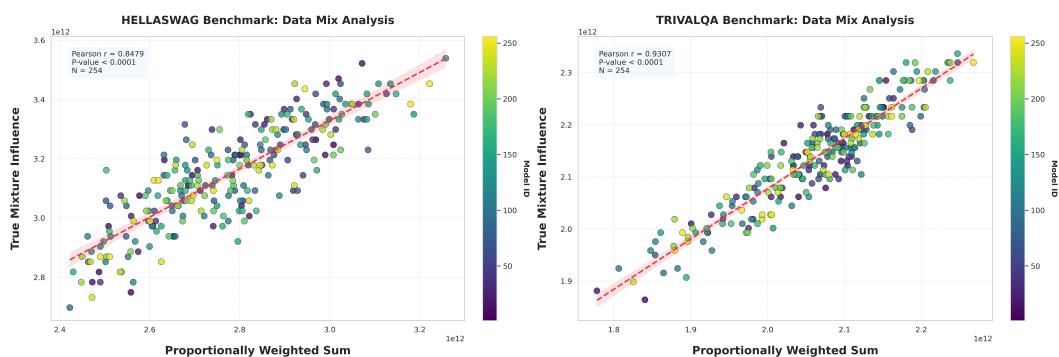


Figure 13: A Group Influence-based Analysis of Data Mixing Effects on Various Benchmarks.