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ABSTRACT

The data mixture in language model pre-training is a cornerstone of its final per-
formance. However, a static mixing strategy is suboptimal, as the model’s learning
preferences for various data domains shift dynamically throughout training. Cru-
cially, observing these evolving preferences in a computationally efficient manner
remains a significant challenge. To tackle this, we propose TiKMiX, a method that
dynamically adjusts the data mixture according to the model’s evolving prefer-
ences. Specifically, we introduce Group Influence for TiKMiX, an efficient metric
for evaluating the impact of data domains on the language models, which can for-
mulate the data mixing problem as a search for the optimal influence-maximizing
distribution. We solve this via two approaches: TiKMiX-D for direct optimization,
and TiKMiX-M, which uses a regression model to predict a superior mixture. We
train language models with different parameter scales, on up to 1 trillion tokens.
TiKMiX-D exceeds the performance of SOTA mixing strategies like REGMIX
while using just 20% of the computational resources. TiKMiX-M leads to an av-
erage performance gain of 2% across 9 downstream benchmarks. Our experiments
reveal that a model’s data preferences evolve with training progress and scale, and
we demonstrate that dynamically adjusting the data mixture based on Group In-
fluence, a direct measure of these preferences, significantly improves performance
by mitigating the “under digestion” of data seen with static ratios.

1 INTRODUCTION

The availability of large-scale public datasets has been a key factor in the creation of Large Lan-
guage Models (LLMs). The pre-training data for LLMs is predominantly sourced from the internet
Wettig et al. (2025); Yu et al. (2025a), encompassing a wide range of materials such as academic
papers Tirumala et al. (2023), books Tirumala et al. (2023), and more. The mixture ratio of data
from different domains plays a crucial role in determining the capabilities of large language models
(LLMs) Zhang et al. (2025b); Liu et al. (2025b); Bai et al. (2024a). For example, the developers
of GPT-3 Floridi & Chiriatti (2020) regard Wikipedia as a source of exceptionally high-quality data
and increase its proportion within the training dataset. REGMIX Liu et al. (2024) leverages results
from small-scale experiments to automatically set its mixing ratios; however, it does not take into
account dynamic changes in the model’s state during training Yu et al. (2024); Zhang et al. (2025a).
This observation raises a critical research question: How can we dynamically select training data
for a model in accordance with its preferences, while ensuring both scalability and efficiency?

Prior research Xie et al. (2023); Fan et al. (2023); Team (2024); Albalak et al. (2023) has leveraged
small proxy models to determine domain weights for large-scale language models. However, this
approach is computationally expensive, as it requires training proxy models on massive datasets,
often exceeding 100 billion tokens. Some methods assume that the relative performance of data
mixtures remains stable across different model scales and training durations Liu et al. (2024); nev-
ertheless, they overlook the dynamic nature of a model’s data preferences as training progresses.
Approaches such as ODM Albalak et al. (2023) attempt to address this issue by monitoring train-
ing dynamics to guide data allocation, but their iterative nature is inefficient when dealing with the
ever-increasing scale of pre-training data Jin et al. (2024); Wang et al. (2025). A significant gap
remains in current practices: leading LLMs Yang et al. (2025); Team et al. (2025); Dubey et al.
(2024) typically employ multi-stage pre-training, yet lack mechanisms for rapid and dynamic data
re-weighting between stages that can adapt to the model’s evolving preferences.
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Figure 1: Performance comparisons of our TiKMiX with current state-of-the-art data mixing strate-
gies for pre-training a 1B parameter Language Model with 1T tokens.

We propose a data mixing strategy that dynamically adjusts data proportions during training while
incurring minimal computational overhead. Specifically, we introduce Group Influence, an effi-
cient method for evaluating the collective impact of each domain on validation performance at low
computational cost by leveraging gradient accumulation. This approach enables quantification of the
model’s data preferences at any stage of training. Building on this foundation, we present TiKMiX,
a method that formulates dynamic data mixing as an optimization problem: identifying the data
combination that maximizes positive influence. To solve this, we develop two variants: TiKMiX-
D, which directly optimizes a weighted sum of influences from individual domains to determine
optimal mixing ratios; and the more advanced TiKMiX-M, which uses the output of TiKMiX-D
as an initialization, performs perturbation experiments in its vicinity, and fits a regression model to
characterize the relationship between mixing ratios and performance, thereby predicting a globally
optimal mixture for subsequent large-scale training.

With the proposed TiKMiX framework, we are able to dynamically adjust the data mixture strategy
throughout the entire pre-training cycle, adapting to changes in both model scale and training stage.
In line with previous work Bai et al. (2024b); Kang et al. (2024); Diao et al. (2025); Tao et al. (2025),
we conducted experiments on models with varying parameter sizes and scaled training up to 1 tril-
lion tokens. TiKMiX-D surpasses state-of-the-art methods such as REGMIX, achieving comparable
or superior performance while requiring only 20% of the computational resources. TiKMiX-M
further yields an average performance improvement of 2% across nine downstream benchmarks,
as illustrated in Fig. 1. Additionally, we discuss the feasibility and implications of applying TiK-
MiX to even larger-scale models. Our experiments reveal several key findings: (1) a model’s data
preferences evolve as training progresses; (2) models of different scales exhibit distinct patterns
of preference change; (3) dynamic adjustment of the data mixture facilitates more comprehensive
learning of the data by the model. In summary, the main contributions of this paper are as follows:

• We propose Group Influence, a novel and efficient method for observing and quantifying
the dynamic preferences of Large Language Models for different data domains during the
pre-training process.

• We designed TiKMiX, a dynamic data mixture framework that leverages the observations
from Group Influence to adaptively adjust data ratios, aiming to balance the model’s per-
formance across multiple tasks.

• Extensive experiments demonstrate that our method not only significantly enhances model
performance but also provides profound insights into how a model’s data preferences
evolve with the training process and model scale, thereby validating the effectiveness of
dynamically adjusting data proportions.
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Figure 2: The process involves periodically measuring domain contributions via Group Influence
and adjusting the data mixture to maximize learning efficiency.

2 RELATED WORK

2.1 INFLUENCE FUNCTION

Influence Functions offer a mathematically grounded method to estimate the effect of training data
on model predictions without costly retraining Koh & Liang (2017). Their application to high-
dimensional models like Large Language Models (LLMs) has been hampered by the computational
challenge of inverting the Hessian matrix. Recent work has overcome this barrier through scalable
approximation techniques. Notably, the work by Anthropic Grosse et al. (2023) adapted EK-FAC
George et al. (2018), an efficient Hessian approximation, to successfully apply influence functions
to 50B-parameter Transformer models. This breakthrough established influence functions as a vi-
able tool for performing data attribution at the scale of modern LLMs, enabling the identification
of specific pre-training data that drives model outputs Kou et al. (2025); Choe et al. (2024); Lin
et al. (2024a). However, computation at the sample level incurs prohibitive overhead in large-scale
pre-training scenarios. Therefore, we propose Group Influence, a method that extends influence
functions to groups of data. By leveraging gradient accumulation techniques, Group Influence can
efficiently evaluate the collective impact of an entire data domain with relatively low computational
cost. This allows us to quantify the model’s current data preferences.

2.2 DATA SELECTION AND MIXING

Strategic curation of training data significantly enhances model performance Koh & Liang (2017);
Albalak et al. (2023). For pre-training Large Language Models (LLMs), data curation methods
are commonly categorized by granularity: Token-level Selection: The most fine-grained approach,
which filters individual tokens according to specific criteria Lin et al. (2024b). Sample-level Selec-
tion: Methods include heuristic-based approaches Sharma et al. (2024); Soldaini et al. (2024) and
learning-based techniques employing optimization algorithms Chen et al. (2024); Shao et al. (2024).
Additionally, approaches such as MATES Yu et al. (2024) utilize model-derived signals to inform
selection Marion et al. (2023); Ankner et al. (2024). Group-level Selection: Earlier work relied
on manually defined ratios, while recent advances favor learning-based strategies. Offline methods
like REGMIX Liu et al. (2024) and DoReMi Xie et al. (2023) use proxy models to assign static
group weights, whereas dynamic methods such as Quad Zhang et al. (2025a) and ODM Albalak
et al. (2023) iteratively adjust weights during training. Current mainstream pre-training pipelines
are typically divided into multiple stages but often lack a mechanism to dynamically adjust the data
mixture ratio based on the model’s state in different stages. Our proposed method, TiKMiX, is a
semi-offline, group-level selection approach that dynamically adjusts the data mixture ratio across
multiple training stages. Unlike fully dynamic methods that require repeated iterative updates, TiK-
MiX directly optimizes the mixture ratio based on the model’s current data preferences, enabling
efficient adaptation without multiple rounds of adjustment.
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Figure 3: The influence of different domains on the validation set as the model training progresses.

3 METHODOLOGY

In this section, we introduce TiKMiX, a framework for dynamically optimizing the data mixture
during large language model pre-training as shown in Fig. 2. Our approach is centered on a novel
metric, Group Influence, designed to efficiently measure the real-time contribution of each data
domain to the model’s learning. We formulate the dynamic data mixture problem as an optimization
task aimed at maximizing this Group Influence. To solve this, we propose two distinct methods :
TiKMiX-D, which directly optimizes the mixture based on influence scores, and TiKMiX-M, which
leverages a regression model for a computationally efficient approximation. We first define the
problem setup and Group Influence, then elaborate on these two optimization strategies.

3.1 GROUP INFLUENCE

Group Influence extends the classical influence function framework from individual data points to
cohesive groups of data. We first establish the theoretical motivation for this extension, then provide
a mathematical derivation of Group Influence, and finally, discuss its computational properties.

Influence functions offer a principled and computationally efficient method for estimating the ef-
fect of a single training instance on a model’s parameters or predictions Koh & Liang (2017). By
approximating the change in model parameters resulting from upweighting a training point z, they
provide valuable insights into model behavior without the need for retraining. However, many com-
plex model behaviors, such as systemic bias, factual recall, or vulnerability to specific adversarial
attacks, are not attributable to a single, isolated training example. Instead, they often emerge from
the collective effect of a group of semantically related instances. A linear summation of individual
influence scores, i.e.,

∑
zi∈S I(zi), is insufficient as it fails to capture the non-trivial interactions

between data points during optimization. The collective gradient of a group can shape the loss land-
scape in a manner distinct from the sum of its constituent parts. To quantify the consolidated impact
of a data subset S as a single entity, we define the Group Influence function. Let a model, param-
eterized by θ ∈ Rd, be trained on a dataset D = {z1, . . . , zN} by minimizing an empirical risk
objective J(θ):

θ∗ = argmin
θ

J(θ) = argmin
θ

1

N

N∑
i=1

L(zi, θ), (1)

where L(zi, θ) is the loss function for instance zi. To measure the influence of a subset S ⊆ D,
we introduce a perturbed objective where every member of S is simultaneously upweighted by an
infinitesimal positive value ϵ. The new optimal parameters θ∗ϵ are found by minimizing this perturbed
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objective:

θ∗ϵ = argmin
θ

 1

N

N∑
i=1

L(zi, θ) + ϵ
∑
zj∈S

L(zj , θ)

 . (2)

This formulation models a scenario where the training process is nudged to place greater emphasis
on the group S. For ϵ = 0, we recover the original optimal parameters, θ∗ϵ=0 = θ∗. The influence
of group S on the model parameters is then defined as the rate of change of θ∗ϵ with respect to ϵ,
evaluated at ϵ = 0. A closed-form expression for this quantity can be derived using the implicit
function theorem. The first-order optimality condition for any ϵ requires that the gradient of the
perturbed objective at its minimum θ∗ϵ is zero, which can be formulated as:

∇θJϵ(θ
∗
ϵ , S) =

1

N

N∑
i=1

∇θL(zi, θ∗ϵ ) + ϵ
∑
zj∈S

∇θL(zj , θ∗ϵ ) = 0. (3)

Differentiating this entire equation with respect to ϵ via the chain rule yields:

d

dϵ
[∇θJϵ(θ

∗
ϵ , S)] = ∇2

θJϵ(θ
∗
ϵ , S)

dθ∗ϵ
dϵ

+
∂

∂ϵ
(∇θJϵ(θ

∗
ϵ , S)) = 0. (4)

Evaluating this expression at ϵ = 0 (where θ∗ϵ=0 = θ∗), the Hessian ∇2
θJϵ(θ

∗
ϵ , S) simplifies to

the Hessian of the original objective, Hθ∗ ≜ ∇2
θJ(θ

∗). The partial derivative term becomes∑
zj∈S ∇θL(zj , θ∗). Substituting these into Equation 4 gives:

Hθ∗
dθ∗ϵ
dϵ

∣∣∣∣
ϵ=0

+
∑
zj∈S

∇θL(zj , θ∗) = 0. (5)

Assuming the Hessian Hθ∗ is positive definite and thus invertible, we can solve for the influence of
group S on the model parameters:

Iparam(S) ≜
dθ∗ϵ
dϵ

∣∣∣∣
ϵ=0

= −H−1
θ∗

∑
zj∈S

∇θL(zj , θ∗)

 . (6)

A common practical application is to measure the influence of S on a scalar-valued function of the
parameters, f(θ), such as the loss on a test sample, f(θ) = L(ztest, θ). By applying the chain rule,
the influence of S on f is given by:

If (S) ≜
df(θ∗ϵ )

dϵ

∣∣∣∣
ϵ=0

= ∇θf(θ
∗)T

dθ∗ϵ
dϵ

∣∣∣∣
ϵ=0

. (7)

Substituting Equation 6 into Equation 7 yields the final expression for the Group Influence func-
tion, which can be formulated as:

If (S) = −∇θf(θ
∗)TH−1

θ∗

∑
zj∈S

∇θL(zj , θ∗)

 . (8)

The scalar value If (S) quantifies the extent to which upweighting the group S during training would
increase (If (S) > 0) or decrease (If (S) < 0) the value of the function f . A significant computa-
tional advantage of Equation 8 is its structure. The

∑
zj∈S ∇θL(zj , θ∗) is the accumulated gradient

of the group S. This allows for an efficient implementation where the gradients for all samples
within the group are first computed and aggregated. Subsequently, the computationally intensive
Hessian-inverse-vector product is performed only once. This structure ensures the computation of
Group Influence is scalable, as its cost is not dominated by the cardinality of the group |S|.

3.2 TIKMIX-D: DIRECTLY MAXIMIZE INFLUENCE

Based on the Group Influence metric, which quantifies the effect of each data domain on model
performance, we aim to optimize the data mixture by determining a weight vector w that maximizes
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overall influence. We propose TiKMiX-D, which formulates this as a multi-objective optimization
problem, dynamically adjusting w during training to balance performance and maintain data diver-
sity. The Group Influence scores are organized into an n ×m matrix S, where n is the number of
validation tasks and m is the number of data domains, with Sij denoting the influence of domain dj
on task vi. The expected influence for each task is P = S · w, and to ensure comparability across
tasks, we normalize as follows:

P̂i =
Pi

maxj Sij + ϵ
, (9)

ϵ denotes a small positive constant added for numerical stability. The optimization objective of
TiKMiX-D is defined as a unified function L(w) that integrates three components: (1) influence
uniformity, measured by the standard deviation std(P̂ ), promoting balanced improvements across
tasks; (2) overall influence gain, quantified by the sum

∑
P̂i, to maximize aggregate performance;

and (3) data diversity, measured by the entropy H(w) = −
∑m

j=1 wj log(wj), encouraging a uni-
form weight distribution. The trade-offs among these objectives are controlled by hyperparameters
α, β, and γ, which are set to 1 in our experiments for equal weighting.

The complete optimization problem is subject to several constraints to ensure a valid and beneficial
solution. The weights must be non-negative (wj ≥ 0) and sum to one (

∑
wj = 1). Furthermore, to

guarantee continuous improvement, we enforce a Pareto improvement constraint, ensuring that the
influence generated by the new mixture w is no less than that of the prior mixture wprior for any task,
i.e., S · w ≥ S · wprior. This leads to the final constrained non-linear optimization problem:

minimize
w

α · std(P̂ )− β ·
n∑

i=1

P̂i − γ ·H(w)

subject to
m∑
j=1

wj = 1, wj ≥ 0 ∀j ∈ {1, . . . ,m}, S · w ≥ S · wprior.

(10)

We employ the Sequential Least Squares Quadratic Programming algorithm Gupta & Gupta (2018)
to solve this problem, initializing the weights with a uniform distribution. The resulting optimal
vector, wbest, serves as the dynamic data mixture for the subsequent training stage.

3.3 TIKMIX-M: MIX INFLUENCE MODEL

While TiKMiX-D provides an efficient strategy for data mixing through direct optimization, it oper-
ates on the assumption that the influences of data domains are linearly additive. This simplification
may overlook the mix of different domain, non-linear cross-domain interactions that arise when
different data sources are combined. We introduce TiKMiX-M, optimize mixture proportions by
modeling the interactions within domain mixtures To more accurately capture these mixture effects.

To explore the model’s performance across a diverse range of domain weightings, we generate a
set of N candidate mixture vectors. Our approach is anchored by an empirically determined prior
weight vector, worig ∈ RD, where D is the number of domains. For each domain i, we define a plau-
sible sampling interval by scaling the original weight. We employ Latin Hypercube Sampling Loh
(2021) within this D-dimensional hyperrectangle to efficiently generate candidate vectors, ensuring
a uniform and non-collapsing coverage of the parameter space.

Each candidate vector wcand is subsequently normalized to satisfy the constraint (
∑D

i=1 wi = 1),
yielding a normalized vector wnorm = wcand/

∑D
j=1 wcand,j . However, this normalization can

shift components outside their predefined intervals. Therefore, we implement a rejection sampling
scheme, where a normalized vector wnorm is accepted into our final set only if it satisfies the bound-
ary constraints for all dimensions, i.e., wnorm,i ∈ [li, hi] for all i ∈ {1, . . . , D}. This iterative process
is repeated until N valid weight vectors that meet both the summation and boundary conditions have
been collected, resulting in a robust and well-distributed set of weights for subsequent analysis. For
each generated candidate mixture wi, we calculate its true aggregate influence score, yi, across all
validation sets using the Group Influence evaluation method

∑
P̂i .
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Algorithm 1 Iterative Search via TiKMiX-M

Input: Surrogate fsur, initial mix w(0), iters T , samples N , exploration [αmin, αmax], top-k.
Output: Optimized mixture w∗.
wbest ← w(0)

Generate exploration strengths {αt}Tt=1 logarithmically from αmax to αmin.
for t = 1 to T do

Sample N domain mixture candidates {wi} around updated wbest via Dirichlet.
For each sampled wi, compute its Group influence score yi = fsur(wi).
Select indices Itop-k of k mixtures with highest Group influence scores.
Update wbest =

1
k

∑
i∈Itop-k

wi.
end for
return wbest

Following these steps, we obtain a training set Dtrain = {(wi, yi)}Ni=1. Inspired by REGMIXLiu
et al. (2024), we select LightGBM Ke et al. (2017), an efficient gradient boosting decision tree
model, as our regression surrogate. This model, fLGBM, is trained to predict the aggregate influence
y for given data mixture w, i.e., y = fLGBM(w).We leverage it to efficiently explore the mixture space
without performing expensive, true influence evaluations. We design an iterative search algorithm
that balances exploration and exploitation to find the optimal mixture.

The process is detailed in Algorithm 1. We start from the ratio from TiKMiX-D, wbest-D. At each
step, we sample candidate mixtures on the current best solution. The distribution’s concentration
parameter is annealed over steps, beginning with a large value to encourage global exploration and
gradually decreasing to promote local exploitation near the optimum. We employ the surrogate
model to evaluate all sampled candidates. The center for the next iteration is then updated to be
the average of the top-k candidates with the highest predicted scores. This procedure is repeated
until convergence or a maximum number of iterations is reached. TiKMiX-M not only accounts for
non-linear cross-domain interactions but also significantly enhances search efficiency through the
surrogate model, enabling it to discover superior solutions within the vast mixture space.

4 EXPERIMENTS

This section presents a comprehensive set of experiments designed to validate the effectiveness of
our TiKMiX framework. We first outline the experimental setup, including evaluation benchmarks,
datasets, and baseline methods. Subsequently, we demonstrate that: (1) the pre-training data mixture
significantly impacts downstream task performance; (2) our proposed Group Influence is an effective
predictor of downstream performance; and (3) the TiKMiX framework, particularly TiKMiX-D and
TiKMiX-M, markedly improves model performance and surpasses existing SOTA methods.

4.1 EXPERIMENTAL SETUP

Datasets and Models Optimizing the data mixture of web-scale corpora is a crucial and highly
impactful step in pre-training performant LLMs. While the diversity of web data presents unique
challenges, effective mixing strategies can unlock significant performance gains. To systematically
investigate this, we conduct our experiments on the RefinedWeb dataset Penedo et al. (2023), which
comprises 26 distinct data domains. Following the baseline experimental setup, we adopt the model
architecture proposed by Zhang et al. (2024) and construct models with 1B and 7B parameters
and train on up to 1 trillion tokens. The training process is divided into two distinct stages, each
consisting of 500 billion tokens, with a strategic adjustment of the data mixture ratio at the transition
point between stages. We compare TiKMiX against several representative data mixing strategies:
Pile-CC Gao et al. (2020): The original data mixture proposed by the authors of The Pile based on
heuristics. REGMIX Liu et al. (2024): SOTA method that uses a regression model to predict and
optimize validation loss for determining the mixture. DoReMi Xie et al. (2023): a classic dynamic
data mixing method that relies on a proxy model. QUAD Zhang et al. (2025a): a method for
dynamic selection during training after clustering data We use the best-reported mixture from their
paper, re-normalized to the domains available in our setup.

7
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Downstream Task Evaluation To comprehensively evaluate our proposed method, we curated
a diverse set of 9 widely recognized downstream benchmarks, which were strategically divided
into two categories: in-domain and out-of-domain. This division allows for a rigorous assess-
ment of both the model’s core capabilities and its generalization prowess. Our in-domain eval-
uation suite was designed to cover a wide spectrum of reasoning and knowledge-based tasks. It
includes MMLU Hendrycks et al. (2020), a challenging benchmark measuring knowledge; Hel-
laSwag Zellers et al. (2019), a commonsense reasoning task that involves choosing the most plau-
sible continuation for a given context; ARC Clark et al. (2018), which we evaluate on both the
Easy (ARC-E) and the more difficult Challenge (ARC-C) sets of grade-school science questions;
and TriviaQA Joshi et al. (2017), a reading comprehension benchmark requiring models to locate
answers within lengthy documents. To evaluate the generalization capabilities of our method, we se-
lected a set of out-of-domain benchmarks. These include PiQA Bisk et al. (2020), a commonsense
benchmark focused on physical interactions; OpenBookQA Mihaylov et al. (2018), a question-
answering task requiring reasoning over a given set of science facts; BoolQ Clark et al. (2019), a
dataset of naturally occurring yes/no questions; and MathQA Amini et al. (2019), a mathematical
reasoning benchmark with multi-step word problems.

4.2 GROUP INFLUENCE AS AN EFFECTIVE PREDICTOR OF PERFORMANCE

The core hypothesis of our introduced TiKMiX framework is that maximizing Group Influence can
effectively enhance overall downstream task performance. To validate this hypothesis, we calculated
the impact of 10 different data mixtures on various benchmarks. As validation, we trained a 1B-
parameter model on 500B data using the corresponding mixtures. The normalized scores are shown
in Fig. 4. We observe a strong positive correlation (i.e., Pearson correlation coefficient ρ = 0.789)
between the total Group Influence and the average downstream scores. This indicates that mixtures
generating higher total influence almost invariably lead to better downstream performance. This
finding not only confirms the validity of Group Influence as an optimization target but also provides
a solid theoretical foundation for the design of our proposed TiKMiX-D and TiKMiX-M.

Benchmark Human DoReMi Average QUAD Pile-CC REGMiX TiKMiX-D TiKMiX-M
In-Domain Benchmarks
MMLU Hendrycks et al. (2020) 31.3 31.2 30.9 31.7 31.2 31.5 32.2 31.8
HellaSwag Zellers et al. (2019) 55.5 55.3 55.9 56.5 55.6 56.0 57.4 56.6
ARC Easy Clark et al. (2018) 64.4 65.7 64.1 62.8 63.2 66.2 69.3 70.7
ARC Challenge Clark et al. (2018) 33.7 33.6 32.1 33.5 32.7 33.2 37.0 38.3
Triviaqa Joshi et al. (2017) 17.6 15.5 17.3 17.6 16.3 15.8 17.7 17.3
Out-of-Domain Benchmarks
PiQA Bisk et al. (2020) 73.5 73.1 71.5 72.4 69.2 73.3 74.1 74.5
OpenBookQA Mihaylov et al. (2018) 35.8 36.5 34.6 36.6 37.1 37.0 37.4 37.4
Boolq Clark et al. (2019) 56.3 59.2 58.3 60.5 58.7 58.9 61.3 62.2
MathQA Amini et al. (2019) 22.7 23.1 23.7 23.9 22.5 23.3 23.5 24.2
Estimated FLOPs 0 4.2e19 0 2.3e18 0 3.7e18 7.2e17 3.2e18
Average Perf. 43.4 43.7 43.2 43.9 42.9 43.9 45.5 45.9
Best On 0/9 0/9 0/9 0/9 0/9 0/9 4/9 6/9

Table 1: Comparison of 1B Parameter Models Trained on 1T Tokens Across Various Benchmarks.
The best-performing model on each benchmark is highlighted in bold.

Building on the preceding findings, we formally evaluate the two implementations of our TiKMiX
framework: TiKMiX-D and TiKMiX-M. We first followed the natural data distribution, then using
TiKMiX adjusted the data mixture between two stages during the 1T-token pre-training process. As
shown in Table 1, both of our methods significantly outperform all baselines. On average, across 9
benchmarks, TiKMiX-D and TiKMiX-M improved performance by 1.6% and 2.0%, respectively,
over the strongest baseline, REGMIX. Notably, on challenging tasks like ARC Easy and ARC Chal-
lenge, TiKMiX-M achieved a performance advantage of over 4.8%. The results of experiments
conducted on larger-scale models are provided in Table 3

4.3 ANALYSIS OF COMPUTATIONAL EFFICIENCY

The exact computation of the Hessian matrix in LLMs typically incurs extremely high computa-
tional costs. To mitigate this overhead, we draw upon recent studies on influence functions in
LLMsGrosse et al. (2023) and employ the Empirical Kronecker-Factored Approximate Curvature
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Figure 4: Analysis of the Group Influence
and actual performance on the benchmark.

Benchmark Loss TiKMiX-D

5B 10B 0.1B 0.5B

In-Domain Benchmarks
MMLU Hendrycks et al. (2020) 31.4 31.2 32.2 32.1
HellaSwag Zellers et al. (2019) 56.3 56.4 57.4 57.6
ARC Easy Clark et al. (2018) 67.3 65.6 69.3 69.1
ARC Challenge Clark et al. (2018) 34.4 33.4 37.0 37.1
TriviaQA Joshi et al. (2017) 16.5 16.9 17.7 17.9
Out-of-Domain Benchmarks
PiQA Bisk et al. (2020) 73.2 73.5 74.1 74.2
OpenBookQA Mihaylov et al. (2018) 36.4 36.6 37.4 37.3
BoolQ Clark et al. (2019) 59.4 59.7 61.3 61.5
MathQA Amini et al. (2019) 23.9 23.7 23.5 23.6

Average Perf. 44.3 44.1 45.5 45.6

Table 2: The ablation study of Loss and TiKMiX on
different data sizes.

(EKFAC) method to approximate the Hessian matrix. EKFAC reduces computational and mem-
ory requirements by partitioning the Hessian and applying Kronecker factorization, thereby trans-
forming complex high-dimensional matrix operations into computations within lower-dimensional
subspaces.

Consequently, TiKMiX demonstrates superior computational efficiency. In contrast to methods such
as MATESYu et al. (2024), Group-MATESYu et al. (2025b), and REGMIX, which require the ad-
ditional overhead of training small proxy models, the Group Influence calculation and optimization
process in TiKMiX is highly efficient and does not involve such auxiliary training procedures. In
our 1B model experiments, the total computational overhead for TiKMiX-D to determine the next-
stage mixture (including influence calculation and regression model inference) was only about 20%
of that required by the RegMix method, while achieving comparable or even superior performance.
This high efficiency makes TiKMiX a practical and powerful tool for large scale LLM training.

4.4 ABLATION STUDY

We conduct a series of ablation studies, with the results presented in Table 2. Our primary investiga-
tion focused on the efficacy of using group influence and TiKMiX for preference observation and
data mixture adjustments. As shown in Table 2, our approach allows for the accurate observation of
model preferences using only 0.1B tokens and requires no model training, leading to a significant
performance improvement over the loss. This highlights the superiority of our method in efficiently
identifying and correcting data biases. We further discuss the effectiveness of our model on a larger
scale in the appendix.

5 CONCLUSION AND DISCUSSIONS

In this work, we address the suboptimality of static data mixing strategies in language model pre-
training, demonstrating that a model’s learning preferences for different data domains evolve dy-
namically with its training progress. To tackle this, we introduce TiKMiX, a novel framework that
dynamically adjusts the data mixture based on Group Influence, a highly efficient metric to eval-
uate the contribution of data domains to the model’s performance. By framing data mixing as an
influence-maximization problem, we developed two approaches: TiKMiX-D, which directly op-
timizes the mixture and surpasses state-of-the-art methods like REGMIX using only 20% of the
computational resources, and TiKMiX-M, which uses a regression model to predict superior mix-
tures, achieving an average performance gain of 2% across 9 downstream benchmarks. Our exper-
iments confirm that dynamically adjusting the data mixture based on Group Influence significantly
improves performance by mitigating the under-digestion of data seen with static ratios. We plan to
conduct further experiments on larger-scale models and more diverse datasets to further validate the
effectiveness of Group Influence and TiKMiX.
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REPRODUCIBILITY STATEMENT

We provide comprehensive details of the TiKMiX methodology, experimental setup, data processing
procedures, and model training specifics in the main text, appendix, and supplementary materials.
Specifically, the Methodology section (lines 211–258) systematically presents the mathematical def-
inition and derivation of Group Influence; the appendix further elaborates on the assumptions and
provides complete theoretical proofs. The experimental section (lines 365–371) enumerates the
datasets used as well as the model architectures and scales adopted in our study. The training pro-
cess is detailed in lines 419–423, while the Downstream Task Evaluation section (lines 378–392)
describes the downstream evaluation benchmarks and baseline comparisons, with evaluation criteria
clearly stated in both the main text and appendix. All procedures related to data processing, mix-
ture ratio adjustment, and hyperparameter settings are thoroughly documented in the main text and
supplementary materials. The necessary source code is provided via an anonymous downloadable
link in the supplementary materials. We believe these resources offer robust support for the research
community to reproduce, validate, and further extend our work.

ETHICS STATEMENT

This study strictly follows the ICLR Code of Ethics, upholds a responsible research attitude, and is
dedicated to advancing trustworthy machine learning and artificial intelligence technologies while
focusing on their positive impact on society and human well-being. Throughout our work, we fully
considered ethical principles such as promoting social welfare, fairness and inclusiveness, scientific
integrity, risk prevention, transparency, intellectual property, and privacy protection. All experiments
are based on public datasets, with processes that are transparent and reproducible, and there is no
fabrication or manipulation of data or results. We strictly adhere to data usage agreements without
involving personal privacy.
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Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
When less is more: Investigating data pruning for pretraining llms at scale. arXiv preprint
arXiv:2309.04564, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refined-
web dataset for falcon llm: Outperforming curated corpora with web data only. Advances in
Neural Information Processing Systems, 36:79155–79172, 2023.

Yunfan Shao, Linyang Li, Zhaoye Fei, Hang Yan, Dahua Lin, and Xipeng Qiu. Balanced data
sampling for language model training with clustering. arXiv preprint arXiv:2402.14526, 2024.

Vasu Sharma, Karthik Padthe, Newsha Ardalani, Kushal Tirumala, Russell Howes, Hu Xu, Po-Yao
Huang, Shang-Wen Li, Armen Aghajanyan, Gargi Ghosh, et al. Text quality-based pruning for
efficient training of language models. arXiv preprint arXiv:2405.01582, 2024.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An open corpus of
three trillion tokens for language model pretraining research. arXiv preprint arXiv:2402.00159,
2024.

Zhixu Silvia Tao, Kasper Vinken, Hao-Wei Yeh, Avi Cooper, and Xavier Boix. Merge to mix:
Mixing datasets via model merging. arXiv preprint arXiv:2505.16066, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretrain-
ing via document de-duplication and diversification. Advances in Neural Information Processing
Systems, 36:53983–53995, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kun Wang, Guibin Zhang, Zhenhong Zhou, Jiahao Wu, Miao Yu, Shiqian Zhao, Chenlong Yin,
Jinhu Fu, Yibo Yan, Hanjun Luo, et al. A comprehensive survey in llm (-agent) full stack safety:
Data, training and deployment. arXiv preprint arXiv:2504.15585, 2025.

Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini.
Organize the web: Constructing domains enhances pre-training data curation. arXiv preprint
arXiv:2502.10341, 2025.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36:69798–
69818, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shi Yu, Zhiyuan Liu, and Chenyan Xiong. Craw4llm: Efficient web crawling for llm pretraining.
arXiv preprint arXiv:2502.13347, 2025a.

Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient
pretraining with data influence models. Advances in Neural Information Processing Systems, 37:
108735–108759, 2024.

Zichun Yu, Fei Peng, Jie Lei, Arnold Overwijk, Wen-tau Yih, and Chenyan Xiong. Data-efficient
pretraining with group-level data influence modeling. arXiv preprint arXiv:2502.14709, 2025b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang Chai, Rui Wang, Xinlin Zhuang, Tianyi Bai,
Qiu Jiantao, Lei Cao, Ju Fan, et al. Harnessing diversity for important data selection in pretraining
large language models. In The Thirteenth International Conference on Learning Representations,
2025a.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou, Qingfu Zhu, and Wanxiang Che. A survey of table
reasoning with large language models. Frontiers of Computer Science, 19(9):199348, 2025b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

6 APPENDIX

6.1 EXPERIMENTAL SETUP

Datasets and Models Web data serves as one of the core sources for pre-training large language
models (LLMs), playing a crucial role in enhancing model capabilities due to its broad coverage and
diversity. However, precisely because web data encompasses a wide range of domains—including
news, encyclopedias, forums, and academic content—its highly diverse origins make it extremely
challenging to achieve a balanced mixture across different domains. We follow the same experi-
mental setup as prior studies on web data mixture Wettig et al. (2025); Liu et al. (2025a), utilize
the RefinedWeb dataset Penedo et al. (2023), and employ the domain classifier He et al. (2023) to
categorize the data into 26 distinct domains. Our models, ranging in size from 1B to 7B parameters,
are trained on up to 1 trillion tokens. The training process is divided into two distinct stages, each
consisting of 500 billion tokens, with a strategic adjustment of the data mixture ratio at the transition
point between stages. We compare TiKMiX against several representative data mixing strategies:
Pile-CC Gao et al. (2020): The original data mixture proposed by the authors of The Pile based
on heuristics. REGMIX Liu et al. (2024): SOTA method that uses a regression model to predict
and optimize validation loss for determining the mixture. DoReMi Xie et al. (2023): a classic dy-
namic data mixing method that relies on a proxy model. QUAD Zhang et al. (2025a): a method for
dynamic selection during training after clustering data We use the best-reported mixture from their
paper, re-normalized to the domains available in our setup.

Our proposed TiKMiX method achieves a balance between dynamic adaptability and computational
efficiency in data mixture strategies. Similar to other dynamic approaches such as DoReMi and
QUAD, TiKMiX adjusts the data mixture ratios according to the current state of the model. How-
ever, unlike these methods, TiKMiX does not require multiple iterations, which significantly im-
proves training efficiency. Furthermore, TiKMiX simplifies the data mixing process and reduces
engineering complexity without sacrificing model performance.

To systematically evaluate the effectiveness of different data mixing strategies, we conduct large-
scale experiments on the RefinedWeb dataset. Our models range in size from 1B to 7B parameters
and are trained on up to 1 trillion tokens. The training process is divided into two distinct stages, each
consisting of 500 billion tokens. At the transition point between these two stages, we strategically
adjust the data mixture ratios to further assess the impact of mixing strategies on model performance.

6.2 DOWNSTREAM TASK EVALUATION

To conduct a comprehensive and rigorous evaluation of our proposed method, we curated a diverse
suite of nine widely-recognized downstream benchmarks. This evaluation matrix is strategically
divided into two categories: in-domain and out-of-domain. This bifurcation allows for a dual-
faceted assessment of our model’s capabilities: on one hand, to measure its proficiency on tasks
closely aligned with its training objectives, and on the other, to critically examine its ability to
generalize learned skills to novel tasks and knowledge domains. The consistent performance gains
observed across both categories underscore our method’s ability to enhance the model’s foundational
capabilities and foster robust generalization.

In-Domain Evaluation Our in-domain evaluation suite is designed to probe the model’s core
competencies in complex reasoning, commonsense understanding, and knowledge-intensive appli-
cations. These benchmarks are thematically aligned with our method’s primary optimization goals
and serve to quantify the depth of improvement in these critical areas.

• MMLU (Massive Multitask Language Understanding) Hendrycks et al. (2020): A
highly challenging multitask benchmark that assesses knowledge across 57 disparate sub-
jects, ranging from elementary mathematics and U.S. history to computer science and law.
MMLU demands not only a vast repository of knowledge but also the ability to perform
precise, domain-specific reasoning, making it a key indicator of a model’s comprehensive
intellectual and academic capabilities.

• HellaSwag Zellers et al. (2019): A commonsense reasoning benchmark that tasks the
model with selecting the most plausible continuation for a given context. HellaSwag is

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

distinguished by its use of adversarially-generated distractors, which are designed to be
highly confusable for models that rely on superficial statistical cues. It therefore serves as
a robust test of a model’s deeper understanding of causality and everyday situations.

• ARC (AI2 Reasoning Challenge) Clark et al. (2018): This benchmark evaluates reason-
ing and comprehension on grade-school science questions. We assess performance on both
its subsets: ARC-Easy (ARC-E), which contains questions often solvable via information
retrieval, and the more difficult ARC-Challenge (ARC-C), which requires multi-step rea-
soning and synthesis of knowledge. Evaluating on both allows for a fine-grained analysis
of the model’s capabilities, from basic knowledge retrieval to complex scientific inference.

• TriviaQA Joshi et al. (2017): A large-scale reading comprehension benchmark where
questions are authored by trivia enthusiasts, leading to a high degree of diversity and com-
plexity. The task requires models to locate answers within lengthy, evidence-rich docu-
ments, often amidst significant distractor information. It primarily evaluates the model’s
proficiency in long-context processing, precise information retrieval, and fact verification.

Out-of-Domain Evaluation To rigorously assess the generalization power of our method, we
selected a set of out-of-domain benchmarks that are distinct from the in-domain tasks in terms of
subject matter, format, or required reasoning skills. Performance on these benchmarks directly
reflects the model’s ability to transfer its learned meta-skills to new and unseen challenges.

• PiQA (Physical Interaction QA) Bisk et al. (2020): A commonsense benchmark focused
on physical reasoning. Presented in a question-answering format, it requires the model to
understand the properties and affordances of everyday objects (e.g., ”How can you cool
a cup of water faster?”). PiQA probes the model’s intuitive grasp of how the physical
world operates, a domain of commonsense distinct from academic knowledge, making it
an excellent test of generalization.

• OpenBookQA Mihaylov et al. (2018): This benchmark simulates an ”open-book” exam,
requiring the model to answer questions using a given set of elementary science facts.
Success demands not only reading comprehension but, more importantly, the ability to
reason over and combine these facts to answer questions whose solutions are not explicitly
stated. It critically evaluates the model’s capacity for multi-step reasoning and knowledge
application within a constrained context.

• BoolQ (Boolean Questions) Clark et al. (2019): A dataset of naturally occurring yes/no
questions, sourced from real user search queries. The challenge lies in the fact that the rela-
tionship between the question and the provided evidence passage is often implicit, requir-
ing sophisticated syntactic and semantic analysis to arrive at a correct Boolean judgment.
BoolQ effectively measures the model’s fine-grained comprehension of natural, conversa-
tional language.

• MathQA Amini et al. (2019): A mathematical reasoning benchmark featuring multi-step
word problems. The task requires models to parse natural language descriptions, formulate
a correct sequence of operations, and execute them to find a solution. Covering a diverse
range of mathematical reasoning categories, MathQA is a crucial benchmark for evaluat-
ing a model’s symbolic reasoning and logical chain-of-thought capabilities, representing a
significant test of higher-order cognitive skills.

By systematically evaluating our method across this dual-category, nine-benchmark matrix, we
demonstrate that our approach not only enhances performance in core competency areas (as shown
by MMLU and ARC-C) but also significantly improves the transfer of these abilities to novel con-
texts (as evidenced by PiQA and MathQA). This comprehensive improvement across both in-domain
and out-of-domain tasks provides strong evidence for the effectiveness and generalizability of our
method.

To further investigate the impact of model scale on data utilization, we present a supplementary
analysis in Figures 5 to 11. Our key finding is that models of different scales (1B and 7B) exhibit
significantly different learning responses and form distinct preferences, even when trained on the
exact same data. This phenomenon reveals a complex interplay between data utility and model
scale. It provides a solid theoretical foundation for understanding and optimizing the data mixture
for models of varying sizes.
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Table 3: Ablation study of REGMIX and TiKMiX on 1B and 7B models.

1B Model 7B Model
Benchmark REGMIX TiKMiX-D REGMIX TiKMiX-D

In-Domain Benchmarks
MMLU Hendrycks et al. (2020) 31.5 32.2 40.7 41.5
HellaSwag Zellers et al. (2019) 56.0 57.4 76.6 76.4
ARC Easy Clark et al. (2018) 66.2 69.3 78.5 78.4
ARC Challenge Clark et al. (2018) 32.2 37.0 49.4 50.2
TriviaQA Joshi et al. (2017) 15.8 17.7 46.4 45.3

Out-of-Domain Benchmarks
PiQA Bisk et al. (2020) 73.3 74.1 79.1 79.2
OpenBookQA Mihaylov et al. (2018) 37.0 37.4 43.2 45.4
MathQA Amini et al. (2019) 23.2 23.5 28.8 29.9

Average Perf. 43.9 45.5 55.3 56.0

6.3 EXPERIMENTS ON MODELS OF DIFFERENT SIZES

Considering computational overhead, for the 7B model, we adopted an experimental design similar
to REGMIXLiu et al. (2024), training with 500B tokens in the first stage and 200B tokens in the
second stage. Table 3 presents the experimental results of our method on models of different scales.
It can be observed that our proposed method significantly outperforms the current state-of-the-art
approach, REGMIX, on both in-domain and out-of-domain benchmarks. The performance on the
7B model effectively demonstrates the scalability of our approach. Furthermore, we note that unlike
the 1B model, the 7B model’s performance on the benchmarks consistently improves throughout the
training process. This suggests that the advantage of TiKMiX could be even more pronounced with
additional training data.

6.4 OBSERVATION OF DATA MIXING WITH GROUP INFLUENCE

To conduct a rigorous analysis of inter-domain interactions during mixed training, we designed an
experiment to test the principle of influence additivity. Our hypothesis was that the influence of a
mixed dataset on a validation set could be accurately predicted by a weighted sum of the influences
from its individual constituent domains. To verify this, we first established a baseline mixing recipe
using our TiKMiX-D method. We then systematically explored the local space around this recipe by
generating 256 perturbed configurations, created by applying a random scaling factor between 0.5
and 2.0 to each domain’s original proportion. After filtering out two sampling outliers, we proceeded
with 254 unique data mixture configurations. For each of these 254 points, we sampled a correspond-
ing 0.1B token dataset and measured its direct influence. We then compared this empirical influence
value against a predicted influence, which was calculated by summing the pre-computed influences
of each individual domain, weighted by their respective proportions in the mixture. As depicted
in Fig 13 , this comparison revealed a strong linear correlation. Specifically, the Pearson correla-
tion coefficients on the ARCClark et al. (2018), HellaswagZellers et al. (2019), and TriviaQAJoshi
et al. (2017) benchmarks reached 0.845, 0.848, and 0.931, respectively, all of which are statistically
highly significant (p < 0.0001). This result provides compelling evidence that the outcome of data
mixing is highly predictable and can be modeled as a linear combination of inter-domain influences.
Consequently, this finding offers a solid empirical justification for the theoretical soundness of our
proposed two-stage optimization framework, encompassing both TiKMiX-D and TiKMiX-M.
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Figure 5: The impact of domains on a 1B model’s performance on the ARC benchmark as training
progresses.

Figure 6: The impact of domains on a 1B model’s performance on the HELLASWAG benchmark
as training progresses.

Figure 7: The impact of domains on a 1B model’s performance on the MMLU benchmark as training
progresses.
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Figure 8: The impact of domains on a 1B model’s performance on the TRIVIAQA benchmark as
training progresses.

Figure 9: The impact of domains on a 7B model’s performance on the ARC benchmark as training
progresses.

Figure 10: The impact of domains on a 7B model’s performance on the HELLASWAG benchmark
as training progresses.
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Figure 11: The impact of domains on a 7B model’s performance on the MMLU benchmark as
training progresses.

Figure 12: The impact of domains on a 7B model’s performance on the TRIVIAQA benchmark as
training progresses.

Figure 13: A Group Influence-based Analysis of Data Mixing Effects on Various Benchmarks.
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