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Abstract
This paper presents a novel method for analyzing
the latent space geometry of generative models,
including statistical physics models and diffusion
models, by reconstructing the Fisher information
metric. The method approximates the posterior
distribution of latent variables given generated
samples and uses this to learn the log-partition
function, which defines the Fisher metric for
exponential families. Theoretical convergence
guarantees are provided, and the method is
validated on the Ising and TASEP models, out-
performing existing baselines in reconstructing
thermodynamic quantities. Applied to diffusion
models, the method reveals a fractal structure of
phase transitions in the latent space, characterized
by abrupt changes in the Fisher metric. We
demonstrate that while geodesic interpolations
are approximately linear within individual phases,
this linearity breaks down at phase boundaries,
where the diffusion model exhibits a divergent
Lipschitz constant with respect to the latent
space. These findings provide new insights into
the complex structure of diffusion model latent
spaces and their connection to phenomena like
phase transitions. Our source code is available
at https://github.com/alobashev/
hessian-geometry-of-diffusion-models.

1. Introduction
State-of-the-art image generation models often exhibit
abrupt changes in image appearance during interpolation,
indicating a non-smooth latent space (Liu et al., 2021; Guo
et al., 2024). These abrupt transitions have been studied in
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Figure 1: Visualization of Theorem 3.1. Having sam-
ples from p(x|t′) we can approximate posterior distribution
p(t|x1, . . . xN ). The partition function logZ(t) defines a
Hessian metric on the latent space. Our Theorem 3.1 guar-
antees that logZ(t) in limit depends only on the posterior
distributions p(t|x1, . . . , xN ) and Theorem 3.2 offers a way
to learn logZ(t) from p(t|x1, . . . , xN ).

community from two different perspectives.

Riemannian geometry of latent space Recent work by
Park et al. (2023) constructs a latent basis by considering
singular vectors of Jacobian in the feature space, deriving a
metric on a latent space via pullback from the euclidean met-
ric in the feature space. A similar pullback-based approach
from euclidean metric in image space was used by Shao
et al. (2018). It was demonstrated that linear interpolation in
the latent space closely approximates geodesic interpolation.
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Arvanitidis et al. (2017) studied the Riemannian geometry
of GAN latent spaces, deriving metrics under the assump-
tion that the stochastic generator’s mean and variance func-
tions are twice differentiable. Other notable study (Li et al.,
2024) proposes an approach to automatically discover inter-
pretable directions in a latent space. In (Brown et al., 2022)
authors verify the union of manifold hypothesis for various
image datasets. Additionally, Tosi et al. (2014) treats latent
variables as coordinates on a Riemannian manifold, using
the Jacobian-derived metric to construct geodesics in latent
spaces obtained through nonlinear dimensionality reduction.

Learning phase transitions in statistical physics Ma-
chine learning methods have been widely applied to the
study of classical and quantum statistical physics models
(Van Nieuwenburg et al., 2017; Carrasquilla & Melko, 2017;
Rem et al., 2019; Wang et al., 2021; Canabarro et al., 2019).
These works primarily focus on determining phase transi-
tion boundaries and extracting learned order parameters,
which serve to distinguish one phase from another.

In (Walker et al., 2020), it was observed that the principal
components of the mean and standard deviation of latent
variables in a VAE trained on 2D Ising model configurations
were highly correlated with known physical quantities, sug-
gesting that the VAE implicitly extracts sufficient statistics
from the data.

We could unify these two approaches by considering a gen-
erative model as a statistical physics system and examine it
using information geometry methods.

Our contributions This work provides novel method to
analyse latent space properties in generative models. It’s
main contributions are

• For two-parametric systems or two-dimensional sec-
tions of the latent space, we propose a method to re-
construct the Fisher metric. We provide a theoretical
proof of the method’s convergence. The efficiency of
the method was tested on exactly solvable statistical
physics models: Ising model and TASEP, demonstrat-
ing that the reconstructed free energy coincides with
the exact solution.

• Using the proposed approach, we analyze the latent
spaces of generative models. We introduce the notion
of distinct phases within the diffusion latent space and
identify boundaries where the recovered Fisher metric
exhibits abrupt changes.

• We validate the findings of approximately linear
geodesics for interpolation, as discussed in (Shao et al.,
2018). However, our work reveals that this result holds
only within a single phase. We extend the analysis
to phase transitions, showing that the diffusion model

exhibits a divergent Lipschitz constant with respect to
the latent space at phase boundaries.

2. Background
Let X be a high-dimensional data space and S a lower-
dimensional latent space. We assume the existence of a
stochastic generative mapping from S to X , defined by the
conditional probability distribution p(x|t) on X for each
latent vector t ∈ S.

A generative mapping could be a statistical physics model,
such as the Ising model, where t = (T,H) represents the
temperature T and external magnetic field H , and x rep-
resents a spin configuration on a two-dimensional lattice.
Alternatively, a generative mapping could be a trained diffu-
sion model using a stochastic sampler. Here, x is a generated
image and t is the corresponding latent noise tensor.

2.1. Ising Model

We consider the 2D Ising model (Ising, 1925). A microstate
x of this model is a set of spin variables si = ±1 defined on
a square lattice of size L×L. At equilibrium the probability
distribution over the space of microstates is

p(x|H,T ) = 1

Z(H,T )
e−

1
T

∑
⟨i,j⟩ sisj−

1
T H

∑
i si (1)

whereH and T are external parameters called magnetic field
and temperature. This model is exactly solvable for H =
0 (Onsager, 1944; Kac & Ward, 1952; Baxter & Enting,
1978), i.e. Z(H,T ) can be analytically found. The model
demonstrates a phase transition at Tcr ≈ 2.27 between the
high-temperature disordered state, where the distribution
is concentrated on microstates where spin variables are on
average equal zero and the low-temperature ordered state,
where the distribution is concentrated on microstates with
non-zero average spin.

2.2. Totally Asymmetric Simple Exclusion Process

Totally asymmetric simple exclusion process (TASEP) is a
simple model of 1-dimensional transport phenomena (Der-
rida et al., 1993; Blythe & Evans, 2007; Krapivsky et al.,
2010). A microscopic configuration is a set of particles on a
1d lattice. Each particle can move to the site to the right of
it with probability pdt per time dt provided that it is empty
(we put p = 1 without loss of generality). A particular case
is open boundary conditions, when a particle is added with
probability αdt per time dt to the leftmost site provided that
it is empty and removed with probability βdt per time dt
from the rightmost site provided that it is occupied. For this
boundary condition the probability distribution is known
exactly:

p(x|α, β) = f(x|α, β)
Z(α, β)

, (2)
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where microstate x is a concrete sequence of filled and
empty cells. Importantly, the function f , which is known
exactly does not take the form of the exponential family,
Eq.(6). TASEP with free boundaries exhibits a rich phase
behavior: For large system sizes three distinct phases - the
low-density phase, the high-density phase and the maximal
current phase are possible depending on the values of α, β,
and the asymptotic “free energy” equals:

FTASEP(α, β) =


1
4 , α >

1
2 , β >

1
2 ;

α(1− α), α < β, α < 1
2 ;

β(1− β), β < α, β < 1
2 .

(3)

2.3. Information Geometry

Fisher metric Fisher metric for a distribution p(x|t) is
defined as

gF (t) =

∫
X
p(x|t)∇t log p(x|t)(∇t log p(x|t))T dx (4)

The Fisher metric is a Riemannian metric. It equips the
space S of parameters t with the structure of Riemannian
manifold (S, gF ).

Hessian metric A Riemannian metric g is called a Hessian
metric if it can be expressed as the Hessian of a convex
potential ϕ in local coordinates:

g =

N∑
i,j=1

∂2ϕ(x)

∂xi∂xj
dxidxj . (5)

Exponential Family The exponential family consists of
distributions of the form

p(x|t) = e⟨f(x),t⟩−logZ(t), (6)

where the partition function Z(t) is given by

Z(t) =

∫
X
e⟨f(x),t⟩dx. (7)

The function f(x) called unnormalized density in machine
learning and Hamiltonian in statistical physics. It is gener-
ally unknown, making the direct integration of Eq.7 impos-
sible.

A key property of exponential families is that their Fisher
metric is always Hessian, equaling the Hessian of the log-
partition function:

gF (t) =

N∑
i,j=1

∂2 logZ(t)

∂ti∂tj
dtidtj = ∇2 logZ(t) (8)

Hessianizability A natural question arises: When does
a Riemannian metric admit a Hessian structure? The

Bryant–Amari–Armstrong theorem (Bryant, 2013; Amari
& Armstrong, 2014; Bryant, 2024) states that this is always
locally true for 2D analytic manifolds, later extended to
smooth cases (Bryant, 2024):

Theorem 2.1. (Bryant–Amari–Armstrong) Any analytic
Riemannian metric on a 2-dimensional manifold locally
admits a Hessian representation.

While Theorems 3.1 and 3.2 presented in the next section
apply to arbitrary dimensions of data X and latent space
S, they require a special (exponential) form of the data
distribution. Theorem 2.1 allows us to analyze 2D sub-
space of latent spaces in GANs, diffusion models, and other
non-exponential generative models. Notably, the approach
proposed below is theoretically justified for any generative
model.

3. Method

log Z t( )

e−DB t ′, t( )

t′ t

∇ t′ log Z t′( ) DB t ′, t( )

Figure 2: Visualizing Bregman divergence. (Top) A convex
function logZ(t) (black curve) and its tangent line (blue)
at a point t′. The Bregman divergence DB(t, t

′) (vertical
green segment) measures the difference between logZ(t)
and the linear approximation at t′. (Bottom) The expo-
nential distribution e−DB(t,t′) (blue surface) approximates
the posterior distribution on parameters p(t|x1, . . . , xN )

1
N ,

where x1, . . . , xN ∼ p(x|t′), illustrating Theorem 3.1.

This section describes a method for approximating the
Fisher metric on the latent space of a generative model,
p(x|t), enabling the computation of geodesics for smoother
interpolation and the identification of phase transitions.

Given a generative model p(x|t) we proceed in two steps
(1) approximating the posterior distribution p(t|x), and (2)
estimating the log partition function logZ(t) by training a
network to simulate p(t|x). Theorems 3.1 and 3.2 justify
this approach for exponential families.

Theorem 3.1. Let X be a space of data samples x ∈ X ,
and S ⊂ Rn be a compact domain with the continuous
prior distribution p(t) supported on S. Suppose the condi-
tional distribution of data samples given parameter t is an
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exponential family

p(x|t) = e⟨t,f(x)⟩−logZ(t), (9)

where
Z(t) =

∫
X
e⟨t,f(x)⟩dx (10)

converges for all t ∈ S. Let x1, . . . , xN ∼ p(x|t′). Then,
as N → ∞ the posterior distribution satisfies:

lim
N→∞

(p(t|x1, . . . , xN ))
1/N a.s.

= e−Dlog Z(t)(t,t
′) (11)

where Dlog Z(t)(t, t
′) is the Bregman divergence between ex-

ponential family distributions

Dlog Z(t)(t, t
′) =

= logZ(t)− logZ(t′)− ⟨∇t′ logZ(t
′), t− t′⟩

(12)

For exponential families, DlogZ(t)(t, t
′) coincides with the

Kullback-Leibler divergence DKL(p(x|t′)∥p(x|t)). Theo-
rem 3.1 thus implies that as more data samples are observed
the posterior concentrates on parameters minimizing KL
divergence with the true t′. For intuition, see Fig.2.

Theorem 3.2. Suppose that the following integral converges
to zero∫

S

∫
S

∣∣∣e−Dlog Z1(t)(t,t
′) − e−Dlog Z2(t)(t,t

′)
∣∣∣2 dt dt′ → 0,

(13)
where DlogZ1(t)(t, t

′) is the Bregman divergence. Then
the Hessian of logZ1(t) converges to the Hessian logZ2(t)
uniformly in t

||∇2 logZ1(t)−∇2 logZ2(t)|| → 0, (14)

where || · || denotes the L2 norm.

In other words, Eq. 13 is MSE loss function for training
logZ(t). Strictly speaking, it obtains the partition function
only up to an affine transformation logZ(t) ∼ logZ(t) +
⟨c, t⟩ + b. However, our goal is to examine a metric g
which is a Hessian g(t) = ∇2 logZ(t) and therefore it
does not depend of affine term. Unfortunately, training with
MSE loss suffers from vanishing gradients during initial
optimization stages. Loss selection for the experiment is
covered in Section 3.2.

For simplicity, we assume a uniform parameter distribution
p(t) over S:

p(t) =

{
1

Vol(S) , t ∈ S,

0, otherwise.
(15)

This choice avoids bias toward specific regions of S, ensur-
ing equitable exploration of the latent space.

3.1. Approximation of the Posterior

The first step is illustrated in Fig. 1. During this step we
obtain an approximation of the posterior distribution from a
set of samples p(t|x1, . . . , xN ).

Training a Mapping One could deal with this task by
directly training a mapping model, that takes as input
x1, . . . , xN sampled from p(x|t′) and returns a normalized
probability distribution on a compact domain S. This ap-
proach is most suitable when the samples have stochastic
nature and no feature extractor can be utilized.

This is the case for Ising and TASEP statistical systems,
where a sample xi is a microstate, i.e. it is one of the many
indistinguishable realizations of the system with the given
parameters t. Importantly, such samples can be pixel-wise
uncorrelated. Therefore in this case we use U2-Net (Qin
et al., 2020) trained via maximizing likelihood of the true
parameters t′. For the training details please refer to the
Appendix B.3.

Using a Feature Extractor In the image domain, one could
use a pre-trained feature extractor. Note that from Theorem
3.1, it follows that the posterior distribution behaves as
∼ exp(−NDKL(p1 ∥ p2)). Having a pre-trained feature
extractor E , we can construct an approximation of DKL in
terms of a distance between feature vectors:

DKL(p(x|t1) ∥ p(x|t2)) ≈ d(E(x1), E(x2)),
x1 ∼ p(x|t1),
x2 ∼ p(x|t2).

(16)

Indeed, if the feature extractor E acts as an approximate
sufficient statistic, then

DKL(p(x|t1) ∥ p(x|t2)) = DKL(p(E(x)|t1) ∥ p(E(x)|t2)).
(17)

If the distribution of features p(E(x)|ti) under ti is approxi-
mately normal N (µi, I), then the KL divergence simplifies
(up to an additive constant) to the squared difference be-
tween the feature means:

DKL(p(E(x)|t1) ∥ p(E(x)|t2)) =
1

2
∥µ1 − µ2∥2. (18)

Then the posterior could be approximated as

p(t|x1, . . . , xN ) ≈ e−
N
2 ||E(x)−E(x′)||2 ,

x ∼ p(x|t), x′ ∼ p(x|t′).
(19)
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Below in the Experiments section we take CLIP as a fea-
ture extractor E and produce the approximation of posterior
distribution based on distances between CLIP images em-
beddings.

3.2. Approximation of the Fisher Metric

The loss function in Equation 13, while theoretically ensur-
ing Hessian convergence as stated in Theorem 3.2, suffers
from vanishing gradients during the initial optimization
stages (see lemma A.6 from the Appendix section). To ad-
dress this problem, we normalize e−NDlog Z(t)(t,t

′) to obtain
a probability distribution. Then we compare it with the pos-
terior distribution p(t | x1, . . . , xN ) using Jensen-Shannon
divergence (JSD), which is a proper metric between two
probability distributions.

Lemma 3.3. Let Z : S → (0,∞) with S ⊂ Rn compact
domain and logZ convex. Then for any fixed t ∈ S:

exp (−DlogZ(t, t
′))∫

S
exp (−DlogZ(s, t′)) ds

=

=
exp (−⟨t,∇t′ logZ(t

′)⟩+ logZ(t))∫
S
exp (−⟨s,∇t′ logZ(t′)⟩+ logZ(s)) ds

,

(20)

where DlogZ(t, t
′) is the Bregman divergence.

Define a normalized distribution which depends only on the
log-partition function following Lemma 3.3

plogZ(t|t′) =
exp (−⟨t,∇t′ logZ(t

′)⟩+ logZ(t))∫
S
exp (−⟨s,∇t′ logZ(t′)⟩+ logZ(s)) ds

(21)

Now given the posterior p(t|x1, . . . , xN ), which approxi-
mation was discussed in the previous section, we could train
the log-partition function logZθ(t) by minimizing the loss

L1(θ) =

∫
S
DJS (p(t|x1, . . . , xN ), plogZθ

(t|t′)) dt′, (22)

where x1, . . . , xN ∼ p(x|t′). The Jensen-Shannon diver-
gence for distributions P and Q is defined as

DJS(P,Q) =
1

2

[
DKL(P ||

P +Q

2
) +DKL(Q||P +Q

2
)

]
(23)

The resulting approximation of the Fisher metric is

gF (t) = ∇2 logZθ∗(t), θ
∗ = argmin

θ
L(θ) (24)

We model logZθ(t) by MLP with 5 hidden layers, hidden
size of 512 with ReLU activation. We do not require the
MLP to be convex as it converges to the convex function
during the training.

3.3. Geodesic Approximation

After obtaining the Fisher metric, gF , we unlock the ability
to explore the intrinsic geometry of our statistical model
space. Geodesics, in this context, represent the shortest
paths between two probability distributions within this space.
They are analogous to straight lines on a flat surface, but in
a potentially curved space dictated by the Fisher metric. To
find these geodesics, we aim to minimize the curve length,
L[γ(t)], for a smooth curve γ(t) parameterized from t = 0
to t = 1 and lying within our statistical model space. This
curve length is calculated using the Fisher metric as:

L[γ(t)] =

∫ 1

0

√
γ̇(t)T gf (γ(t))γ̇(t)dt (25)

Here, γ(t) represents a path in the parameter space, and
γ̇(t) = dγ(t)

dt is its tangent vector.

We split γ(t) into discrete points {γ0, γ1, . . . , γN}, where
γ0 and γN are the starting and ending points of our desired
geodesic. The continuous integral is then represented by a
discrete sum of distances between consecutive points, using
the Fisher metric to measure these distances, optimizing
intermediate points via Adam to minimize L[γ] (see (Shao
et al., 2018) for details).

4. Experiments and Results
To support our theoretical reasoning, in this section vali-
date our method on the exactly solvable statistical models,
namely Ising and TASEP, and compare our estimation of
logZ(t) with a ground truth. Then, we evaluate our method
on two-dimensional slices of diffusion models, comparing
the path length and curvature of the learned trajectories with
those produced by other methods.

Figure 3: 2D Ising model. Partial derivative of the recon-
structed free energy with respect to temperature ∂Frec(T,H)

∂T ,
Partial derivative of the reconstructed free energy with re-
spect to magnetic field ∂Frec(T,H)

∂H and reconstructed free
energy. See Appendix B for dataset and training details.

4.1. Exactly Solvable Statistical Models

We compare against two baselines: (1) posterior-mean-as-
statistics (Mean-as-Stat) approach (Fearnhead & Prangle,
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Figure 4: TASEP. Left: reconstructed free energy (red) com-
pared to the exact solution (blue). Our method achieves
near-exact agreement except near domain boundaries (Ap-
pendix B.1)

Figure 5: Free energy of diffusion model reconstructed with
CLIP distance.

2012; Jiang et al., 2017), and (2) PCA-VAE, a dimensionality
reduction approach following (Walker et al., 2020) (see
Appendix B.1 for details of baselines evaluation).

Table 1 compares the performance of our method (“Con-
vex”) against two baselines on 2D Ising and TASEP models.
We report the root mean squared error (RMSE) for the re-
constructed free energy (F ) and its partial derivatives with
respect to the model parameters (dFdT , dFdH for Ising; dFdα , dFdβ
for TASEP). Accurate reconstruction of partial derivatives is
critical for identifying phase transitions, where these deriva-
tives diverge. Our method achieves lower RMSE across all
metrics in reconstructing thermodynamic quantities.

Fig.3 and Fig.4 demonstrate the results of free energy F ∼
logZ(t) reconstruction for both systems.

4.2. Two-dimensional Slices of a Diffusion Model

The experiments with diffusion are based on StableDiffusion
1.5 (Dreamshaper8) (Lykon, 2023) with DDIM scheduler

Table 1: Performance results (RMSE) for ISING and TASEP
models. F stands for Free Energy.

ISING F RMSE dF
dT

RMSE dF
dH

RMSE

Convex (Ours) 0.0883 ±
0.0006

0.1106 ±
0.0002

0.1237 ±
0.0016

Mean-as-Stat 0.0981 ±
0.0010

0.4766 ±
0.0023

1.0936 ±
0.0033

PCA-VAE 0.1669 ±
0.0018

0.7428 ±
0.0025

0.7988 ±
0.0022

TASEP F RMSE dF
dα

RMSE dF
dβ

RMSE

Convex (Ours) 0.0112 ±
0.00008

0.1165 ±
0.0025

0.1135 ±
0.0017

Mean-as-Stat 0.0529 ±
0.0005

0.3832 ±
0.0038

0.3833 ±
0.0031

PCA-VAE 0.0524 ±
0.0006

0.3837 ±
0.0038

0.3872 ±
0.0022

(Song et al., 2020). For our generation we use 50 inference
steps, classifier free guidance scale set to 5. Prompt is
chosen as “High quality picture, 4k, detailed” and negative
prompt “blurry, ugly, stock photo”.

To build a 2 dimensional latent space section of the diffusion
model we generate 3 random initial latents z0, z1, z2. We
use interpolation between latent representations:

z = z0 + α(z1 − z0) + β(z2 − z0),

where α and β are uniformly sampled from U [0, 1]. In this
setup we take three different triplets of initial latents and
generate 60000 images for each with a fixed prompt and
initial latent uniformly sampled from the interpolation grid.
To prevent our interpolation to fall off the Gaussian hyper-
sphere in all our experiments we employed a normalization
of latent vector z.

At first we limit ourselves to the case of deterministic gener-
ation process, setting DDIM parameter η = 0.

Using a CLIP Feature Extractor For the given dataset we
then compute CLIP distances to approximate prior distribu-
tion as discussed in Sec. 3.1. Following our method we train
model to reconstruct logZ(t) = logZ(α, β) presented in
Fig 5. The retrieved logZ(t) is not smooth and has abrupt
changes in derivatives shown on Fig.7(C), reflecting phase
transitions in image space. To evaluate our emergent metric,
we analyze geodesic paths. Our results demonstrate that
geodesics are approximately linear within a single phase but
exhibit nonlinear deviations at phase boundaries, Fig. 7(B).
The Fisher metric enables the construction of smoother inter-
polation paths (geodesics) compared to linear interpolation,
Fig. 7(A)

We then investigate images near the phases boundaries. Un-
like classical statistical physics models with continuous
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Figure 6: The fractal structure of phase boundary in the interpolation landscape of diffusion model. The last plot represent
the parameter variations 10−5 between neighboring images. The small changes in latent space cause switching between a
mountain and a lion.

phase boundaries, the latent diffusion model exhibits phase
diagrams with fractal boundaries, illustrated by Fig.6.

Crucially, we observe that near these boundaries, samples
from neighboring phases blend together, leading to a phe-
nomenon where phases permeate one another. Repeated
magnification of the boundary shown in Fig.6 reveals self-
similar patterns across scales, starting from variation scale
10−5 until reaching float16 accuracy of 10−8. In other
words, near the phase boundaries the diffusion output is
highly sensitive to small changes in latent space.

This behaviour is commonly characterized by the Lipschitz
constant. The work by Yang et al. (Yang et al., 2023) dis-
cusses the Lipshitz constant for diffusion models with re-
spect to time variable. However, to our best knowledge, the
observation on divergence of Lipshitz constant with respect
to latent space is new.

The Fisher metric is no longer analytic or smooth there,
meaning the Braynt-Amari-Armstrong theorem does not
apply, and the metric cannot be expressed as the Hessian of
a convex function.

Using a Unet Mapping We investigate our method on
diffusion model with U2-Net and observe a distinct out-
come. Unet doesn’t take into account semantic information,
solely relying on pixel space representation. Therefore it is
able to predict the exact parameters (α, β) of image gener-
ation. From this perspective the generation is completely
deterministic and every image is distinguishable. Thus, pos-

terior distribution exactly recovers the target one resulting
in smooth logZ(α, β).

Following this result, we evaluate our method on generation
with DDIM η = 0.1. We observe that adding the noise
simply results in blurring the posterior distribution predic-
tion. In the case of U2-Net it doesn’t change the learned
geometry, following the argument above. However, in the
case of CLIP this results in smoothed free energy landscape
and thus doesn’t show sharp boundaries as in noiseless case.

Baselines and Metrics To evaluate our method, we com-
pare it against the approaches of Wang et al. (2021) and Shao
et al. (2018), which represent related work in deterministic
generative models. Below, we clarify the key differences
and present quantitative results from these comparisons.

Shao et al. (2018) study VAEs and compute geodesic curves
based on the pullback metric induced by the Euclidean met-
ric in pixel space. Wang et al. (2021) consider GAN models
and define a metric on the latent space via the pullback of the
ℓ2 distance in the feature space of VGG-19 (LPIPS distance).
In both cases, the generative models are deterministic: each
latent Z produces only a single image X .

The key distinction of our work lies in its consideration of a
broader class of models, specifically, models with stochastic
generation, where a single latent Z corresponds to a distri-
bution in the image space p(X|Z). Diffusion models with
stochastic sampling (and all statistical physics models) can-
not be addressed within the formalism of Shao et al. (2018)
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Figure 7: (A) Geodesic (ours) and linear interpolation between images. Note that our interpolation variant is more
perceptually smooth. (B) Illustration of 60 000 generated by StableDiffusion images with geodesic plots (C) First and
second derivatives of the log-partition function of diffusion model. Note, that second derivatives are diagonal components of
the Fisher metric.

or Wang et al. (2021).

We compare our algorithm with these baselines in the deter-
ministic sampling regime. We obtain the pullback metric
from the Euclidean metric in the space of CLIP embeddings.
The Jacobian is estimated via finite differences. We use
three evaluation scores: CLIP, pixel, and Perceptual Path
Length (PPL) (Karras et al., 2019), which measure the aver-
age path length in CLIP embedding space, pixel space, and
the feature space of VGG-19, respectively. These scores
are computed as the cumulative ℓ2 distance between con-
secutive feature vectors (or images for pixel space), then
averaged across multiple trajectories (Table 2).

We observe that our interpolation is on par with baselines in
the case of deterministic sampling. We additionally compute
the curvature of each trajectory as the mean angular change
per unit length between consecutive path segments. Our

analysis reveals that trajectories constructed using the Wang
metric show significantly higher curvature and frequent turn-
ing compared to our method. We attribute this behavior to
the finite differences, which introduce high-frequency noise
in the metric components. In the case of diffusion, the Jaco-
bian is hard to obtain via backpropagation, as suggested in
Shao et al. (2018), due to high computational cost. During
our evaluation we observed that the phase boundaries re-
mained stable across all tested feature extractors. Therefore,
we conclude that the algorithm consistently captures the
same phase structure.

Underlying mechanism for phase transition We believe
the observed phase transition behavior is connected to the
geometry of the image space. This idea aligns with findings
from the Brown et al. (2022), which shows that natural
images lie on a union of disjoint low-dimensional manifolds
with varying dimensions.

8
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Table 2: Comparison of trajectory lengths and curvature in deterministic sampling regime.

Metric Geodesic (Ours) Linear Geodesic (Wang/Shao)

CLIP Length 72.3 ± 4.00 73.6± 3.54 73.6± 4.37

Pixel Length 2.77×106±2.38×104 2.76×106±2.77×104 2.74×106±3.53×104

Perceptual Path Length 3.12 ± 0.16 3.17± 0.23 3.19± 0.21

Mean Curvature 0.367 ± 0.691 0.00± 0.00 1.33± 0.53

In diffusion models, generation begins from a high-
dimensional Gaussian latent distribution. The reverse
ODE process maps this distribution onto disjoint, lower-
dimensional manifolds corresponding to distinct image
modes. Such a transformation—from a unimodal la-
tent space to a multimodal data space with disjoint sup-
ports—may result in a diverging Lyapunov exponent or,
equivalently, a diverging Lipschitz constant in the genera-
tive mapping, indicating phase transitions.

This phenomenon can be illustrated by the following propo-
sition, which simulates a lower-dimensional data manifold
with disjoint supports.

Proposition 4.1. Suppose that the (target) data distribution
is a bimodal mixture of two Gaussians, each with variance
σ2:

p0(x) =
1

2
N (x | −1, σ2) +

1

2
N (x | 1, σ2). (26)

The latent (source) distribution is the standard normal
N (x | 0, 1). Consider the variance-preserving SDE

dXt = −1

2
βXt dt+

√
β dWt. (27)

Then the Lyapunov exponent of the corresponding reverse-
time ODE at x = 0 has the following form:

λ =
β

2

(
1 +

1− σ2

σ4

)
, (28)

and it diverges to infinity as σ → 0. In this case, the point
x = 0 can be interpreted as a phase transition boundary.

5. Discussion
In this work we develop a method to reconstruct the Fisher
metric for any exponential family distribution. This is typ-
ical for statistical physics systems. Our method is based
on reconstructing the log-partition function from posterior
distributions on the parameter space. We provide theoretical
grounding and validate it through experiments by compar-
ing our reconstruction with exact solutions, outperforming
mean-as-sufficient-statistics and PCA-VAE baselines. Im-
portantly, we do not assume prior knowledge of the unnor-
malized density or Hamiltonian, enabling our method to

time steps

latent

data

Figure 8: Illustration of Proposition 4.1

operate in more general settings than MCMC-based tech-
niques like importance sampling.

Bryant-Amari-Armstrong theorem allows us to go beyond
exponential family distributions and apply our method to
study two-dimensional sections of latent space of arbitrary
generative models.

We extend notion of phase transitions known in statistical
physics, where small changes in parameters lead to signifi-
cant shifts in system output, to describe abrupt changes in
generative models. While recent studies (Sclocchi et al.,
2025; Biroli et al., 2024) have explored phase transitions
in diffusion models with respect to time-step, our work ad-
dresses a distinct problem. We treat the latent space as a
parameter space and generated images as microstates. Our
reconstruction of the Fisher metric for a two-dimensional
section of a diffusion model’s latent space indicates the pres-
ence of distinct phases. We observe that within a phase,
geodesic interpolations between images are approximately
linear, consistent with the work of Shao et al. (Shao et al.,
2018). However, our results reveal that this assumption
breaks down at phase boundaries, where the geometry be-
comes highly nonlinear. Specifically, we observe that diffu-
sion models exhibit fractal boundaries between phases. We
argue that near these boundaries diffusion has divergent Lip-
schitz constant. It complements results of Yang et al. (Yang
et al., 2023) showing that diffusion has divergent Lipschitz
constant in time variable.

9
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Impact Statement
Our work contributes into the fundamental understanding
of generative model latent spaces, offering mathematically
grounded tools for detecting phase transitions and construct-
ing smoother geodesic interpolations. While generative
models in general raise concerns about misuse, our theo-
retical focus does not directly enable such risks. Nonethe-
less, we acknowledge that better exploration of latent space
could, in principle, facilitate adversarial prompt crafting
or model probing. We expect our contributions to support
better understanding of generative models and stimulate
cross-disciplinary dialogue between machine learning and
information geometry communities.
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A. Proof of theoretical results
Theorem A.1. Let X be a space of data samples x ∈ X , and S ⊂ Rn be a compact domain with the continuous prior
distribution p(t) supported on S. Suppose the conditional distribution of data samples given parameter t is an exponential
family

p(x|t) = e⟨t,f(x)⟩−logZ(t), (29)

where
Z(t) =

∫
X
e⟨t,f(x)⟩dx (30)

converges for all t ∈ S. Let x1, . . . , xN ∼ p(x|t′). Then, as N → ∞ the posterior distribution satisfies:

lim
N→∞

(p(t|x1, . . . , xN ))
1/N a.s.

= e−Dlog Z(t)(t,t
′) = e−DKL(p(x|t′)∥p(x|t)). (31)

where Dlog Z(t)(t, t
′) is the Bregman divergence between exponential family distributions

Dlog Z(t)(t, t
′) = logZ(t)− logZ(t′)− ⟨∇t′ logZ(t

′), t− t′⟩ (32)

Proof. We begin by applying Bayes’ theorem to derive the posterior distribution. Then we use properties of exponential
families and the law of large numbers to obtain the desired limit.

By Bayes’ theorem:

p(t|x1, . . . , xN ) =
p(x1, . . . , xN |t)p(t)∫

S
p(x1, . . . , xN |s)p(s)ds

. (33)

Since the data samples x1, . . . , xN are i.i.d. given t, we have:

p(x1, . . . , xN |t) =
N∏
i=1

p(xi|t) =
N∏
i=1

e⟨t,f(xi)⟩−logZ(t)

= e
∑N

i=1⟨t,f(xi)⟩−N logZ(t).

(34)

Substituting into the posterior, we find:

p(t|x1, . . . , xN )1/N =
e⟨t,

1
N

∑N
i=1 f(xi)⟩−logZ(t)+ 1

N log p(t)(∫
S
eN[⟨s,

1
N

∑N
i=1 f(xi)⟩−logZ(s)+ 1

N log p(s)]ds
)1/N . (35)

Now, consider the limit:

lim
N→∞

1

N

N∑
i=1

f(xi). (36)

By Kolmogorov’s strong law of large numbers, this converges almost surely to the expectation:

1

N

N∑
i=1

f(xi)
a.s.−−→

∫
f(x)p(x|t′)dx = ∇t′ logZ(t

′), (37)

where the last equality holds because p(x|t) is an exponential family distribution.

In other words:

p

(
{ω ∈ Ω : lim

N→∞

1

N

N∑
i=1

f(xi(ω)) = ∇t′ logZ(t
′)}

∣∣∣∣∣t′
)

= 1. (38)

By the continuous mapping theorem: if X1, X2, . . . is a sequence of random variables and h : R → R is a continuous
function, then:

Xn
a.s.−−→ X =⇒ h(Xn)

a.s.−−→ h(X). (39)
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Let ψ(s, x) = e⟨s,x⟩−logZ(s)+log p(s). Since the function ψ is continuous in x, and we have shown that 1
N

∑N
i=1 f(xi)

a.s.−−→
∇t′ logZ(t

′) as N → ∞, the continuous mapping theorem implies:

e⟨t,
1
N

∑N
i=1 f(xi)⟩−logZ(t)+ 1

N log p(t) a.s.−−→ e⟨t,∇t′ logZ(t′)⟩−logZ(t), (40)

where p(t) is a continuous function on a compact domain, and therefore bounded, which implies 1
N log p(t) → 0 as

N → ∞.

Now, let’s consider the term in the denominator of the posterior :(∫
S

eN[⟨s,
1
N

∑N
i=1 f(xi)⟩−logZ(s)+ 1

N log p(s)]ds

)1/N

. (41)

We can rewrite the integral part using Lemma A.2. This lemma applies because, according to the strong law of large
numbers, the average 1

N

∑N
i=1 f(xi) converges almost surely to a finite value. To utilize the lemma, we define the function:

ϕ(s,N, ω) = ⟨s, 1
N

N∑
i=1

f(xi(ω))⟩ − logZ(s) = ψ

(
s,

1

N

N∑
i=1

f(xi(ω))

)
. (42)

We will ignore the term 1
N log p(s) as it converges to 0 as N goes to infinity and wont affect the value of the integral. Then

by Lemma A.2, we can state that the following limit holds almost surely:

lim
N→∞

1

N
log

∫
S

eNϕ(s,N,ω)ds
a.s.
= max

s∈S
ψ(s,∇t′ logZ(t

′)). (43)

Using this result, we have

p(t|x1, . . . , xN )1/N =
e⟨t,

1
N

∑N
i=1 f(xi)⟩−logZ(t)+ 1

N log p(t)(∫
S
e⟨s,

1
N

∑N
i=1 f(xi)⟩−logZ(s)+ 1

N log p(s)ds
)1/N a.s.−−→ e⟨t,∇t′ logZ(t′)⟩−logZ(t)

emaxs∈S ψ(s,∇t′ logZ(t′))
. (44)

Now, observe that we have:

max
s∈S

ψ(s,∇t′ logZ(t
′)) = max

s∈S
[⟨s,∇t′ logZ(t

′)⟩ − logZ(s)] . (45)

Since the function is concave, we can state that the maximum is achieved when s = t′, which allows us to obtain

max
s∈S

ψ(s,∇t′ logZ(t
′)) = ⟨t′,∇t′ logZ(t

′)⟩ − logZ(t′) (46)

Substituting back into the limit, we arrive at the expression for the Bregman divergence:

lim
N→∞

p(t|x1, . . . , xN )1/N
a.s.
=

e⟨t,∇t′ logZ(t′)⟩−logZ(t)

e⟨t′,∇t′ logZ(t′)⟩−logZ(t′)
= e−DB(t′,t). (47)

To complete the proof, we need to show that the KL divergence DKL(p(x|t′)∥p(x|t)) in the theorem statement is equivalent
to the Bregman divergence DB(t, t

′) in our result. We compute the KL divergence as follows:

DKL(p(x|t′)∥p(x|t)) =
∫
p(x|t′) log p(x|t

′)

p(x|t)
dx

=

∫
p(x|t′)[log p(x|t′)− log p(x|t)]dx

=

∫
p(x|t′)[⟨t′, f(x)⟩ − logZ(t′)− (⟨t, f(x)⟩ − logZ(t))]dx

=

∫
p(x|t′)⟨t′, f(x)⟩dx− logZ(t′)−

∫
p(x|t′)⟨t, f(x)⟩dx+ logZ(t)

= ⟨t′,∇t′ logZ(t
′)⟩ − logZ(t′)− ⟨t,∇t′ logZ(t

′)⟩+ logZ(t)

= ⟨t′ − t,∇t′ logZ(t
′)⟩+ logZ(t)− logZ(t′)

= DB(t, t
′)
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where we use the property that the expectation of f(x) under the distribution p(x|t′) is equal to the gradient of the
log-partition function Ex∼p(x|t′)[f(x)] = ∇t′ logZ(t

′).

Thus, we have shown that the limit of the posterior is related to the Bregman divergence of t′ and t, and is consistent with
the theorem statement, which concludes the proof.

Lemma A.2. Let Xi : Ω → Rn be measurable functions, s ∈ S, ω ∈ Ω, N ∈ N, and assume E[Xi] = µx < ∞ (first
moment exists). Define:

ϕ(s,N, ω) = ψ

(
s,

1

N

N∑
i=1

Xi(ω)

)
, (48)

where ψ(x, s) is a continuous function in both variables and uniformly continuous in x for all s. Then:

I
def
= lim

N→∞

1

N
log

(∫
S

eNψ(s,
1
N

∑N
i=1Xi)ds

)
a.s.
= max

s∈S
ψ(s, µx)

def
= M. (49)

Proof of Lemma. Let X̄N = 1
N

∑N
i=1Xi(ω). By Kolmogorov’s strong law of large numbers, we have:

X̄N (ω)
a.s.−−→ µx, p

(
{ω ∈ Ω : lim

N→∞
X̄N (ω) = µx}

)
= 1. (50)

Since ψ(s, x) is continuous in x, by the continuous mapping theorem:

lim
N→∞

X̄N (ω)
a.s.−−→ µx =⇒ lim

N→∞
ψ(s, X̄N (ω))

a.s.−−→ ψ(s, µx). (51)

Thus, for all ω ∈ Ω̃:
lim
N→∞

ψ(s, X̄N (ω)) = ψ(s, µx). (52)

In other words, for any ϵ > 0 and fixed s ∈ S, there exists N0(ϵ, s) such that for all N > N0(ϵ, s):

|ψ(s, X̄N (ω))− ψ(s, µx)| < ϵ, (53)

and for all ω ∈ Ω̃, s ∈ S, and ϵ > 0, there exists N0(ω, s, ϵ) such that for all N > N0(ω, s, ϵ):

|ψ(s, X̄N (ω))− ψ(s, µx)| < ϵ. (54)

Define:
MN (ω) = max

s∈S
ψ(s, X̄N (ω)). (55)

Since ψ(s, x) is continuous in s and S is a compact domain, MN (ω) < ∞. Moreover, since X̄N (ω)
a.s.−−→ µx and both ψ

and max are continuous functions:

MN (ω) = max
s∈S

ψ(s, X̄N (ω))
a.s.−−→ max

s∈S
ψ(s, µx) =M. (56)

Now consider: ∫
S

eNψ(s,X̄N (ω))ds ≤
∫
S

eN maxs∈S ψ(s,X̄N (ω))ds = eN maxs∈S ψ(s,X̄N (ω))Vol(S). (57)

Taking the logarithm and dividing by N :

1

N
log
(
eNMN (ω)Vol(S)

)
=MN (ω) +

1

N
logVol(S). (58)
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Finally, taking the limit as N → ∞:

lim
N→∞

1

N
log

∫
S

eNψ(s,X̄N (ω))ds = lim
N→∞

(
MN (ω) +

1

N
logVol(S)

)
=MN (ω)

a.s.−−→M. (59)

Thus, the result holds almost surely:

lim
N→∞

1

N
log

∫
S

eNψ(s,X̄N (ω))ds =M = max
s∈S

ψ(s, µx). (60)

Now, almost everywhere, we have I ≤M . Define:

Kϵ = {s ∈ S : |ψ(s, µx)−M | < ϵ/2}. (61)

Then: ∫
S

eNψ(s,X̄N (ω))ds ≥
∫
Kϵ

eNψ(s,X̄N (ω))ds ∀N, ∀ω. (62)

Now, consider:

|ψ(s, X̄N (ω))−M | = |ψ(s, X̄N (ω))− ψ(s, µx) + ψ(s, µx)−M | (63)
≤ |ψ(s, X̄N (ω))− ψ(s, µx)|+ |ψ(s, µx)−M |. (64)

First Term: By the strong law of large numbers and uniform continuity of ψ, for any ϵ > 0, there exists N0 such that for all
N > N0 and s ∈ Kϵ:

|ψ(s, X̄N (ω))− ψ(s, µx)| < ϵ/2. (65)

This follows because X̄N (ω)
a.s.−−→ µx, and ψ(s, x) is continuous in x. Hence, for sufficiently large N , ψ(s, X̄N (ω))

converges uniformly to ψ(s, µx) for s ∈ Kϵ.

Second Term: By the definition of Kϵ, for all s ∈ Kϵ:

|ψ(s, µx)−M | < ϵ/2. (66)

Combining these results, for all ϵ > 0, s ∈ Kϵ, and N > N0:

|ψ(s, X̄N (ω))−M | < ϵ. (67)

Thus, for all ϵ > 0, s ∈ Kϵ, and almost all ω ∈ Ω:

ψ(s, X̄N (ω)) > M − ϵ. (68)

Therefore: ∫
Kϵ

eNψ(s,X̄N (ω))ds ≥
∫
Kϵ

eN(M−ϵ)ds = eN(M−ϵ)Vol(Kϵ). (69)

Taking the logarithm and dividing by N :

1

N
log

∫
Kϵ

eNψ(s,X̄N (ω))ds ≥ 1

N
log
(
eN(M−ϵ)Vol(Kϵ)

)
(70)

=M − ϵ+
1

N
logVol(Kϵ). (71)
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Taking the limit as N → ∞:

lim
N→∞

1

N
log

∫
Kϵ

eNψ(s,X̄N (ω))ds ≥M − ϵ. (72)

Combining this with the upper bound I ≤M , we have:

M − ϵ ≤ I ≤M. (73)

Since this holds for all ϵ > 0, it follows that:
I =M. (74)

Lemma A.3. We will show that the following function is bounded

ϕ(s, ω,N) =
〈
s, X̄N (ω))

〉
− logZ(s), (75)

where N ∈ N, s ∈ S ⊂ Rn

Proof. First, we use the Cauchy–Schwarz inequality∣∣〈s, X̄N (ω))
〉∣∣ ≤ ∥s∥2 ·

∥∥X̄N (ω))
∥∥
2
. (76)

Furthermore, since the L2 norm is a continuous function, and there is almost sure convergence X̄N → µx, then∥∥X̄N (ω))
∥∥
2

a.s.−−→ ∥µx∥2. (77)

Thus, there exists N0 such that for all N > N0,∣∣∥∥X̄N (ω))
∥∥
2
− ∥µx∥2

∣∣ < ϵ =⇒
∥∥X̄N (ω))

∥∥
2
< ∥µx∥2 + ϵ. (78)

Since logZ is continuous on the compact set S, there exists CZ such that logZ(s) < CZ for all s ∈ S.

On the compact set S, there exists Cs such that ∥s∥2 < Cs for all s ∈ S.

Therefore, for all s ∈ S, there exists N0 such that for all N > N0,

ϕ(s, ω,N) < C = ∥µx∥2 · Cs + CZ + ϵ (79)

Lemma A.4. We will show that the following function is uniformly continuous

ϕ(s, ω,N) =
〈
s, X̄N (ω))

〉
− logZ(s), (80)

where N ∈ N, s ∈ S ⊂ Rn

Proof. Let x1 and x2 be vectors in Rn.

|ψ(s, x1)− ψ(s, x2)| = |⟨s, x1⟩ − logZ(s)− (⟨s, x2⟩ − logZ(s))|
= |⟨s, x1⟩ − ⟨s, x2⟩|
= |⟨s, x1 − x2⟩|
= |s| |x1 − x2| | cos(θ)|

where θ is the angle between s and x1 − x2. Since S is compact, there exists M such that |s| < M for all s ∈ S. Thus,

|ψ(s, x1)− ψ(s, x2)| ≤M |x1 − x2|

Given ε > 0, we choose δ = ε/M . If |x1 − x2| < δ, then

|ψ(s, x1)− ψ(s, x2)| < ε

Therefore, ψ(s, x) is uniformly continuous in x.
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Theorem A.5. Suppose that the following integral converges to zero∫
Θ

∫
Θ

∣∣∣e−Dlog Z1(t)(t
′,t) − e−Dlog Z2(t)(t

′,t)
∣∣∣2 dt dt′ → 0, (81)

where
Dφ(t)(t

′, t) = φ(t′)− φ(t)− ⟨∇t′φ(t
′), t′ − t⟩

is the Bregman divergence. Then there logZ1(t) converges to logZ2(t) uniformly in t

||∇2 logZ1(t)−∇2 logZ2(t)|| → 0, (82)

where || · || denotes the L2 norm.

Proof. Since the integrand is non-negative and its integral goes to zero, the integrand must converge to zero almost
everywhere. As the functions involved are continuous, we have:

e−Dlog Z1(t)(t
′,t) = e−Dlog Z2(t)(t

′,t) (83)

for all t, t′ ∈ Θ. Taking the logarithm of both sides, we get:

−DlogZ1(t)(t
′, t) = −DlogZ2(t)(t

′, t) (84)

which implies
DlogZ1(t)(t

′, t) = DlogZ2(t)(t
′, t). (85)

Substituting the definition of the Bregman divergence, we have:

logZ1(t
′)− logZ1(t)− ⟨∇ logZ1(t), t

′ − t⟩
= logZ2(t

′)− logZ2(t)− ⟨∇ logZ2(t), t
′ − t⟩.

Rearranging terms gives:

(logZ1(t
′)− logZ2(t

′))− (logZ1(t)− logZ2(t))− ⟨∇ logZ1(t)−∇ logZ2(t), t
′ − t⟩ = 0. (86)

Let ∆(t) = logZ1(t)− logZ2(t). Then the equation becomes:

∆(t′)−∆(t)− ⟨∇∆(t), t′ − t⟩ = 0. (87)

This implies that the first-order Taylor expansion of ∆(t′) around t is exact, which holds if and only if ∆(t) is an affine
function:

∆(t) = ⟨c, t⟩+ b, (88)

for some constant vector c and scalar b. It means that two log-partition function are related via an affine transformation

logZ1(t) = logZ2 − ⟨c, t⟩+ b (89)

Therefore the L2 norm equals to zero
||∇2 logZ1(t)−∇2 logZ2(t)|| = 0, (90)

Lemma A.6 (Vanishing Gradient in Bregman MSE Loss). Consider the loss functional L =∫
S

∫
S

∣∣∣e−Dlog Z1(t)(t,t
′) − e−Dlog Z2(t)(t,t

′)
∣∣∣2 dt dt′. Assume there exists a region R ⊂ S × S where either

DlogZ1(t)(t, t
′) ≥ C or DlogZ2(t)(t, t

′) ≥ C uniformly for some C ≫ 1. Then the gradient of L with respect to
parameters governing logZ1(t) satisfies:

∥∇L∥ ≤ Ke−C , (91)

where K > 0 is a constant which depends on the measure of R and Lipschitz constant of logZ1(t) which we assume to be
bounded. Thus, gradients vanish exponentially as C increases.
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Proof. The gradient of the loss functional L with respect to logZ1(t) can be formally written (using functional derivatives)
as proportional to:

∇L ∝
∫
S

∫
S

δ

δ logZ1(t)

∣∣∣e−Dlog Z1(t)(t,t
′) − e−Dlog Z2(t)(t,t

′)
∣∣∣2 dt dt′. (92)

Expanding the square and taking the derivative with respect to logZ1(t), we focus on the terms involving DlogZ1(t)(t, t
′).

The gradient is then proportional to:

∇L ∝
∫
S

∫
S

(
e−Dlog Z1(t)(t,t

′) − e−Dlog Z2(t)(t,t
′)
) δ

δ logZ1(t)
e−Dlog Z1(t)(t,t

′)dt dt′. (93)

The functional derivative of e−Dlog Z1(t)(t,t
′) with respect to logZ1(t) involves the derivative of the Bregman divergence

DlogZ1(t)(t, t
′) with respect to logZ1(t). Let us denote D1(t, t

′) = DlogZ1(t)(t, t
′) and D2(t, t

′) = DlogZ2(t)(t, t
′). Then

the gradient can be expressed as:

∇L ∝
∫
S

∫
S

(
e−D1(t,t

′) − e−D2(t,t
′)
)
e−D1(t,t

′)(−∇D1(t, t
′))dt dt′, (94)

where ∇D1(t, t
′) represents the gradient of DlogZ1(t)(t, t

′) with respect to parameters governing logZ1(t). We consider the
magnitude of the integrand within the region R ⊂ S × S. In region R, either DlogZ1(t)(t, t

′) ≥ C or DlogZ2(t)(t, t
′) ≥ C.

Case 1: DlogZ1(t)(t, t
′) ≥ C. In this case, e−Dlog Z1(t)(t,t

′) ≤ e−C . The magnitude of the integrand is bounded by:∣∣∣(e−Dlog Z1(t)(t,t
′) − e−Dlog Z2(t)(t,t

′)
)
e−Dlog Z1(t)(t,t

′)(−∇D1(t, t
′))
∣∣∣

≤
(
|e−Dlog Z1(t)(t,t

′)|+ |e−Dlog Z2(t)(t,t
′)|
)
|e−Dlog Z1(t)(t,t

′)|∥∇D1(t, t
′)∥

≤
(
e−C + e−Dlog Z2(t)(t,t

′)
)
e−C∥∇D1(t, t

′)∥

≤ (1 + e−Dlog Z2(t)(t,t
′))e−C∥∇D1(t, t

′)∥.

Assuming that ∥∇D1(t, t
′)∥ is bounded by some constant M ′ due to finite Lipschitz constant of logZ1(t) and since

e−Dlog Z2(t)(t,t
′) ≤ 1 (for non-negative Bregman divergences), the integrand magnitude is bounded by 2M ′e−C .

Case 2: DlogZ2(t)(t, t
′) ≥ C. In this case, e−Dlog Z2(t)(t,t

′) ≤ e−C . The magnitude of the integrand is bounded by:∣∣∣(e−Dlog Z1(t)(t,t
′) − e−Dlog Z2(t)(t,t

′)
)
e−Dlog Z1(t)(t,t

′)(−∇D1(t, t
′))
∣∣∣

≤
(
|e−Dlog Z1(t)(t,t

′)|+ |e−Dlog Z2(t)(t,t
′)|
)
|e−Dlog Z1(t)(t,t

′)|∥∇D1(t, t
′)∥

≤
(
e−Dlog Z1(t)(t,t

′) + e−C
)
e−Dlog Z1(t)(t,t

′)∥∇D1(t, t
′)∥

=
(
e−2Dlog Z1(t)(t,t

′) + e−Ce−Dlog Z1(t)(t,t
′)
)
∥∇D1(t, t

′)∥

≤ (1 + 1)e−CM ′ = 2M ′e−C ,

assuming DlogZ1(t)(t, t
′) ≥ 0 and e−Dlog Z1(t)(t,t

′) ≤ 1.

In both cases, within the region R, the integrand’s magnitude is bounded by 2M ′e−C . Let m(R) be the measure of region
R. Then the norm of the gradient can be bounded by integrating over R:

∥∇L∥ ≤
∫
R

2M ′e−Cdt dt′ = 2M ′e−Cm(R) = Ke−C , (95)

where K = 2M ′m(R) is a constant dependent on the measure of R and the bound M ′ which is related to the Lipschitz
properties of logZ1(t). This shows that the gradient vanishes exponentially as C increases.

Lemma A.7. Let Z : S → (0,∞) with S ⊂ Rn compact domain and logZ convex. For any fixed t ∈ S:

exp (−DlogZ(t
′, t))∫

S
exp (−DlogZ(s, t)) ds

=
exp (−⟨t′,∇ logZ(t)⟩+ logZ(t′))∫

S
exp (−⟨s,∇ logZ(t)⟩+ logZ(s)) ds

(96)
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Proof. Expand the Bergman divergence DlogZ(t
′, t) = logZ(t′)− logZ(t)− ⟨∇ logZ(t), t′ − t⟩. The numerator can be

rewritten as:

exp(−DlogZ(t
′, t)) = exp (− (logZ(t′)− logZ(t)− ⟨∇ logZ(t), t′ − t⟩))

= exp (− logZ(t′) + logZ(t) + ⟨∇ logZ(t), t′⟩ − ⟨∇ logZ(t), t⟩)
= exp(logZ(t)) exp(−⟨∇ logZ(t), t⟩) exp(− logZ(t′) + ⟨∇ logZ(t), t′⟩) (97)

The denominator, integrating over s ∈ S, becomes:∫
S

exp(−DlogZ(s, t)) ds =

∫
S

exp (− (logZ(s)− logZ(t)− ⟨∇ logZ(t), s− t⟩)) ds

=

∫
S

exp (− logZ(s) + logZ(t) + ⟨∇ logZ(t), s⟩ − ⟨∇ logZ(t), t⟩) ds

= exp(logZ(t)) exp(−⟨∇ logZ(t), t⟩)
∫
S

exp(− logZ(s) + ⟨∇ logZ(t), s⟩) ds

= Z(t) exp(−⟨∇ logZ(t), t⟩)
∫
S

exp(⟨∇ logZ(t), s⟩)
Z(s)

ds (98)

Forming the ratio of the numerator (97) and the denominator (98):

exp(−DlogZ(t
′, t))∫

S
exp(−DlogZ(s, t)) ds

=
Z(t) exp(−⟨∇ logZ(t), t⟩) exp(⟨∇ logZ(t),t′⟩)

Z(t′)

Z(t) exp(−⟨∇ logZ(t), t⟩)
∫
S

exp(⟨∇ logZ(t),s⟩)
Z(s) ds

(99)

Simplifying the ratio:

exp(−DlogZ(t
′, t))∫

S
exp(−DlogZ(s, t)) ds

=

exp(⟨∇ logZ(t),t′⟩)
Z(t′)∫

S
exp(⟨∇ logZ(t),s⟩)

Z(s) ds
(100)

Rewrite the terms in the exponent:

exp(⟨∇ logZ(t), x⟩)
Z(x)

= exp(⟨∇ logZ(t), x⟩ − logZ(x)) = exp(− logZ(x) + ⟨∇ logZ(t), x⟩) (101)

Multiplying the exponent by -1 and rearranging:

exp(⟨∇ logZ(t), x⟩)
Z(x)

= exp(−(logZ(x)− ⟨∇ logZ(t), x⟩)) = exp(−(−⟨x,∇ logZ(t)⟩+ logZ(x))) (102)

Further manipulation:
exp(⟨∇ logZ(t), x⟩)

Z(x)
= exp(−⟨x,∇ logZ(t)⟩+ logZ(x)) (103)

Substituting this back into equation (100):

exp(−DlogZ(t
′, t))∫

S
exp(−DlogZ(s, t)) ds

=
exp(−⟨t′,∇ logZ(t)⟩+ logZ(t′))∫

S
exp(−⟨s,∇ logZ(t)⟩+ logZ(s)) ds

(104)

This yields exactly the RHS expression.

Proposition A.8. Suppose that the (target) data distribution is a bimodal mixture of two Gaussians, each with variance σ2:

p0(x) =
1

2
N (x | −1, σ2) +

1

2
N (x | 1, σ2). (105)

The latent (source) distribution is the standard normal N (x | 0, 1). Consider the variance-preserving SDE

dXt = −1

2
βXt dt+

√
β dWt. (106)
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Then the Lyapunov exponent of the corresponding reverse-time ODE at x = 0 has the following form:

λ =
β

2

(
1 +

1− σ2

σ4

)
, (107)

and it diverges to infinity as σ → 0. In this case, the point x = 0 can be interpreted as a phase transition boundary.

Proof. We begin with the reverse probability flow ODE:

dXs

ds
= −f(Xs, t) +

g(t)2

2
∇x log pt(Xs), (108)

where the drift term is:

v(x) = −f(x, t) + g(t)2

2
∇x log pt(x). (109)

Linearizing around x = 0, the Lyapunov exponent is defined as:

λ = v′(0) = −f ′(0, t) + g(t)2

2

d2

dx2
log pt(x). (110)

The density pt(x) is computed via convolution with the Gaussian noising kernel:

pt(x) =

∫ ∞

−∞
p0(y)N

(
x | e− 1

2βty, 1− e−βt
)
dy. (111)

Since convolution of Gaussians is still Gaussian, we obtain:

pt(x) =
1

2
√
2πσ1(t)

A(x), (112)

where

A(x) = exp

(
− (x− µ(t))2

2σ2
1(t)

)
+ exp

(
− (x+ µ(t))2

2σ2
1(t)

)
, (113)

and
σ2
1(t) = e−βtσ2 + (1− e−βt), µ(t) = e−

1
2βt. (114)

Computing the derivative in the definition of the Lyapunov exponent, we get:

λ =
β

2
+
β

2
· e

−βt − σ2
1(t)

σ4
1(t)

=
β

2

(
1 +

e−βt − σ2
1(t)

σ4
1(t)

)
. (115)

As time goes to 0, we have σ1 → σ, and thus:

λ =
β

2

(
1 +

1− σ2

σ4

)
, (116)

suggesting divergence of nearby reverse ODE trajectories for small σ, and identifying x = 0 as a potential phase transition
boundary.

B. Experimental Details
B.1. Numerics

Mean-as-Stat The main idea of posterior-mean-as- statistics is to predict the parameters t based on the microstate s by
minimizing the regression error:

L(ϕ) = Es∼P(s|t),t∼P(t) ∥fϕ(s)− t∥22 . (117)
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A function fϕ learned in this way will predict the mean of the posterior distribution P(t|s).

To evaluate the quality of the free energy reconstruction, we compute the RMSE between the ground truth free energy Fgt(t)
and the reconstructed free energy Frec(t):

RMSE(Frec, Fgt) = min
A

∥Fgt(t)−A(Frec(t))∥22 , (118)

where we minimize over all possible affine transformations A, accounting for the fact that free energy is only defined up to
such a transformation

Ising Model. Since the Ising model lacks an exact free energy solution for H ̸= 0, we construct the ground truth
Fising(T,H) by numerically integrating the known magnetization M(T,H) and energy E(T,H). The ground truth free
energy Fising(T,H) must satisfy the following partial derivative relations with respect to temperature and magnetic field::

∂Fising(T,H)

∂T
= E(T,H),

∂Fising(T,H)

∂H
=M(T,H). (119)

To approximate Fising(T,H), we train a feedforward neural network Fθ(T,H) on the domain H > 0, where the free energy
is C2-smooth. The approximation is extended to H < 0 using the symmetry Fising(T,−H) = Fising(T,H). The loss
function enforces consistency with the partial derivatives:

L(θ) =
∫
Ω

(∥∥∥∥∂Fθ∂T
− E(T,H)

∥∥∥∥2
2

+

∥∥∥∥∂Fθ∂H
−M(T,H)

∥∥∥∥2
2

)
dTdH. (120)

For the posterior-mean-as-sufficient-statistics method, we adopt a similar approach to integrate the predicted sufficient
statistics sT (T,H) and sH(T,H) by minimizing the loss:

L(θ) =
∫
Ω

(∥∥∥∥∂Fθ∂T
− sT (T,H)

∥∥∥∥2
2

+

∥∥∥∥∂Fθ∂H
− sH(T,H)

∥∥∥∥2
2

)
dTdH. (121)

After obtaining the ground truth free energy, along with the free energy estimated by our Bayesian thermodynamic
integration and the posterior-mean-as-statistics method, we minimize the RMSE with respect to the ground truth over affine
transformations to account for the fact that free energy is only defined up to an affine transformation. Finally, we evaluate
and compare the resulting errors with the baseline.

TASEP Model. For TASEP, which has an analytical free energy solution, we use a similar neural network approach. The
ground truth free energy is given by:

FTASEP(α, β) =


1
4 , α > 1

2 , β >
1
2 ;

α(1− α), α < β, α < 1
2 ;

β(1− β), β < α, β < 1
2 .

(122)

The network Fθ(α, β) is trained to minimize:

L(θ) =
∫
Ω

(∥∥∥∥∂Fθ∂α
− Jα(α, β)

∥∥∥∥2
2

+

∥∥∥∥∂Fθ∂β
− Jβ(α, β)

∥∥∥∥2
2

)
dαdβ, (123)

where Jα and Jβ are the particle currents at the boundaries, analogous to energy/magnetization in the Ising model. Finally,
the resulting free energy surface is evaluated using the RMSE between the true TASEP free energy and the reconstructed
free energy, after accounting for possible affine transformations:

RMSE(Frec, Fgt) = min
A

|Fgt(α, β)−A(Frec(α, β))|22 . (124)
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B.2. Datasets

Ising Model. Our dataset consists of N = 5.4 × 105 samples of spin configurations on the square lattice of size
L × L = 128 × 128 with periodic boundary conditions. We consider the parameter ranges β−1 = T ∈ [Tmin, Tmax] =
[1, 5], H ∈ [Hmin, Hmax] = [−2, 2] similar to the ranges used in (Walker, 2019). Point (T,H) is sampled uniformly from
this rectangle, and then a sample spin configuration is created for these values of temperature and external field by starting
with a random initial condition and equilibrating is with Glauber (one-spin Metropolis) dynamics (see, e.g. (Krapivsky et al.,
2010)) for 104 × 128× 128 ≈ 1.64× 108 iterations. We represent spin configuration as a single-channel image with color
of each pixel taking values +1 and −1. When constructing target probability distributions we choose σ = 1

50 and set the
discretization D of the square [Tmin, Tmax]× [Hmin, Hmax] = [1, 5]× [−2, 2] to be a uniform grid with L×L = 128× 128
grid cells.

Image-to-image network with U2-Net architecture (Qin et al., 2020) is used to approximate posterior pθ(t|s). The network
takes as input a bundle of Kbundle images concatenated across channel dimension and outputs a categorical distribution
representing density values in discrete grid points. For simplicity we choose the discretization D to be of the same spatial
dimensions as the input image. For all our numerical experiments the training was performed on a single Nvidia-HGX
compute node with 8 A100 GPUs. We trained U2-Net using Adam optimizer with learning rate 0.00001 and batch size of
2048 for NU2Net steps = 20000 gradient update steps. In all our experiments the training set consists of 80% of samples and
the other 20% are used for testing.

TASEP Model. We generate a dataset of N = 150000 stationary TASEP configurations on a 1d lattice with M = 16384
sites. The rates α(β) of adding (removing) particles at the left(right) boundary are sampled from the uniform prior
distribution over a square [0, 1]× [0, 1]. To reach the stationary state we start from a random initial condition and perform
Nsteps = 2× 109 ≈ 8M2 move attempts, which is known to be enough to achieve the stationary state except for the narrow
vicinity of the transition line α = β < 1/2 between high-density and low-density phases (in this case the stationary state
has a slowly diffusing front of a shock wave in it, one needs of order M2 move attempts to form the shock but of order M3

move attempts for it to diffusively explore all possible positions).

We reshape 1d lattice with M = 16384 sites into an image of size L × L = 128 × 128 using raster scan ordering. To
construct target probability distributions we set σ = 1

150 and define the discretization D as a uniform grid on [αmin, αmax]×
[βmin, βmax] = [0, 1]× [0, 1] with L× L = 128× 128 grid cells.

B.3. U2Net Training

Our task now is to estimate the posterior distribution p(t|s) using the set of samples tk, sk. To do that, we are trying to
approximate p(t|s) by representatives from some parametric family of distributions pθ(x|y), choosing θ to maximize some
cost function. It is conventional to choose the cost function to maximize the likelihood of the true external parameters ti
given si over all samples in the set:

NegativeLogLikelihood(θ) = −
N∑
i=1

log(pθ(ti|si)) ≈

≈ NE{t′,s}∼p(t′)p(s|t′) log(pθ(t|s)),

(125)

where on the right hand side we replaced the summands by their expected values. Minimization of the log-likelihood can be
reinterpreted as the minimization of the KL divergence between the target distribution

ptarget(t|t′) = δ(t− t′) (126)

(i.e., the reconstructed labels t are identical to the input labels t′) and the predicted distribution
∫
pθ(t|s)p(s|t’)ds:

L(θ) = Et′∼P (t)KL
(
ptarget(t|t′)||

∫
pθ(t|s)p(s|t’)ds

)
. (127)

In practice, to avoid divergences it is convenient to replace the “hard label” target distribution (126) with a smoothened
distribution

ptarget(t|t′) = C · exp
(
− 1

2σ2
||t′ − t||2

)
, (128)

where σ is a smoothening parameter and C is the normalizing constant.
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B.4. Supplementary Figures

Figure 9: Free energy surface of a diffusion model (η =
0.1) reconstructed using CLIP distance. Noise injection
smooths the free energy landscape, suppressing sharp phase
boundaries (compare with Fig. 5).

Figure 10: Free energy surface of a StyleGAN v3 recon-
structed using CLIP distance. The convex curvature indi-
cates a single dominant phase, contrasting with the multi-
phase structure of diffusion models (left).
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Figure 11: Training examples for free energy reconstruction. Ground truth images with known generation parameters.
CLIP-induced latent distribution. Predicted distribution from our convex model.
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Figure 12: First- and second-order derivatives of the diffusion model’s free energy. Discontinuities mark first-order phase
transitions and second-order transitions. Regions of constant derivative correlate with visually distinct phases.
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Figure 13: Free energy derivatives of diffusion model’s free energy reconstructed with clip distance. Overlaid grid highlights
regions of constant derivative, correlating with visually distinct phases.
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