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Abstract

Multi-encoder models are a broad family of001
context-aware neural machine translation sys-002
tems that aims to improve translation quality003
by encoding document-level contextual infor-004
mation alongside the current sentence. The005
context encoding is undertaken by contextual006
parameters, trained on document-level data.007
In this work, we discuss the difficulty of train-008
ing these parameters effectively, due to the009
sparsity of the words in need of context (i.e.,010
the training signal), and their relevant context.011
We propose to pre-train the contextual parame-012
ters over split sentence pairs, which makes an013
efficient use of the available data for two rea-014
sons. Firstly, it increases the contextual train-015
ing signal by breaking intra-sentential syntac-016
tic relations, and thus pushing the model to017
search the context for disambiguating clues018
more frequently. Secondly, it eases the re-019
trieval of relevant context, since context seg-020
ments become shorter. We propose four dif-021
ferent splitting methods, and evaluate our ap-022
proach with BLEU and contrastive test sets.023
Results show that it consistently improves024
learning of contextual parameters, both in low025
and high resource settings.026

1 Introduction027

Neural machine translation (NMT) has seen sub-028

stantial improvements in recent years, fostered by029

the advent of the Transformer model (Vaswani030

et al., 2017). A remaining challenge for modern ma-031

chine translation (MT) is the ability to contextual-032

ize translation of the current sentence with the other033

sentences in the document (Läubli et al., 2018).034

For this reason, contextual NMT has recently trig-035

gered a lot of attention and many approaches have036

been proposed in the literature. A common tax-037

onomy (Kim et al., 2019; Li et al., 2020) divides038

them in two broad categories: single-encoder (con-039

catenation) approaches (Tiedemann and Scherrer,040

2017; Agrawal et al., 2018; Ma et al., 2020; Zhang041

et al., 2020) and multi-encoder approaches (Jean 042

et al., 2017; Tu et al., 2017; Bawden et al., 2018; 043

Miculicich et al., 2018; Voita et al., 2018; Maruf 044

et al., 2019a; Zheng et al., 2020). Multi-encoder 045

models are more flexible and can be more effi- 046

cient than concatenation approaches, but they have 047

been criticized as being mere regularization meth- 048

ods (Kim et al., 2019; Li et al., 2020). In some 049

cases, they have even been shown to perform worse 050

than sentence-level systems on discourse-aware tar- 051

geted test suites (Lopes et al., 2020). 052

In this work, we address this criticism by show- 053

ing that training multi-encoder models is difficult 054

because of two reasons: (i) the sparsity of contex- 055

tual training signal, i.e. the signal that pushes sys- 056

tems to translate in a context-aware fashion, which 057

comes from the words that need context to be cor- 058

rectly translated; (ii) the sparsity of relevant context 059

words, the ones needed to disambiguate translation. 060

A trivial way to improve context-aware learning is 061

by increasing the amount of document-level train- 062

ing data. Large document-level parallel corpora 063

are not always available, but some works have pro- 064

posed data augmentation techniques to remedy this 065

lack (Sugiyama and Yoshinaga, 2019; Stojanovski 066

et al., 2020; Huo et al., 2020). However, as we 067

will show in our experimental section, this solution 068

is not efficient and often sub-optimal. We there- 069

fore introduce a novel pre-training strategy, divide 070

and rule (d&r), that is based on a simple and yet 071

powerful technique to augment the contextual train- 072

ing signal and to ease learning efficiently: split- 073

ting parallel sentences in segments (see Figure 1). 074

Simply put, feeding a context-aware model with a 075

sequence of incomplete, shorter, consecutive seg- 076

ments, forces it to look for context (i.e., surround- 077

ing segments) more frequently, and makes it easier 078

to retrieve relevant context because segments are 079

shorter. This results in faster and improved learning. 080

We pre-train multi-encoder models on split datasets 081

and evaluate them in two ways: BLEU score, and 082
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Si,1 He said that it was a project of peace
Si,2 and unity and that it brought people together .
T i,1 Il disait que c’ était un projet de paix
T i,2 et d’ unité et qu’ il réunissait les gens .
Sj,1 I think single-cell organisms are
Sj,2 possible within two years .
T j,1 Je pense que les organismes unicellulaires
T j,2 sont possibles dans 2 ans .

Figure 1: Example of sentence pairs from En→Fr
IWSLT17, after being tokenized and split in the middle.
After the splitting, some syntactic relations span across
two segments (underlined). Also, some source-side
words are not parallel with their reference (in bold).

contrastive test sets for discourse phenomena.083

Our main contributions are the following: (i)084

we show that context-aware multi-encoder models085

need to be trained carefully, because the contextual086

training signal is sparse, as well as the context ele-087

ments useful for contextualization; (ii) we propose088

the d&r pre-training strategy, which fosters train-089

ing of contextual parameters by splitting sentences090

into segments, with four splitting variants; (iii) we091

support this strategy with an analysis of the impact092

of splitting on the distribution of discourse phenom-093

ena; (iv) we demonstrate that this strategy is both094

effective and efficient, as it allows multi-encoder095

models to learn better and faster than by simply096

increasing the training data.097

2 Background098

2.1 Single-encoder approaches099

The most straightforward approach to context-100

aware NMT consists in concatenating the con-101

text to the current sentence before feeding it to102

the standard encoder-decoder architecture (Tiede-103

mann and Scherrer, 2017; Agrawal et al., 2018;104

Junczys-Dowmunt, 2019; Ma et al., 2020; Zhang105

et al., 2020). A special token is introduced to mark106

the boundaries between sentences. Generation can107

then follow two strategies: the many-to-many strat-108

egy consists in translating all the source sentences,109

and then discarding contextual sentences; the many-110

to-one strategy consists in translating the current111

sentence only. The modeling capacity of concate-112

nation methods is limited to few sentences because113

the complexity of attention scales quadratically114

with sentence length, although some recent works115

try to solve this constraint (Tay et al., 2020).116

sharable
parameters

Source

Context  
Encoder Encoder

Context  
Integrat ion

Decoder

Target

Context

Figure 2: Multi-encoder approach integrating context
outside the decoder.

2.2 Multi-encoder approaches 117

Multi-encoder models couple a self-standing 118

sentence-level NMT system, with parameters θS , 119

with additional parameters for modeling the context 120

either on source side, target side, or both. We refer 121

to these parameters as the contextual parameters 122

θC . The full context-aware architecture has param- 123

eters Θ = [θS ; θC ]. Most of the multi-encoder 124

models can be described as instances of two ar- 125

chitectural families (Kim et al., 2019), that only 126

differ in the way the encoded representations of the 127

context and the current sentence are integrated. 128

Outside integration. In this approach, depicted 129

in Figure 2, the encoded representations are merged 130

outside the decoder (Maruf et al., 2018; Voita et al., 131

2018; Zhang et al., 2018; Miculicich et al., 2018; 132

Maruf et al., 2019a; Zheng et al., 2020). This can 133

happen in different ways, such as by simple con- 134

catenation of the encodings, or with a gated sum. 135

Inside integration. Here the decoder attends 136

to the context representations directly, using its 137

internal representation of the decoded history as 138

query (Tu et al., 2018; Kuang et al., 2018; Bawden 139

et al., 2018; Voita et al., 2019b; Tan et al., 2019). 140

Many of these works found it useful to share 141

parameters of current-sentence and context en- 142

coders (Voita et al., 2018; Li et al., 2020). In this 143

way, the amount of contextual parameters to learn, 144

|θC |, and the computational cost are drastically re- 145

duced. Shared representation can also be cached to 146

be re-used and further processed by contextual pa- 147

rameters without the need of re-encoding sentences 148

from scratch, which represents an advantage with 149

respect to single-encoder approaches. Most of the 150

approaches proposed in the literature focus on a 151

few previous sentences, where most of the relevant 152

context is concentrated. 153
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Two-step training. Multi-encoder models are154

commonly trained following a two-step strategy155

(Tu et al., 2018; Zhang et al., 2018; Miculicich156

et al., 2018; Li et al., 2020). The first step consists157

in training θS independently on a sentence-level158

parallel corpus CS . Secondarily, contextual param-159

eters θC are trained on a document-level parallel160

corpus CD, while fine-tuning or freezing θS . Note161

that CS can also include sentences from CD.162

2.3 Evaluating context-aware MT163

Novel MT systems are usually evaluated by com-164

puting BLEU (Papineni et al., 2002) on the test data.165

However, BLEU is ill-equipped to capture the im-166

provements achieved by context-aware MT (Hard-167

meier, 2012), because contextualization can im-168

prove the translation of only a small fraction of the169

words in a document, while most of the words can170

be correctly translated without knowing the con-171

text. For instance, only a fraction of the anaphoric172

pronouns in a document has its nominal antecedent173

outside its own sentence. However, despite being174

sparse, these few cases strongly impact the qual-175

ity of translation (Läubli et al., 2018; Popescu-176

Belis, 2019). Consequently, a number of discourse-177

targeted test sets and automatic metrics have been178

proposed to measure improvements in context-179

aware MT (Maruf et al., 2019b), the most widely180

adopted ones being contrastive test sets.181

Contrastive test sets (Bawden et al., 2018;182

Müller et al., 2018; Voita et al., 2019a) consist of a183

number of source sentences, each paired with a cor-184

rect translation and some incorrect ones. Models185

are assessed on their ability to rank first the correct186

translation. In many cases, this can be identified187

only by looking at context, which is provided for188

both source and target sides. Therefore, the ranking189

accuracy reflects the context-modeling ability of190

the evaluated translation system.191

3 The double challenge of sparsity192

Some works criticized multi-encoder methods193

(Kim et al., 2019; Li et al., 2020), arguing that194

they do not improve sentence-level baselines in195

terms of BLEU when the baseline is well regu-196

larized. When there are improvements, it is ar-197

gued that the context-encoder simply works as a198

noise-generator that makes training more robust,199

and the improvements are not due to better context-200

modeling. Along this path, Lopes et al. (2020)201

showed that multi-encoder architectures struggle to202

model contextual information, and even deteriorate 203

the performance of a sentence-level baseline on 204

contrastive test sets. In fact, many proponents of 205

multi-encoder models only show BLEU improve- 206

ments, without providing any kind of targeted eval- 207

uation. This doesn’t allow a direct evaluation of 208

their context-modeling capability. We posit that 209

training the contextual parameters of multi-encoder 210

models is non-trivial because of two challenges: (i) 211

the sparsity of the training signal, which comes 212

from the words that need context to be correctly 213

translated (most of the words of a sentence can 214

be translated without context); (ii) the sparsity of 215

context words that are useful for contextualization 216

(most of the context is useless). As such, missing 217

the right experimental setting can bring to unsuc- 218

cessful training and unconvincing results. 219

More data? A trivial way to offset sparsity is to 220

increase the volume of training data. In fact, exist- 221

ing works that report strong results with targeted 222

evaluation train their contextual parameters with 223

millions of document-level sentence pairs (Baw- 224

den et al., 2018; Müller et al., 2018; Voita et al., 225

2019b; Zheng et al., 2020; Wong et al., 2020; Kang 226

et al., 2020). In contrast, many works in the lit- 227

erature train models with the TED talks’ subti- 228

tles released by the IWSLT shared tasks (Cettolo 229

et al., 2012), which only consist of a couple of 230

hundred thousand parallel sentences. In the ex- 231

perimental section, we will show that IWSLT’s 232

subtitles are not sufficient to effectively train multi- 233

encoder models. It follows that one can not make 234

fair comparisons between alternative architectures 235

in such experimental settings. On the other hand, 236

we will give an empirical confirmation to the in- 237

tuition that increasing the volume of training data 238

helps learning contextual parameters. However, 239

this solution is inefficient and only partial for the 240

double sparsity problem, and it is not always possi- 241

ble: large document-level training sets may not be 242

available in many languages. In the following sec- 243

tion, we propose a pre-training solution that makes 244

an efficient use of the available data for learning 245

contextual-parameters effectively. 246

4 Proposed Approach 247

One way to simulate document-level data is to 248

split sentences in two or more segments (Luong 249

et al., 2016). In this way intra-sentential syntactic 250

relations are broken, and a word previously dis- 251

ambiguated by looking at its neighbours in the 252
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Algorithm 1: Split parallel corpus
1: input: Parallel corpus C, minimum source

length lmin, function wheresplit()
2: for i = 1, . . . , |C| do
3: if len(Si) ≥ lmin then
4: mS ,mT = wheresplit(Si, T i, ...)
5: Si,1 = Si

<mS
and Si,2 = Si

≥mS

6: T i,1 = T i
<mT

and T i,2 = T i
≥mT

7: end if
8: end for
9: return Split corpus CD

sentence, now requires contextual information in253

order to be correctly translated. Moreover, split-254

ting sentences increases the concentration of rel-255

evant context words, as we will show in Section256

4.2. Within the framework of MT, if we split the257

source sentence, its corresponding reference has to258

be split too. The proposed approach, divide and259

rule (d&r ), consists in pre-training the model on260

a dataset CD that results from splitting all the sen-261

tences of a parallel corpus C that have at least lmin262

tokens, as described by Algorithm 1. Each source-263

side sentence Si, with index i = 1, ..., |C|, is split264

into Si,1 and Si,2. Its corresponding reference T i265

is split into T i,1 and T i,2. The resulting corpus is266

a document-level parallel corpus CD, such that, if267

the original corpus C was itself document-level,268

then CD keeps the same document boundaries as269

C. Figure 1 illustrates two examples of parallel270

sentences that are split in the middle. In both ex-271

amples, a context-aware system needs to look at272

Si,1 for translating Si,2 correctly, i.e. to look at past273

context. In the first one, the English neuter pronoun274

“it" could be translated into “il" or “elle", according275

to the gender of its antecedent (there is no singular276

neuter 3rd-person in French). The antecedent “a277

project", which is in the previous segment, allows278

to disambiguate it into “il". In the second example,279

the adjective “possible” can be correctly translated280

into its plural version “possibles” by looking back281

at the noun it refers to: “organisms”.282

4.1 Splitting methods283

In Algoritm 1, the wheresplit function returns the284

token indices mS and mT of Si and T i, where the285

sentence is split. In this work, we propose and286

experiment with four variants of this function.287

Middle-split. The simplest strategy is to split288

both the source and the target in the middle. In289

this case, wheresplit = middlesplit(Si, T i) re- 290

turns mS = blen(Si)/2c and mT = blen(T i)/2c. 291

Following this method, it can happen that Si,j and 292

T i,j , with j = 1, 2, are not parallel, as illustrated 293

in the second example of Figure 1. The verb “are” 294

belongs to Si,1, but its translation “sont” does not 295

belong to its corresponding reference segment T i,1. 296

This problem arises whenever the splitting sepa- 297

rates a set of words from their reference, which 298

end up in the other segment. Clearly, this method 299

requires that the two languages do not have strong 300

syntactic divergence, to avoid too large mismatches 301

between Si,j and T i,j , with j = 1, 2. 302

Aligned-split. As a solution to the misalign- 303

ment problem between source and target segments, 304

we can calculate word alignments Ai, and use 305

them to inform our splitting strategy by setting 306

wheresplit = alignedsplit(Si, T i, Ai), where 307

alignedsplit splits each sentence close to the mid- 308

dle, while avoiding to separate aligned words in 309

different segments. 310

Synt-split. The objective of splitting being to 311

break intra-sentential syntactic and semantic re- 312

lations in order to force the model to exploit the 313

context more frequently, we can run an NLP toolkit 314

over the training set to retrieve relations L (e.g. 315

syntactic dependencies or coreferences), and then 316

by defining wheresplit = syntsplit(Si, T i, Li) so 317

that it splits sentences close to the middle, while 318

ensuring that at least a relation is broken whenever 319

possible. Since not all relations raise translation 320

ambiguities when broken, one can choose which 321

of them must be prioritized; in this work we chose 322

pronominal coreferences. 323

Multi-split. The aforementioned methods can 324

be extended to splitting sentences in more than two 325

segments. The more we split sentences the more 326

likely it is that context is needed for each segment, 327

hence increasing training signal for contextual pa- 328

rameters. 329

For more details, we refer to Section 6.3, to Ap- 330

pendix A and to our code (will be open-sourced). 331

4.2 Impact on discourse phenomena 332

To give an explicit picture of how and why splitting 333

sentences helps learning contextual parameters, we 334

processed the source training data of IWSLT17 335

with CoreNLP (Manning et al., 2014) and we com- 336

puted some statistics on coreference chains and de- 337

pendency parse trees, before and after applying the 338

middle-split method. Statistics show how splitting 339
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Figure 3: IWSLT’s number of antecedents of anaphoric
pronouns at a given distance in terms of sentences/seg-
ments, normalized by the number of tokens that the
model needs to attend for resolving the coreference.

the sentences of a document helps in two ways:340

More cases. Splitting generates new cases that341

require context for disambiguation, making train-342

ing signal more abundant. When syntactic depen-343

dencies are split in two segments, the model needs344

to access the context for reconstructing the syntac-345

tic structure of the source sentence and correctly346

translate it, as shown in Figure 1. In order to have347

an idea of the magnitude of this effect, we calcu-348

lated the percentage of the sentences where the349

splitting method breaks at least one syntactic de-350

pendency between the main verb of the sentence351

(the root) and : (i) the subject or object (18.1% of352

the sentences); (ii) any complement (9.5%); (iii)353

any modifier (9.3%). If we consider all the depen-354

dencies with the root, except punctuations, we find355

that in 84.8% of the sentences at least a syntactic356

dependency is broken. Given such high proportion,357

the middle-split variant is in fact a good approxima-358

tion of a syntactically supported splitting approach.359

These cases add up to the many other cases of bro-360

ken relations, such as coreferences, which make the361

overall contextual training signal more abundant.362

Denser cases. The splitting also has the effect363

of shortening the average length of text sequences,364

which eases the job of context-aware systems be-365

cause they have to attend to fewer words while look-366

ing for context. In Figure 3, we show how many367

antecedents of an anaphoric pronoun are present in368

the data at a given distance d, expressed as num-369

ber of sentences from the current one for original370

data, and number of segments for split data. d = 0371

means that both the pronoun and its antecedent are372

in the same sentence (or segment); d = 1 means373

that the antecedent is in previous sentence (or seg-374

ment), and so on. We show statistics up to d = 3, 375

which is the maximum context distance that we ex- 376

periment with. The absolute number of antecedents 377

is normalized by the average length of a sentence 378

or segment. The resulting bar plot shows that split- 379

ting sentences into segments makes pronominal 380

antecedents more dense in the set of context to- 381

kens that the model is attending, which fosters the 382

learning of contextual parameters. The same ef- 383

fect applies to the other discourse phenomena that 384

require contextual disambiguation.1 385

5 Experimental setup 386

5.1 Data 387

We conduct experiments for three language pairs 388

English→Russian/German/French on different do- 389

mains. Following Kim et al. (2019), we pre-train 390

sentence-level baselines on large sentence-level par- 391

allel data to make them as robust as possible. In 392

particular, we employ data released by Voita et al. 393

(2019b) for En→Ru (6.0M sentences from Open- 394

Subtitles2018 (Lison et al., 2018)), data from the 395

WMT172 news translation shared task for En→De 396

(∼5.2M sentences), and data from WMT143 for 397

En→Fr (∼35.8M sentences). We train the contex- 398

tual parameters of context-aware models in two 399

settings, while freezing the rest of ther parameters: 400

High resource data. For En→Ru, it con- 401

sists of the document-level data released by Voita 402

et al. (2019b). For the other two language 403

pairs, we build the training set by assembling (i) 404

News-Commentary-v12 for En→De and News- 405

Commentary-v9 for En→Fr; (ii) Europarl-v7 for 406

En→De/Fr; (iii) TED talks subtitles released by 407

IWSLT17 (Cettolo et al., 2012) for En→De/Fr. 408

Low resource data. For En→Ru, it consists of 409

a random subset of the high resource documents, 410

amounting to 1/10th of its total. For En→De/Fr, 411

we use IWSLT17’s TED talks alone. 412

The resulting size of the two training settings 413

after pre-processing is reported in Table 1. In the 414

case of En→De/Fr, baselines and context-aware 415

models that were trained on high resources are 416

also fine-tuned on IWSLT17, so that both high and 417

low resource settings can be bench-marked on the 418

IWSLT17’s test set 2015. Test-sets 2011-2014 are 419

used as development set. For En→Ru, we use the 420

1More details are available in Appendix B, along with the
same statistics for Opensubtitles2018.

2http://www.statmt.org/wmt17/translation-task.html
3http://www.statmt.org/wmt14/translation-task.html
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En→Ru En→De En→Fr

Low Res 0.15M (8.3) 0.20M (20.8) 0.23M (21.0)
High Res 1.50M (8.3) 2.29M (27.29) 2.31M (27.6)

Table 1: Millions of sentence pairs used for training
context-aware models, and their average source length.

dev and test sets provided by Voita et al. (2019b). 4421

5.2 Evaluation422

Besides evaluating average translation quality with423

BLEU (Papineni et al., 2002),5 we employ three424

contrastive test suites for the evaluation of transla-425

tion of discourse phenomena.6426

En→Ru EllipsisVP (Voita et al., 2019b). Con-427

sisting of 500 examples from OpenSubtitles2018,428

each containing multiple contrastive hypothesis429

to evaluate the translation of verb phrase ellipses.430

Source sentences contain an auxiliary verb (e.g.431

"do") and an omitted main verb, which can be im-432

puted thanks to one of th needine three context433

sentences. Voita et al. (2019b) proposed test sets434

for the evaluation of other discourse phenomena,435

but we do not use them because they are conceived436

for systems using also target-side context.437

En→De ContraPro (Müller et al., 2018). A438

large-scale test set from OpenSubtitles2018 (Li-439

son et al., 2018), that measures translation accu-440

racy of the English anaphoric pronoun it into the441

corresponding German translations er, sie or es.442

Examples are balanced across the three pronoun443

classes (4,000 examples each). Each example re-444

quires identification of the pronominal antecedent,445

either in the source or target side, that can be found446

in the current sentence or any of the previous ones.447

En→Fr ContraPro (Lopes et al., 2020). A448

large-scale test set from OpenSubtitles2018, com-449

pletely analogous to the previous one but focused450

on the translation of two English pronouns: it and451

they. It consists of 3,500 examples for each target452

pronoun type: il or elle for it, ils or elles for they.453

5.3 Models454

We experiment with three models:455

K0. A sentence-level baseline, following the456

Transformer-base by Vaswani et al. (2017).457

4We report in Appendix C a re-cap of the datasets used
and details about pre-processing.

5Moses’ multi-bleu-detok (Koehn et al., 2007) for De/Fr,
multi-bleu on lowercased Ru as Voita et al. (2019b).

6Whenever relevant, we calculate the statistical signifi-
cance of the differences between models’ accuracies with the
paired McNemar test (McNemar, 1947).

K1. A context aware multi-encoder architecture 458

with outside integration (see Section 2.2), that en- 459

codes a single past source sentence as context. 460

K3. A context aware multi-encoder architecture 461

with outside integration, that encodes three past 462

source sentences as context.7 463

For both K1 and K3, sentence-level parameters 464

θS follow the Transformer-base configuration (hid- 465

den size of 512, feed forward size of 2048, 6 lay- 466

ers, 8 attention heads, total of 60.7M parameters), 467

while contextual parameters θC follow hierarchi- 468

cal architecture with source-side encoder proposed 469

by Miculicich et al. (2018) (hidden size of 512, 470

feed forward size of 2048, 8 attention heads, total 471

of 4.7M parameters).8 Context-aware models are 472

trained following the two-step strategy described in 473

Section 2.2. Sentence-level parameters θS of both 474

K1 and K3 are initialized with K0 and freezed. This 475

has the advantage of saving time and computation, 476

since only a small fraction of parameters (θC) is 477

trained (4.7M over a total of 65.2M). 478

6 Results and Analysis 479

6.1 Training contextual parameters is hard 480

In this section we provide evidence about the 481

difficulty of training contextual parameters on 482

document-level data. In the second block of Ta- 483

ble 2, after the results of the sentence-level base- 484

line K0, we report performance of context-aware 485

models trained on original document-level data, 486

comparing low and high resource settings. When 487

trained on the low resources, models display good 488

BLEU on the test set, generally without strong 489

degradation with respect to K0, or even with some 490

improvements. However, such marginal fluctua- 491

tions in BLEU are difficult to interpret, as they 492

do not necessarily correspond to better or worse 493

translation (Freitag et al., 2020). Accuracy on 494

the contrastive test sets also increases marginally 495

over baseline, if at all, for En→De/Fr. K1 even 496

shows a slight degradation of performance over the 497

sentence-level baseline for En→Fr. These results 498

highlight the struggle of contextual parameters to 499

learn an appropriate use of context, other than act- 500

ing as mere regularizers, as it was suggested by 501

Kim et al. (2019) and Li et al. (2020). On Rus- 502

sian instead, models display some improvements 503

7Although the splitting does not increase the number of
inter-segment phenomena for d > 1, it strengthens the signal
by making it more dense (see Section 4.2). Thus, K3 and any
wider-context model can profit from the proposed approach.

8Details can be found in Appendix C
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En→De En→Fr En→Ru Avg.
Model Setting BLEU ContraPro↑ BLEU ContraPro↑ BLEU Ellipsis-VP↑ Train Hours

Concat2to1 Low Res 33.41 47.38 41.27 80.42 31.12 31.00 1.9
Concat2to1 High Res 33.05 59.49 40.99 85.57 29.92 62.6 7.3
Zhang2018 Low Res 31.03 42.60 40.95 59.00 n.a. n.a. n.a.

K0 - 32.97 46.37 41.63 79.46 31.37 25.40 -
K1 Low Res 33.14 47.05 41.93 79.24 30.89 32.20 2.9
K3 Low Res 32.86 46.48 41.40 80.53 31.00 29.20 3.5
K1 High Res 33.16 57.75 41.65 84.32 31.15 44.00 13.0
K3 High Res 33.1 51.14 41.95 82.94 31.23 39.20 16.8

K1-d&r Low Res 33.44 60.21* 41.78 84.06 31.09 47.00* 6.7
K3-d&r Low Res 33.36 56.22* 41.68 85.50* 32.12 46.60* 6.4
K1-d&r High Res 32.82 61.09* 41.81 84.17 31.09 59.40* 16.5
K3-d&r High Res 33.07 59.56* 41.91 85.66* 31.27 60.40* 22.3

Table 2: BLEU score on testsets and accuracy (%) on contrastive sets. The last column reports the average
context-aware training time (in hours), including the time for d&r pre-training. The symbol * denotes statistically
significant (p<0.01) improvements w.r.t non-d&r couterparts (second block) and K0.

w.r.t. K0. This aligns with our expectations, since504

En→Ru Low Res has a volume of inter-sentential505

discourse phenomena such as coreferences that is506

comparable with En→De/Fr Low Res, but sen-507

tences are 2.5x shorter.9 In other words, the double508

challenge of sparsity is mitigated on this corpus.509

When trained on high resources, systems show sub-510

stantial improvements in their context-modeling511

capabilities, on all language pairs. Instead, BLEU512

improves of a few decimal points only, showing its513

limits to measure improvements in context-aware514

translation. These results confirm the intuition dis-515

cussed in Section 3: increasing the volume of data516

is a first solution to overcome sparsity.517

For the sake of benchmarking, we report in518

the first block the results obtained by two other519

source-side context-aware models10 trained on low520

resource data, following the same experimental521

setup. Concat2to1 (our implementation) is a single-522

encoder approach that concatenates the previous523

sentence to the current one as context, and outputs524

the translation for the current one. Zhang201811 is525

a multi-encoder model that looks at 2 previous sen-526

tences as context, proposed by Zhang et al. (2018).527

Concat2to1’s performance on test suites are com-528

parable to K1/3 on Low Res, or slightly better since529

concatenation models are less affected by the prob-530

lem of sparsity. This advantage is better highlighted531

on the high resource setting, in which Concat2to1532

is stronger on the test suites (although BLEU lacks533

behind). Zhang2018 performs very poorly, confirm-534

9See Table 1; more details can be found in Appendix B
10We do not compare with target-side approaches as we

experimented with source-side only.
11Results reported are by Lopes et al. (2020)

ing the difficulty of multi-encoder models to learn 535

contextualization on low resources and without any 536

help against the problem of sparsity. 537

6.2 Divide and rule 538

In this section, we show that the proposed pre- 539

training strategy is a more efficient answer to the 540

double challenge of sparsity than simply adding 541

more data, and one that allows improvements when 542

resources are abundant too. The third block of Ta- 543

ble 2 displays performance of models that have 544

undergone d&r pre-training on the same document- 545

level data as the models in the previous block, but 546

where sentences were split in two segments follow- 547

ing the middle-split method with lmin = 7. After 548

d&r pre-training, models have been tuned and eval- 549

uated on original, non-split data. The pre-training 550

proves to be very effective, as all models show 551

strong improvements in terms of accuracy on the 552

test suites, with the sole exception of K1-d&r on 553

En→Fr High Res. The average improvement is 554

of +10.79 accuracy points on Low Res, +8.49 on 555

High Res, showing that d&r brings strong improve- 556

ments even when data are abundant. Interestingly, 557

improvements are not uniformly distributed across 558

language pairs and domains: +17.20 on average 559

for En→Ru, +8.67 for En→De, +3.09 for En→Fr. 560

In terms of BLEU instead, we keep seeing minor 561

fluctuations. This confirms that, while context- 562

aware translation improves dramatically, the aver- 563

age translation quality measured with BLEU stays 564

more or less constant.12 It is now clear that a proper 565

12To verify that the improvements on test suites after
d&r pre-training really come from a better use of context,
we present in Appendix D an analysis of pronoun translation

7



En→De

Middle↑ Aligned↑ Synt↑ Multi↑

K1-d&r 60.21 +0.69* -2.67* -
K3-d&r 56.22 -1.38* +1.33* +1.13*

En→Fr

K1-d&r 84.06 +0.27 +0.15 -
K3-d&r 85.50 +0.20 +0.33** -0.09

Table 3: Comparison of accuracy of context-aware pro-
noun translation (ContraPro) by d&r pre-trained mod-
els with the middle-split method (first column) and
the other proposed methods (relative difference). *:
p < 0.01, **: p < 0.05.

comparison between single and multi-encoder mod-566

els can not be done without proper training of the567

multi-encoders’ contextual parameters, which tar-568

gets the problem of sparsity. Here, d&r pre-training569

allows K1/3 to achieve results on test suites com-570

parable to Concat2to1 (K3 is consistently better),571

along with better BLEU scores (except for K1 on572

german).13 A comparison between -d&r mod-573

els trained on Low Res against models trained574

on High Res without d&r shows another quality575

of the d&r pre-training strategy: efficiency. The576

same context-aware models achieve superior per-577

formances with 1/10th of the document-level data578

and a much shorter training time (last column).579

6.3 Impact of the splitting method580

Following Section 4.1, we study the impact of using581

a different splitting method other than middle-split.582

All the variants are applied to the En→De/Fr low583

resource setting (IWSLT), with lmin = 7, and the584

d&r pre-trained models are evaluated on ContraPro.585

The aligned-split method is based on alignments586

learned with fast_align (Dyer et al., 2013), while587

for the synt-split method we retrieve intra-sentential588

pronominal coreferences with CoreNLP (Manning589

et al., 2014), and we try to split them wherever590

present in a sentence-pair. If there are multiple-591

occurrences in the same sentence, we split as close592

to the middle as possible, while attempting to break593

the maximum number of coreferences.14 Finally,594

for the multi-split method, we split sentence-pairs595

in a half for len(Si) ≥ 7, and also in three seg-596

by antecedent distance, and an ablation study in which we test
models on ContraPro with inconsistent context.

13A detailed comparison between single and multi-encoder
models is beyond the scope of this work.

14More sophisticated synt-split methods could be devised,
targeting other discourse phenomena, or several of them at the
same time, with different degrees of priority.

ments of identical size for len(Si) ≥ 15. The per- 597

formance differences between models pre-trained 598

with middle-split and the other variants are reported 599

in Table 3. As we can see, splitting variants allow 600

small improvements in 7 cases out of 10, although 601

variations are marginal: the simple middle-split 602

method seems to be close to optimal already. This 603

observation can be explained by multiple elements. 604

Firstly, middle-split produces segment pairs that are 605

already well aligned: most of the source and target 606

segments are aligned with the exception of one or 607

two words, and the fact of having only a few mis- 608

placed words might act as a regularization factor. 609

Secondly, middle-split breaks a syntactic relation 610

for the vast majority of sentences already, as ex- 611

plained in Section 4.1, which means that improve- 612

ments achieved with syntactically driven splitting 613

can only be marginal. Thirdly, splitting in more 614

than one segment can be beneficial in some cases, 615

because it allows to break more syntactic relations 616

and increase density of signal, but it also increases 617

the risk of misalignment between source and target, 618

and might make the task too hard. Finally, tools 619

like fast_align and CoreNLP are characterized by 620

a certain language-dependent error rate, which af- 621

fects the performance of the methods. In conclu- 622

sion, d&r pre-training with middle-split seems to 623

be the most convenient alternative for most use- 624

cases because of its efficacy, its simplicity and its 625

language-independence. Even though middle-split 626

relies on syntactic similarity between target and 627

source languages, this condition is met by a large 628

number of language pairs, in the order of millions, 629

as detailed in Appendix A. 630

7 Conclusions 631

Multi-encoder models are a broad family of 632

context-aware NMT models. In this work we have 633

discussed the difficulty of training contextual pa- 634

rameters due to the sparsity of the words in need 635

of context, and their relevant context. We have 636

proposed a pre-training approach called divide and 637

rule, based on splitting the training sentences, with 638

four variants. After having analysed the implica- 639

tions of splitting on discourse phenomena, we have 640

shown that d&r allows to learn contextual parame- 641

ters better and faster than by simply adding training 642

data. We have also shown that the simplest and lan- 643

guage independent splitting variant, middle-split, 644

is a strong baseline that can be easily applied for 645

pre-training any multi-encoder NMT model. 646
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Coreferences - original data

d #tokens Occurrences
All Pronouns

0 21.01 67,864 (3230) 50,556 (2406)
1 42.02 68,703 (1635) 43,220 (1029)
2 63.03 35,780 (568) 21,234 (337)
3 84.04 25,533 (304) 14,284 (170)

Coreferences - split data

d #tokens Occurrences
All Pronouns

0 10.51 32,190 (3063) 24,328 (2315)
1 21.02 54,424 (2589) 37,966 (1806)
2 31.53 37,837 (1200) 23,732 (753)
3 42.04 22,529 (536) 14,035 (334)

Dependency trees

Split dependency Occurrences

subj or obj 41,065
complement 21,726
modifier 21,144
any 147,066

Table 4: Number of coreference antecedents at a given
distance d from the mention in the current sentence, for
both original and split En→Fr IWSLT17. In brackets,
the same figure normalized by the average number of
tokens that the model has to attend to resolve the coref-
erence (#tokens). At the bottom, the number of sen-
tences for which at least one syntactic dependency is
split in two segments when using the split data. The
percentage of examples that need context after splitting
is 29.17% if we consider pronominal coreferences only,
39.8% if we consider all coreferences.

A Splitting methods982

We provide here some extra details on the splitting983

methods that have been proposed and tested. For984

full details, we refer to our implementation.985

Aligned-split. As already mentioned, we use986

wheresplit = alignedsplit(Si, T i, Ai) , which987

takes as input the word alignments Ai:988

Ai = {(j, k)|Si
j and T i

k are aligned},989

where j = 1, ..., |Si| and k = 1, ..., |T i| are990

the indices of the words belonging to Si and T i,991

respectively. alignedsplit initially takes mS =992

blen(Si)/2c and mT = max{k : (j, k) ∈ Ai, j ≤993

mS}. Then, it checks whether this choice is not994

breaking apart two aligned words. Formally, it995

checks that:996

Si
j ∈ Si,1 ∧ T i

k ∈ T i,1 or Si
j ∈ Si,2 ∧ T i

k ∈ T i,2.

(1)
997

Coreferences - original data

d #tokens Occurrences
All Pronouns

0 8.32 36,628 (4402) 27,179 (3267)
1 16.64 60,204 (3618) 41,652 (2503)
2 24.96 26,397 (1058) 16,142 (647)
3 33.28 11,571 (348) 6,654 (200)

Coreferences - split data

d #tokens Occurrences
All Pronouns

0 4.16 13,322 (3202) 9,134 (2196)
1 8.32 46,227 (5556) 34,104 (4099)
2 12.48 33,566 (2690) 22,676 (1817)
3 16.64 18,961 (1139) 12,248 (736)

Table 5: Same as in table 4 for the Low Res En→Ru.
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Figure 4: En-Fr IWSLT vs Low Res En-Ru OpenSubti-
tles2018: comparison of the number of antecedents of
anaphoric pronouns at a given distance in terms of sen-
tences/segments, normalized by the number of tokens
that the model needs to attend for resolving the corefer-
ence. Since sentences are much shorter in En-Ru data
(8.32 vs. 21.02 tokens on average), the density of dis-
course phenomena within the sentence is much higher.

If this condition is not encountered, it tries to 998

split the sentence pairs in the neighbouring dis- 999

tance, where condition (1) is met. If the con- 1000

dition can not be met (e.g., because one of the 1001

two segments would be too short (<3 tokens)), 1002

alignedsplit falls back on middlesplit. 1003

Synt-split. In our implementation, the function 1004

wheresplit = syntsplit(Si, T i, Li) takes as input 1005

the coreference relation Li detected by CoreNLP 1006

on the source sentence i. If Li is not empty, it 1007

means that a relevant intra-sentential relation is 1008

present (in our experiments, we look at pronom- 1009

inal coreferences). In this case, the algorithm 1010

checks whether splitting in the middle (mS = 1011

blen(Si)/2c) allows to break Li, i.e., to separate 1012

the two related tokens in different segments. If 1013

12



Total d = 0 d = 1 d = 2 d = 3 d > 3

K0 46.37 83.3 32.4 44.8 48.9 71.9
K1 47.05 82.5 33.9 45.3 48.0 69.9
K3 46.48 82.4 32.8 45.0 48.9 71.7

K1-d&r 60.21 81.1 56.5 44.9 48.7 73.3
K3-d&r 56.22 81.7 46.8 55.2 56.2 72.4

Sample Size 12000 2400 7075 1510 573 442
Relative Size 100.0% 20.0% 59.0% 12.6% 4.8% 3.7%

Table 6: Accuracy(%) of Low Res models on ContraPro En→De by pronoun antecedent distance. The first column
represents the weighted average, calculated on the basis of the sample size of each group.

middle-split does not achieve this goal, mS is set1014

to the closest index from the middle that breaks1015

the relation, except for the case in which breaking1016

the relation would mean generating a too short seg-1017

ment (<3 tokens). In this case, the algorithm falls1018

back to middle-split.1019

A.1 On the scope of middle-split1020

Even though middle-split relies on syntactic sim-1021

ilarity between source and target languages, this1022

condition is met by a large number of language1023

pairs, in the order of millions. In fact, there are1024

around 4,000 written languages in the world (Eber-1025

hard et al., 2021), and most of them can be grouped1026

in a few types with similar word orders, as shown1027

by the ample literature on word order typolo-1028

gies (Tomlin, 2014; Dryer and Haspelmath, 2013).1029

The primary order of interest is the constituent1030

order, concerning the relative order of subject1031

(S), object (O) and verb (V) in a clause. There1032

are seven possible language types with respect to1033

the constituent order (Dryer, 2013c): SOV, SVO,1034

VSO, VOS, OVS, OSV, NDO (non-dominant or-1035

der). Tomlin (2014) estimates that more than 40%1036

of the world languages belong to the SOV type1037

(languages adopting the SOV order), another 40%1038

belong to the SVO type, while almost 10% of lan-1039

guages adopt VSO order. The other types are rarer.1040

In the previous section, we have shown that the1041

middle-split method is beneficial both in the case1042

of language pairs of the same type, that deploy the1043

same constituent order, like En-Fr/Ru, which all1044

adopt SVO order, as well as for languages that be-1045

long to different types, as for En-De, where English1046

is SVO and German is NDO, deploying both SOV1047

and SVO according to the use cases (Dryer, 2013c).1048

Similar observations also apply when we look at1049

other word order categories. For instance, when1050

looking at the order of modifiers or adverbials, lan-1051

guages can be clustered in a few types, where the1052

wide majority of languages belong to the biggest or 1053

second biggest type (Dryer, 2013b,a). Therefore, 1054

we believe that our method could be beneficial for 1055

millions of language pairs, including many low re- 1056

source languages belonging not only to same word 1057

order types, but also slightly different ones (as in 1058

the case of SOV and SVO). 1059

B Impact of splitting 1060

In Table 4, we provide details on the syntactic 1061

features and the impact of splitting (with middle- 1062

split) for En→Fr IWSLT17, while Table 5 shows 1063

the equivalent figures for the Low Resource sub- 1064

set of En→Ru OpenSubtitles2018. A visual com- 1065

parison of the two datasets is presented in Fig- 1066

ure 4. This complementary information confirms 1067

that the middle-split method is an effective way 1068

to strengthen the contextual training signal and to 1069

facilitate its exploitation by context-aware NMT 1070

systems, in different text domains. 1071

C Experimental Setup 1072

C.1 Data recap 1073

We recap in Table 7 the datasets that we use at each 1074

stage of training and test. The sentence-level train- 1075

ing concerns the baselines, whose parameters are 1076

also used to initialize the sentence-level encoder 1077

and decoder of the context-aware models (ΘS). 1078

Concerning En→Ru, Voita et al. (2019b) released 1079

two datasets extracted from OpenSubtitles2018: 1080

a document-level dataset of 1.5M sentences with 1081

context (document boundaries are available), and a 1082

sentence-level dataset of 6M sentences, which in- 1083

cludes the sentences of the document-level dataset. 1084

C.2 Data preprocessing 1085

The Opensubtitles2018 release by Voita et al. 1086

(2019b) has been already pre-processed. There- 1087

fore, we only apply byte pair encoding (Sennrich 1088
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En→Ru En→De En→Fr
Low Res Hig Res Low Res Hig Res Low Res Hig Res

Sentence-level
training

OpenSubs2018 OpenSubs2018 WMT17 WMT17 WMT14 WMT14

Context-aware
training

1/10th of
OpenSubs2018

OpenSubs2018 IWSLT17 News-v12
Europarl-v7
IWSLT17

IWSLT17 News-v9
Europarl-v7
IWSLT17

Fine-tuning - - - IWSLT17 - IWSLT17

Test (BLEU) OpenSubs2018 OpenSubs2018 IWSLT17 IWSLT17 IWSLT17 IWSLT17

Contrastive test EllipsisVP EllipsisVP ContraPro ContraPro ContraPro ContraPro

Table 7: Summary of the datasets used at each stage of training and evaluation of the models.

Model Setting En→Ru En→De En→Fr

Concat2to1 Low Res 3.624 3.628 3.207
Concat2to1 High Res 3.659 3.734 3.228

K0 - 3.626 3.629 3.230
K1 Low Res 3.599 3.617 3.216
K3 Low Res 3.605 3.618 3.215

K1 High Res 3.596 3.617 3.210
K3 High Res 3.597 3.617 3.211

K1-d&r Low Res 3.595 3.617 3.213
K3-d&r Low Res 3.595 3.616 3.212

K1-d&r High Res 3.593 3.616 3.211
K3-d&r High Res 3.592 3.615 3.211

Table 8: Corresponding loss on development set for
each reported test result with middle-split.

Plen En→Ru En→De En→Fr

0.6 31.76 32.80 44.47
0.7 31.58 32.76 44.48
0.8 31.47 32.72 44.50
0.9 31.33 32.65 44.53
1 31.23 32.64 44.59

1.1 31.12 32.60 44.59
1.2 31.06 32.57 44.58

Table 9: Performance (BLEU) of K0 on the develop-
ment set according to different values of length penalty.

et al., 2016) using 32k merge operations jointly for1089

source and target languages.1090

The other datasets are tokenized with the Moses1091

toolkit (Koehn et al., 2007), further cleaned by1092

removing long sentences, and byte pair encoded1093

using 32k merge operations jointly for source and1094

target languages. While IWSLT provides docu-1095

ment boundaries for TED subtitles, the WMT re-1096

leases of New-Commentary and Europarl do not1097

provide them. Therefore, a small fraction of sen-1098

tences in the High Resource setting will be paired1099

with wrong context. However, we found the mod-1100

els to be robust against occasional random con-1101

text (see also Voita et al. (2018) and Müller et al. 1102

(2018)). In order to make the models correctly learn 1103

how to translate headlines (the first line in a doc- 1104

ument), we need to have headlines in the training 1105

set. As such, we set artificial document boundaries 1106

in News-Commentary and Europarl, following the 1107

average document length of TED talks. 1108

C.3 Training and evaluation 1109

All models are implemented in fairseq (Ott et al., 1110

2019). After having pre-trained the baseline on 1111

4 Tesla V100 for 200k steps, we train all models 1112

on a single Quadro RTX 6000, with a fixed batch 1113

size of approximately 16k tokens,15 as it has been 1114

shown that Transformers need a large batch size for 1115

achieving the best performance (Popel and Bojar, 1116

2018). We stop training after 5 consecutive non- 1117

improving validation steps (in terms of loss on dev). 1118

Corresponding validation performance for each re- 1119

ported test result with middle-split are reported 1120

in Table 8. We train models with the optimizer 1121

configuration and learning rate (LR) schedule de- 1122

scribed in Vaswani et al. (2017). The maximum 1123

LR is 0.0007 for baselines on En→Ru/De, 0.001 1124

for models on En→De/Fr low resource settings, 1125

and 0.0005 for all the others. In the En→De/Fr 1126

High Resource setting, contextual-parameters are 1127

finetuned on IWSLT17 with an initial LR of 0.0002 1128

that shrinks by a factor of 0.99 at every epoch. 1129

We use label smoothing with an epsilon value of 1130

0.1 (Pereyra et al., 2017) for all settings. Since 1131

the sentence-level parameters are pre-trained on 1132

a large amount of parallel data (WMT), the mod- 1133

els are pretty robust to generalization, and dropout 1134

can be set to 0.1, which gave the best results for 1135

the non-contextual baseline K0. At inference time, 1136

we use beam search with a beam of 4 for all mod- 1137

15The optimizer update is delayed to simulate 16k tokens.
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En→De En→Fr
Model BLEU ContraPro BLEU ContraPro

K0 32.97 (+0.00) 46.37 (0.00) 41.44 (-0.00) 79.46 (0.00)
K1 33.06 (+0.06) 46.7 (-0.35) 41.75 (-0.12) 79.05 (-0.19)
K3 32.73 (-0.13) 46.21 (-0.27) 41.47 (+0.15) 79.24 (-1.29)

K1-d&r 33.1 (-0.34) 47.6 (-12.61) 41.64 (-0.14) 78.94 (-5.12)
K3-d&r 33.05 (-0.31) 47.96 (-8.26) 41.55 (-0.13) 79.05 (-6.45)

Table 10: BLEU and accuracy results on ContraPro (and their changes) when the context provided to the model is
inconsistent. All models are trained on the Low Resource setting.

els. We adopt a length penalty (Plen) of 0.6 for1138

all models (Plen < 1 favors shorter sentences),1139

with the exception of En→Fr models, to which1140

we assign Plen = 1. The LR for training was1141

searched in {0.001, 0.0007, 0.0005, 0.0002}). The1142

LR achieving the best loss on the validation set1143

after convergence was selected. Plen was searched1144

in {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2} for K0 only (see1145

Table 9). The length penalty resulting in the best1146

BLEU score on the validation set was then used1147

for all models within the same language pair. The1148

other hyperparameters were set according to the1149

relevant literature (Vaswani et al., 2017; Popel and1150

Bojar, 2018; Voita et al., 2019b; Lopes et al., 2020).1151

D Results Analysis1152

D.1 Accuracy by antecedent distance1153

Here, we want to investigate more in details the1154

performance of the proposed approach on the accu-1155

racy of ambiguous pronoun translation. We report1156

in Table 6 the accuracy on En→De ContraPro, de-1157

tailed by varying antecedent distance. We notice1158

that all the improvements achieved by -d&r models1159

are related to those pronouns whose antecedent is1160

in the context (d ≥ 1), which is in line with the1161

expectations of context-aware models exploiting1162

context for disambiguation. K1-d&r is very strong1163

in translating pronouns with antecedent distance1164

d = 1, surpassing K0 and K1 baselines by 22+1165

points of accuracy. Similarly, K3-d&r surpasses1166

baselines by a large margin on 0 ≤ d ≤ 3, beating1167

all the other models on d = 2, 3, as expected. We1168

notice however that K3-d&r lacks behind K1-d&r1169

on d = 1. On one side, this could be explained by1170

the fact that K1-d&r is more specialized at model-1171

ing a single past sentence. On the other side, we1172

also notice that the hierarchical context-encoding1173

architecture by Miculicich et al. (2018), at the core1174

of K3, is not aware of the distance of the context1175

sentences that are encoded. Hence, we believe that1176

K3-d&r might perform worse on d = 1 than K1- 1177

d&r because it gives the same importance to further 1178

away context (d = 2, 3). Since pronouns with an- 1179

tecedent distance d = 1 are the most frequent in 1180

the test set, K1-d&r has the highest average result 1181

(reported in “Total"). It has to be noticed also that 1182

K3 is more affected by the challenge of sparsity 1183

than K1, since it has to spot relevant context among 1184

3x more tokens. This might be the reason why K3 1185

starts beating K1 only when the training setting is 1186

the most favorable to context-aware learning: with 1187

d&r pre-training plus high resources. 1188

D.2 Ablation: shuffling context 1189

We want to verify that the proposed approach 1190

improves learning by making the context-aware 1191

model to rely on its modeling of the context. Ta- 1192

ble 10 shows the performance of models trained 1193

on Low Res, when the evaluation is undertaken 1194

by randomly shuffling the context of every sen- 1195

tence with other sentences from the same dataset 1196

(c.f. Scherrer et al. (2019)). In brackets, the delta 1197

w.r.t. the results with consistent context presented 1198

in the main table of the paper. A random context 1199

is inconsistent with the current sentence in many 1200

cases, and thus misleading for a context-aware sys- 1201

tem. Indeed, -d&r models display a significant 1202

drop in accuracy when they are evaluated with in- 1203

consistent context, which confirms that they rely 1204

on context information to achieve the improvement 1205

in pronoun translations. Nonetheless, the same 1206

models prove to be robust against being shown 1207

a random context as they obtain a similar perfor- 1208

mance to K0. In other words, the splitting method 1209

does not produce models that are over reliant on 1210

context. This robustness is confirmed by BLEU: 1211

the average translation quality is very slightly af- 1212

fected by the shuffling. The changes are so small 1213

that are probably negligible. This results also show 1214

once again that BLEU is ill-equipped to measuring 1215

improvements in document-level translation. 1216

15


