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ABSTRACT

In sparse optimization, enforcing hard constraints using the ℓ0 pseudo-norm of-
fers advantages like controlled sparsity compared to convex relaxations. However,
many real-world applications (e.g., portfolio optimization) demand not only spar-
sity constraints but also some extra constraint (such as limit of budget). While
prior algorithms have been developed to address this complex scenario with
mixed combinatorial and convex constraints, they typically require the closed
form projection onto the mixed constraints which might not exist, and/or only
provide local guarantees of convergence which is different from the global guar-
antees commonly sought in sparse optimization. To fill this gap, in this paper,
we study the problem of sparse optimization with extra support-preserving con-
straints commonly encountered in the literature. We present a new variant of
iterative hard-thresholding algorithm equipped with a two-step consecutive pro-
jection operator customized for these mixed constraints, serving as a simple al-
ternative to the Euclidean projection onto the mixed constraint. By introducing a
novel trade-off between sparsity relaxation and sub-optimality, we provide global
guarantees in objective value for the output of our algorithm, in the determinis-
tic, stochastic, and zeroth-order settings, under the conventional restricted strong-
convexity/smoothness assumptions. As a fundamental contribution in proof tech-
niques, we develop a novel extension of the classic three-point lemma to the con-
sidered two-step non-convex projection operator, which allows us to analyze the
convergence in objective value in an elegant way that has not been possible with
existing techniques. Finally, we illustrate the applicability of our method on sev-
eral sparse learning tasks.

1 INTRODUCTION

In sparse optimization, directly enforcing sparsity with the ℓ0 pseudo-norm has several advantages
over its convex relaxation counterpart. In compressive sensing for instance (Foucart & Rauhut,
2013), one may seek to recover an unknown vector, which sparsity level is known to be at most
k. Similarly, in portfolio optimization, due to transaction costs, one may seek to ensure hard con-
straints on the maximum number of assets invested in (Brodie et al., 2009; DeMiguel et al., 2009).
However, in several use cases, one may also seek to enforce additional constraints, such as, for in-
stance, a budget constraint in the case of portfolio optimization, which can be enforced through an
extra ℓ1 constraint, as in Takeda et al. (2013). As another example, in sparse non-negative matrix
factorization, when estimating the hidden components, one seeks to enforce at the same time a norm
constraint and a sparsity constraint Hoyer (2002). The problem of ℓ0 empirical risk minimization
(ERM) with additional constraints can be formulated as follows, where R is an empirical risk func-
tion, Γ ⊆ Rd denotes a convex constraint set, and ∥ · ∥0 denotes the ℓ0 pseudo-norm (number of
non-zero components of a vector):

min
w∈Rp

R(w), s.t. ∥w∥0 ≤ k and w ∈ Γ. (1)

In the literature, several algorithms have been developed to address such a problem with mixed con-
straints, but they typically require the existence of a closed form for the projection onto the mixed
constraint, and/or their convergence guarantees are only local, which makes it difficult to estimate
the sub-optimality of the output of the algorithm. More precisely, on one hand, some works provide
convergence analyses for variants of a (non-convex) projected gradient descent, explicitly for mixed
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sparse constraints (Metel, 2023; Pan et al., 2017; Lu, 2015; Beck & Hallak, 2016), or for general
proximal terms (which encompasses our mixed constraints) (Frankel et al. (2014); Xu et al. (2019b);
Attouch et al. (2013); De Marchi & Themelis (2022); Yang & Yu (2020); Gu et al. (2018); Yang &
Li (2023); Bolte et al. (2014); Boţ et al. (2016); Xu et al. (2019a); Li & Lin (2015)), but such anal-
yses are only local. On the other hand, several existing works on Iterative Hard Thresholding (IHT)
provide global guarantees on sub-optimality gap (Jain et al., 2014; Nguyen et al., 2017; Li et al.,
2016; Shen & Li, 2017; de Vazelhes et al., 2022), but they do not apply to the mixed constraint
case we consider. In between the two approaches, one can also find Barber & Ha (2018) andLiu &
Foygel Barber (2020) which give global guarantees for general non-convex constraints or projection
operators, but which do not provide explicit convergence guarantees for the particular mixed con-
straint setting that we consider: their rates depend on some constants (the relative concavity or the
local concavity constant) for which, up to our knowledge, an explicit form is still unknown for the
mixed constraints we consider. We present a more detailed review of related works in Appendix B,
and an overview of them in Table 1. To fill this gap, we focus on solving problem 1 in the case
where Γ belongs to a general family of support-preserving sets, which encompasses many usual
sets encountered in the literature. As will be described in more detail in Section 2, such sets are
convex sets for which the projection of a k-sparse vector onto them gets its support preserved, such
as for instance ℓp norm balls (for p ≥ 1), or a broader family of sign–free convex sets described for
instance in Lu (2015); Beck & Hallak (2016).

Adapted to the properties of such constraints, we propose a new variant of IHT, with a two-step
projection operator, which, as a first step, identifies the set S of coordinates of the top k components
of a given vector and sets the other components to 0 (hard-thresholding), and as a second step
projects the resulting vector onto Γ. This two-step projection can offer a simpler alternative to
Euclidean projection onto the mixed constraint in the cases where there is a closed form for the
latter projection, and handle the cases where there is not. We then provide global sub-optimality
guarantees without system error for the objective value, for such an algorithm as well as its stochastic
and zeroth-order variants, under the restricted strong-convexity (RSC) and restricted smoothness
(RSS) assumptions, in Theorems 1, 2, and 3. Key to our analysis is a novel extension of the three-
point lemma to such non-convex setting with mixed constraints, which also allows, as a byproduct,
to simplify existing proofs of convergence in objective value for IHT and its variants. In the zeroth-
order case, such technique also allows to obtain, up to our knowledge, the first convergence in
risk result without system error for a zeroth-order hard-thresholding algorithm. Additionally, our
results highlight a compromise between sparsity and sub-optimality gap specific to the additional
constraints setting: through a free parameter ρ, one can obtain smaller upper bounds in terms of risk
but at the cost of relaxing further the sparsity level of the iterates, or, alternatively, enforce sparser
iterates but at the cost of a larger upper bound on the risk.

Finally, we illustrate the applicability of our method on several sparse learning tasks, namely index
tracking for portfolio selection, multiclass logistic regression, and adversarial attacks.

Contributions: We summarize the main contributions of our paper as follows:

1. We present a variant of IHT to solve hard sparsity problems with additional support-
preserving constraints, using a novel two-step projection operator.

2. We describe a novel extension of the three-point lemma to such constraint which allows to
simplify existing proofs for IHT and to provide global convergence guarantees in objective
value without system error for the algorithm above, in the RSC/RSS setting, highlighting
a novel trade-off between sparsity of iterates and sub-optimality gap in such mixed con-
straints setting.

3. We extend the above algorithm to the stochastic and zeroth-order optimization settings,
obtaining similar global convergence guarantees in objective value (without system error)
for such mixed constraints setting. In the zeroth-order case, this also provides, up to our
knowledge, the first convergence result in objective value without system error for a zeroth-
order hard-thresholding algorithm (with or without extra constraints).
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Table 1: Comparison of results for Iterative Hard Thresholding with/without additional constraints.
1 S: symmetric convex sets being sign-free or non-negative (Lu, 2015), A: sets verifying Assumption 3. 2 If a
paper reports both ∥w− w̄∥ and R(w)−R(w̄), we report only the latter. T̂ : time index of the w returned by
the method (e.g. T̂ = argmint∈[T ] R(wt) ). w̄: k̄-sparse vector in Γ. ∆: System error (term which depends
on the gradient at optimality (e.g. Ei∥∇Ri(w̄)∥, (see corresponding references))). 4: κs = Ls

νs
and κs′ =

Ls′
νs

(cf. corresponding refs. for defs. of s and s′). 3 SM: Lipschitz-smooth, D: Deterministic. S: Stochastic, Z:
Zeroth-Order, L: Lipschitz continuous.

Reference Γ1 Convergence2 k Setting3

Jain et al. (2014) Rd R(wT̂ ) ≤ R(w̄) + ε Ω(κ2
sk̄)

D, RSS,
RSC

Nguyen et al.
(2017) Rd E∥wT̂ − w̄∥ ≤ ε+O (∆) Ω(κ2

sk̄)
S, RSS,

RSC

Li et al. (2016) Rd ER(wT̂ ) ≤ R(w̄) + ε+O(∆) Ω(κ2
sk̄)

S, RSS,
RSC

Zhou et al. (2018) Rd ER(wT̂ ) ≤ R(w̄) + ε Ω(κ2
sk̄)

S, RSS,
RSC

de Vazelhes et al.
(2022) Rd E∥wT̂ − w̄∥ ≤ ε+O (∆) +O(µ) Ω(κ4

s′ k̄)
S, Z,
RSS’,
RSC

Lu (2015), Beck &
Hallak (2016) Γ ∈ S local convergence - D, SM

Metel (2023) ℓ∞ ball
around 0

local convergence - S, Z, L

IHT-TSP (Thm. 1) Γ ∈ A ⊃
S R

(
wT̂

)
≤ (1 + 2ρ)R(w̄) + ε Ω

(
κ2
sk̄
ρ2

) D, RSS,
RSC

HSG-HT-TSP
(Thm. 2)

Γ ∈ A ⊃
S ER(wT̂ ) ≤ (1 + 2ρ)R(w̄) + ε Ω

(
κ2
sk̄
ρ2

) S, RSS,
RSC

HZO-HT-TSP
(Thm. 3)

Γ ∈ A ⊃
S ER(wT̂ ) ≤ (1 + 2ρ)R(w̄)+ε+O(µ) Ω

(
κ2
s′ k̄

ρ2

) Z, RSS’,
RSC

HZO-HT (Thm. 6
in App. E.3.2) Rd E[R(wT̂ )−R(w̄)] ≤ ε+O(µ) Ω(κ2

s′ k̄)
Z, RSS’,

RSC

2 PRELIMINARIES

Throughout this paper, we adopt the following notations. For any w ∈ Rd, ΠΓ(w) denotes a
Euclidean projection of w onto Γ, that is ΠΓ(w) ∈ argminz∈Γ ∥w − z∥2, and wi denotes the i-th
component of w. B0(k) denotes the ℓ0 pseudo-ball of radius k, i.e. B0(k) = {w ∈ Rd : ∥w∥0 ≤ k},
with ∥ · ∥0 the ℓ0 pseudo-norm (i.e. the number of nonzero components of a vector). Hk denotes the
Euclidean projection onto B0(k), also known as the hard-thresholding operator (which keeps the k
largest (in magnitude) components of a vector, and sets the others to 0 (if there are ties, we can break
them e.g. lexicographically)). ∥ · ∥p denotes the ℓp norm for p ∈ [1,+∞), and ∥ · ∥ the ℓ2 norm
(unless otherwise specified). [n] denotes the set {1, ..., n} for n ∈ N∗. For any S ⊆ [d], |S| denotes
its number of elements. For any w ∈ Rd, supp(w) denotes its support, i.e. the set of coordinates of
its non-zero components. We will also need the following assumptions on R.
Assumption 1 ((νs, s)-RSC, Jain et al. (2014); Negahban et al. (2009); Loh & Wainwright (2013);
Yuan et al. (2017); Li et al. (2016); Shen & Li (2017); Nguyen et al. (2017)). R is νs restricted
strongly convex with sparsity parameter s, i.e. it is differentiable, and there exists a generic constant
νs such that for all (x,y) ∈ Rd with ∥x− y∥0 ≤ s:

R(y) ≥ R(x) + ⟨∇R(x),y − x⟩+ νs
2
∥x− y∥2

Assumption 2 ((Ls, s)-RSS, Jain et al. (2014); Li et al. (2016); Yuan et al. (2017)). R is Ls re-
stricted smooth with sparsity level s, i.e. it is differentiable, and there exists a generic constant Ls

such that for all (x,y) ∈ Rd with ∥x− y∥0 ≤ s:

R(y) ≤ R(x) + ⟨∇R(x),y − x⟩+ Ls

2
∥x− y∥2
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We then define the notion of support-preserving set that we will use throughout the paper. It essen-
tially requires that projecting any k-sparse vector w onto Γ preserves its support. That is, the convex
constraint Γ should be compatible to the sparsity level constraint ∥w∥0 ≤ k.
Assumption 3 (k-support-preserving set). Γ ⊆ Rd is k-support-preserving , i.e. it is convex and for
any w ∈ Rd such that ∥w∥0 ≤ k, supp(ΠΓ(w)) ⊆ supp(w).
Remark 1. Below we present some examples of usual sets that also verify Assumption 3 (see Ap-
pendix C for a proof of such statements):

• Elementwise decomposable constraints, such as box constraints of the form {w ∈ Rd :
∀i ∈ [d], li ≤ wi ≤ ui}.

• Group-wise separable constraints where the constraint on each group is k-support-
preserving (such as our constraints in Section 5 for the index tracking problem).

• Sign-free convex sets (Lu, 2015; Beck & Hallak, 2016) (def. in App. C), e.g. ℓq norm-balls.

3 DETERMINISTIC CASE

3.1 ALGORITHM

Γ

×w

×
Π̄k

Γ(w)
×Hk(w)

Figure 1: Support-preserving set and
two-step projection (d = 2, k = 1).

Two-step projection In all the algorithms of this pa-
per, we will make use of a two-step projection operator
(TSP), which is different in general from the usual Eu-
clidean projection (EP), in order to obtain, from an arbi-
trary vector w ∈ Rd, a vector in w ∈ B0(k)∩Γ. We con-
sider such a TSP instead of EP since it enables the deriva-
tion a variant of three-point lemma (Lemma 1) which can
handle our specific non-convex mixed constraints, and is
key to obtaining the convergence analyses we present in
Sections 3 and 4. In addition, the TSP can be more intu-
itive and efficient to implement than EP (see App. F.2 for
more discussions about TSP vs EP). The TSP procedure,
which we denote by Π̄k

Γ, is as follows: we first project w
onto B0(k) through the hard-thresholding operator Hk,
to obtain a k-sparse vector vk = Hk(w). Then, we
project vk onto Γ , to obtain a final vector wS = ΠΓ(vk),
where S = supp(vk). Note that consequently, the ob-
tained wS is not necessarily the EP of w onto B0(k) ∩ Γ, that is, we do not necessarily have
wS = ΠB0(k)∩Γ(w). However, when Assumption 3 is verified, we have wS ∈ B0(k) ∩ Γ (since,
because of Assumption 3, supp(wS) ⊆ supp(vk) and hence ∥wS∥0 ≤ ∥vk∥0 ≤ k), therefore each
iteration remains feasible in the constraint. We illustrate such a two-step projection on Figure 1.

We now present our full algorithm in the case where R is a deterministic function without further
knowledge of its structure. It is similar to the usual (non-convex) projected gradient descent algo-
rithm, that is, a gradient update step followed by a projection step, except that instead of projecting
onto Γ ∩ B0(k) using the Euclidean projection, we obtain a vector wk ∈ Γ ∩ B0(k) through the
two-step projection method described above. We describe the algorithm in Algorithm 1 below.

Algorithm 1: Deterministic IHT with extra constraints (IHT-TSP)
Input: w0: initial value, η: learning rate, T : number of iterations
for t = 1 to T do

wt ← Π̄k
Γ(wt−1 − η∇R(wt−1));

end
Output: wT

Remark 2. In the case where Γ is a symmetric sign-free convex set (we refer to Lu (2015) for the
definition of such sets, which include for instance any ℓp norm constraint set for p ∈ [1,+∞) ),
then the two-step projection is the closed form of an Euclidean projection onto the mixed constraint
Γ ∩ B0(k) (see Theorem 2.1 from Lu (2015)). Therefore, in such cases, Algorithm 1 is identical to
a vanilla (non-convex) projected gradient descent algorithm (for which up to now there was still no
global convergence guarantees in such a mixed constraints setting in the literature).
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3.2 CONVERGENCE ANALYSIS

Before proceeding with the convergence analysis, we first present below a variant of the usual three-
point lemma, which plays a key role in the proof. The three-point lemma is usually used in the proofs
for projected gradient descent in the convex setting. However, due to the non-convexity of the ℓ0
pseudo-ball, such proofs cannot apply, and to provide convergence in risk, some complex work-
arounds are often taken via careful consideration of the sizes of the support of the iterates, such as in
the proofs of Jain et al. (2014) or Zhou et al. (2018). However, such a modified three-point lemma
below allows to obtain simpler proofs in such non-convex setting, remaining very close to usual
convex optimization proofs, while also being able to take into account the additional constraint,
which is important in our problem setting. More specifically, the common three-point lemma for a
projection onto a convex set E relates the distance between a point w ∈ Rd, its projection ΠE(w),
and any vector w̄ from the set E , through the relation ∥w−w̄∥2 ≥ ∥ΠE(w)−w∥2+∥ΠE(w)−w̄∥2.
However, in our case, our lemma relates together the four points involved in the two step projection
(w ∈ Rd, Hk(w), Π̄k

Γ(w), and w̄ ∈ Γ ∩ B0(k) ), and additionally, it contains a constant β which
takes into account the sparsity level k enforced in the algorithm and the sparsity k̄ (< k) of a
reference point w̄ (see e.g. Liu & Foygel Barber (2020) for a discussion regarding k and k̄).
Lemma 1 (Constrained ℓ0-Three-Point, proof in App. D.1). Suppose that Assumption 3 holds. Con-
sider w, w̄ ∈ Rp with ∥w̄∥0 ≤ k̄ and w̄ ∈ Γ. Then the following holds for any k > k̄, with β := k̄

k :

∥Π̄k
Γ (w)−w∥2 ≤ ∥w − w̄∥2 − ∥Π̄k

Γ (w)− w̄∥2 +
√

β∥Hk(w)− w̄∥2.

In the case where Γ = Rd, we have Π̄k
Γ (w) = Hk(w), and we can observe that if k ≫ k̄,

β tends to 0, and therefore we approach the usual three-point lemma from convex optimization.
This is coherent with the literature on IHT, in which relaxing the sparsity degree (i.e. considering
some k ≫ k̄) is known to make the problem easier to solve (we refer the reader to references in
Appendix B.2 for more details). Equipped with such lemma, we can now present the convergence
analysis of Algorithm 1 below, using the assumptions from Section 2, and we will describe how
the results give rise to a trade-off between the sparsity of the iterates and the tightness of the sub-
optimality bound, specific to our mixed constraints setting.
Theorem 1 (Proof in App. D.2). Suppose that Assumption 1, 2, and 3 hold, and that R is non-
negative (without loss of generality). Let s = 2k, η = 1

Ls
, and w̄ be an arbitrary k̄-sparse vector.

Let ρ ∈ (0, 1
2 ] be an arbitrary scalar. Suppose that k ≥ 4(1−ρ)2L2

s

ρ2ν2
s

k̄. Then for any ε > 0, for

T ≥
⌈
Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2

2ε(1−ρ)

)⌉
+ 1 = O(κs log(

1
ε )), the iterates of IHT-TSP satisfy

min
t∈[T ]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε.

Further, if w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}, then, with ρ = 0.5 in the
expressions of k and T above: mint∈[T ] R (wt) ≤ R(w̄) + ε.

Proof Sketch. Our proof starts by deriving a novel convergence proof for IHT in the case where
Γ = Rd (Theorem 4 in Appendix), greatly simplifying the one from Jain et al. (2014) (Proof of Thm.
1 in App. B.1), and much closer to usual constrained convex optimization proofs. Using the Ls-RSS
of R and some algebraic manipulations, and denoting gt = ∇R(wt) and vt := Hk(wt−1− 1

Ls
gt−1)

(= wt when Γ = Rd), we have:

R(vt) ≤ R(wt−1) +
Ls

2
∥vt −wt−1 +

1

Ls
gt−1∥2 −

1

2Ls
∥∇R(wt−1)∥2

(a)

≤R(wt−1) +
Ls

2
∥w̄ −wt−1 +

1

Ls
gt−1∥2 −

Ls

2
(1−

√
β)∥vt − w̄∥2 − 1

2Ls
∥∇R(wt−1)∥2

(b)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
(1−

√
β)∥vt − w̄∥2, (2)

where in (a) we used our new ℓ0-three-point lemma (Lemma 3 in App. D.1.1), and in (b) we used
the RSC of R with some rearrangements. At that stage, the proof for Theorem 4 can be concluded
with telescopic sum arguments. To obtain the proof for general Γ (i.e. Theorem 1), we reiterate the
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above process but instead of Lemma 3 we use our more general Lemma 1, adapted to general Γ and
to our two-step projection technique, to obtain:

R(wt) ≤ R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2 + Ls

2

√
β∥vt − w̄∥2. (3)

Finally, taking a convex combination of equations 2 ( ×ρ) and 3 (×(1 − ρ)) for ρ ∈ (0, 0.5], using
the bound ∥wt− w̄∥2 ≤ ∥vt− w̄∥2 (non-expansiveness of convex projection onto Γ), and carefully
tuning k depending on ρ (resulting in our final trade-off between sparsity and optimality), we can
fall back to a telescopic sum and conclude the proof.

Remark 3. Theorem 1 therefore provides a global convergence guarantee in objective value. How-
ever, contrary to usual guarantees for IHT algorithms under RSS/RSC conditions (which are bounds
of the form R(wt) ≤ R(w̄)+ ε for some t) , our bound is of the form R (wt) ≤ (1+ 2ρ)R(w̄)+ ε.
There is a trade-off about the choice of ρ ∈ (0, 0.5]. On one hand, ρ→ 0 is preferred in view of the
RHS of above bound. On the other hand, the sparsity-level relaxation condition k ≥ 4(1−ρ)2L2

s

ρ2ν2
s

k̄

prefers ρ→ 0.5. We illustrate such a trade-off on some synthetic experiments in Section F.5.

4 EXTENSIONS: STOCHASTIC AND ZEROTH-ORDER CASES

In this section, we provide extensions of Algorithm 1 to the stochastic and zeroth-order sparse opti-
mization problems, and provide the corresponding convergence guarantees in objective value with-
out system error.

4.1 STOCHASTIC OPTIMIZATION

In this section, we consider the previous risk minimization problem, in a finite-sum setting, i.e.
where R(w) = 1

n

∑n
i=1 Ri(w), similarly to Zhou et al. (2018); Nguyen et al. (2017): in such case,

stochastic algorithms allow to deal more easily with large-scale datasets where estimating the full
∇R(w) is expensive.

4.1.1 ALGORITHM

We describe the stochastic variant of our previous Algorithm 1 in Algorithm 2 below, which is an
extension of the algorithm from Zhou et al. (2018), to the considered mixed constraints problem
setting, using our two-step projection. More precisely, we approximate the gradient of R by a mini-
batch stochastic gradient with a batch-size increasing exponentially along training, and following
the gradient step, we apply our two-step projection operator.

Algorithm 2: Hybrid Stochastic IHT with Extra Constraints (HSG-HT-TSP)
Input: w0: initial point, η: learning rate, T : number of iterations, {st}: mini-batch sizes.
for t = 1 to T do

Uniformly sample st indices St from [n] without replacement ;
Compute the approximate gradient gt−1 = 1

st−1

∑
it∈St

∇Rit(wt−1)

wt = Π̄k
Γ(wt−1 − ηgt−1);

end
Output: ŵT = argminw∈{w1,...,wT } R(w).

4.1.2 CONVERGENCE ANALYSIS

Before proceeding with the convergence analysis, we make an additional assumption on the popula-
tion variance of the stochastic gradients, similar to the one in Mishchenko et al. (2020).
Assumption 4 (Bounded stochastic gradient variance). For any w, the population variance of the
gradient estimator is bounded by B:

1

n

n∑
i=1

∥∇Ri(w)−∇R(w)∥2 ≤ B.
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We now present our convergence analysis below:

Theorem 2 (Proof in App. E.1). Suppose that Assumptions 1 2, 3 and 4 hold, and that R is non-
negative (without loss of generality). Let s = 2k. Let w̄ be an arbitrary k̄-sparse vector. Let C
be an arbitrary positive constant. Assume that we run HSG-HT-TSP (Algorithm 2) for T timesteps,
with η = 1

Ls+C , and denote α := C
Ls

+ 1 and κs := Ls

νs
. Suppose that k ≥ 4α2 1

ρ2κ
2
sk̄ for some

ρ ∈ (0, 1). Finally, assume that we take the following batch-size: st :=
⌈

τ
ωt

⌉
with ω := 1− 1

4α 1
ρκs

and τ := ηB
C . Then, we have the following convergence rate:

E min
t∈[T ]

R (wt)− (1 + 2ρ)R(w̄) ≤ 2
α2

ρ(1− ρ)
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
.

Further, if w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}, then, with ρ = 0.5:

E min
t∈[T ]

R (wt)−R(w̄) ≤ 8α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
.

Corollary 1 (Proof in App. E.2.). Therefore, the number of calls to a gradient∇Ri (#IFO), and the
number of hard thresholding operations (#HT) such that the left-hand sides in Theorem 2 above are
smaller than some ε > 0, are respectively: #HT = O(κs log(

1
ε )) and #IFO = O

(
κs

νsε

)
.

4.2 ZEROTH-ORDER OPTIMIZATION

We now consider the zeroth-order (ZO) case (Nesterov & Spokoiny, 2017), in which one does not
have access to the gradient ∇R(w), but only to function values R(w), which arises for instance
when the dataset is private as in distributed learning (Gratton et al., 2021; Zhang et al., 2021) or the
model is private as in black-box adversarial attacks Liu et al. (2018), or when computing∇R(w) is
too expensive such as in certain graphical modeling tasks Wainwright et al. (2008). The idea is then
to approximate∇R(w) using finite differences. We refer the reader to Berahas et al. (2021) and Liu
et al. (2020) for an overview of ZO methods.

4.2.1 ALGORITHM

In this section, we describe the ZO version of our algorithm. At its core, it uses the ZO estimator
from de Vazelhes et al. (2022). We present the full algorithm in Algorithm 3, whereDs2 is a uniform
probability distribution on the following set B, which is the set of unit spheres supported on supports
of size s2 ≤ d: B = {w ∈ Rd : ∥w∥0 ≤ s2, ∥w∥2 ≤ 1}. We can sample from this set by first
sampling a random support of size s2, and then sampling from the unit sphere on that support. Note
that if we choose s2 := d, this estimator simply becomes the vanilla ZO estimator with unit-sphere
smoothing (Liu et al., 2020). Choosing s2 < d allows to avoid the full-smoothness assumption
and can reduce memory consumption by allowing to sample random vectors of size s2 instead of d.
We refer to de Vazelhes et al. (2022) for more details on such a ZO estimator. The difference with
de Vazelhes et al. (2022) (in addition to the mixed constraint setting and the use of the TSP) is that
in our case we sample an exponentially increasing number of random directions, which allows us to
obtain convergence in risk without system error (except the system error due to the smoothing µ).

Algorithm 3: Hybrid ZO IHT with Extra Constraints (HZO-HT-TSP)
Input: w0: initial point, η: learning rate, T : number of iterations, s2: size of the random

supports, {qt}: number of random directions.
for t = 1 to T do

Uniformly sample qt−1 i.i.d. random directions {ui}qt−1

i=1 ∼ Ds2 ;
Compute the approximate gradient gt = 1

qt−1

∑qt−1

i=1
d
µ (R(wt−1 + µui)−R(wt−1))ui

wt = Π̄k
Γ(wt−1 − ηgt−1);

end
Output: ŵT = argminw∈{w1,...,wT } R(w).
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4.2.2 CONVERGENCE ANALYSIS

Assumption 5 ((Ls, s)-RSS’, Shen & Li (2017); Nguyen et al. (2017)). R is Ls strongly restricted
smooth with sparsity level s, i.e. it is differentiable, and there exist a generic constant Ls such that
for all (x,y) ∈ Rd with ∥x− y∥0 ≤ s:

∥∇R(x)−∇R(y)∥ ≤ Ls∥x− y∥.
Note that if a function R is (Ls, s)-RSS’, then it is (Ls, s)-RSS.

Such assumption is often simply called restricted smoothness, but we name it strong restricted
smoothess to avoid any confusion with Assumption 2. Assumption 5 is slightly more restrictive
than Assumption 2, but it is necessary when working with ZO gradient estimators (see more details
in de Vazelhes et al. (2022)). We now present our main convergence theorem for the ZO setting.
Theorem 3 (Proof in App. E.3). Suppose that Assumptions 1, 3, and 5 hold, and that R is non-
negative (without loss of generality). Let s = 3k, and let w̄ be an arbitrary k̄-sparse vector. Let
s2 ∈ {1, ..., d}. Assume that R is (Ls′ , s

′)-RSS’ with s′ = max(s2, s), and νs-RSC. Denote κs :=
Ls′
νs

. Let C be an arbitrary positive constant, and denote εF := 2d
(s2+2)

(
(s−1)(s2−1)

d−1 + 3
)

, εabs :=

2dL2
s′ss2

(
(s−1)(s2−1)

d−1 + 1
)

, and εµ := L2
s′sd. Assume that we run HZO-HT-TSP (Algorithm 3)

for T timesteps, with η = 1
Ls′+C = 1

αLs′
, with α := C

Ls′
+ 1. Suppose that k ≥ 16α2

ρ2 κ
2
sk̄ for some

ρ ∈ (0, 1). Finally, assume that we take qt random directions at each iteration, with qt :=
⌈

τ
ωt

⌉
with ω := 1− 1

8 1
ρακs

and τ := 16κs
εF

(α−1) . Then, we have the following convergence rate:

E min
t∈[T ]

R(wt)− (1 + 2ρ)R(w̄) ≤ 4
α2

ρ(1− ρ)
Ls′κsω

T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2,

with Z = 1
1−ρ

(
εµ

(
2
νs

+ 1
C

)
+ εabs

C

)
. Further, if w̄ is a global minimizer of R over B0(k) :=

{w : ∥w∥0 ≤ k}, then, with ρ = 0.5:

E min
t∈[T ]

R (wt)−R(w̄) ≤ 16α2Ls′κsω
T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2.

Corollary 2 (Proof in App. E.4.). Additionally, the number of calls to the function R (#IZO), and
the number of hard thresholding operations (#HT) such that the left-hand sides in Theorem 3 above
are smaller than ε + Zµ2, for some ε > 0 are respectively: #HT = O(κs log(

1
ε )) and #IZO =

O
(
εF

κ3
sLs

ε

)
. Note that if s2 = d, we have εF = O(s) = O(k), and therefore we obtain a query

complexity that is dimension independent.
Remark 4. If Γ = Rd, we name the corresponding algorithm HZO-HT, and we provide the con-
vergence rate of HZO-HT in Theorem 6 in Appendix E.3.2, also recalled in Table 1. Such a result
is novel, and can be seen as an independent contribution illustrating the power of proof techniques
based on our three-point lemma. Up to our knowledge, it is the first global convergence guarantee
without system error for a zeroth-order hard-thresholding algorithm (see Table 1), and as such, is a
significant improvement over the result from de Vazelhes et al. (2022) .

5 EXPERIMENTS

Before describing our experiments, we provide a short discussion about the settings and algorithms
that we will illustrate. For constraints Γ for which the Euclidean projection onto B0(k) ∩ Γ has a
closed form equal to the TSP, our algorithm is identical to a vanilla non-convex projected gradient
descent baseline (see Remark 2). In such case, our contribution in this paper is on the theoretical
side, by providing some global guarantees on the optimization, instead of the local guarantees from
existing work (cf. Table 1). Additionally, there are case in which there exists a closed form for
projection onto Γ ∩ B0(k), different from the TSP (e.g. when Γ = Rd

+, cf. Lu (2015)). Although
our framework allows us to get approximate global convergence results when using the TSP, still,
at the iteration level, a gradient step followed by Euclidean projection (not TSP) is optimal, since it

8
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minimizes a constrained quadratic upper bound on R. Therefore, we may not expect much improve-
ment of the TSP over the Euclidean projection in such case, except on the computational side . For
these reasons, we illustrate cases where, up to our knowledge, there is no known closed form for
projection onto Γ∩B0(k), which we believe are the most interesting from the empirical perspective
(since no algorithm was about to deal with such cases before). We present below an experiment on
a real life index tracking use-case, and provide some extra experimental results in Appendix F, for
the settings of multi-class logistic regression as well as adversarial attacks.

Setting: Index tracking. We consider the following index tracking problem, originally presented
in Takeda et al. (2013), and used as well in Lu (2015); Beck & Hallak (2016). It is also similar to
the portfolio optimization problem presented in Kyrillidis et al. (2013). We seek to reproduce the
performance of an index fund (such as S&P500), by investing only in a few key k assets, in order to
limit transaction costs. The general problem can be formulated as a linear regression problem:

min
w∈B0(k)∩Γ

∥Aw − y∥2 (4)

Figure 2: Index Tracking with Sector
constraints

where w represents the amount invested in each asset.
For each i ∈ [n] denoting a timestep , the i-th row of A
denotes the returns of the d stocks at timestep i, and yi the
return of the index fund. In our scenario, we seek to limit
to a value D > 0 the amount of transactions in each of
c activity sector (group) of the portfolio (e.g. Industrials,
Healthcare, etc.), denoted as Gi for i ∈ [c]. We ensure
such constraint through an ℓ1 norm constraint on each
group: Γ = {w ∈ Rd : ∀i ∈ [c], ∥wGi

∥1 ≤ D}, where
wGi

is the restriction of w to group Gi (i.e. for j ∈ [d],
wGi j = wj if j ∈ Gi and 0 otherwise). In our case, y
denotes the daily returns of the S&P500 index from Jan-
uary 1, 2021, to December 31, 2022, and A the returns
of the corresponding d = 497 assets (over c = 11 sec-
tors) of the index during such period. We choose k = 15
and D = 50. We also apply our algorithms to additional
financial indices (CSI300 and HSI) in Appendix F.1.

Results. Up to our knowledge, there are no closed form for the Euclidean projection onto B0(k) ∩
Γ, but the two-step projection can easily be done by projecting onto the ℓ1 ball for each sector
independently. We compare our algorithm (FG-HT-TSP) to two naive baselines: (a) the first one.
called ”PGD(Γ) + finalΠB0

”, consists in only ensuring the constraints in Γ, followed at the end of
training by a simple hard-thresholding step to keep the k largest components of w in absolute value,
and (b) the second one, called ”PGD(B0)+finalΠΓ”, consists in running vanilla IHT, followed at the
end of training by a simple projection onto Γ to keep w in Γ ∩ B0. We plot in Figure 2 the value of
the returns for (i) the tracked index, (ii) our index (output of FG-HT-TSP), and (iii) our two baselines
(a) and (b). We learn the weights of the portfolio on 80% of the considered period, and evaluate the
out of sample (test set) performance on the remaining 20% (shaded area in the figure). As we can
observe, the true index is successfully tracked by our method (FG-HT-TSP) (better than the two
baselines as can be observed in particular on the train-set: the green curve is the one which is the
closest to the blue one), and our algorithm solution spans 9 sectors, therefore it is well diversified,
which illustrates the applicability of our method in practice.

6 CONCLUSION

In this paper, we provided global convergence guarantees for variants of Iterative Hard Thresholding
which can handle extra convex constraints which are support-preserving, via a two-step projection
algorithm. We provided our analysis in the deterministic, stochastic, and zeroth-order settings. To
that end, we used a variant of the three-point lemma, adapted to such mixed constraints, which
allowed to simplified existing proofs for vanilla constraints (and to provide a new kind of result in the
ZO setting), as well as obtaining new proofs in such combined constraints setting. We illustrated the
applicability of our algorithm on several sparse learning tasks. Finally, it would also be interesting
to extend this work to a broader family of sparsity structures and constraints, for instance to matrices
or graphs. We leave this for future work.

9



Under review as a conference paper at ICLR 2024

REFERENCES
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