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Abstract

Table Structure Recognition (TSR) aims to con-
vert table images into machine readable for-
mats such as HTML. The latest approach uses
image-encoder-text-decoder model, in which
image encoder extracts image features and a
text decoder generates HTML tokens. Fur-
thermore, a new approach uses multimodal-
encoder, in which encoder extracts textual and
visual features, and outperforms other image-
encoder models. However, these models have
not been compared under the same conditions.
Given this background, it is necessary for fu-
ture development of TSR to investigate the ef-
fects of image and text features on the TSR.
In this research, we constructed an encoder-
decoder model and used three different en-
coders: image-based, text-based, and multi-
modal. By comparing the TSR scores, we eval-
uated which model performs better. Experi-
mental results suggested that an image-based
approach is the most effective.

1 Introduction

Table Structure Recognition (TSR) is the task of
extracting table structural elements (rows, columns,
headers) from a table image and converting them
into the corresponding HTML. Since tables appear
in various media such as scientific papers, web-
sites, and newspapers, analyzing tables by TSR
is important for managing large amounts of docu-
ments (Hiroyuki Oka, 2021). Early research on
TSR (Hassan and Baumgartner, 2007; Oro and
Ruffolo, 2009) analyzed tables using rule-based
methods, but in recent years, various TSR models
have adopted methods of deep learning. Among
the many models, the most popular is an image-
to-text model (Nassar et al., 2022; Ye et al., 2021;
Zhong et al., 2020; Li et al., 2022). These consist
of an image encoder and a text decoder, and the im-
age encoder extracts features and the text decoder
generates HTML tags. On the other hand, a model
(Chen et al., 2023) has emerged that consists of
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Figure 1: Comparing with other methods. (a) is encoder-
dual-decoder models that generate HTML tags and cell
coordinates. (b) is encoder-decoder models that gener-
ate HTML tag only. (c) is encoder-decoder models that
generate full HTML.

a multimodal encoder, which takes both images
and text as input and outperforms other image-
encoder models. However, previous works are not
comparing under the same experimental conditions
considering differences with structures and gener-
ation methods. For example, Figure 1 (a) is an
image-based Tableformer which consists of image-
encoder-dual-decoder and outputs the HTML tags
and its bounding boxes separately, while Figure
1 (b) is a multimodal TableVLM which consists
of multimodal-encoder-single-decoder and outputs
only HTML tags. Thus, it is necessary to further
explore the optimal methodology for the TSR task
in terms of generation method and modality.

In this research, we propose a method of gener-
ating complete HTML, which contain tags and cell
texts as shown in Figure 1 (¢). Under this condition,
we analyze which model is superior by comparing
the accuracy on the benchmark for TSR among
three models: text-based, image-based, and multi-
modal models. Our contributions are summarized
as follows:

* A method of generating complete HTML (tags
and cell contents) is better than other methods
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Figure 2: Model Architecture is simple encoder-decoder model that generates HTML from a table image. The
encoder outputs a latent representation of the table and the decoder generates HTML tokens autoregressively.

of generation.

* Image-based model has the best performance
in situations where large amounts of data are
available.

* Text-based and multimodal models are effi-
cient in terms of data and can provide accu-
racy even with a small amount of data.

2 Methodology

We evaluate and compare image-based, text-based,
and multimodal (combining text with image) mod-
els on TSR datasets.

Model Architecture We use a simple encoder-
decoder model, as shown in Figure 2. We use
BART-decoder as a text decoder, LayoutLMv3-
L as a text-based encoder, Swin Transformer as
an image-based encoder, and LayoutLMv3 as a
multimodal encoder.

Swin Transformer Encoder Swin Transformer
(Liu et al.,, 2021) is an image-based model.
Swin Transformer converts the table image x €
R3xWoxHo) into a fixed rectangle (3, H, W). The
transformed image is divided into patches and are
input into model. The input patches are merged
repeatedly and finally converted into a latent repre-
sentation z € RW Xd), where N is the final number
of patches, d is the dimension of the latent repre-
sentation.

LayoutLMv3 Encoder LayoutLMv3 (Huang
et al., 2022) is a multimodal model which han-
dles text, images, and coordinates. LayoutLMv3
receives tokens ¢;(0 < i < L) that have been split
by WordPiece (Wu et al., 2016) from text obtained
via OCR from table images, their bounding boxes
bi € (xo,y0,21,¥1)(0 < i < L), and the table
image x € R3*WoxHo transformed into a fixed
size (3, H,W). The model captures layout rela-

tionships and finally outputs a latent representation
of each tokens and image z € R(LANxd),

LayoutLMv3-L Encoder LayoutLMv3-L is a
text-based model that handles text and coordi-
nates. The difference with LayoutLMv3-L and
LayoutLLMv3 is not using image as input. In other
words, the model receives tokens ;(0 < i <
L) that have been split by WordPiece from text
obtained via OCR, their bounding boxes b; €
(x0,Y0,71,y1)(0 < ¢ < L) only. Therefore, the
model finally outputs z € R(Z),

BART Decoder BART decoder (Lewis et al.,
2020) receives the latent representation z obtained
from the encoder and decode z into corresponding
HTML tokens. The decoder generates HTML to-
kens autoregressively using the itself Self-Attention
and Cross-Attention.

3 Experiments

Datasets We use two datasets in our research:
PubTabNet (Zhong et al., 2020) which contains
509K tables from scientific papers, and FinTabNet
(Zheng et al., 2020), which contains 112K tables
derived from annual reports of S&P 500 compa-
nies. Both datasets contain HTML corresponding
to table image. The PubTabNet dataset is divided
into 97% for training and 3% for validation, while
FinTabNet is allocated to 81% for training, 9.5%
for validation, and 9.5% for testing.

Evaluation Metric We evaluate the generated
HTML by Tree-Edit-Distance-Similarity (TEDS)
(Zhong et al., 2020). TEDS is given by the follow-
ing formula.

EditDist(T,, Tj)

TEDS(T,, T}) = 1
(o To) =1 = T 1T

€]

T, and T} represent the HTML tree structure, and
EditDist() calculates the edit distance between



FinTabNet PubTabNet

Model Modality OCR TEDS-Struc(%) TEDS(%) TEDS-Struc(%) TEDS(%)
TableFormer (Nassar et al., 2022) \'% v 96.80 - 96.75 93.60
Swin Transformer-BART \Y - 95.60 88.93 96.29 95.12
PaddleOCR + LayoutLMv3-L-BART L v 97.21 94.77 95.06 90.80
TesseractOCR + LayoutLMv3-L-BART L v 95.97 91.79 93.50 83.62
PaddleOCR + LayoutLMv3-BART VL v 97.56 95.23 96.25 93.69
TesseractOCR + LayoutLMv3-BART VL v 95.72 91.59 95.59 91.32

Table 1: The TEDS on FinTabNet and PubTabNet.
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Figure 3: The TEDS when changing the number of
training data in PubTabNet.

the two tree structures. Also, |T'| represents the
number of nodes in T'. We also evaluate by TEDS-
Struc, which ignore cell content and only consider
logical structure of HTML as 7T'.

Implementation Details We chose Swin Trans-
former with image size (H, W) = (448,896) as
inputs, window size=7, layers [2, 2, 14, 2] and num-
ber of parameters 77M . We also use LayoutLMv3
encoder that consist of a 6-layer model with im-
age size (H, W) = (224, 224) as inputs, d = 768,
maximum sequence length L = 512, and number
of parameters 83 M. Also, We set the LayoutLMv3-
L encoder in the same way as the LayoutLMv3
encoder and this parameters is 82/ . Note that the
number of parameters was set close to each other in
order to compare the three models. We use BART
decoder that consist of 4-layer, with d = 1024
and L = 1024. Each model was initialized with
pre-trained weights. The model was trained using
the AdamW (Loshchilov and Hutter, 2019) opti-
mization method, with a learning rate of 0.0001, a
weight decay of 0.02, and (51, 52) = (0.9,0.99).
The batch size was set to 192, and the training
was conducted over 20 epochs. Additionally, there
was a warm-up period covering 5% of the total
training duration, during which the learning rate
was linearly increased to 0.0001. Furthermore, We
truncate the sequence of HTML and inputs over
maximum length L. As inputs to LayoutLMv3 and

Train data TEDS-Struc(%) TEDS(%)
FinTabNet 95.60 88.93
FinTabNet+PubTabNet 97.06 95.95

Table 2: The TEDS of Swin Transformer-BART on
FinTabNet when training data size increase.

LayoutLMv3-L, We use PaddleOCR! and Tesser-
actOCR?. During inference the HTML tokens is
generated using greedy search.

4 Results and Discussion

Image-based vs Text-Based vs Multimodal As
shown in Table 1, TableFormer (Nassar et al., 2022)
was added as baselines (Figure 1 (a)). This model
has an image-encoder-dual-decoder structure, and
the two decoders output HTML tags and cell bound-
ing boxes. Finally, We obtain HTML by extracting
cell texts from generated cell bounding boxes. The
TEDS of Swin Transformer-BART achieved 1.5%
increase over baseline on PubTabNet. This sug-
gests that our approach that generates complete
HTML is better than generating cell coordinates
and later obtaining the cell texts by a separate
OCR. Next, comparing the overall results, Swin
Transformer-BART has the highest TEDS in Pub-
TabNet. On the other hand, in FinTabNet Swin
Transformer-BART has the lowest TEDS, while
PaddleOCR+LayoutLMv3-BART has the highest
TEDS. We believe that this is due to the difference
in the number of training data between FinTabNet
and PubTabNet. Figure 3 shows the TEDS of each
model when the train data size of PubTabNet is
changed. This shows that Swin Transformer-BART
has low TEDS when the amount of data is small.
On the other hand, when the number of data is in-
creased, the TEDS becomes about the same as other
models. The trend indicates that image-based mod-
els require a lot of training data. In contrast, text-

"https://github.com/PaddlePaddle/Padd1e0CR
2https: //github.com/tesseract-ocr/tesseract


https://github.com/PaddlePaddle/PaddleOCR
https://github.com/tesseract-ocr/tesseract

FinTabNet PubTabNet

Model Modality TEDS-Struc(%) TEDS(%) TEDS-Struc(%) TEDS(%)
TableVLM (Chen et al., 2023) VL - - 96.92 -
LayoutLMv3-L-BART L 98.34 97.31 96.82 95.12
LayoutLMv3-BART VL 98.60 97.65 97.11 95.73

Table 3: The evaluation in TEDS when these models receive the cell texts and its bounding boxes obtained from
annotations, not using OCR. This represents the performance of the model under the condition of using an OCR

with 100% accuracy.

(a)

Criteria

TZ=T5 oM T7F T8 MOWE
14-15 imonths 17-18 imonthsl

Wonolingual Bilingual Wonolingual  Bilingual
Monciingual  Bllingual  Monolngual  Bilingual
T FI
i
1
: |.|
1

1 2
2 Q
2 3
0 0

(b)

14-15 months 17-18 months

Monolingual | Bilingual | Monolingual | Bilingual

Positive | 2 2 1 1

Positive

Positive

Positive

ol |-
N IE=1ES
NI
o|lo|o]|~—

Positive

Figure 4: Case Study: (a) displays the texts and bounding boxes obtained by TesseractOCR. (b) shows the table
generated by LayoutLMv3-BART, which receives the output from TesseractOCR (a).

based and multimodal models are efficient in terms
of data. Threforer, we carried out additional evalu-
ation when Swin Transformer-BART was trained
with PubTabNet and then finetune with FinTab-
Net as shown in Table 2. Increasing training data
yields a notable improvement of 7% TEDS and
1.4% TEDS-struc. Comparing the results in Table 1
and Table 2, It can be seen that when there is a large
amount of training data, Swin Transformer-BART
has highest TEDS in FinTabNet and PubTabNet.
This results suggest that image-based approaches
are most suitable because large-scale data is easily
available in recent years.

The TEDS of text-based and multimodal mod-
els when inputs is perfect Table 3 shows the
TEDS when using the cell texts and the bounding
boxes obtained from the annotations. This rep-
resents the performance of the model in an ideal
situation when using an OCR with an accuracy
of 100%. TableVLM (Chen et al., 2023) has a
similar structure to LayoutLMv3-BART, but only
generates HTML tags. LayoutLMv3-BART out-
performs TableVLM by improving 0.2% TEDS-
Struc on PubTabNet. This suggests that generating
full HTML is better than generating only HTML
tags. Comparing the results of Table 1 and Ta-
ble 3, LayoutLMv3-BART and LayoutLMv3-L-
BART using perfect inputs also show better TEDS
and TEDS-Struc than when using PaddleOCR or
TesseractOCR as inputs. Furthermore, both models
outperform Swin Transformer-BART. Therefore,
multimodal or text-based model would be better in

an environment where very accurate OCR is avail-
able, but it is currently difficult to obtain OCR with
such high accuracy, suggesting that image-based
solutions is still the better choice.

Case Study Figure 4 shows the characters and
coordinates obtained from TesseractOCR, and (b)
shows the outputs by LayoutLMv3-BART that re-
ceives them. As shown in (a), the text obtained
from TesseractOCR not only contains errors of
characters, but also undetected characters and incor-
rect bounding boxes. However, even after inputting
these, a somewhat correct table is generated. This
may be because the model corrects errors internally
or maintains rules for the table structure. There-
fore, it can be seen that the method of generating
complete HTML is better than obtaining the cell
texts later using OCR, as shown in Figure 1.

5 Conclusion

In this study, we constructed an encoder-decoder
model that generates complete HTML with a single
decoder in order to solve the TSR task. Under
this condition, we analyze which model is superior
by comparing the accuracy on the benchmark for
TSR among three models: text-based, image-based,
and multimodal models. As a result, an image-
based approach is suitable for this task. It is also
suggested that the method that generates complete
HTML is superior to other generation methods.



6 Limitations

We use only two open-source OCR, not paid OCR
that are highly accurate. Therefore, we need to
research the detailed differences in performance
in the TSR task, using various OCR. Furthermore,
the approach of generating full HTML leads to ex-
tremely long sequence lengths and has limitations
for large tables or tables with many characters.
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FinTabNet' PubTabNet
Image size  Parameters Window size  TEDS-Struc(%) TEDS(%) TEDS-Struc(%) TEDS(%)
(448, 896) 7™ 7 97.06 95.95 96.29 95.12
(864, 864) 82M 9 98.24 97.51 96.67 95.77

1 Evaluation when the model was trained with PubTabNet and then finetune with FinTabNet.

Table 4: The TEDS of Swin Transformer-BART that handles different resolutions.

FinTabNet PubTabNet
Model Modality OCR TEDS-Struc(%) TEDS(%) TEDS-Struc(%) TEDS(%)
TableFormer (Nassar et al., 2022) v v 96.80 - 96.75 93.60
Swin Transformer-BART (448, 896) A% - 97.06 95.95¢ 96.29 95.12
Swin Transformer-BART (864, 864) v - 98.24f 97.51f 96.67 95.77
PaddleOCR + LayoutLMv3-L-BART L v 97.21 94.77 95.06 90.80
TesseractOCR + LayoutLMv3-L-BART L v 95.97 91.79 93.50 83.62
PaddleOCR + LayoutLMv3-BART VL v 97.56 95.23 96.25 93.69
TesseractOCR + LayoutLMv3-BART VL v 95.72 91.59 95.59 91.32
"~ TableVLM (Chenetal,2023) VL -+ - 9692 -
LayoutLMv3-L-BART L -t 98.34 97.31 96.82 95.12
LayoutLMv3-BART VL A 98.6 97.65 97.11 95.73

1 Evaluation when Swin Transformer-BART was trained with PubTabNet and then finetune with FinTabNet.
1 Using cell texts and bounding boxes from annotations, not OCR.

Table 5: The all results.

A Additional Results and Discussion

A.1 TEDS of Swin Transformer-BART when
input size change.
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Figure 5: The distribution of the image size on PubTab-
Net (left) and FinTabNet (right).

Table 4 shows the TEDS of Swin Transformer-
BART that handles different resolutions. Figure
5 is also a scatter plot of the resolution of ta-
ble images of two datasets. Swin Transformer-
BART (864, 864) outperforms Swin Transformer-
BART(448, 896) on FinTabNet and PubTabNet.
The improvement in score suggests that it is nec-
essary to set the input size of model based on the
original image size, as shown in Figure 5.

A.2 All results

Table 5 summarizes all the results. Swin
Transformer-BART (864, 864) outperforms other

models on PubTabnet and FinTabNet. Furthermore,
Swin Transformer-BART(864, 864) outperforms
or matches LayoutLMv3-BART and LayoutLMv3-
L-BART which both receive complete cell texts
and bounding boxes from annotations. Therefore,
these results indicate that an image-based approach
is most suitable for TSR.

A.3 Comparison of model inference speeds
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2.60

245 - -

time (s/image)

00
LayoutLMv3-L-BART  LayoutLMv3-BART Swin Transformer-BART

(448, 896) (864, 864)

Figure 6: Comparison of model inference speeds. In the
chart, light blue represents the inference speed of the
model itself, while blue indicates the speed of Paddle
OCR.

As shown in Figure 6, the inference speed of Swin
Transformer-BART outperforms LayoutLMv3-L-
BART and LayoutLMv3-BART. Thus, an image-
based model is better than text-based and multi-
modal models in terms of the inference speed.



B Licences

Name License
Tesseract OCR Apache-2.0
Paddle OCR Apache-2.0

FinTabNet CDLA-Permissiv-1.0
PubTabNet CDLA-Permissive-1.0

Table 6: The licenses of used tools and datasets.



