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ABSTRACT
Correlations between factors of variation are prevalent in real-world data. However,
often such correlations are not robust (e.g., they may change between domains,
datasets, or applications) and we wish to avoid exploiting them. Disentanglement
methods aim to learn representations which capture different factors of variation in
latent subspaces. A common approach involves minimizing the mutual information
between latent subspaces, such that each encodes a single underlying attribute.
However, this fails when attributes are correlated. We solve this problem by
enforcing independence between subspaces conditioned on the available attributes,
which allows us to remove only dependencies that are not due to the correlation
structure present in the training data. We achieve this via an adversarial approach
to minimize the conditional mutual information (CMI) between subspaces with
respect to categorical variables. We first show theoretically that CMI minimization
is a good objective for robust disentanglement on linear problems with Gaussian
data. We then apply our method on real-world datasets based on MNIST and
CelebA, and show that it yields models that are disentangled and robust under
correlation shift, including in weakly supervised settings.

1 INTRODUCTION

Most research on disentanglement has assumed that the underlying factors of variation in the data
are independent (e.g., that factors are not correlated). However, this assumption is often violated in
real-world settings: for example, in domain adaptation, the class distribution often shifts between
domains (yielding a correlation between the class and domain); in natural images, there is often a
strong correlation between the foreground and background (Beery et al., 2018), or between multiple
foreground objects that tend to co-occur (e.g., a keyboard and monitor) (Tsipras et al., 2020; Beyer
et al., 2020). Importantly, correlated data occurs in areas that affect people’s lives, including in
healthcare (Chartsias et al., 2018) and fairness applications (Madras et al., 2018; Creager et al., 2019;
Locatello et al., 2019a), and correlation shifts in these applications are common (e.g., demographics
are likely to differ from one hospital to another).

The goal of disentanglement is to encode data into independent subspaces that preferably match the
ground truth generative factors. A common approach (used in ICA, PCA, and VAEs) is to ensure that
the latent subspaces share as little information as possible, for example by minimizing the mutual
information (MI) between them. However, recently it has been shown that this fails to disentangle
correlated factors (Träuble et al., 2020). Several works have sought to address this by introducing
partial supervision (Träuble et al., 2020; Shu et al., 2019; Locatello et al., 2020b). Here, we show that
even under full supervision, minimizing the MI can fail: it is impossible to encode generative factors
into independent subspaces if they are correlated in the training data. To address this, we propose
minimizing the MI between subspaces conditioned on the correlated attributes. The goal of this work
is to identify and explain the behaviors of different objective functions for correlated and noisy data
in a systematic fashion.
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Base Base + MI Base + CMI
Variance Explained, Training (Corr = 0.8) 91.9% 69.8% 90.9%
Variance Explained, Test (Corr = 0) 87.6% 65.0% 90.9%

Table 1: Linear regression under correlation shift for each of the objectives Base, Base+MI, and Base+CMI.
Here, the observations and predictions are 2D. Performance under correlation shift drops for optimal regression.
The optimal solution under the constraint of minimal MI fails to model the in-distribution correlated training
data. The solution with minimal conditional MI maintains consistent performance under correlation shift.

2 BACKGROUND & RELATED WORK

Disentangled representation learning is often studied in the unsupervised setting, where the ground-
truth factors of variation are unknown. Widely-used approaches for this include variational au-
toencoders (VAEs) (Kingma & Welling, 2013) and their variants (beta-VAE (Higgins et al., 2017),
TC-beta-VAE (Chen et al., 2018), FactorVAE (Kim & Mnih, 2018), etc.). However, it was shown by
Locatello et al. (2019b) that purely unsupervised disentanglement may not be possible. In this paper,
we focus on comparing MI and CMI minimization in the fully-supervised setting.

The goal of domain adaptation and generalisation is closely related as it attempts to learn representa-
tions from multiple source domains that transfer to known (e.g., adaptation) or previously unseen
(e.g., generalization) target domains. This is done by either learning domain-invariant representations
which discard domain information (Tzeng et al., 2017) or by learning disentangled representations,
with latent subspaces that correspond to the domain and the class, respectively (Peng et al., 2019; Ilse
et al., 2020; Liu et al., 2018). For the latter approach, disentanglement is achieved by minimizing
the mutual information between latent subspaces (Cheng et al., 2020; Gholami et al., 2020; Nemeth,
2020). Additional related work is discussed in Appendix A.

3 DISENTANGLING CORRELATED VARIABLES

In this section, we introduce a toy disentanglement problem where all quantities of interest can
be computed analytically. First, we show that the supervised loss alone does not yield robust
disentangled representations, and we discuss why this is problematic. Then, we show that additionally
minimizing the unconditional MI forces the model to learn an even worse solution. Finally, we
show that minimizing the conditional MI yields appropriately disentangled representations that are
robust to correlation shift. This analysis motivates CMI as a good objective for achieving robust
disentanglement.

Problem Statement. Suppose we observe noisy data x ∈ Rm obtained from an (unknown)
generative process x = g(s) where s = (s1, s2, . . . , sK) are the underlying factors of variation, also
called source variables or attributes, which may be correlated with each other. We wish to find a
transformation f : Rm → Rn to a latent space f(x) = z = (z1, z2, . . . , zK) such that each of the
original attributes sk can be recovered from the corresponding subspace zk by a linear mapping
Rk, e.g., ŝk = Rkzk. We denote by z−i the set of subspaces {z1, . . . , zi−1, zi+1, . . . , zK}. We
consider three different objectives for learning the latent subspaces: 1) minimizing a supervised loss
L (e.g., mean squared error or cross-entropy),

∑K
i=1 L(ŝi, si), denoted “Base”; 2) minimizing the

unconditional mutual information between subspaces in addition to the supervised loss,
∑

i L(ŝi, si)+
I(z1, . . . , zK), denoted “Base+MI”; and 3) minimizing the conditional mutual information between
subspaces conditioned on observed attributes, in addition to the supervised loss,

∑
i L(ŝi, si) +

I(zi; z−i | si) denoted “Base+CMI”.

3.1 FULL SUPERVISION DOES NOT YIELD DISENTANGLEMENT

Consider a linear generative model with correlated Gaussian source variables s, given by:

x = As+ n , s ∼ N (0,Cs) , n ∼ N (0,Cn)

where A is the mixing matrix and Cs and Cn are the covariance matrices for the source and noise
variables, respectively. We assume that x is observed and wish to disentangle the underlying source
variables s; this corresponds to finding the mapping A−1 that inverts the data generating process.
When we have access to the source variables, a natural approach is to minimize a supervised loss
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Figure 1: Adversarial minimization of conditional mutual information via latent-space shuffling. We
minimize the CMI between latent subspaces, I(z1; · · · ; zK | ak). Here, we illustrate the algorithm for four
attributes with corresponding latent spaces {z1, z2, z3, z4}, where we condition on attribute a2.

to ensure that each subspace contains information about its attribute. The optimal linear regression
solution, both in the least squares sense and with respect to maximum likelihood, is given by the
posterior mean: ŝ(x) = E [s | x] = CsxC

−1
x x where Csx = E

[
s(As+ n)⊤

]
= CsA

⊤ and
Cx = ACsA

⊤+Cn. The least-squares optimal mapping CsxC
−1
x x is not equal to the inverse A−1

of the generative model, as it is biased by the correlation structure Cs and Cn towards directions
of maximal signal-to-noise ratio. Thus, regression is sensitive to noise and does not disentangle
the underlying sources. In Table 1, we see that in the two-dimensional case where s = (s1, s2) for
A = I, σ = 0.1 and corr(s1, s2) = 0.8, ŝ explains 91.9% of the variance in s (column “Base”).
However, when s1 and s2 are uncorrelated, performance drops to 87.6%. This drop occurs because
the estimator ŝ tries to make use of the assumed correlation between s1 and s2 to counteract the
information lost due to noise, but this correlation is no longer present in the test data.

3.2 UNCONDITIONAL DISENTANGLEMENT FAILS UNDER CORRELATION SHIFT

In the 2D linear case, we have:

z = (z1, z2) = Wx, ŝ1 = R1z1, ŝ2 = R2z2 (1)

where the matrix W encodes the observation into the latent space. In standard supervised objectives,
there is no constraint preventing a subspace zk from containing information about other source
variables than sk. A common approach to counter the lack of generalization is to minimize the
MI between the latent subspaces z1 and z2 (Chen et al., 2018; Peng et al., 2019). In the Gaussian
case, random variables are independent if and only if they are uncorrelated. The optimal linear
regression weights that yield I(z1; z2) = 0 (e.g., W such that Cov(z) is diagonal) can be computed
by whitening x and rotating the result by an angle ϕopt which leads to maximal VE (ϕopt = −π/4 for
positive correlations and A = I). See Figure 6 in Appendix C for details. However, the resulting
model no longer performs well on in-distribution-data (Table 1, column “Base+MI”). There is
correlation between the sources s1 and s2 and therefore I(s1; s2) > 0. By enforcing independence, at
least one of the subspaces cannot contain all relevant information about its target value and therefore
will have poor predictive performance (see Proposition 1 in Appendix E).

3.3 CONDITIONAL DISENTANGLEMENT IS ROBUST TO CORRELATION SHIFT

We have seen that enforcing unconditional independence between the latent spaces does not solve
the disentanglement problem. However, from the graphical model (Appendix C, Fig. 5), it is
clear that z1 and z2 are independent conditioned on either of s1 or s2: assuming a common cause
for the correlation between s1 and s2, there is a connection in the graphical model between z1
and z2 introducing the statistical dependence. Observing either s1 or s2 disconnects z1 and z2.
Enforcing independence conditioned on each of the source variables is also sufficient to yield a
robust disentangled representation. For our 2D example, this corresponds to I(z1; z2 | s1) = 0
and I(z1; z2 | s2) = 0. If s1 and s2 are correlated and if we can predict s1 from z1, then it must
be the case that z1 contains information about s2. To improve robustness to shifts, we wish to
ensure that z1 and z2 share as little information as possible, namely exactly the information which is
necessary to account for the correlation between the sources. This can be enforced via I(z1, z2|s2),
which states that if we know s2, then knowing z1 does not give us more information about z2.
The same logic applies for the need of I(z1, z2|s1). The optimal solution under the constraint
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(a) Toy linear regression.
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(b) Toy classification with ten attributes.

Figure 2: Synthetic linear regression and linear classification tasks. We investigate the impact of the
correlation strength and noise level when using each of the objectives Base, Base+MI, and Base+CMI. We
measure the variance explained for regression and accuracy for classification. We compare the objectives
(columns) with different training correlations (rows). In both tasks, we sweep over noise levels in the range
[10−2, 102]. The base models in the uncorrelated setting serve as a reference (dashed black line). Magenta:
performance on correlated training data. Green: performance on test data with a range of correlation shifts
(solid line: uncorrelated data; shaded region: correlations in the range [−1, 1] for regression, and only positive
correlations for classification). In both regression and classification tasks, we find that Base+CMI leads to
robustness under correlation shift, while the other approaches do not.

of conditional independence is achieved by the mapping W = A−1, successfully recovering the
underlying generative model. We find that for this solution, the performance of the model is not
affected by the correlation shift (Table 1, column “Base+CMI”). This demonstrates the usefulness of
minimizing CMI and motivates us to investigate CMI minimization for larger-scale tasks.

4 MINIMIZING CMI

In simple cases such as linear regression, we can compute and minimize the MI/CMI analytically;
however, for most tasks (including classification), there is no closed form for the mutual information.
In this section, we describe our approach to minimize the CMI in general classification settings. We
formally describe the algorithms for the baselines (Base and Base + MI) in Appendix B.

Suppose we have a dataset D = {(x(i),a(i))}Ni=1 where x(i) is an example and a(i) is a vector of
attribute labels (a(i)k is the label for the kth attribute of the ith example). We consider discrete attribute
values, a(i)k ∈ N. Let fθ : x 7→ z denote an encoder function parameterized by θ that maps examples
x ∈ Rm to latent representations z ∈ Rn. We aim to learn one latent subspace per attribute, such that
each subspace is independent from all other subspaces conditioned on the encoded attribute.

To obtain samples from p(z1, . . . , zK | ak) and p(zk | ak)p(z−k | ak), we loop over values of ak,
and for each condition {ak = 0,ak = 1, . . . }, we select examples from the minibatch that satisfy
the condition, giving us samples from p(z1, . . . , zK | ak); then we shuffle the latent subspaces
zj ,∀j ̸= k jointly batchwise (e.g., combining zk from one example with z−k from another) to obtain
samples from p(zk | ak)p(z−k | ak). To enforce p(z1, . . . , zK | ak) = p(zk | ak)p(z−k | ak),
we train the encoder f adversarially against a discriminator trained to distinguish between these
two distributions. The discriminator takes as input a representation and predicts whether it is “real”
(e.g., drawn from the joint distribution) or “fake” (e.g., drawn from the product of marginals). One
discriminator is trained for each attribute ak, which receives samples from the two distributions and
the attribute value it is conditioned on. In practice, we use a conditional discriminator, effectively
sharing parameters between the discriminators for each of the attributes. This approach is architecture-
agnostic. The process is illustrated in Figure 1 and the corresponding algorithms are in Appendix B.

5 EXPERIMENTS

First, we present results for synthetic regression and classification tasks. Next, investigate a correlated
version of CelebA under fully and weakly supervised settings, and show that minimizing CMI can
largely eliminate the gap in performance under correlation shift. Experimental details and additional
experiments are in Appendix C and D.
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(a) Correlated train data. (b) Anti-correlated test data.
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(c) Performance comparison.
Figure 3: Correlated CelebA. (a) Training examples with correlation 0.8 between attributes Male
and Smiling, such that the majority of men are smiling while the majority of women are not. (b)
Anti-correlated test examples, where the majority of women are smiling. (c) Accuracies of each
method under a range of correlation strengths, for validation data with the same correlation as the
training data, uncorrelated test data, and anticorrelated test data.

Toy Linear Regression. In the linear regression problem in Section 3, we evaluated the performance
under correlation shift for one specific noise level and correlation strength. Here, we varied these
parameters and found that our findings hold over all noise levels and non-zero correlation strengths.
As shown in Figure 2a, the performance of Base drops most severely under correlation shift for strong
correlations and intermediate noise levels. In this regime, the advantage of Base+CMI is most clear.
Toy Multi-Attribute Classification. We show in a controlled setting that our findings hold for
classification tasks with multiple attributes. Here, the binary source attributes ak = ±1, ∀k ∈
{1, . . . ,K} generate the observed data via x = Aa+ n (we set A = I for simplicity) with normally
distributed noise n ∼ N (0,Cn). We induce pairwise correlations between the attributes ak. As for
the regression task, we find that Base+CMI leads to robustness under correlation shift (Figure 2b).
CelebA. Finally, we consider a realistic setting using the CelebA faces dataset (Liu et al.,
2015). We considered two attributes that we knew a priori were not causally related, Male
and Smiling, and we created subsampled datasets that satisfied specific correlations between
attributes. We investigated a range of training correlations {0, 0.2, 0.4, 0.6, 0.8}, and evaluated
our models on both anti-correlated and uncorrelated test sets (Figures 3a and 3b). We found
that minimizing CMI has a larger effect for medium-to-high correlation; however, CMI mini-
mization does not hurt performance at low correlation strengths (Figure 3c). Note that while
the unconditional model appears to have good performance on the anti-correlated test set, its
performance is poor on the validation set (that has the same correlation structure as the train-
ing set), so this model does not perform well on in-distribution data. In contrast, the conditional
MI model performs well on both in-distribution data and shifted test distributions. Also note
that the problem of disentangling correlated attributes does not occur only under correlation shift,
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Figure 4: Weakly-supervised CelebA. The x-axis
shows the number of labels per attribute used dur-
ing training; the rightmost datapoint corresponds
to full supervision. Here, Base+CMI outperforms
the other objectives under correlation shift.

but is already present in the source domain
where certain attribute combinations will reli-
ably be treated incorrectly. For example, Base
fails to recognize the rare non-smiling male
faces in 49% of the cases, while Base+CMI
fails only in 25% of the cases.

Extension to Weakly Supervised Settings.
Our method can be applied directly to weakly
supervised settings. Importantly, it is not neces-
sary to have labels for multiple attributes for a
single data point. We find that when reducing
the number of labels, Base+CMI outperforms
the other objectives under correlation shift (Fig-
ure 4).

6 CONCLUSION

Correlations are prevalent in real-world data, yet pose a substantial challenge for disentangled
representation learning. Standard approaches learn to rely on these correlations, and when the
attributes are not causally related, this leads to poor performance under test-time correlation shift. We
establish CMI minimization as a more appropriate alternative to mutual information minimization,
which sets the stage for the development of more powerful objective functions for disentanglement.
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A EXTENDED RELATED WORK

Estimating & Optimizing Mutual Information. Many approaches have been proposed for MI
and CMI estimation and optimization. The Mutual Information Neural Estimator (MINE) (Belghazi
et al., 2018) uses a lower-bound of the MI based on the Donsker-Varadhan dual representation of the
KL divergence (Donsker & Varadhan, 1983). Poole et al. (2019) provide an overview of variational
bounds that can be used to estimate MI; most are lower bounds, which are useful in principle for
maximizing MI, but which have also been used to minimize MI (even though minimizing a lower
bound is not guaranteed to decrease MI). CLUB (Cheng et al., 2020) introduced a variational upper
bound of MI, providing a more principled objective for minimizing MI. Several CMI estimators have
been proposed, including conditional-MINE (Molavipour et al., 2020a), C-MI-GAN (Mondal et al.,
2020), CCMI (Mukherjee et al., 2020), and an approach based on nearest neighbors (Molavipour
et al., 2020b). Many approaches to MI minimization are based on batchwise shuffling of latent
subspaces, sometimes referred to as metameric sampling (Belghazi et al., 2018; Nemeth, 2020; Feng
et al., 2018; Park et al., 2020; Peng et al., 2019). The approach we use in Section 4 follows this
paradigm of latent-space shuffling.

Correlations Between Features. With roots in ICA, most research on disentanglement fo-
cuses on data that was generated by independent factors, including synthetic benchmarks such
as dSprites (Matthey et al., 2017), Shapes3D (Burgess & Kim, 2018), Cars3D (Reed et al., 2015),
SmallNORB (LeCun et al., 2004), or MPI3D (Gondal et al., 2019). In real-world datasets on the
other hand, factors are often correlated (Welinder et al., 2010; Lin et al., 2014). Träuble et al.
(2020) pointed out the challenges that arise when attempting to learn disentangled representations
on correlated data, and performed a large-scale empirical evaluation of the effect of correlations
on widely-used VAE-based disentanglement models. Our work shows that even under full supervi-
sion, correlated attributes are problematic when enforcing independence between latent subspaces.
Causally-informed modeling (Zhang et al., 2020) is another approach to learning disentangled rep-
resentations and extracting invariant features; an example of this is Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019). To investigate the effect of correlations systematically, it is common to
modify existing datasets to induce correlations, for example by subsampling the data, or by generating
synthetic datasets with the desired properties (Dittadi et al., 2020; Cimpoi et al., 2014; Jacobsen et al.,
2018; Locatello et al., 2019b). We follow this approach in our experiments.

Fairness. An important application of disentanglement is fairness. Typically, this can be addressed
by modifying the training data to be unbiased or by adding a regularizer (e.g. based on mutual
information) that quantifies and minimizes the degree of bias (Kamiran & Calders, 2009; Kamishima
et al., 2011; Zemel et al., 2013; Hardt et al., 2016; Cho et al., 2020).

Mutual Information. The mutual information (MI) between two random variables x and y, denoted
I(x;y), is the KL divergence between the joint distribution p(x,y) and the product of the marginal
distributions p(x)p(y): I(x;y) = DKL[p(x,y)||p(x)p(y)]. MI minimization is at the heart of many
approaches to disentanglement. The conditional mutual information (CMI) is defined as:

I(x;y | z) = Ez [DKL[p(x,y | z) || p(x | z)p(y | z)]
CMI measures the dependency between two variables given that we know the value of a third variable.
For example, there is a dependency between a country’s number of Nobel laureates per capita and
chocolate consumption per capita (Prinz, 2020). However, this dependency is largely explained by
the wealth of a country, thus I(nobel; chocolate | wealth) < I(nobel; chocolate). In general, the
CMI can be smaller or larger than the unconditional MI.

B ALGORITHMS

In this section, we provide formal descriptions of the algorithms we consider in this paper. Algo-
rithm 1 describes the classification-only baseline, that trains separate linear classifiers to predict
attributes ak from the corresponding latent subspaces zk (corresponds to “Base”). Algorithm 2
and Algorithm 3 describe the encoder and discriminator training loops for the unconditional dis-
entanglement baseline (corresponds to “Base+MI”). This objective adversarially minimizes the
discrepancy between samples from the joint distribution p(z1, . . . , zk) and the product of marginals
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p(z1) · · · p(zk) . Algorithm 4 and Algorithm 5 describe the encoder and discriminator training loops
for conditional disentanglement (corresponds to “Base+CMI”).

Algorithm 1 Supervised Learning on Subspaces

1: Input: {ϕ1, . . . ,ϕK}, initial parameters for K linear classifiers C1, . . . , CK

2: Input: θ, initial parameters for the encoder F
3: Input: α, β learning rates for training the encoder and linear classifiers
4: while true do
5: (x, {ak}Kk=1) ∼ DTrain ▷ Sample a minibatch of data with attribute labels
6: z← Fθ(x) ▷ Forward pass through the encoder
7: {zk}Kk=1 ← SplitSubspaces(z, k) ▷ Partition the latent space into k subspaces
8: L←∑K

k=1 Lcls(Ck(zk;ϕk),ak) ▷ Cross-entropy for each attribute
9: θ ← θ − α∇θL ▷ Update encoder parameters

10: ϕk ← ϕk − β∇ϕk
L , ∀k ∈ {1, . . . ,K} ▷ Update classifier parameters

11: end while

Algorithm 2 Learning Unconditionally Disentangled Subspaces — Training the Encoder

1: Input: {ϕ1, . . . ,ϕK}, initial parameters for K linear classifiers C1, . . . , CK

2: Input: θ, initial parameters for the encoder F
3: Input: α, β learning rates for training the encoder and linear classifiers
4: while true do
5: (x, {ak}Kk=1) ∼ DTrain ▷ Sample a minibatch of data with attribute labels
6: z← Fθ(x) ▷ Forward pass through the encoder
7: {zk}Kk=1 ← SplitSubspaces(z, k) ▷ Partition the latent space into k subspaces
8: L←∑K

k=1 Lcls(Ck(zk;ϕk),ak) ▷ Cross-entropy for each attribute
9: z′ ∼ p(z1)p(z2) · · · p(zk) ▷ Samples w/ batchwise-shuffled subspaces

10: L← L+ log (1−Dω(z
′)) + log (Dω(z)) ▷ Add adversarial loss

11: θ ← θ − α∇θL ▷ Update encoder parameters
12: ϕk ← ϕk − β∇ϕk

L , ∀k ∈ {1, . . . ,K} ▷ Update classifier parameters
13: end while

Algorithm 3 Learning Unconditionally Disentangled Subspaces — Training the Discriminator

1: Input: ω, initial parameters for the discriminator D
2: Input: γ, learning rate for training the discriminator
3: while true do
4: (x, {ak}Kk=1) ∼ DTrain ▷ Sample a minibatch of data with attribute labels
5: z← Fθ(x) ▷ Forward pass through the encoder
6: {zk}Kk=1 ← SplitSubspaces(z, k) ▷ Partition the latent space into k subspaces
7: z′ ∼ p(z1)p(z2) · · · p(zk) ▷ Samples w/ batchwise-shuffled subspaces
8: L← L+ log (Dω(z

′)) + log (1−Dω(z)) ▷ Add adversarial loss
9: ω ← ω − γ∇ωL ▷ Update discriminator parameters

10: end while
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Algorithm 4 Learning Conditionally Disentangled Subspaces Adversarially — Training the Encoder

1: Input: {ϕ1, . . . ,ϕK}, initial parameters for K linear classifiers R1, . . . , RK

2: Input: θ, initial parameters for the encoder f
3: Input: α, β learning rates for training the encoder and linear classifiers
4: while true do
5: (x, {ak}Kk=1) ∼ DTrain ▷ Sample a minibatch of data with attribute labels
6: z← fθ(x) ▷ Forward pass through the encoder
7: {zk}Kk=1 ← SplitSubspaces(z,K) ▷ Partition the latent space into K subspaces
8: L←∑K

k=1 Lcls(Rk(zk;ϕk),ak) ▷ Cross-entropy for each attribute
9: for k ∈ {1, . . . ,K} do ▷ For each attribute/subspace

10: z′ ∼ p(z1, . . . zK | ak) ▷ Samples from the joint distribution
11: z′′ ∼ p(zk | ak)p(z−k | ak) ▷ Samples w/ batchwise-shuffled subspaces
12: L← L+ log (1−Dω(z

′′)) + log (Dω(z
′)) ▷ Add adversarial loss

13: end for
14: θ ← θ − α∇θL ▷ Update encoder parameters
15: ϕk ← ϕk − β∇ϕk

L , ∀k ∈ {1, . . . ,K} ▷ Update classifier parameters
16: end while

Algorithm 5 Learning Conditionally Disentangled Subspaces Adversarially – Training the Discrimi-
nator

1: Input: ω, initial parameters for the discriminator D
2: Input: γ, learning rate for training the discriminator
3: while true do
4: (x, {ak}Kk=1) ∼ DTrain ▷ Sample a minibatch of data with attribute labels
5: z← Fθ(x) ▷ Forward pass through the encoder
6: {zk}Kk=1 ← SplitSubspaces(z, k) ▷ Partition the latent space into K subspaces
7: L← 0 ▷ L will accumulate the losses over all subspaces
8: for k ∈ {1, . . . ,K} do
9: z′ ∼ p(z1, . . . zK | ak) ▷ Samples from the joint distribution

10: z′′ ∼ p(zk | ak)p(z−k | ak) ▷ Samples w/ batchwise-shuffled subspaces
11: L← L+ log (Dω(z

′′)) + log (1−Dω(z
′)) ▷ Add adversarial loss

12: end for
13: ω ← ω − γ∇ωL ▷ Update discriminator parameters
14: end while

C EXPERIMENTAL DETAILS

Graphical Model. In Figure 5 we provide the graphical model discussed in Section 3.3.
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(a) I(z1; z2) > 0
(b) I(z1; z2 | s2) =
0

Figure 5: The graphical model for two sources s1, s2 and corresponding latent subspaces z1, z2. We
assume the source variables have a common cause c. In (a), when none of the sources are observed,
there is a path from z1 to z2, so we have I(z1; z2) > 0; in (b) we observe s2, which breaks the path,
and thus I(z1; z2 | s2) = 0.

Compute Environment. Our experiments were implemented using PyTorch (Paszke et al., 2019),
and were run on our internal clusters. The toy 2D experiments were run on a single NVIDIA RTX
2080 TI GPU, and took approximately 48 hours for all the results presented. The MNIST and
CelebA experiments were run on NVIDIA Titan Xp GPUs. Each run of the multi-digit MNIST and
CelebA tasks for a given method and correlation strength (and noise level in the MNIST case) took
approximately 12 hours, and these were run in parallel.

Toy Linear Regression. Here, we describe the optimal solution for the Base+MI objective for the
linear regression task with A = I. Optimal linear regression with zero mutual information between
z1 and z2 can be obtained by taking the singular value decomposition of x followed by whitening
and rotation by −45◦ (see Figure 6).
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Figure 6: To enforce unconditional independence, we choose W such that Cov(z) is diagonal. In our
case this is easy: the principal components of x are x1 + x2 and x1 − x2. The optimal regression
loss with minimal MI is then given by whitening and rotating the result by angle ϕopt which leads to
maximal VE (ϕopt = −π/4 for positive correlations and A = I).
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Figure 7: Data used for linear classification with
two attributes (a1 and a2), visualized for a range
of correlation strengths and noise levels.

Toy Multi-Attribute Classification. The fol-
lowing figure illustrates the data x for different
correlation strength and noise levels (Figure 7)
in the case of two attributes. In the 2D case in-
creasing the correlation strength means that data
points with a1 = a2 are increasingly more com-
mon relative to a1 ̸= a2. In the multi-attribute
setting, the correlation strength refers to the pair-
wise correlation between all attributes.

We used a PacGAN-style setup (Lin et al., 2018)
for our toy experiments, where the discriminator
takes as input a concatenation of 50 samples.
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• Base: We used Adam (Kingma & Ba, 2014) with a learning rate of 0.01.
• Base + MI: We used Adam to optimize the encoder, linear classifiers, and discriminators.

After each step of optimizing the discriminator and encoder, we optimized the linear
classifiers (R) for 10 steps. The disentanglement loss term was weighted by a factor of 100
relative to the classification loss. In preliminary tests, we found that the optimal learning
rate depended on noise level, correlation strength, and number of attributes. The results
in Figure 2b were obtained using one of the following learning rates for the discriminator
{1e − 4, 2e − 4, 5e − 4, 1e − 3, 5e − 3}. The learning rate of the generator and linear
classifiers was chosen to be 10 times smaller than the discriminator learning rate.

• Base + CMI: For A = I, no optimization was necessary, as we already know the optimal
solution to be W = A−1 = I. We confirmed experimentally that the discriminator could
not get above chance performance for this solution.

CelebA. For all experiments, we used minibatch size 100, and latent dimension D = 10. As the
encoder model, we used a three-layer MLP with 50 hidden units per layer and ReLU activations.
Similarly to the MNIST setup, we trained for 200 epochs, using Adam to optimize the encoder, linear
classifiers, and discriminators. For each method, we performed a grid search over learning rates
{1e− 5, 1e− 4, 1e− 3} separately for each of the encoder, discriminator(s), and linear classification
heads; we selected the best learning rates based on validation accuracy.

Weakly Supervised Setting. For the fully supervised CelebA experiment, labels for both attributes
were available for all 10260 images. For the weakly supervised setting, we reduced the number of
labels to 5130 (50% of the labels of the fully supervised dataset), 2565 (25%), 1026 (10%), or 513
(5%) for each attribute. This implies that some images had both labels, some had only one label and
some images had no labels (for example when using 50% of the labels the distinction is as follows:
25% of the images had both labels; 25% had only labels for attribute 1; 25% had only labels for
attribute 2; and 25% had no labels). The three objectives can be applied to these weakly supervised
settings. For Base, the cross-entropy loss for each attribute was computed only for the images that
had labels for the corresponding attribute. For Base+MI no labels are required for the unconditional
shuffling; thus this objective can be applied even for the images without labels. For Base+CMI, our
method shuffles only images that have the same value for a given attribute. This also works if the
labels of the other attribute are missing. We used the same training parameters as for the supervised
experiment, except for increasing the number of training epochs (up to 1200 epochs) and adapting
the minibatch size to the number of labels.

D EXTRA EXPERIMENTS

Extended Analysis for Toy Linear Regression. Here, we provide intuitive explanations of the
behaviors of the different objectives. Comparing the correlation of target s and data x with the
correlation of the predictions ŝ of the different models can help us understand the findings of Section 3.
As shown in Figure 8, the predictions of optimal linear regression (Base+MI) (corr(ŝ1, ŝ2) = 0.85)
are stronger correlated than the data (corr(x1, x2) = 0.73). This shows that the correlation present
in the training data is used to compensate for the noise. Enforcing unconditional independence
(Base+MI) on the other hand, leads to uncorrelated predictions (corr(ŝ1, ŝ2) = 0). Undoubtedly,
this cannot be the correct solution, as the targets are correlated. Additionally, when the correlations
change, the independence constraint does not hold anymore. This can lead to interesting effects under
correlation shift. While for most noise levels, the performance on the test data is poor, for some
noise levels the performance can be even higher than training performance (Figure 2a). In these cases
the model can "accidentally" exploit the correlation in the test data to make the correct predictions.
The correlation of the predictions (corr(ŝ1, ŝ2) = 0.73) matches the correlation of the data only for
Base+CMI.

Multi-Digit Occluded MNIST. As an additional experiment, we designed a larger-scale task to
systematically investigate whether the properties found in the toy classification task hold in a more
complex setting. We created a dataset by concatenating two MNIST digits side-by-side, where the aim
is to predict both the left- and right-hand-side labels. We used a subset of MNIST consisting of classes
3 and 8 (which are visually similar and can become ambiguous under occlusions). We generated
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ŝ 2

Predictions of
Base + MI

Corr = -0.00

ŝ1
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ŝ 2

Corr = 0.34

ŝ1
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Figure 8: Correlation of target s, data x and predictions ŝ. Only for conditional independence does
the correlation between the predictions and data match for both training and test data. The same setup
as for Table 1 was used (two attributes s1 and s2, corr(s1, s2) = 0.8, A = I, σ = 0.1).

occlusion masks using the procedure used by Chai et al. (2021); examples from our synthetic dataset
under a range of noise settings are shown in Figure 9a. This mimics the multiple-object classification
setting in a way that allows us to control the correlation strength and noise level (via the amount of
occlusion), allowing for systematic analysis. While this would also be possible for colored MNIST
and dSprites, one advantage of our choice is the symmetry of our task, which allows us to exclude
potential side-effects: here, the attributes have the same type (the digit identity), whereas the attributes
in colored MNIST (digit identity and color) and dSprites (shape, size, position, etc.) are more diverse.

Similarly to the toy tasks, we train an encoder to map images onto a D-dimensional latent space,
which is partitioned in two equal-sized subspaces corresponding to the two digits; we train a linear
classifier on each subspace to predict the respective class labels. We consider different correlation
strengths between the left and right digits in the training set (where strong correlation means that the
digits match most of the time, e.g., 3-3 or 8-8 are more common than 3-8 or 8-3). We evaluate
each model on test data with correlation strengths ranging from [−1, 1]. The results are shown in
Figure 9b. We found that the conclusions from the toy experiments hold in this setting: supervised
learning with only the classification loss, as well as with unconditional MI minimization, fails under
test-time correlation shift, while the model minimizing conditional MI is more robust.

(a) Correlated train data and anti-correlated test data.
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Figure 9: Multi-digit occluded MNIST. (a) Occlusions are generated for each of the left and right digits
separately. We visualize both correlated training data (where 3-3 and 8-8 pairs are frequent) and anticorrelated
test data (where 3-8 and 8-3 pairs are frequent), under a range of occlusion strengths. (b) Accuracies under
correlation shifts for different noise levels, achieved by training with each of the objective functions Base,
Base+MI, and Base+CMI.

Disentanglement Metrics. Previous work (Locatello et al., 2020a) has shown that common dis-
entanglement metrics are not suitable for the correlated setting. For this reason, we focused on
comparing performance under correlation shift, which we consider more suitable for correlated data:
if a model cannot predict a factor of variation well for certain values of another factor, then the model
did not successfully disentangle these factors of variation. However, one can still make use of the
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disentanglement metrics by evaluating them on uncorrelated data using the models trained on corre-
lated data. We performed this analysis for two of our datasets and found in both cases that Base+CMI
reached better scores compared to the other objectives for almost all metrics. Disentanglement results
for the toy classification task with ten attributes are shown in Table 2. The disentanglement results for
CelebA are shown in Table 3. Since the disentanglement metrics require that the factors of variation
are each encoded in one-dimensional subspaces, we set latent dimension D = 2 for this experiment.

Metric Base Base+MI Base+CMI
IRS (Suter et al., 2019) ↑ 0.377 0.573 0.605
SAP (Kumar et al., 2017) ↑ 0.118 0.470 0.477
MIG (Chen et al., 2018) ↑ 0.179 0.939 0.975
DCI Disentanglement (Eastwood & Williams, 2018) ↑ 0.413 0.980 0.998
Beta-VAE (Higgins et al., 2017) ↑ 0.996 1 1
Factor-VAE (Kim & Mnih, 2018) ↑ 1 1 1
Gaussian Total Correlation ↓ 10.073 0.485 0.025
Gaussian Wasserstein Corr ↓ 12.905 0.373 0.027
Gaussian Wasserstein Corr Norm ↓ 0.866 0.037 0.002
Mutual Info Score ↓ 0.975 0.197 0.149

Table 2: Disentanglement metrics for toy classification with ten attributes. Metrics are evaluated
on the uncorrelated test set. Bold font indicates model with best disentanglement score.

Metric Base Base+MI Base+CMI
IRS ↑ 0.524 ± 0.043 0.548 ± 0.038 0.531 ± 0.041
SAP ↑ 0.306 ± 0.003 0.296 ± 0.046 0.389 ± 0.005
MIG ↑ 0.506 ± 0.01 0.455 ± 0.074 0.674 ± 0.007
DCI Disentanglement ↑ 0.46 ± 0.009 0.596 ± 0.038 0.807 ± 0.023
Beta-VAE ↑ 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Factor-VAE ↑ 1.0 ± 0.0 0.999 ± 0.003 1.0 ± 0.0
Gaussian Total Correlation ↓ 0.222 ± 0.012 0.056 ± 0.061 0.011 ± 0.003
Gaussian Wasserstein Corr ↓ 0.351 ± 0.039 0.01 ± 0.009 0.002 ± 0.001
Gaussian Wasserstein Corr Norm ↓ 0.098 ± 0.005 0.006 ± 0.004 0.005 ± 0.001
Mutual Info Score ↓ 0.302 ± 0.022 0.111 ± 0.052 0.042 ± 0.006

Table 3: Disentanglement metrics for CelebA. Metrics are evaluated on the uncorrelated test set.
Bold font indicates model with best disentanglement score.

E PROOF OF PROPOSITION RELATED TO SECTION 3.2

In Section 3.2 we argue that by enforcing independence, at least one of the subspaces cannot contain
all relevant information about its target value and therefore will have poor predictive performance.
We make this precise in the following proposition:

Proposition 1 If I(s1; s2) > 0, then enforcing I(z1; z2) = 0 means that I(zk; sk) < H(sk) for at
least one k.

Proof. Assume that I(s1; s2) > 0 and at the same time I(zk; sk) = H(sk) (i.e., we are proving by
contradiction). Since I(z1; s1) = H(s1), we have H(s1 | z1) = 0 and with H(s1 | z1) = H(s1 |
z1, s2) + I(s1; s2 | z1) (both non-negative), it follows that H(s1 | z1, s2) = I(s1; s2 | z1) = 0.
Since for the interaction information, by definition I(s1; s2; z1) = I(s1; s2) − I(s1; s2 | z1), and
I(s1; s2 | z1) = 0, we have I(s1; s2; z1) = I(s1; s2) > 0. Since we also assume H(s2 | z2) = 0,
we also have I(s1; s2; z2) = I(s1; s2) > 0.

We can use this to compute the fourth order interaction information I(s1; s2; z1; z2). By definition,
we have I(s1; s2; z1; z2) = I(s1; s2; z1) − I(s1; s2; z1 | z2). We just showed that I(s1; s2; z1) =
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I(s1; s2), and therefore we have I(s1; s2; z1 | z2) = I(s1; s2 | z2). Together it follows that:

I(s1; s2; z1; z2) = I(s1; s2; z1)− I(s1; s2; z1 | z2) (2)
= I(s1; s2)− I(s1; s2 | z2) (3)
= I(s1; s2; z2) (4)
= I(s1; s2) > 0 (5)

On the other hand, we know that 0 = H(s1 | z1) = H(s1 | z1; z2) + I(s1, z2 | z1) and therefore
I(s1, z2 | z1) = 0. Therefore, the interaction information I(s1; z2; z1) = I(s1; z2)−I(s1; z2 | z1) =
I(s1; z2) ≥ 0. At the same time, we assumed that I(z1; z2) = 0 and hence I(z1; z2; s1) + I(z1; z2 |
s1) = 0, which shows that I(z1; z2; s1) ≤ 0. Together, we see that I(z1; z2; s1) = I(s1; z2) = 0.

Now we can decompose I(s1; s2; z1; z2) in a different way: I(s1; s2; z1; z2) = I(s1; z1; z2) −
I(s1; z1; z2 | s2). We know that I(s1; z1; z2) = I(s1; z2) and therefore I(s1; z1; z2 | s2) =
I(s1; z2 | s2) > 0 and that I(s1; z1; z2) = 0. Therefore, it follows that:

I(s1; s2; z1; z2) = I(s1; z1; z2)− I(s1; z1; z2 | s2) (6)
= 0− I(s1; z2 | s2) (7)
≤ 0 (8)

which is a contradiction with I(s1; s2; z1; z2) = I(s1; s2) > 0. Therefore, if I(s1; s2) > 0 and
I(z1; z2) = 0, it must hold that I(zk; sk) < H(sk) for at least one k, which we wanted to show.

17


	Introduction
	Background & Related Work
	Disentangling Correlated Variables
	Full Supervision Does Not Yield Disentanglement
	Unconditional Disentanglement Fails Under Correlation Shift
	Conditional Disentanglement is Robust to Correlation Shift

	Minimizing CMI
	Experiments
	Conclusion
	Extended Related Work
	Algorithms
	Experimental Details
	Extra Experiments
	Proof of Proposition related to Section 3.2

