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ABSTRACT

Large language and vision-language models are rapidly being deployed in practice
thanks to their impressive capabilities in instruction following, in-context learn-
ing, and so on. This raises an urgent need to carefully analyse their robustness so
that stakeholders can understand if and when such models are trustworthy enough
to be relied upon in any given application. In this paper, we highlight a specific
vulnerability in popular models, namely permutation sensitivity in multiple-choice
question answering (MCQA). Specifically, we show empirically that popular mod-
els are vulnerable to adversarial permutation in answer sets for multiple-choice
prompting, which is surprising as models should ideally be as invariant to prompt
permutation as humans are. These vulnerabilities persist across various model
sizes, and exist in very recent language and vision-language models.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; OpenAI, 2023a; Touvron et al., 2023a) and
large vision-language models (VLLMs) (Alayrac et al., 2022; Li et al., 2023c) have made aston-
ishing progress in recent years. They have attained strong capabilities across a diverse array of
language tasks, enabling nuanced text generation, sophisticated instruction following, and natural
dialogue with multimodal input and output. One task where they demonstrate particular prowess
is multiple-choice question answering (MCQA) (Robinson & Wingate, 2023). This is an impor-
tant capability with many real-world applications, from education to recruitment exams. Current
LLMs and VLLMs have widely utilized the task format of MCQA for benchmarking and evalua-
tion (Hendrycks et al., 2020; Lu et al., 2022; Zhong et al., 2023; Liang et al., 2022; Schwenk et al.,
2022). This has built confidence that they can generate accurate and robust answers, underpinned
claims of LLM competence at professional level human qualifications such as the bar exam (Ope-
nAI, 2023b), and even led to reports of surpassing human-level performance on various tasks.

Surprisingly, contrary to the confidence instilled by high-performance metrics on established bench-
marks, these models are surprisingly brittle when subjected to simple permutations in the answer
choices, i.e., randomly changing the option positions. In this paper, we show that even a simple
permutation of the answer sets, as illustrated in Figure 1, can lead to a dramatic decline in accuracy
for both LLMs and VLLMs in a wide range of MCQA datasets, sometimes even below the random

Q: Who is under the umbrella?
A. Two women.     B. A child.
C. An old man.      D. A cat

Q: Who is under the umbrella?
A. A cat.                  B. A child.
C. Two women.      D. An old man. 

Permutate the Choices
(V)LLMs

Groundtruth: A
Prediction: A

Groundtruth: C
Prediction: D
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Figure 1: Schematic Illustration of an MCQA permutation attack.
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Figure 2: Summary of MCQA adversarial attack results for both LLMs and VLLMs. The values are
average accuracy across all benchmarking datasets.

chance levels. For instance, Llama2-13B (Touvron et al., 2023a) experiences a 33.89% degradation
in accuracy on the MMLU dataset (Hendrycks et al., 2020) following random permutation of op-
tion positions, with results falling below the random chance. A wide variety of popular LLMs and
VLLMs, suffer significantly from this vulnerability, as summarised in Figure 2.

Furthermore, our investigations reveal an even more disconcerting aspect: the vulnerability to per-
mutations persists in LLMs and VLLMs even when multiple distractor options are deliberately re-
moved from the answer sets. Intuitively, one expects that by eliminating incorrect choices, the task
should become simpler due to increasing chance performance, thereby enhancing the models’ per-
formance. However, our empirical findings contradict this notion. Even with a reduced number of
distractors, the performance of both LLMs and VLLMs remains susceptible to degradation, affirm-
ing the deeply ingrained nature of this vulnerability.

To further investigate the source of the brittleness, we demonstrate through our adversarial attack that
it is not merely a selection bias towards/against certain positions, such as moving correct answers to a
fixed position that a given model is biased against picking. While positional factors may moderately
influence model performance, they do not explain the strength of our adversarial attack results,
suggesting a more systemic issue that extends beyond simple position bias.

This issue should be of intrinsic concern to those seeking to understand and design trustworthy
and reliable LLMs and VLLMs, or emulate human capabilities. However, one might speculate that
the issue could be mitigated in practice through the engineering solution of majority voting across
different permutations or by employing calibration strategies as suggested in previous work (Zhao
et al., 2021). However, our findings indicate that while majority voting may offer some degree of
improvement, the resulting performance still lags behind the original metrics, despite incurring a
k!× computational cost of the original inference time. Additionally, calibration techniques such as
calibrate-before-use (Zhao et al., 2021) fail to alleviate this problem effectively.

In summary, our research unveils a glaring yet often overlooked vulnerability in large language
models and vision-language models, specifically within the domain of multiple-choice question an-
swering (MCQA). Despite their impressive metrics on well-established benchmarks, these models
reveal a disconcerting fragility when faced with simple manipulations such as option permutations.
Existing mitigation strategies fall short of effectively resolving this issue. Our observations not only
raise pivotal questions about the models’ robustness but also accentuate the necessity for heightened
scrutiny in assessing their MCQA capabilities. We argue that stakeholders should be vigilant in
relying on such models until these vulnerabilities are adequately addressed.
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2 SIMPLE ADVERSARIAL ATTACK BREAKS LLMS AND VLLMS

In this section, we analyse the brittleness of a broad array of large language models and vision-
language models to random adversarial attacks in MCQA. By simply shuffling answer choices, we
find that these models fail to maintain their performance, revealing a critical vulnerability.

2.1 EXPERIMENT SETUP

In an ideal scenario, robust models should offer consistent predictions that are invariant to permu-
tations that have no semantic influence on the question being posed. To test this, we simply iterate
through the possible permutations of MCQ options. A robust model should be correct in every case.
While there are k! possible combinations in total, we cease permutation once the model produces
an incorrect prediction (succumbs to the permutation attack), which usually requires far less than k!
attempts1.

Formally, Given a question q and an answer list A = {a1, a2, . . . , ak}, the permutation adversarial
attack can be described by the Equation 1. We maximize the loss function (L) with respect to all
possible permutations (Π) of the answer list. Here, prompt(q, A) prompts the model with the given
query and answer list, and the model’s response is then evaluated by the loss.

Maximize: L (prompt(q, A∗))

s.t. A∗ ∈ Π(A) (1)

Table 1: Statistics of the language datasets evaluated.

MMLU ARC-c BoolQ SocialiQA MedMCQ
# of choices 4 4 2 3 4
# QA pairs 14079 1165 3270 1954 2816

Task Aggregated Commonsense Reading Commonsense Out-of-domainReasoning Comprehension Reasoning

Table 2: Statistics of the vision-language
datasets evaluated.

# of choices # QA pairs

ScienceQA 2,3,4,5 2021
A-OKVQA 4 1145
MMBench 4 4377
SEED-Bench 4 14233

Models We evaluate a wide range of LLMs
and VLLMs of diverse sizes, different pretrained
backbones, and both auto-regressive pretrained and
instruction-following fine-tuned models. Specif-
ically, for LLMs, we have evaluated LLaMA-
2 (7B/13B) (Touvron et al., 2023b), Vicuna
(7B/13B) (Chiang et al., 2023), WizardLM-13B (Xu
et al., 2023), InternLM-20B (Team, 2023a), Falcon-
7B Penedo et al. (2023), and MPT-7B (Team,
2023b). For VLLMs, InstructBLIP (Vicuna-based,
7B/13B) (Dai et al., 2023), Open-Flamingo (MPT-
based, 9B) (Awadalla et al., 2023), Otter (Llama-
based, MPT-based) (Li et al., 2023a), LLaVA
(7B/13B) (Liu et al., 2023a), Limber (7B) (Merullo et al., 2023), and mPLUG-Owl (pretraining,
intruction) (Ye et al., 2023) are used for evaluation.

Datasets We utilize a diverse array of language and vision-language MCQA datasets for com-
prehensive evaluation. These datasets cover multiple domains and require different aspects of the
models to give correct answers, ensuring our findings are generalizable. Specifically, for LLMs, we
utilize MMLU (Hendrycks et al., 2020), ARC challenge (ARC-c) (Clark et al., 2018), BoolQ (Clark
et al., 2019), SocialiQA (Sap et al., 2019), and MedMCQA (Pal et al., 2022). For VLLMs, we use
ScienceQA (Lu et al., 2022), A-OKVQA (Schwenk et al., 2022), MMBench (Liu et al., 2023c),

1Since typical MCQA benchmarks use k = 4, the brute force algorithm is cheaper than a gradient-based
solution. But gradient-based solutions could be used if the attack needs to scale to substantially larger k.
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Table 3: Performance comparisons of LLMs before and after adversarial attack. Numbers in each
represent original accuracy, accuracy after adversarial attack, and relative performance drop. Red
shading indicates experiments where the permutation attack reduced performance below chance
level. All models suffer substantially with most experiments leading to below chance performance.

Method MMLU ARC-c BoolQ SocialiQA MedMCQA
Llama2-7B 40.91/ 6.17 (34.74 ↓) 47.04/ 7.98 (39.06 ↓) 61.79/ 8.23 (53.56 ↓) 52.00/15.71 (36.29 ↓) 37.96/ 1.60 (36.36 ↓)
Llama2-13B 52.22/18.33 (33.89 ↓) 61.80/21.63 (40.17 ↓) 67.16/38.29 (28.87 ↓) 61.21/34.14 (27.07 ↓) 39.78/ 7.35 (32.43 ↓)
Llama2-70B 64.68/33.16 (31.52 ↓) 80.00/51.50 (28.50 ↓) 76.39/56.21 (20.18 ↓) 71.60/49.85 (21.75 ↓) 49.61/ 7.35 (32.43 ↓)
Vicuna-v1.5 48.57/18.09 (30.48 ↓) 58.37/23.43 (34.94 ↓) 64.04/29.60 (34.44 ↓) 64.99/38.33 (26.66 ↓) 39.28/ 7.67 (31.61 ↓)
Vicuna-v1.5-13B 54.68/26.27 (28.41 ↓) 69.27/38.80 (30.47 ↓) 68.96/42.14 (26.82 ↓) 66.07/44.42 (21.65 ↓) 41.80/11.90 (29.90 ↓)
WizardLM-13B 48.60/15.87 (32.73 ↓) 58.20/21.12 (37.08 ↓) 67.49/42.11 (25.38 ↓) 63.46/31.78 (31.68 ↓) 34.87/ 6.32 (28.55 ↓)
InternLM-7B 45.72/10.45 (35.27 ↓) 56.14/17.34 (38.80 ↓) 65.83/26.41 (39.42 ↓) 59.47/30.30 (29.17 ↓) 32.63/ 2.56 (30.07 ↓)
InternLM-20B 59.14/29.52 (29.62 ↓) 78.28/54.42 (23.86 ↓) 85.20/82.91 ( 2.29 ↓) 79.48/65.97 (13.51 ↓) 43.61/13.92 (29.69 ↓)
Falcon-7b 31.66/ 2.49 (29.17 ↓) 34.74/ 0.09 (34.65 ↓) 55.35/ 2.66 (52.69 ↓) 36.29/ 0.55 (35.74 ↓) 28.12/ 0.07 (28.05 ↓)
MPT-7B 35.60/ 3.52 (32.08 ↓) 37.76/ 1.06 (36.70 ↓) 58.46/ 7.03 (51.43 ↓) 41.61/ 2.53 (39.08 ↓) 26.31/ 1.60 (24.71 ↓)
GPT-3.5-turbo 64.81/40.39 (24.42 ↓) 82.23/61.55 (20.68 ↓) 87.92/81.35 ( 6.57 ↓) 70.62/56.29 (14.33 ↓) 52.22/32.07 (20.15 ↓)
Random Chance 25.0 25.0 50.0 33.33 25.0

and SEED-Bench (Li et al., 2023b). We use the questions in ScienceQA that have corresponding
images, the MCQA subsets of MMBench, and the image-based MCQAs in SEED-Bench.

Evaluations We use accuracy as our primary metric. During testing, we prompt the model to
generate the possible option symbols (e.g., A to D) and extract the probability assigned to each
choice in the first position. The option with the highest probability is then selected as the model’s
answer for that specific question. For both LLMs and VLLMs, we use greedy decoding and set the
temperature to 1.

2.2 RESULTS

We present the main results in Table 3 and 4 for language and vision-language models respectively.

Language Models In our experiments, large language models manifested a significant suscep-
tibility to adversarial permutations, a finding consistent across various MCQA benchmarks. Our
evaluation extended beyond the typical four-option MCQA datasets to include more diverse formats
like the two-option BoolQ (Clark et al., 2019) and the three-option SocialIQA (Sap et al., 2019)
that are naturally more resilient to the permutations. Intriguingly, the presence of only one or two
distractor options did not mitigate the model’s vulnerability to permutations. For instance, Llama2-
7B’s accuracy on BoolQ plummeted from 61.79% to a mere 8.23%, a performance even worse
than random chance. Moreover, out of 50 experiments conducted with large language models, only
12 non-GPT-3.5-turbo models managed to perform better than random chance. And all of them,
including GPT-3.5-turbo, suffer from significant performance decreases.

Vision-Language Models In the vision-language model evaluations, the susceptibility to adver-
sarial permutations is also severe. Despite the presence of visual context, which may intuitively
add a layer of resilience, the VLLMs were not spared from the adverse effects of our permutation
attacks. Among 40 experiments, 60% of the models fell below random chance performance after
the adversarial attack. While InstructBLIP (Dai et al., 2023) shows relatively strong robustness to
the adversarial attack. all of the models experienced significant accuracy drops ranging from 20%
to 45%.

Further Observations We note that within the same model family but with varying parameter
sizes (e.g., InstructBLIP-7B v.s. InstructBLIP-13B), scaling up generally enhances both the baseline
performance and resilience to adversarial attacks with relatively smaller declines in accuracy. We
can also observe that models have different success rates over random chance in different datasets.
For example, all of the LLMs failed the adversarial attack on MedMCQA dataset except GPT-3.5-
turbo, which is also only slightly above the random chance. It shows the challenges of LLMs to
generalize to out-of-domain data, and suggests caution about their use in unconstrained practical
scenarios.
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Table 4: Performance comparisons of VLLMs before and after adversarial attack. Numbers in each
cell represent original accuracy, accuracy after adversarial attack, and relative performance drop.
Red shading indicates performance below chance level after the permutation attack. All models
suffer substantially with most experiments leading to below chance performance.

Method ScienceQA A-OKVQA SEED-Bench MMBench
InstructBLIP-7B 59.46/33.31 (26.15 ↓) 74.06/51.62 (22.44 ↓) 51.61/25.68 (25.93 ↓) 64.91/41.01 (23.90 ↓)
InstructBLIP-13B 64.15/41.84 (22.31 ↓) 77.90/55.38 (22.52 ↓) 53.65/28.79 (24.86 ↓) 67.12/45.49 (21.63 ↓)
OpenFlamingo 39.43/1.37 (38.06 ↓) 46.90/3.58 (43.32 ↓) 37.99/0.87 (37.12 ↓) 38.99/5.18 (33.81 ↓)
Otter-Llama7B 59.92/32.54 (27.38 ↓) 57.99/28.30 (29.69 ↓) 40.77/9.91 (30.86 ↓) 55.24/19.67 (35.57 ↓)
Otter-MPT7B 63.11/31.38 (31.73 ↓) 68.21/43.19 (25.02 ↓) 46.76/10.82 (35.94 ↓) 61.31/36.46 (24.85 ↓)
LLaVA-7B 45.20/2.28 (42.92 ↓) 52.91/ 0.09 (52.82 ↓) 38.36/5.67 (43.03 ↓) 46.03/5.07 (40.96 ↓)
LLaVA-13B 60.63/46.53 (14.10 ↓) 63.14/25.85 (37.29 ↓) 44.00/13.68 (30.32 ↓) 59.13/31.30 (27.83 ↓)
Limber 49.33/14.03 (35.30 ↓) 39.57/1.22 (38.35 ↓) 31.50/0.26 (31.24 ↓) 34.93/1.62 (33.31 ↓)
mPLUG-Owl-pt 53.24/10.20 (43.04 ↓) 39.91/1.83 (38.08 ↓) 35.57/0.91 (34.66 ↓) 42.57/8.54 (34.03 ↓)
mPLUG-Owl-instr 54.87/11.43 (43.44 ↓) 37.12/2.01 (35.11 ↓) 36.74/2.72 (34.02 ↓) 43.74/6.12 (37.62 ↓)
Random Chance Min 20.0 25.0 25.0 25.0

Table 5: Performance of LLMs on the MMLU dataset under answer set pruning. Numbers in each
cell represent original accuracy, accuracy after adversarial attack, and relative performance drop.
Baseline performances improve as the number of distractors is reduced, but performance is reduced
below chance after adversarial permutation.

Method 4 Choices 3 Choices 2 Choices
Llama2-7B 40.91 48.75/ 8.67 (39.08↓) 63.33/20.26 (43.07↓)
Llama2-13B 52.22 70.77/22.85 (47.92↓) 71.13/31.85 (39.28↓)
Llama2-70B 64.68 69.90/35.34 (34.56↓) 75.23/45.88 (29.35↓)
Vicuna-v1.5-7B 48.57 56.65/30.60 (26.97↓) 68.81/32.60 (36.21↓)
Vicuna-v1.5-13B 54.68 61.75/29.02 (32.66↓) 72.97/28.06 (44.91↓)
WizardLM-13B 48.60 56.57/17.74 (38.83↓) 69.09/28.96 (40.13↓)
InternLM-7B 45.72 51.76/12.39 (39.37↓) 65.88/19.65 (46.23↓)
InternLM-20B 59.14 65.25/30.48 (34.67↓) 76.09/43.51 (32.58↓)
Falcon-7b 31.66 52.88/ 5.92 (46.96↓) 58.31/11.41 (46.90↓)
MPT-7B 35.60 53.31/ 6.27 (47.03↓) 58.31/15.44 (42.87↓)
GPT-3.5-turbo 64.81 70.80/42.99 (27.81↓) 79.30/50.82 (28.48↓)
Random Chance 25.0 33.33 50.0

3 ANSWER SET PRUNING

In this section, we examine the impact of a stricter test condition on MCQA, specifically by reducing
the number of distractor options, while obviously retaining the true answer. This is expected to
improve baseline performance by increasing random chance level, but also we expected it to reduce
vulnerability to adversarial permutation by substantially reducing the degrees of freedom that the
permutation attack can explore. However, we found that models remain highly susceptible to even
the few permutations available in the reduced set of options.

Experiment Setup Specifically, we constrain the answer set by reducing the number of total
choices from four to either three or two, inclusive of the ground-truth answer. We then compare
the performance metrics between these pruned sets in both permuted and non-permuted conditions
to assess the relative susceptibility of the models.
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Results We present the results of answer set pruning of MMLU datasets in Table 5 and other
datasets in the appendix. As can be seen from Table 5, reducing the number of options increases the
base prediction accuracy as expected, but performing adversarial permutation on the reduced answer
set still dramatically reduces the accuracy even in the 2-option cases. In most cases, the performance
is below the chance level given the number of options. This means that, surprisingly, even in the
simplest case of a binary choice, models are not robust to whether the true answer is presented as
the first or second option.

4 FURTHER ANALYSIS

In this section, we delve into a detailed analysis of the potential causes behind the demonstrated
vulnerability, examine related attack types, explore strategies to enhance robustness, and provide
qualitative examples. We refer readers to the appendix for an exhaustive set of results.

4.1 POSISITION BIAS AND OTHER ATTACKS

A concurrent study to ours argued for the existence of position bias in language model MCQA
(Zheng et al., 2023a). For example, in an A/B/C/D MCQ situation, a given model might have a
predisposition to selecting a particular option such as “C” and an aversion to selecting some other
option such as “A”, irrespective of the correctness of the answer associated with each label. Posi-
tion bias could potentially explain adversarial permutation vulnerability if a model is so averse to
selecting a particular option, that rotating the true answer into that slot would reliably cause it to fail.

To analyse whether position bias can explain our results, we compare our adversarial permutation
results to the performance of each LLM under position bias analysis – always rotating the correct
answer to a specific slot (A/B/C/D) in the answer list.

From the results in Table 6, we do see the position bias effect remarked upon by Zheng et al. (2023a).
The models tested exhibit varying degrees of position bias, as results fluctuate with respect to origi-
nal performance (left column). For example, Vicuna suffers limited position bias, while Falcon-7B
is highly position biased. Falcon-7B’s baseline accuracy of 31% rises to 70.9% when the true answer
is placed in slot A – indicating a strong preference for choosing A; but drops to 3.7% when the true
answer is placed in slot B, indicating a strong aversion to selecting B.

Comparing the observed position bias to the impact of our adversarial permutation, we can see
that our adversarial permutation has a much stronger effect. The results after permutation (right
column) are substantially worse than the position bias results. For example, Llama2-7B performs
above chance level for answers in every possible position (A/B/C/D), but is reduced to below chance
by our adversarial permutation. Thus we conclude that the impact of our adversarial permutation
is not explainable by position bias. Evidently, models rely on the relationships between choices,
including the distractors, which the adversarial permutation manipulates to fool them. I.e., it is not
just the true answer, and the location of the true answer (position bias), but also the pattern of the
distractor answers around the true answer (as explored by adversarial permutations) that determine
model success or failure. This reveals a complex and concerning form of vulnerability.

Additionally, to further investigate the potential causes of the vulnerability and compare with other
types of attacks, we consider circular evaluation (CircularEval) (Liu et al., 2023c) and symbol attack.
Specifically, CircularEval involves rotating options while maintaining their relative positions. Sym-
bol attack refers to using different option symbols (here we consider A/B/C/D, a/b/c/d, I/II/III/IV).
In both cases, the predictions are counted as correct only if the model predicts all of the variations
correctly. As shown in Table 6, while these attacks degrade performance to some extent, our adver-
sarial attack exhibits the most substantial impact and causes the largest performance drop.

4.2 POST-HOC STRATEGIES FOR MITIGATION

The previous analysis of adversarial permutation vulnerability should be concerning to stakeholders
interested in trustworthy and reliable AI, and suggests a new focus for researchers in developing
models with improved intrinsic permutation robustness. Nevertheless, one might ask whether any
post-hoc engineering fixes could alleviate this issue in practice for existing models. To this end, we
explore three post-hoc strategies that have previously proven effective in improving model perfor-
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Table 6: Comparison of positional bias, circular evaluation, symbol attack, and our adversarial per-
mutation on MMLU dataset. Position bias and the other attacks have moderate impact. In contrast,
our adversarial permutation severely degrades performance, usually below random chance level.

Method Original A B C D CircularEval Symbol Attack Permutation Attack
Llama2-7B 40.91 60.02 37.28 30.69 35.43 27.26 25.70 6.17
Llama2-13B 52.22 36.15 58.69 59.08 54.91 35.80 30.76 18.33
Llama2-70B 64.68 63.63 64.28 67.45 62.43 48.18 47.40 33.16
Vicuna-7B 48.57 49.83 63.22 45.46 37.85 20.23 33.85 18.09
Vicuna-13B 54.68 47.33 70.00 51.73 52.04 41.42 45.40 26.27
WizardLM-13B 48.60 34.75 56.38 45.86 57.56 22.42 29.07 15.87
InternLM-7B 45.72 37.23 65.12 41.49 42.33 25.23 29.38 10.45
InternLM-20B 59.14 51.05 68.75 53.47 62.35 34.99 47.06 29.52
Falcon-7B 31.66 70.86 3.77 10.52 14.85 7.69 14.38 2.49
MPT-7B 35.60 0.82 75.35 34.72 2.03 2.44 21.62 3.52
GPT-3.5-turbo 64.81 65.84 67.77 73.81 56.55 58.21 63.99 40.39

mance, namely, majority voting (Wang et al., 2023), contextual calibration (Zhao et al., 2021) and
confidence-based voting, and ask whether they can alleviate adversarial permutation vulnerability.

Setup Majority voting (Wang et al., 2023) has been shown highly successful in self-ensembling
over stochastic predictions. In our context, we apply it by obtaining the predictions for all possi-
ble permutations and then selecting the most frequent prediction. If most permutations lead to a
correct prediction and there are only one or two pathological permutations that lead to an incor-
rect prediction, then majority voting should provide complete robustness to adversarial permutation.
Contextual calibration (Zhao et al., 2021) is designed to mitigate the prior bias introduced from
the in-context examples by estimating the model’s bias toward each answer with a “content-free”
query and fitting a calibration parameter. Here we consider the input question and options as the
language prior bias. We first feed the model with content-free options (e.g. “N/A”) as the content-
free input, and then calibrate the real prediction based on the calibration parameters calculated from
the content-free input. Additionally, we also apply confidence voting by taking the output that has
maximum confidence among all permutations as the final prediction (M-confidence).

Results From the results in Table 7 for LLMs, we can see that neither defense proved effective at
restoring the original performance levels. The majority voting and M-confidence certainly amelio-
rated the permutation attack as expected, but still fell short of the baseline accuracy with only very
few models gaining improvement. This is despite their being highly impractical defenses due to
imposing a k!-fold increase in inference cost. Contextual calibration, on the other hand, completely
failed to make a meaningful impact on mitigating the adversarial attack. This re-confirms that the
position bias is not the primary reason for models’ permutation vulnerability.

4.3 ANALYSIS ON PERMUTATION DISTRIBUTION

While our main focus has been on the permutation-robustness of LLMs and VLMs, we can also
ask about the distribution of responses as a function of permutation. For example, is there only one
specific pathological permutation among all k! options, or are there many mistake-inducing permu-
tations? To analyse this we report in Figure 3, a histogram over the questions in ARC-challenge
where each bin represents the number of questions where the specified proportion of permutations
led to the correct answer that are originally correctly answered. For example, we see that Llama2-
70B has a large number of questions that succeed for almost all permutations, while several models
have a substantial batch of questions that are only correctly answered for around 30% of the poten-
tial permutations. Interestingly, most models have a substantial minority of questions that are only
correctly answered for a small fraction of the permutations (leftmost bin).
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Table 7: Impact of majority vote, contextual calibration (C-Calibration), and maximum confidence
(M-Confidence) defenses against the permutation attack on the MMLU dataset. Contextual calibra-
tion fails completely. Majority vote and M-Confidence ameliorate the attack, but do not completely
restore performance. Red shading indicates below-chance results.

Method Original Permutation Attack Majority Vote C-Calibration M-Confidence
Llama2-7B 40.91 6.17 (34.74 ↓) 33.64 (7.27 ↓) 5.24 (35.67 ↓) 22.62 (18.29 ↓)
Llama2-13B 52.22 18.33 (33.89 ↓) 48.53 (3.69 ↓) 20.02 (32.20 ↓) 50.83 (1.39 ↓)
Llama2-70B 64.68 33.16 (31.52 ↓) 65.37 (0.69 ↑) 35.77 (28.91 ↓) 64.20 (0.48 ↓)
Vicuna-v1.5-7B 48.57 18.09 (30.48 ↓) 44.10 (4.47 ↓) 11.33 (37.24 ↓) 38.29 (10.28 ↓)
Vicuna-v1.5-13B 54.68 26.27 (28.41 ↓) 52.03 (2.65 ↓) 18.10 (36.58 ↓) 55.58 (0.90 ↑)
WizardLM-13B 48.60 15.87 (32.73 ↓) 30.17 (18.43 ↓) 8.23 (40.37 ↓) 37.81 (11.21 ↓)
InternLM-20B 59.14 29.52 (29.62 ↓) 60.33 (1.19 ↑) 28.94 (30.20 ↓) 64.80 (5.66 ↑)
Falcon-7b 31.66 2.49 (29.17 ↓) 4.38 (27.28 ↓) 3.59 (28.07 ↓) 21.10 (10.56 ↓)
MPT-7B 35.60 3.52 (32.08 ↓) 13.80 (21.80 ↓) 6.24 (29.36 ↓) 21.42 (14.18 ↓)
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Figure 3: Analysis on permutation distribution. The histogram shows the number of questions for
which the corresponding proportion of permutations leads to the correct answer (ideal is a full bar
at the 100% bin, indicating that all permutations are correctly answered for all questions). The
distribution of bins suggests that many questions have multiple adversarial permutations.

4.4 QUALITATIVE RESULTS

To illustrate the permutation attack, we present qualitative results for LLMs in Table 8 and VLLMs
in Appendix Figure 5.

Language Models In Table 8, we showcase an MCQA example from the ARC-challenge
dataset (Clark et al., 2018), with the original answer order alongside two permutations. The ground-
truth answer is underlined in each configuration. We use Llama-13B for this experiment. The model
gives the correct prediction for the original option order. For permutation 1, if we only swap the po-
sition of option C and D, i.e., moving the ground-truth position to C, the model can still successfully
give the prediction. However, for permutation 2, even if we do not move the ground-truth answer
but only swap option A and B, the model incorrectly predicts A as the answer. This qualitative
example underscores that the model’s vulnerability extends beyond mere positional bias and even
minor changes in option ordering can result in completely different predictions.

Vision-Language Models In Appendix Figure 5, we present a visual MCQA example from Sci-
enceQA dataset using Otter-Llama model. In this example, we simply move the ground truth “Asia”
from option A to option C. However, the model still predicts the answer to be A and shows strong
confidence in terms of the token probabilities (right part of the figure). This might show the model’s
preference for the first option as a recency bias.

8
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Table 8: Qualitative results of permutations of answer options and the corresponding model
(Llama2-7B) predictions. The example is selected from the ARC-challenge dataset.

Question: A physicist wants to determine the speed a car must reach to jump over a ramp. The physicist conducts three trials.
In trials two and three, the speed of the car is increased by 20 miles per hour. What is the physicist investigating when he changes the speed?
True Answer: the independent (manipulated) variable.

Original Answer Set: A. the control B. the hypothesis statement C. the dependent (responding) variable D. the independent (manipulated) variable.
Model Prediction: D.

Permutation 1: A. the control B. the hypothesis statement C. the independent (manipulated) variable D. the dependent (responding) variable
Model Prediction: C.

Permutation 2: A. the hypothesis statement B. the control C. the dependent (responding) variable D. the independent (manipulated) variable.
Model Prediction: A.

5 RELATED WORK

Large Language Models and Vision-Language Models. In recent years, the natural language
processing community has seen astonishing progress in large language models (LLMs) with billions
of trained parameters, such as GPT-3 (Brown et al., 2020) and Llama (Touvron et al., 2023a;b),
and become more intelligent after instruction-following fine-tuning (Ouyang et al., 2022; Zheng
et al., 2023b). With the strong capabilities of LLMs, there is a growing interest in grounding vision
with LLMs to enable the models to perceive multimodal information (Yin et al., 2023; Zong et al.,
2023; Li et al., 2023c), usually by utilizing pretrained language and vision encoders with trainable
alignment modules to connect them. Such models have shown strong capabilities across a diverse
range of language tasks including multimodal generation, question-answering, dialogue, and more.

Multiple-Choice Question Answering (MCQA). Multiple-Choice Question Answering
(MCQA) requires selecting the correct option from a set of choices and is prevalent in numerous
real-world applications, making it a key performance metric for both LLMs and VLLMs. Vari-
ous benchmarks such as MMLU (Hendrycks et al., 2020), AGI-Eval (Zhong et al., 2023), MedM-
CQA (Pal et al., 2022), and SocialIQA (Sap et al., 2019) have been designed to assess MCQA
proficiency across different domains. Different prompting approaches approaches have been con-
sidered for MCQA with multiple-choice prompting being the currently recommended state of the
art (Robinson & Wingate, 2023). On these benchmarks, LLMs and VLLMs frequently achieve, or
even surpass, human-level accuracy (Anil et al., 2023; OpenAI, 2023b), suggesting a high degree
of reliability and robustness. However, we cast doubt on this presumed robustness, exposing the
underlying fragility of these models in MCQA scenarios.

Robustness of LLMs and VLLMs. Despite their impressive capabilities, concerns remain about
the robustness and reliability of LLMs and VLLMs (Liu et al., 2023b). Previous studies have re-
vealed the sensitivity of LLMs to various factors including prompt (Zhu et al., 2023), in-context
examples (Liu et al., 2021; Zhao et al., 2021), irrelevant context (Shi et al., 2023), etc. Despite its
significance, the robustness of MCQA has been relatively unexamined, particularly for VLLMs. Our
research addresses this gap by scrutinizing a specific, yet pervasive, vulnerability to answer choice
permutations in MCQA across both model types. Concurrent work (Zheng et al., 2023a) discusses
position-bias in MCQA and Liu et al. (2023c) proposes circular evaluation. Our results show that
adversarial permutation vulnerability is a much deeper problem than position bias.

6 DISCUSSION

In this paper, we present a comprehensive empirical analysis that unveils a critical but often over-
looked vulnerability in both large language models (LLMs) and large vision-language models
(VLLMs) in the context of multiple-choice question answering (MCQA). Despite their seemingly
robust performance on established MCQA benchmarks, these models are highly susceptible to sim-
ple manipulations like option permutations. Our findings raise concerns about the widespread prac-
tice of evaluating and deploying these models based on MCQA tasks, urging caution in interpreting
high benchmark scores as evidence of robust capabilities. We highlight the need for future work
to develop training strategies and/or architectures that lead to intrinsic robustness to such adversar-
ial attacks and develop parameter-efficient tuning approaches that can fine-tune or align existing
pretrained LLMs and VLLMs to be invariant to permutations.

9
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REPRODUCIBILITY STATEMENT

We have attached the source code to reproduce the experimental results in the supplementary mate-
rials. All of the datasets we use are publicly available. All of the model weights (except GPT-3.5-
Turbo) can be obtained from the HuggingFace model zoo or the original official Github reposito-
ries. GPT-3.5-Turbo can be accessed from OpenAI API. Experiments are conducted on A100-80GB
GPUs.
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A APPENDIX

A.1 ADDITIONAL RESULTS ON ANSWER SET PRUNING

We present the additional results of the answer set pruning of all language and vision-language
datasets in Table 9 to 14.

A.2 ADDITIONAL RESULTS ON DIFFERENT PROMPTING AND ATTACK STRATEGIES

In this subsection, we investigate the effect of different prompting techniques on the models’ vul-
nerability to MCQA. The findings are summarized below.

• Table 15 compares the performance before and after adversarial attack with in-context
learning. Although in-context learning can improve the original performance, the mod-
els still suffer substantially from the performance drop after adversarial permutations.

• Table 16 to Table 20 presents different attack strategies with in-context learning, i.e. per-
mutation of in-context examples and searching for worst-case in-context examples. While
they can decrease the performance, our adversarial attack has the biggest impact on the
final performance and causes the largest performance drop.

• Table 21 compares different sampling strategies and temperatures. The performance of the
other decoding strategies is even worse before and after the permutations compared to the
greedy decoding we adopted. Therefore we can ensure our experiments were conducted
properly and the findings can generalize to other decoding strategies.

• Table 22 to Table 24 presents the effect of in-context learning on the position bias. Our
findings indicate that while the original model exhibited a preference for option B, this pref-
erence persisted even after introducing in-context examples with answers set to positions
A, B, C, and D. This suggests that while in-context examples can modify the distribution
across various options, they do not entirely override the inherent position bias of the model.

• Table 25 shows the results of a correlation analysis between predictions under different
MCQ symbol sets. For each symbol set, we compute all the test set predictions under
each permutations, and compute the correlation between the set of predictions made under
each symbol set. A high correlation means that the behaviour in response to a permutation
is similar for two symbol sets, and vice-versa. The results show a low correlation score
between capital letters (A/B/C/D) and Roman numerals (I/II/III/IV) compared to the capital
letters (A/B/C/D) and lowercase letters (a/b/c/d). In other words, the baseline accuracy and
permuted accuracy are almost the same for different symbol sets, but they respond very
differently to permutation. This suggests that the model may be relying on symbol-answer
shortcuts (Geirhos et al., 2020; Du et al., 2023) and spurious correlations (Sagawa et al.,
2020) inadvertently learned during training, indicating another potential underlying cause
of our observed vulnerability. Figure 4 gives an illustration of the Llama2-13B model’s
prediction and correlation for different symbol sets.

A.3 FURTHER ANALYSIS ON VISION-LANGUAGE DATASET

We present analysis on vision-language dataset A-OKVQA (Schwenk et al., 2022) in Table 26
and 27 about position bias and different strategies for mitigation. The additional analysis further
ensures that our findings on LLMs can also be generalized to VLLMs.
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Table 9: Results of answer Set Pruning on ARC (challenge) Dataset.

Method Original 4 Choices 3 Choices 2 Choices
Llama2-7B 47.04 52.13/25.67 (26.46↓) 69.44/27.04 (42.40↓)
Llama2-13B 61.80 68.07/27.55 (40.52↓) 77.08/39.57 (37.51↓)
Llama2-70B 80.00 83.09/45.88 (37.21↓) 84.21/66.01 (18.20↓)
Vicuna-v1.5-7B 58.37 68.07/29.70 (38.37↓) 78.11/42.66 (35.45↓)
Vicuna-v1.5-13B 69.27 74.85/42.32 (32.53↓) 83.18/56.14 (27.04↓)
WizardLM-13B 58.20 67.38/28.07 (39.31↓) 76.05/4.64 (71.41↓)
InternLM-7B 56.14 61.37/17.42 (43.95↓) 71.93/29.44 (42.49↓)
InternLM-20B 78.28 82.06/48.58 (33.48↓) 84.81/56.03 (28.78↓)
Falcon-7B 34.74 31.76/0.00 (31.76↓) 48.58/0.43 (48.15↓)
MPT-7B 37.76 40.43/12.15 (28.28↓) 50.47/0.09 (50.38↓)
Random Chance 25.0 33.33 50.0

Table 10: Results of answer set pruning on SocialiQA Dataset.

Method Original 4 Choices 2 Choices
Llama2-7B 52.00 68.42/29.58 (38.84↓)
Llama2-13B 61.21 73.64/45.91 (27.73↓)
Llama2-70B 71.60 81.88/53.99 (27.89↓)
Vicuna-v1.5-7B 64.99 73.29/41.56 (31.73↓)
Vicuna-v1.5-13B 66.07 78.25/53.48 (24.77↓)
WizardLM-13B 79.48 69.75/30.91 (38.84↓)
InternLM-7B 59.47 76.41/53.02 (23.39↓)
InternLM-20B 36.29 86.8/72.82 (13.98↓)
Falcon-7B 41.61 55.83/0.85 (54.98↓)
MPT-7B 70.62 60.08/4.52 (55.56↓)
Random Chance 25.0 50.0

14



Under review as a conference paper at ICLR 2024

Table 11: Results of answer set Pruning on MedMCQ Dataset.

Method Original 4 Choices 3 Choices 2 Choices
Llama2-7B 37.96 47.94/2.63 (45.31↓) 62.29/5.68 (56.61↓)
Llama2-13B 39.78 50.02/19.35 (30.67↓) 10.37/37.45 (-27.08↓)
Llama2-70B 49.61 55.33/17.86 (37.47↓) 65.66/28.76 (36.90↓)
Vicuna-v1.5-7B 39.28 46.27/10.55 (35.72↓) 59.62/22.13 (37.49↓)
Vicuna-v1.5-13B 41.80 50.33/24.72 (25.61↓) 61.23/28.70 (32.53↓)
WizardLM-13B 34.87 40.39/8.37 (32.02↓) 52.46/10.79 (41.67↓)
InternLM-7B 56.14 38.49/2.66 (35.83↓) 52.02/8.42 (43.60↓)
InternLM-20B 43.61 60.05/17.59 (42.46↓) 65.08/30.61 (34.47↓)
Falcon-7B 28.12 36.18/1.05 (35.13↓) 51.30/5.23 (46.07↓)
MPT-7B 26.31 38.33/3.07 (35.26↓) 53.50/9.71 (43.79↓)
Random Chance 25.0 33.33 50.0

Table 12: Results of answer set pruning on A-OKVQA dataset. Numbers in each cell represent
original accuracy, accuracy after adversarial permutation attack, and relative performance drop.

Method 4 Choices 3 Choices 2 Choices
InstructBLIP7B 74.06 79.21/45.92 (33.29↓) 85.07/54.85 (30.22↓)
InstructBLIP13B 77.90 81.66/48.33 (33.33↓) 88.56/56.52 (32.04↓)
OpenFlamingo 46.90 54.18/4.88 (49.30↓) 66.90/5.09 (61.81↓)
Otter-Llama7B 57.99 64.98/33.10 (31.88↓) 75.02/39.74 (35.28↓)
Otter-MPT7B 68.21 76.16/46.11 (30.05↓) 81.48/51.44 (30.04↓)
Llava-7B 52.91 42.86/9.44 (33.42↓) 63.55/12.90 (50.65↓)
Llava-13B 63.14 71.09/33.37 (37.72↓) 76.24/41.22 (35.02↓)
Limber 39.91 49.69/4.54 (45.15↓) 65.68/18.08 (47.60↓)
mPLUG-Owl-pt 39.91 45.59/4.95 (40.64↓) 56.42/10.57 (45.85↓)
mPLUG-Owl-instr 37.12 47.86/5.15 (42.71↓) 58.92/16.77 (42.15↓)
Random Chance 25.0 33.33 50.0
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Table 13: Results of answer set pruning on SEED-Bench dataset. Numbers in each cell represent
original accuracy, accuracy after adversarial permutation attack, and relative performance drop.

Model Original 4 Choices 3 Choices 2 Choices
InstructBLIP7B 51.61 59.83/38.12(21.71 ↓) 70.69/55.62(15.07 ↓)
InstructBLIP13B 53.65 61.22/42.97(18.25 ↓) 72.79/57.18(15.61 ↓)
OpenFlamingo 37.99 39.64/10.25(29.39 ↓) 55.31/28.35(26.96 ↓)
Otter-Llama7B 50.77 49.46/13.48(35.98↓) 63.57/18.86(44.71 ↓)
Otter-MPT7B 46.76 54.18/17.42(36.76 ↓) 66.43/28.35(38.08 ↓)
Llava-7B 38.36 43.30/6.11(37.19 ↓) 57.50/7.48(50.02 ↓)
Llava-13B 44.00 52.51/17.25(35.26 ↓) 63.37/25.24(38.13 ↓)
Limber 31.50 38.76/1.13(37.63 ↓) 55.58/0.06(55.52 ↓)
mPLUG-Owl-pt 35.57 42.08/1.79(40.29 ↓) 57.72/3.88(53.84 ↓)
mPLUG-Owl-instr 36.74 44.35/2.94(41.41 ↓) 56.61/7.53(49.08 ↓)
Random Chance 25.0 33.33 50.0

Table 14: Results of answer set pruning on MMBench dataset. Numbers in each represent original
accuracy, accuracy after adversarial attack, and relative performance drop.

Method Original 4 Choices 3 Choices 2 Choices

InstructBLIP7B 64.91 72.61/45.28(27.33 ↓) 79.62/51.15(28.47 ↓)
InstructBLIP13B 67.12 72.79/50.42(22.37 ↓) 81.27/57.30(23.97 ↓)
OpenFlamingo 38.99 46.58/3.81(42.77 ↓) 59.65/7.42(52.23 ↓)
Otter-Llama7B 55.24 61.73/25.11(36.62 ↓) 73.02/32.99(40.03 ↓)
Otter-MPT7B 61.31 66.71/28.53(38.18 ↓) 75.28/46.06(29.22 ↓)
Llava-7B 46.03 45.37/2.14(43.23 ↓) 59.42/3.66(55.76 ↓)
Llava-13B 59.13 65.20/35.66(29.54 ↓) 73.13/42.49(30.64 ↓)
Limber 34.93 44.23/2.56(41.67 ↓) 61.00/12.75(48.25 ↓)
mPLUG-Owl-pt 42.57 53.17/12.24(40.93 ↓) 56.42/16.90(39.52 ↓)
mPLUG-Owl-instr 43.74 50.17/11.15(39.02 ↓) 61.48/18.97(42.51 ↓)
Random Chance 25.0 33.33 50.0
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Table 15: Performance comparisons of LLMs before and after adversarial attack with in-context
learning prompt. Numbers in each represent original accuracy, accuracy after adversarial attack, and
relative performance drop. Red shading indicates experiments where the permutation attack reduced
performance below chance level. All models suffer substantially with most experiments leading to
below chance performance.

Method MMLU ARC-c BoolQ SocialiQA MedMCQA
Llama2-7B 45.80/11.16 (34.64 ↓) 47.04/ 7.98 (39.06 ↓) 61.79/ 8.23 (53.56 ↓) 52.00/15.71 (36.29 ↓) 37.96/ 1.60 (36.36 ↓)
Llama2-13B 55.37/21.69 (33.68↓) 61.80/21.63 (40.17 ↓) 67.16/38.29 (28.87 ↓) 61.21/34.14 (27.07 ↓) 39.78/ 7.35 (32.43 ↓)
Llama2-70B 68.86/41.30 (27.56↓) 80.00/51.50 (28.50 ↓) 76.39/56.21 (20.18 ↓) 71.60/49.85 (21.75 ↓) 49.61/ 7.35 (42.26 ↓)
Vicuna-v1.5 49.89/19.61 (30.28↓) 58.37/23.43 (34.94 ↓) 64.04/29.60 (34.44 ↓) 64.99/38.33 (26.66 ↓) 39.28/ 7.67 (31.61 ↓)
Vicuna-v1.5-13B 55.80/27.33 (28.47↓) 69.27/38.80 (30.47 ↓) 68.96/42.14 (26.82 ↓) 66.07/44.42 (21.65 ↓) 41.80/11.90 (29.90 ↓)
WizardLM-13B 48.93/14.40 (34.53↓) 58.20/21.12 (37.08 ↓) 67.49/42.11 (25.38 ↓) 63.46/31.78 (31.68 ↓) 34.87/ 6.32 (28.55 ↓)
InternLM-7B 48.36/15.90 (32.46↓) 56.14/17.34 (38.80 ↓) 65.83/26.41 (39.42 ↓) 59.47/30.30 (29.17 ↓) 32.63/ 2.56 (30.07 ↓)
InternLM-20B 60.50/32.14 (28.36↓) 78.28/54.42 (23.86 ↓) 85.20/82.91 ( 2.29 ↓) 79.48/65.97 (13.51 ↓) 43.61/13.92 (29.69 ↓)
Falcon-7b 26.95/ 0.00 (26.95↓) 34.74/ 0.09 (34.65 ↓) 55.35/ 2.66 (52.69 ↓) 36.29/ 0.55 (35.74 ↓) 28.12/ 0.07 (28.05 ↓)
MPT-7B 38.73/ 5.21 (33.52 ↓) 37.76/ 1.06 (36.70 ↓) 58.46/ 7.03 (51.43 ↓) 41.61/ 2.53 (39.08 ↓) 26.31/ 1.60 (24.71 ↓)
Random Chance 25.0 25.0 50.0 33.33 25.0

Table 16: Comparisons of different attacks on the MMLU Dataset. In-context learning (ICL) im-
proves the zero-shot performance, and attacks on in-context examples can decrease the performance.
However, our adversarial attack has the biggest impact on the final performance (largest drop).

Model Original 0-shot ICL ICL Permutation ICL Search Permutation Attack
Llama2-7B 40.91 45.80 35.09 34.46 6.17
Llama2-13B 52.22 55.37 46.65 46.07 18.33
Llama2-70B 64.68 68.86 59.82 59.68 33.16
Vicuna-v1.5 48.57 49.89 40.85 41.92 18.09
Vicuna-v1.5-13B 54.68 55.80 54.65 49.17 26.27
WizardLM-13B 48.60 48.93 39.98 48.27 15.87
InternLM-7B 45.72 48.36 37.35 38.17 10.45
InternLM-20B 59.14 60.50 54.94 54.45 29.52
Falcon-7b 31.66 26.95 27.18 26.79 2.49
MPT-7B 35.60 38.73 30.51 27.33 3.52

Table 17: Comparisons of different attacks on the ARC-Challenge Dataset. In-context learning
(ICL) improves the zero-shot performance, and the attack on in-context examples can decrease
the performance. However, our adversarial attack has the biggest impact on the final performance
(largest performance drop).

Model Original 0-shot ICL ICL Permutation ICL Search Permutation Attack
Llama2-7B 47.04 54.16 45.75 38.20 7.98
Llama2-13B 61.80 66.70 59.31 53.91 21.63
Llama2-70B 80.00 84.55 80.00 79.23 51.5
Vicuna-v1.5 58.37 60.60 54.33 50.64 23.43
Vicuna-v1.5-13B 69.27 72.02 66.44 60.52 38.8
WizardLM-13B 58.20 59.74 49.01 43.26 21.12
InternLM-7B 56.14 65.06 55.54 51.59 17.34
InternLM-20B 78.28 80.52 76.74 74.33 54.42
Falcon-7b 34.74 37.98 28.46 22.15 0.09
MPT-7B 37.76 41.26 31.99 26.37 1.06
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Table 18: Comparisons of different attacks on the BoolQ Dataset. In-context learning (ICL) im-
proves the zero-shot performance, and the attack on in-context examples can decrease the perfor-
mance. However, our adversarial attack has the biggest impact on the final performance (largest
performance drop).

Model Original 0-shot ICL ICL Permutation ICL Search Permutation Attack
Llama2-7B 61.79 63.85 51.49 40.09 8.23
Llama2-13B 67.16 65.84 54.95 54.27 38.29
Llama2-70B 76.39 84.62 66.42 55.29 56.21
Vicuna-v1.5 64.04 69.51 61.47 57.71 29.60
Vicuna-v1.5-13B 68.96 80.24 71.90 68.23 42.14
WizardLM-13B 67.49 76.33 55.62 54.14 42.11
InternLM-7B 65.83 57.55 48.56 51.43 26.41
InternLM-20B 85.20 86.33 83.79 81.41 82.91
Falcon-7b 55.35 57.61 53.47 39.45 2.66
MPT-7B 58.46 58.99 55.15 44.02 7.03

Table 19: Comparisons of different attacks on the SocialIQA Dataset. In-context learning (ICL)
improves the zero-shot performance, and the attack on in-context examples can decrease the per-
formance. However, our adversarial attack has the biggest impact on the final performance (largest
performance drop).

Model Original 0-shot ICL ICL Permutation ICL Search Permutation Attack
Llama2-7B 52.00 57.63 46.37 33.52 15.71
Llama2-13B 61.21 67.14 55.78 45.75 34.14
Llama2-70B 71.60 75.64 66.99 64.53 49.85
Vicuna-v1.5 64.99 64.38 56.81 47.80 38.33
Vicuna-v1.5-13B 66.07 68.58 58.96 51.07 44.42
WizardLM-13B 63.46 62.64 50.97 43.19 31.78
InternLM-7B 59.47 64.64 52.66 46.16 30.30
InternLM-20B 79.48 78.86 75.49 70.47 65.97
Falcon-7b 36.29 36.89 31.34 28.25 0.55
MPT-7B 41.61 42.91 33.87 20.78 2.53
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Table 20: Comparisons of different attacks on the MedMCQA Dataset. In-context learning (ICL)
improves the zero-shot performance, and the attack on in-context examples can decrease the per-
formance. However, our adversarial attack has the biggest impact on the final performance (largest
performance drop).

Model Original 0-shot ICL ICL Permutation ICL Search Permutation Attack
Llama2-7B 37.96 39.67 32.10 26.57 1.60
Llama2-13B 39.78 39.74 33.24 28.46 7.35
Llama2-70B 49.61 51.78 41.37 41.76 7.35
Vicuna-v1.5 39.28 38.32 30.72 27.96 7.67
Vicuna-v1.5-13B 41.80 43.22 36.72 30.68 11.90
WizardLM-13B 34.87 36.54 26.24 23.59 6.32
InternLM-7B 32.63 37.43 28.69 25.18 2.56
InternLM-20B 43.61 42.58 38.14 33.20 13.92
Falcon-7b 28.12 29.79 21.88 14.03 0.07
MPT-7B 26.31 32.24 19.64 17.05 1.60

Table 21: Results of using different sampling strategies and temperatures on MMLU dataset: be-
fore/after permutation.

Model Greedy Decoding Temperature=0.5 Temperature=1.5 Top-k Sampling Nucleus Sampling
Llama2-7B 40.91/6.17 28.39/0.03 10.35/0.00 21.71/0.00 21.95/0.00
Llama2-13B 52.22/18.33 44.00/3.67 13.94/0.00 32.54/0.00 32.42/0.02
Llama2-70B 64.68/33.16 58.13/12.56 17.66/0.00 44.21/0.07 44.44/0.42
Vicuna-v1.5 48.57/18.09 47.64/12.29 34.43/0.04 42.71/3.60 44.77/8.10
Vicuna-v1.5-13B 54.68/26.27 53.71/21.65 38.18/0.11 49.24/7.34 51.99/17.10
WizardLM-13B 48.60/15.87 47.56/12.43 38.11/0.57 44.61/5.86 45.83/10.30
InternLM-7B 45.72/10.45 0.01/0.00 0.53/0.00 0.16/0.00 0.07/0.00
InternLM-20B 59.14/29.52 33.53/3.89 19.81/0.00 30.82/0.31 31.91/1.24
Falcon-7B 31.66/2.49 0.02/0.00 0.46/0.00 0.06/0.00 0.01/0.00
MPT-7B 35.60/3.52 0.01/0.00 0.67/0.00 0.12/0.00 0.04/0.00

Table 22: Comparisons of position bias of Vicuna-13B with setting ground truth answers of in-
context examples to specific positions.

A B C D

Original positional bias 47.33 70.00 51.73 52.04
Moving ICL answers to A 57.98 63.28 55.28 47.37
Moving ICL answers to B 58.13 61.39 56.22 49.02
Moving ICL answers to C 56.81 63.61 54.49 48.68
Moving ICL answers to D 58.02 60.64 54.45 50.99
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Table 23: Comparisons of position bias of InternLM-7B with setting ground truth answers of in-
context examples to specific positions.

A B C D

Original positional bias 45.72 37.23 65.12 41.49
Moving ICL answers to A 31.55 74.76 44.70 43.42
Moving ICL answers to B 38.71 73.49 43.94 42.47
Moving ICL answers to C 31.58 69.05 49.27 46.47
Moving ICL answers to D 32.63 69.39 44.34 51.22

Table 24: Comparisons of position bias of InternLM-20B with setting ground truth answers of in-
context examples to specific positions.

A B C D

Original positional bias 51.05 68.75 53.47 62.35
Moving ICL answers to A 51.33 72.52 62.81 55.29
Moving ICL answers to B 49.70 73.07 64.34 56.31
Moving ICL answers to C 48.01 70.00 64.36 60.61
Moving ICL answers to D 46.99 67.54 62.20 65.72

Table 25: Comparisons of Pearson correlation scores of different symbol sets on ARC-Challenge
dataset averaged over different models.

Symbol Set Pearson Correlation Original Accuracy Permuted Accuracy

Capital Letters vs. Lowercase Letters 0.76 55.06 vs. 54.87 23.73 vs. 21.68
Capital Letters vs. Roman Numerals 0.36 55.06 vs. 52.49 23.73 vs. 19.33
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Figure 4: The correlation analysis of Llama2-13B model’s predictions across different pairs of op-
tions symbols of each permutation reveals a notable finding: the low correlation score between
permutation predictions when using capital letters (A/B/C/D) and Roman numerals (I/II/III/IV) sug-
gests that the model may have learned shortcuts or spurious correlations linking option symbols with
answer content.
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Table 26: Comparison of positional bias and our adversarial permutation attack on A-OKVQA
dataset. While position bias exists, its impact is moderate. In contrast, our adversarial method
severely degrades performance, usually below random chance level.

Method Original A B C D Permutation Attack
InstructBLIP-7B 74.06 67.16 75.28 75.90 75.11 51.62
InstructBLIP-13B 77.90 77.29 72.75 80.35 73.54 55.38
OpenFlamingo 64.68 52.34 72.77 41.19 35.86 3.58
Otter-Llama7B 57.99 83.14 53.45 55.02 44.10 28.30
Otter-MPT7B 68.21 53.36 79.74 69.00 65.59 43.19
LLaVA-7B 52.91 77.18 22.71 14.85 10.94 0.09
LLaVA-13B 63.14 69.43 77.79 63.76 48.08 25.85
Limber 39.57 47.77 55.72 31.88 27.11 1.22
mPLUG-Owl-pt 39.91 33.26 45.16 47.57 36.49 1.83
mPLUG-Owl-instr 37.12 34.25 41.27 45.78 39.55 2.01

Table 27: Impact of majority vote, contextual calibration (C-Calibration), and maximum confidence
(M-Confidence) defenses against the permutation attack on the A-OKVQA dataset. Contextual
calibration fails completely. Majority vote and M-Confidence ameliorates the attack, but do not
completely restore performance. Red shading indicates below-chance results.

Method Original Adversarial Attack Majority Vote C-Calibration M-Confidence
InstructBLIP-7B 74.06 51.62 (22.44 ↓) 57.47 (16.59 ↓) 38.12 (35.94 ↓) 69.79(4.27 ↓)
InstructBLIP-13B 77.90 55.38 (22.52 ↓) 60.26 (17.64 ↓) 45.99 (31.91 ↓) 70.83 (7.07 ↓)
OpenFlamingo 46.90 3.58 (43.32 ↓) 15.12 (31.78 ↓) 7.98 (38.92 ↓) 44.20 (2.70 ↓)
Otter-Llama7B 57.99 28.30 (29.69 ↓) 27.63 (30.36 ↓) 21.33 (36.66 ↓) 38.29 (19.70 ↓)
Otter-MPT7B 68.21 43.19 (25.02 ↓) 55.11 (13.10 ↓) 42.46 (25.75 ↓) 51.97 (16.24 ↓)
LLaVA-7B 52.91 0.09 (52.82 ↓) 27.86 (25.05 ↓) 8.23 (44.68 ↓) 50.04 (2.87 ↓)
LLaVA-13B 63.14 29.52 (33.62 ↓) 53.36 (9.78 ↓) 28.94 (34.20 ↓) 64.80 (1.66 ↑)
Limber 39.57 1.22 (38.35 ↓) 38.69 (0.88 ↓) 3.59 (35.98 ↓) 38.14 (1.43 ↓)
mPLUG-Owl-pt 39.91 1.83 (38.08 ↓) 14.33 (25.58 ↓) 4.28 (35.63 ↓) 15.21 (24.70 ↓)
mPLUG-Owl-instr 37.12 2.01 (35.11 ↓) 12.01 (25.11 ↓) 2.19 (34.93 ↓) 13.37 (23.75 ↓)

Q: Which continent is marked?
A. Asia B. America
C. South America  D. Africa

Q: Which continent is marked?
A. South America   B. America
C. Asia D. Africa

Permutate the Choices A B      C      D

A B      C      D

(×)

(  )

Figure 5: Qualitative results of permutations of answer options and the corresponding model (Otter-
Llama) predictions. The example is selected from the ScienceQA dataset.
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