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Suddenly, a man shouted, “Fire!” The man and women joined in. Two children cried together. In no time, thousands
of people were shouting, thousands of children were crying, and countless dogs were barking. Amid the chaos,
there were sounds of collapsing buildings, explosions, and strong winds, all happening at once. There were also cries
for help, the sounds of buildings being dragged, voices of looting, and water splashing everywhere.
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Text-to-Audio
Generation Model

Lack of Fundamental Abilities:
1. Event Occurrence Prompt-following
2. Event Sequence Prompt-following

3. Acoustic and Harmonic Quality

Unpleasant background noise Only sound of burning

Figure 1: The audio description is from a classic Chinese essay “Kou Ji”’, which vividly depicts a
performer using only vocal mimicry to recreate an entire dramatic scene. The existing Text-to-Audio
generation model struggles to generate such narrative and multi-event audios. The generated audio
often fails to contain all events in the described sequence while maintaining acoustic quality and
harmony.

ABSTRACT

Text-to-audio (T2A) generation has achieved remarkable progress in generating a
variety of audio outputs from language prompts. However, current state-of-the-
art T2A models still struggle to satisfy human preferences for prompt-following
and acoustic quality when generating complex multi-event audio. To improve
the performance of the model in these high-level applications, we propose to en-
hance the basic capabilities of the model with AI feedback learning. First, we
introduce fine-grained Al audio scoring pipelines to: 1) verify whether each event
in the text prompt is present in the audio (Event Occurrence Score), 2) detect
deviations in event sequences from the language description (Event Sequence
Score), and 3) assess the overall acoustic and harmonic quality of the generated
audio (Acoustic Harmonic Quality). We evaluate these three automatic scor-
ing pipelines and find that they correlate significantly better with human pref-
erences than other evaluation metrics. This highlights their value as both feed-
back signals and evaluation metrics. Utilizing our robust scoring pipelines, we
construct a large audio preference dataset, T2A-FeedBack, which contains 41k
prompts and 249k audios, each accompanied by detailed scores. Moreover, we
introduce T2A-EpicBench, a benchmark that focuses on long captions, multi-
events, and story-telling scenarios, aiming to evaluate the advanced capabilities
of T2A models. Finally, we demonstrate how T2A-FeedBack can enhance cur-
rent state-of-the-art audio model. With simple preference tuning, the audio gen-
eration model exhibits significant improvements in both simple (AudioCaps test
set) and complex (T2A-EpicBench) scenarios. The project page is available at
https://T2Afeedback.github.io


https://T2Afeedback.github.io
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1 INTRODUCTION

Recent Text-to-Audio (T2A) generation models (Huang et al.l 2023bga; [Liu et al. [2023a; 2024;
Ghosal et al., |2023; Majumder et al.| 2024} |Vyas et al.| [2023)) have made drastic performance im-
provements. By trained on massive audio-text data (Gemmeke et al.l 2017; |Fonseca et al., [2021}
Chen et al.} 2020} Kim et al.,2019), these generative models learn to generate diverse sounds with a
given language prompt. For audio generation, generating harmonious multi-event audio or describ-
ing a story with audio has important applications in music (Agostinelli et al, 2023)), advertising,
video-audio generation (Luo et al| [2024; Wang et al. [2024), etc. However, as shown in Figure. E],
existing audio generation models are struggling to generate harmonious and high-quality audio from
narrative and complex descriptions, which limits the potential for high-level applications.

The failure of the generated results is often demonstrated in three aspects: 1) cannot fully include all
the events described, 2) cannot accurately follow the order of all the events described, and 3) cannot
organize all the events harmoniously. Therefore, the model performance in multi-event scenarios is
determined by its capabilities in these three fundamental aspects.

To improve the model’s performance across more advanced applications, we focus on strengthening
the audio generation model’s fundamental abilities. Inspired by feedback learning in large language
models (Ouyang et al., [2022; |Bai et al., 2022; Touvron et al., |2023), we propose creating an au-
dio preference dataset centered on three abilities necessary for generating harmonic and complex
audio: 1) Event Occurrence Prompt-Following, 2) Event Sequence Prompt-Following, and 3)
Acoustic&Harmonic Quality. Based on the preference information, we can refine the model’s core
abilities, resulting in better results in both simple and challenging scenarios.

However, due to the scarcity of audio data and the challenges of annotating the scale of user prefer-
ences, it is difficult to collect massive audio preference datasets that only rely on human annotators.
To fill this void, we explore using Al feedback (Cui et al., [2023; |Lee et al., 2023} |Yuan et al.| 2024;
Burns et al.| 2023) in text-to-audio generation, utilizing Al models to rank audios instead of re-
lying on human annotators. Compared to manual annotation, automating the data collection and
annotation process reduces the cost of obtaining audio preference data and enhances scalability.

Specifically, we develop three Al scoring pipelines to evaluate the generated audio in a fine-grained
and holistic manner, corresponding to three core capabilities:

» Event Occurrence Score: To specifically check whether each event occurs in, we calculate
the audio-text semantic matching score for each described event separately. A lower score
suggests that the corresponding event might be absent from the audio.

» Event Sequence Score: To verify the correctness of event order, we analyze the start and end
times of each event and compare them with the event order outlined in the text prompt. A
higher score implies a greater similarity between the event sequences in caption and audio.

* Acoustics&Harmonic Quality: Drawing inspiration from aesthetic scoring methods used
in image quality scoring, we manually annotate acoustic and harmonic quality for audio
samples. These data are then used to train an automatic acoustic&harmonic predictor.

We confirm that our three scoring functions show a stronger correlation with human evaluations
compared to existing automatic audio evaluation methods (Wu et al.| 2023bj [Xie et al.,2024). Con-
sequently, in addition to their application in ranking preference data, these scoring functions can be
used as evaluation metrics that more effectively capture human preferences across different aspects.

Leveraging these advanced Al scoring pipelines, we establish a comprehensive data collection and
annotation framework. As a result, we construct T2A-Feedback, a large audio preference dataset
comprising 41,627 captions and 249,762 generated audios, each annotated with detailed scores.

Furthermore, to evaluate the higher-level capabilities of text-to-audio models in multi-event scenar-
ios, we introduce a more challenging benchmark, T2A-EpicBench, which features longer, more
imaginative, and story-telling captions for audio generation. We enhance the advanced text-to-audio
diffusion model, Make-an-Audio 2 (Huang et al.| [2023a), with T2A-Feedback. Our results show
that using T2A-Feedback not only effectively improves the basic capabilities of the model in simple
AudioCaps benchmark, but also emergently improves the performance in complex T2A-EpicBench.
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2 RELATED WORK

2.1 TEXT-TO-AUDIO GENERATION

Text-to-audio generation is an emerging field that aims to convert textual descriptions into corre-
sponding audio outputs. EXisting text-to-audio generation methods can be divided into two cat-
egories: Diffusion-based and Language model-based. Diffusion-based techniques have gained
prominence for generating high-quality, realistic audio by modeling the process of denoising.
These methods, like Make-an-Audio (Huang et al., 2023bza), AudioLDM (Liu et al.,|[2023a;|2024),
Tango (Ghosal et al.| |2023; Majumder et al., |2024)), start with random noise and iteratively refine
it to produce coherent audio over a series of denoising steps. On the other hand, Language model-
based methods (Borsos et al.,2023; |Agostinelli et al., 2023} |Cideron et al.,2024) tokenize audios as
acoustic discrete tokens, and predict the tokens within an auto-regressive model conditioned on text
mputs.

The above models acquire the ability to generate diverse audio by training on large-scale audio-text
datasets. However, current datasets like AudioSet (Gemmeke et al.| 2017)), AudioCaps (Kim et al.,
2019), and FSD50k (Fonseca et al.,|2021) only provide tag-level annotations or short captions. As a
result, when processing long, detailed language prompts, existing models often produce low-quality,
noisy outputs and struggle to accurately follow the text. Due to the difficulty of annotating detailed
audio captions, scaling rich and accurate audio descriptions remains a challenge. In this work, we
focus on enhancing the model’s basic abilities in event occurrence, sequence, and harmony, thereby
improving its performance in both simple scenarios and advanced applications.

2.2 PERFERENCE TUNING WITH HUMAN& AT FEEDBACK

Tuning generative models according to human preferences has emerged as a standard practice for
improving the quality of outputs. By tuning with feedback information on different aspects, the
model can be improved and aligned with human preferences in corresponding aspects. Traditionally,
this preference data used for tuning relied heavily on human evaluators who rank multiple generated
results, assessing their quality based on various criteria such as relevance, coherence, and aesthetic
value (Bai et al., [2022; Touvron et al.| 2023} |Ouyang et al., 2022} Kirstain et al., 2023} |Liang et al.,
2024; 'Wu et al . [2023a; |Cideron et al., [2024]).

While effective, manual human annotation is costly and time-consuming, which greatly hampers the
scalability of preference tuning across more diverse generative tasks. To address the difficulty, more
recent developments have focused on leveraging pre-trained Al models to automate the process of
scoring generated content (Cui et al., 2023; |Lee et al., 2023 | Yuan et al.,|2024; Burns et al., |2023).
Such an Al feedback approach has achieved impressive improvements in large language models.

Recently, some studies have attempted preference fine-tuning in text-to-audio generation models.
One recent paper related to our work, Tango2 (Majumder et al.,|2024), utilizes contrastive language-
audio pre-training (CLAP) (Wu et al.| 2023b) to rank audio generated by the Tango model. However,
CLAP can only evaluate the global alignment between audio and text but falls short in assessing the
fine-grained details, like detailed event occurrence, sequence, and harmony. In this paper, we con-
struct more robust Al audio scoring pipelines with fine-grained recognition ability. Our method
shows a much stronger correlation with human preference and the constructed dataset brings signif-
icant improvement to the current text-to-audio generation model.

2.3 TEXT-TO-AUDIO EVALUATION METRIC

Existing evaluation metrics for audio generation, such as FAD and IS, assess audio distributions
but cannot evaluate the quality of individual samples. Additionally, many studies rely on similarity
scores from the CLAP model to assess global audio-text semantic alignment. PicoAudio (Xie et al.,
2024) uses a text-to-audio grounding model (Xu et al., [2024) to detect audio segments based on
language prompts. However, there remains a lack of fine-grained evaluation methods for assessing
detailed event occurrence, sequencing, and acoustic quality. Our research fills this gap by creating
robust audio Al scoring pipelines, that show a strong correlation with humans, and significantly
surpass alternative methods.
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Figure 2: The overview of event occurrence and sequence scoring pipelines.

3 T2A-FEEDBACK

In this section, we first dive into the three Al audio scoring pipelines: (i) Event Occurrence Prompt-
following, in Section. (ii) Event Sequence Prompt-following, in Section. [3.2} (iii) Acoustic
Quality, in Section. We then describe the specific data generation and sorting method for the
T2A-Feedback dataset in Section. 3.4l

3.1 EVENTS OCCURRENCE PROMPT-FOLLOWING

Generating audio that accurately reflects the events described in a given prompt is the fundamental
requirement of prompt-following. However, when multiple events are included in the text descrip-
tion, current text-to-audio generation models often struggle to generate each event precisely. To
improve the generation model’s event occurrence prompt-following ability, we first build an Al
pipeline to determine the occurrence of events in audio.

Previous methods primarily utilize contrastive language-audio pre-training (CLAP) (Wu et al.
2023b) over the audios and language descriptions to assess their semantic relevance. However,
in multi-event scenarios, the sentence-level matching score struggles to identify event-level mis-
alignment, and can not pinpoint which specific events are present and which are not, as shown in
Figure.[5] To accurately identify misaligned events, we propose to measure the audio-text semantic
alignment at the event-level. To this end, we first separate the language description and audio into
basic events, as shown in the “Event Separation” part of Figure. 2] Specifically, we utilize a large
language model (LLM) (Jiang et al., 2023) to decompose descriptions into event captions accord-
ing to the described order. Meanwhile, we employ an advanced audio separation model (Liu et al.,
2023b) to segment the audio into event-level sub-audios based on these event captions. By calcu-
lating the similarity between each event-level description and its corresponding sub-audio in CLAP
space, we can gain clearer insights into the specific aligned and misaligned events.

To encourage the models to comprehensively generate all described events, for each audio-text pair,
we select the lowest value among all event-level audio-text matching scores as the Event Occur-
rence Score. For audios generated from the same caption, a higher score indicates that the audio is
more likely to contain all the described events.

3.2 EVENTS SEQUENCE PROMPT-FOLLOWING

In addition to generating all events, whether these events occur in the temporal order described
in the caption is also a crucial aspect of prompt-following. Some recent work attempts to detect
the sequence of events in audio. Tango2 (Majumder et al., [2024) computes the CLAP matching
score between the temporal description and corresponding audios, but we find the sentence-level
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CLAP score is not sensitive to the temporal description in captions, as demonstrated in Figure. 5]
and Table. 2| On the other hand, PicoAudio (Xie et al.,|2024)) employs audio grounding model (Xu
et al., 2024) to detect audio segments. However, due to the limitation of the training scale, the
generalization performance of the audio grounding model is limited.

To robustly analyze audio event sequences, we propose a new pipeline for event sequence analysis.
Similar to event occurrence, we first use the LLM and audio separation model to extract event-level
descriptions and their corresponding sub-audios. For each separated audio track, we determine the
event’s start and end times based on volume levels. Specifically, we normalize the volume to a range
of [0,1], and the period where the normalized volume exceeds a certain threshold is identified as the
event’s duration.

In multi-event scenarios, there are multiple complex temporal relationships. To comprehensively
assess the temporal alignment between the language prompt and the generated audio, and to specif-
ically identify which temporal relationships are accurate and which are misaligned, we employ
Kendall’s 7 coefficient. This widely used non-parametric statistic measures rank correlation be-
tween two variables. Considering n events and their n(n — 1) event pairs, we use LLM to analyze
the relationships between each event pair in the language description and extract the event sequence
in the audio based on the starting time of each event. The Events Sequence Score (e.g., Kendall’s
T coefficient between event sequences in language and audio) is calculated as:

C-D
7—:n(nfl) M

where C' represents the number of concordant event pairs between the description and the audio, D
denotes the number of discordant ones. Higher 7 indicates a greater alignment of the event sequence
in the generated audio with the text description. Specifically, 7 = 1 signifies that the event sequence
in the generated audio is identical to the language description, while 7 = —1 indicates that the
sequences are completely reversed.

3.3 ACOUSTIC&HARMONIC QUALITY

In addition to generating all events accurately following the language prompt, organically integrating
different events to create a pleasant-sounding effect is also one of the basic capabilities. However,
current audio generation models often produce low-quality and noisy results.

To alleviate this challenge, we first develop an audio acoustic&harmonic quality predictor. Inspired
by the image aesthetic predictor in[Schuhmann et al.|(2022), we first manually score audio samples
on a scale from 1 to 4 according to their quality. Two annotators independently score the audio
samples according to the same criteria, and samples with consistent scores are accepted as training
data. The detailed scoring criteria are as follows:

Annotators need to score the auditory quality of audio from the following four perspectives:
Acoustic Quality: Does the generated audio sound realistic and pleasant?

Harmony: Do different sound elements integrate well, forming a cohesive auditory scene?
Background Noise: Is there noise that disrupts the clarity and naturalness of the audio?
Dynamic Range: Are the different audio elements within their reasonable volume range?
The specific standards for each score are as follows:

Score  Standard

Poor audio quality; sounds unrealistic with disjointed elements,

1 severe background noise interference, and extremely limited dynamic range.

> Normal audio quality; some events are natural, but overall harmony is lacking.
Background noise affects clarity, and dynamic range is limited.

3 Good audio quality; most events are realistic with harmonious integration.
Background noise is minimally disruptive, and dynamic range is reasonable.

4 Excellent audio quality; all events are very realistic with perfect integration,

well-managed background noise, and wide dynamic range.
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Figure 3: Histograms of three different scores in T2A-Feedback.

Using the human-annotated data, we train a linear predictor on the top of CLAP audio embeddings.
With the high-quality pre-trained representation, we find that, akin to aesthetic score predictors
for images, a small amount of annotated data can yield a generalized subjective quality predictor.
Specifically, we train the acoustic predictor with 1,000 meticulously annotated audio samples using
cross-entropy loss. The output of the predictor is termed the Acoustic& Harmonic Quality.

3.4 PREFERENCE DATA GENERATION

To generate diverse and comprehensive audio, we first augment the text prompts used for audio
generation. We begin with the captions from the training set of the large-scale audio-text dataset,
AudioCaps. By employing an LLM, we decompose these captions into fundamental event descrip-
tions and calculate their semantic similarity within the CLAP space to filter out non-overlapping,
basic event descriptions. Then, we prompt the LLM with randomly selected events to create varied
and natural multi-event audio descriptions, with explicit temporal ordering. Finally, we combine the
enhanced 3,769 captions with the 37,858 captions from the training set of AudioCaps, serving as the
prompt source for audio generation.

As highlighted in (Cui1 et al.| (2023)), diversity is crucial for preference datasets. To mitigate the
potential bias of using a single audio generation model and to enhance the generalization of the gen-
erated data, we employ three advanced audio generation models: Make-an-Audio2, AudioLDM?2,
and Tango2. Each model generates 2 audio per caption, resulting in a total of 6 audio files for each
caption. In summary, we produce 249,762 audios from 41,627 descriptions. For audios generated
from the same captions, we combine three rankings of each score to derive the overall ranking.

The histogram plots of the scores on all the generated audios are shown in Figure.[3] The distribution
of Event Occurrence Scores and Acoustic&Harmonic Quality is similar to a Gaussian distribution.
Since most descriptions contain one or two sequential events, Event Sequence Scores are concen-
trated between -1 and 1. As noted in|Liang et al.|(2024), this discriminative score distribution ensures
a balanced ratio of negative to positive samples, enabling effective preference tuning.

4 T2A-EPICBENCH

Current text-to-audio generation models are mainly evaluated and compared on the AudioCaps test
set. However, the captions in AudioCaps are generally short and simple, averaging 10.3 words
per sentence. Specifically, 17% of the captions feature only a single event, and 44% contains two
events. This is not enough to assess the model’s capabilities in more advanced applications involving
detailed, multi-event, and narrative-style audio generation.

To fill this gap, we propose T2A-EpicBench, consisting of 100 detailed, multi-event, and story-
telling captions. Each caption averages 54.8 words and 4.2 events, with 86% containing four events
and the remainder featuring five or more. Initially, we manually write 10 detailed captions, then
used them as in-context examples to prompt LLM for generating the remaining captions. All 100
captions are manually reviewed for accuracy. Several examples from T2A-EpicBench are included
in the Appendix.
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Figure 4: Visualization of the predicted scores from our Al scoring pipeline. We highlight the first,
second, and third events described in the captions using blue, brown, and green, respectively.

Caption CLAP | EOS | ESS Caption CLAP | EOS | ESS
v followed by two 729 | 650 1.0 A ? followed by a laughing from| 469 | 386 1.0
sneezes then nose sniffling [young girls
Add v followed by two | 7 5 | 519 A followed by a laughing 496 | 40
Event | 7]"7/¢¢2¢S then nose sniffling o || 00 from young girls, and then a child speaks | (+2.7) | (-34.6) | 033
, and then a dog snoring : )
Nose sniffling followed by two sneezes 71.6 | 65.0 10 A laughing from young girls followed by a | 48.2 | 38.6 10
Event | |then -13)| © | loud burping *+1.3)] (0 )

Figure 5: Qualitative comparison between CLAP scores and EOS/ESS scores reveals distinct sen-
sitivities to misalignment. By adding or reversing events in the ground-truth caption, we create
captions that are misaligned with the audio in terms of event occurrence and sequence.

5 EXPERIMENT

5.1 ANALYSIS OF AI SCORING PIPELINES

5.1.1 QUANTITATIVE ANALYSIS

Table 1: Comparison about

Evaluation of Event Occurrence Score (EOS) To evaluate the
event occurrence

scoring model’s capability in recognizing whether audios con-
tain all the events described in the text, we propose a missing
event recognition task. We construct distracting captions for the =~ Random Guess 50.0%
AudioCaps test set, by adding random event descriptions to the CLAP 77.5%
ground-truth captions. This task challenges models to distinguish EOS(ours) 90.9%
the ground-truth caption from the constructed interference cap-
tions. There are 3,701 samples in total for this task.

Accuracy

‘We mainly compare our EOS with sentence-level CLAP score. The caption with the higher matching
score to the audio is considered as the prediction. As shown in Table [T} our EOS score showcases
a notable advantage over CLAP, demonstrating the superiority of event-level audio-text matching in
identifying whether all events are correctly contained in audios.

Evaluation of Event Sequence Score (ESS) Table 2: Comparison about event sequence. ESS
To verify the ability to distinguish the align- stands for using 0.z as volume thresholds.

ment of event sequences in text and audiq, Method | Accuracy | Fl Score | Correlation
we collect 450 two-event samples from Pi-

coAudio’s training set, and reverse the events CLAP 49.6 ‘ - ‘ -
orders in the description as interference cap- ~ PicoAudio 71.6 0.787 0.30
tion. Using this dataset, we compare different ESSo ; 79.6 0.814 0.43
methods by calculating the accuracy of rec- ESS 0. 3 791 0.851 0.52
ognizing the ground-truth description versus ESS 0: 5 78.0 0.769 0.52

the interference description, and by evaluat-
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ing the Segment F1 Score (Mesaros et al.,2016) for detecting the start and end times of each audio
event. Moreover, we manually annotate temporal order alignment for 100 audios generated from our
temporal-enhanced captions and compute the correlation between different methods and humans.

The results of event sequences are provided in Table. 2] We compare ESS with CLAP score and
the audio grounding model (Xu et al.l 2024) used by PicoAudio (Xie et al., | 2024). Compared to
baselines, our method distinguishes the ground-truth caption from the distracting one more accu-
rately and achieves higher F1 scores in detecting the start and end times of events in audio. More
importantly, our method shows a much stronger correlation to human annotations.

Additionally, we investigate various volume thresholds used to determine the duration of each event.
In Table |2} we test thresholds of 0.1, 0.3, and 0.5. ESS consistently performs better than other
methods across most settings, with 0.3 providing the optimal results and thus chosen as the default
setting.

Evaluation of Acoustic& Harmonic Quality (AHQ) To validate our acoustic&harmonic predic-
tor, we independently annotate 100 additional audios as a test set. The correlation between the model
predictions and human labels on the test set is 0.786, showing strong generalization ability and high
consistency with human preferences.

Moreover, we explore building the Acoustic&Harmonic Predic-

tor on top of various pre-trained audio models and evaluate how Table 3: AHQ Predictor on
well each variant correlates with human preferences. The results different base models.

in Table [3| show that the predictor built on CLAP (Wu et al] Correlation
2023b) outperforms those based on self-supervised models like -
AudioMAE (Huang et alll 2022) and BEAT (Chen et al| 2022). AudioMAE 0613
Similarly, the image aesthetics predictor (Schuhmann et al.| 2022]) BEAT 0.519

is built on the CLIP model (ITharco et al} [2021). This advan- ___CLAP 0.786

tage may stem from the fact that self-supervised models are task-

agnostic, whereas CLIP and CLAP align with language, resulting in better semantic discrimination.

5.1.2 QUALITATIVE ANALYSIS

We show some example predictions from our scoring
pipelines in Figure. ] where our methods can specifi- 11 2 2 ! 2
cally identify the misaligned event, the out-of-order event
order, and the disharmony between events in the audio.
Moreover, we provide the confusion matrix of acous-
tic&harmonic predictor on these 100 test samples in Fig-
ure. [6] which further demonstrates the statistical robust-
ness of our predictor.

5
Moreover, we provide the qualitative comparison be- 4l 2 2 2
tween our EOS and ESS with the single CLAP score, in

Human Score
w [IS]
- -
) -
- )
w o
—_ —
(=] W

Figure.[5] For the ground-truth audio-caption pairs from 1 2 3 4
AudioCaps, we perturb the captions by adding an event or ) ?redmd Score .
shuffling the order of events. We find that the CLAP score Figure 6: Confusion matrix.

is not sensitive to these perturbations and even yields a
higher score with the incorrect, perturbed caption. In contrast, our EOS and ESS scores more accu-
rately reflect the alignment between audio and text regarding event occurrence and event order.

5.2 ANALYSIS OF PREFERENCE TUNING

To demonstrate the effect of T2A-Feedback dataset in improving audio generation model, we fine-
tuning the advanced text-to-audio model, Make-an-Audio 2 (Huang et al., |2023a), with two pref-
erence training methods: Direct Preference Optimization (DPO) (Wallace et al., 2024)) and Reward
rAnked FineTuning (RAFT) (Dong et al.,|2023). Another audio preference dataset, Audio-Alpace,
proposed by Majumder et al.| (2024) is the main baseline for comparison. Both the widely-used
AudioCaps and the new T2A-EpicBench are used as benchmarks, corresponding to applications in
simple and complex scenarios respectively.



Under review as a conference paper at ICLR 2025

Table 4: Evaluation results on AudioCaps. The EOS, ESS and AHQ represent the Event Occurrence
Score, Event Sequence Score and Acoustic&Harmonic Quality, respectively.

| FAD| KL| ISt CLAPT | EOS.t ESS.t AQ.t
Make an Audio 2 | 1.82 144 1003 69.97 | 4205 053 233
Preference Tuning

RAFT | 193 129 1037 72.23 44.85 0.53 2.45
DPO 320 124 1227 7236 4442  0.55 2.14

T2A-Feedback RAFT‘ 229 133 11.66 73.10 ‘ 4553  0.51 2.50

Audio-Alpaca

(ours) DPO 264 131 1135 74.00 | 4958 057 257

Table 5: Evaluation results on T2A-EpicBench. The wingos, winggs and wing g represent the
win rates of tuned models over the original model in terms of Event Occurrence, Event Sequence
and Acoustic&Harmonic Quality, respectively.

Al Scoring Human Scoring
WiIlEOS WinESS winAHQ WinEOS WinESS winAHQ
Make an Audio2 | -(14.21) -(0.03) -(1.96) | - - -

Preference Tuning

Audio-Alpaca RAFT‘53%(15.73) 51%(0.04) 42%(1.69) 57% 54% 53%

DPO | 55%(16.87) 52%(0.03) 49%(1.96) 65% 64% 59%

T2A-Feedback RAFT | 52%(15.85) 52%(0.05) 54%(2.14) | 61% 57% 61%
(ours) DPO | 58%(19.96) 64%(0.13) 52%(2.10) | 68% 62% 68 %

5.2.1 QUANTITATIVE RESULTS ON AUDIOCAPS

The classical automated metrics (FAD, KL, IS, and CLAP), as well as our three new scores (EOS,
ESS, and AHQ) are employed to quantitatively evaluate and compare different model variants.

The quantitative results are provided in Table.[d FAD, KL, and IS assess audio fidelity by evaluating
the distribution of the generated audio. For these metrics, both the preference dataset and training
methods result in similar overall improvements. CLAP is commonly used to measure the semantic
alignment between the input prompt and the generated audio. While both Audio-Alpaca and T2A-
Feedback improve the CLAP score, T2A-Feedback yields greater gains.

Moreover, as analyzed in Section. [5.1.1] the proposed EOS and ESS are more accurate than CLAP
in judging event occurrence and event sequence, and AHQ shows a strong correlation to human
preference in acoustic and harmony. We calculate the three scores for different model variants to
evaluate audio generation results more accurately and comprehensively. The significantly better
results across these three metrics demonstrate that T2A-Feedback yields far greater improvements
compared to Audio-Alpaca, and the DPO method outperforms RAFT in our setting.

5.2.2 QUANTITATIVE RESULTS ON T2A-EPICBENCH

Since there are no ground-truth audios for the long and story-telling text prompts in T2A-EpicBench,
we primarily measure the win rate of preference-tuned models against the original model outputs
across three key areas: event occurrence, event sequence, and acoustic & harmonic quality. In
addition to scoring the generated audio with our AI pipeline, we conduct a user study where two
human annotators evaluate and select the better output based on each criterion.

The results on T2A-EpicBench, are illustrated in Table. 5] indicate that Audio-Alpaca provides
only marginal improvements in handling detailed captions and multi-event scenarios, whereas T2 A-
Feedback significantly and comprehensively enhances the model’s performance.
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a). AudioCaps

Before tuning After tuning Before tuning

R

The sound of ¢/ er fills the air. Then, a vehicle horn
blares loudly and mpeatedly

After tuning

oice carries in the room, followed by sharp whistle cut

through the silence.

b). T2A-EpicBench
Before tuning After tuning Before tuning After tuning

In a serene garden, the gentle rustle of leaves dances in the breeze.

onversati 165 with the sound of
Suddenly, a bird chirps cheerfully from a nearby branch A child's wave 7 he hull Suda'enly a foghorn blares,
giggle rings out as they run through the flowers. Just then, a soft bell | warning nearby vessels Just then, the engine roars to life as the ferry
tolls in the distance, reminding everyone of the passing time. | prepares to leave the dock, signaling adventure ahead.

Figure 7: Visualization of the impact of preference tuning with T2A-Feedback.

It is worth noting that T2A-Feedback does not include long audio descriptions. The average word
count per caption in T2A-Feedback is 9.6, which is considerably shorter than the 54.8 average word
number of T2A-EpicBench prompts, and even shorter than Audio-Alpaca’s 10.2 words per caption.
T2A-Feedback does not directly provide additional long caption data, and the 65% average win rate
in the user study reinforces that by focusing on improving the basic capabilities of short captions,
the audio generation model can emergently learn to handle more complex long-text and multi-event
scenarios.

5.2.3 QUALITATIVE FINDINGS

To better demonstrate the effectiveness of preference tuning on T2A-Feedback, we visualize some
examples of tuning the original model on our T2A-Feedback with the DPO method in Figure. [7}
For the examples of short captions in Figure. [7h, while both models before and after fine-tuning can
produce clean audio, the fine-tuned model successfully generates all events in the described order.
In the more challenging case from T2A-EpicBench, the original model often generates noisy, low-
quality audio, making it difficult to distinguish the events. Preference tuning on T2A-Feedback, as
shown in Figure. [7p, significantly reduces background noise and generates audio that more faithfully
captures both events and their orders.

6 CONCLUSION

In this paper, we build Al scoring pipelines to evaluate three fundamental capabilities of audio
generation: Event Occurrence Prompt-following, Event Sequence Prompt-following, and Acous-
tics&Harmonic Quality. Using these automatic evaluation metrics, which are highly correlated with
human preferences, we build a large-scale audio preference dataset, T2A-Feedback. Experimen-
tally, we extensively demonstrate the accuracy and robustness of our Al scoring pipelines. The three
scores demonstrate a strong correlation to human preferences, which highlights its potential to bet-
ter evaluate text-to-audio generation models. To assess the model’s ability in complex multi-event
scenarios, we propose a new challenging benchmark, T2A-EpicBench, which requires models to
generate detailed and narrative audios. Using our T2A-Feedback to tune the audio generation model
effectively improves its capabilities in the three core aspects and achieves better performance in both
simple (AudioCaps) and complex (T2A-EpicBench) scenarios.
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REPRODUCIBILITY STATEMENT

The newly proposed audio Al scoring pipeline, preference dataset (T2A-Feedback) and bench-
mark (T2A-EpicBench) will be open-sourced. In addition, in Section [3] [5] and [A] we describe
our pipelines, evaluation tasks and data, and other implementation details in detail to ensure the
reproducibility of our method.
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A IMPLEMENTATION DETAILS

Audio Generation During the audio generation process in T2A-Feedback, all models are set to
100 denoising steps with the DDIM scheduler, and classifier-free guidance is configured at 4.0.

Training Details For Acoustic&Harmonic Predictor, we train an extra two-layer MLP projector
on the top of CLAP audio representations using Cross Entropy(CE) loss. The predictor is trained
using the Adam optimizer with a learning rate of 1e-2.5 for 6 epochs on 1,000 manually annotated
data. For preference tuning, we employ the AdamW optimizer with a learning rate of le-5 for both
DPO and RAFT strategy, and train one epoch for both Audio-Alpaca and T2A-Feedback.

B EXAMPLES FROM T2A-EPICBENCH

1. Atalively beach, the waves crash rhythmically against the shore, providing a soothing
melody. Suddenly, a seagull caws overhead, drawing attention from sunbathers. Children‘s
giggles fill the air as they splash in the water. Just then, a distant drumbeat starts, adding a
festive atmosphere to the scene.

2. In a vibrant classroom, the teacher’s voice resonates as she explains a lesson.
Suddenly, a pencil rolls off a desk and clatters to the floor, causing a brief distraction. A
student whispers a joke, provoking a wave of giggles. Just then, the school bell rings,
signaling the end of the period and the excitement of freedom.

3. In a busy city street, the honking of cars creates a chaotic symphony. Suddenly, a
bicycle bell rings sharply as a cyclist weaves through traffic. The murmur of pedestrians
chatting fills the air, blending with the distant sound of street performers playing music. Just
then, the sound of footsteps approaches, adding to the urban rhythm.

4. At a busy construction site, the sound of drills and saws fills the air, creating a
symphony of labor. Suddenly, a heavy beam falls with a loud thud, causing workers to
pause. A whistle blows, signaling a break, and conversations buzz among the crew. Just
then, a truck backs up, beeping insistently as it arrives.

5. In a vibrant downtown area, the honking of cars creates a chaotic symphony. Sud-
denly, a street vendor shouts out their specials, trying to attract customers. The laughter of
people enjoying a nearby café adds warmth to the urban sounds. Just then, a bus rumbles
past, its engine growling as it continues on its route.

6. In a vibrant market, the chatter of vendors fills the air as they hawk their goods.
Suddenly, a loud crash echoes as a stack of crates falls over, causing startled gasps. A nearby
musician strums a guitar, trying to restore the upbeat mood. Just then, a child squeals with
delight, tugging at their parent’s hand to explore further.

7. In a sunlit meadow, the buzzing of bees fills the air as they flit from flower to
flower. Suddenly, a cow moos softly from a nearby barn, adding a pastoral charm. A couple
of children giggle as they run through the grass, their joyful sounds mingling with nature.
Just then, a breeze stirs, causing the wind chimes to tinkle gently.

8. In a tranquil village square, the chirping of crickets fills the evening air. Suddenly,
a family gathers around a fire pit, laughter and chatter rising in the dusk. The crackle of
flames adds warmth to the scene. Just then, the distant call of an owl echoes, signaling the
approach of night.

9. In a dense forest, the soft rustle of leaves whispers through the trees as a gentle
breeze blows. Suddenly, a twig snaps underfoot, startling a nearby deer, which bounds away
with a soft thud. A bird sings a cheerful melody, filling the air with life. Just then, the distant
sound of a waterfall cascades, creating a peaceful backdrop to the vibrant sounds of nature.
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C LLM PROMPTS

The LLM used in Section 1 to separate basic events in the audio description, and in Section 2 for
caption augmentation, is Mistral-7B-instruct-v0.2. The respective prompts are provided below:

99, 99 G

messages = [ “role”: “user”, “content”: “‘I will provide a description of an audio, you need
to break down the sentence and figure out the single sound elements. Use the words that
appears in the sentence and appropriately replace the demonstrative pronouns if possible,
such as it, she, him. The output should only include the decomposed sub-events. Here are
some examples:

Description: A man speaks while ducks honk then birds vocalize. ™’,

9% ¢

“role”: “assistant”, “content”: “Answers: (a man speaks while duck honk)@(birds vocal-
ize)”,
“role”: “user”, “content”: “Description: Rain falls on a hard surface.” ,

99, < CLINY3

“role”: “assistant”, “content’”: “Answers: (rain falls on a hard surface)”,

29, < 99 <

“role”: “user”, “content”: “Description: A female makes a speech into a microphone and it
is very loud.” ,

99, < CLINY3

“role”: “assistant”, “content”: “Answers: (a female makes a speech into a microphone)”,

99, < CEINNT3

“role”: “user”, “content”: “Description: {new caption}” ]

9, < CLINY]

messages = [ “role”: “user”, “content”: “‘Generate a sentence that contains several different
sounds to make a relative whole story, organize them by words indicating time order, don’t
describe the things unrelevant to sound. First print out the generated sentence and later list
the single sound events in the time order they occur. Here are some examples:

999

Events: honking of a toy trumpet; dog’s howl; child’s laughter” ,

“role”: ““assistant”, “content”: “Answer: Child’s laughter rings out, followed by the obnox-
ious honking of a toy trumpet. After that, a dog’s howl reverberates.
(child’s laughter) @ (honking of a toy trumpet) @(dog’s howl)”,

99, < CLINNT3

“role”: “user”, “content”: “Events: {new caption} ” ]
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