

000 001 002 003 004 005 NOCTIS: NOVEL OBJECT CYCLIC THRESHOLD BASED 006 INSTANCE SEGMENTATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920

054 Second, we propose a *cyclic* thresholding (CT) mechanism, a novel patch-filtering strategy designed to
 055 handle repetitive textures and visually similar patterns that can lead to many-to-one matches. Unlike
 056 nearest neighbor matching (e.g. Simakov et al. (2008); Oron et al. (2018)), CT relaxes strict mutual
 057 matching requirements, tolerating some distance between a patch and its *cyclic*/round-trip patch,
 058 while filtering out unreasonable ones (see Section 3.3). This yields a more reliable proposal-template
 059 matching and improves the appearance-based scoring process.

060 Third, we are the first, to the best of our knowledge, to incorporate mask and bounding-box confidence
 061 values, readily available from modern mask proposal generators, into the final object matching score.
 062 While such confidence measures are commonly produced by detection and segmentation models
 063 (e.g. Grounding-DINO (Liu et al., 2024); SAM (Kirillov et al., 2023); FastSAM (Zhao et al., 2023);
 064 Grounded-SAM (Ren et al., 2024b) (GSAM)), they have not been exploited in this task before, and
 065 we demonstrate their positive impact through ablation studies.

066 Finally, we test our approach on the seven core datasets of the BOP 2023 challenge (Hodan et al.,
 067 2024) for the “2D instance segmentation of unseen objects” task; and we show that our method
 068 NOCTIS, without further training, performs better than other RGB and RGB-D methods in terms of
 069 the Average Precision (AP) metric; challenging the assumption that depth information is required for
 070 top-tier performances in this domain. Moreover, we surpass the best published method NIDS-Net (Lu
 071 et al., 2025) by a significant margin of absolute 3.4% mean AP; while for the unpublished ones, we
 072 are on par with the (updated) best one and overcoming the second best one by 0.8%.

073 Our contributions can be summarized as follows:

- 074 • We propose NOCTIS, an RGB-only zero-shot novel objects instance segmentation frame-
 075 work that uses foundation models and performs on par or better than the SOTA ones.
- 076 • An unbiased appearance score that aggregates over all templates to remove selection bias.
- 077 • A novel cyclic thresholding mechanism for robust patch matching to mitigate matching
 078 instability from repetitive textures.
- 079 • Inclusion of the proposal’s confidence as a weight for the object matching score.

083 2 RELATED WORK

085 **Pre-trained models for visual features** The usage of pre-trained foundation models has become
 086 pervasive due to their strong performance across diverse downstream tasks. Notably, research efforts
 087 such as Visual Transformers (ViT) (Dosovitskiy et al., 2021); CLIP (Radford et al., 2021); DINOv2
 088 and others (Caron et al., 2021; Cherti et al., 2023); have focused on large-scale image representation
 089 learning to improve generalization. These models encapsulate extensive visual knowledge, making
 090 them suitable as backbones for a variety of tasks, including image classification, video understanding,
 091 depth estimation, semantic segmentation, and novel instance retrieval. The main challenge, however,
 092 lies in harnessing their capabilities effectively for a specific target domain. We adopt DINOv2 as our
 093 feature extractor, leveraging its ability to produce high-quality and robust descriptors for previously
 094 unseen instances.

095 **Segment anything** Another area where foundation models currently excel is image segmentation/
 096 semantic mask generation, with Segment Anything (SAM), a ViT-based model, being the
 097 forerunner. Since SAM can be computationally demanding, several variations have been proposed for
 098 real-world scenarios to reduce costs by replacing components with smaller (less parameters/weights)
 099 ViT models (Zhang et al., 2023; Ke et al., 2023), or even CNN-based ones (Zhao et al., 2023; Zhou
 100 et al., 2024; Wang et al., 2024). Notably, its successor, SAM 2 (Ravi et al., 2025), while having some
 101 additional features like video tracking, achieves a higher quality in terms of Mean Intersection over
 102 Union (mIoU) than SAM and is also more efficient computation- and memory-wise. In recent times,
 103 it has become an established practice to combine the strengths of multiple models in a modular way
 104 to solve complex problems. Indeed, a standard practice to tackle segmentation problems consists of
 105 combining open-set object detectors (Li et al., 2022; Jiang et al., 2024; Ren et al., 2024a; Liu et al.,
 106 2024) with a SAM variant. We adopt GSAM 2 in this modular spirit but extend its utility beyond
 107 simple mask generation by incorporating its bounding box and mask confidence values directly into
 our scoring framework; an element absent in prior work.

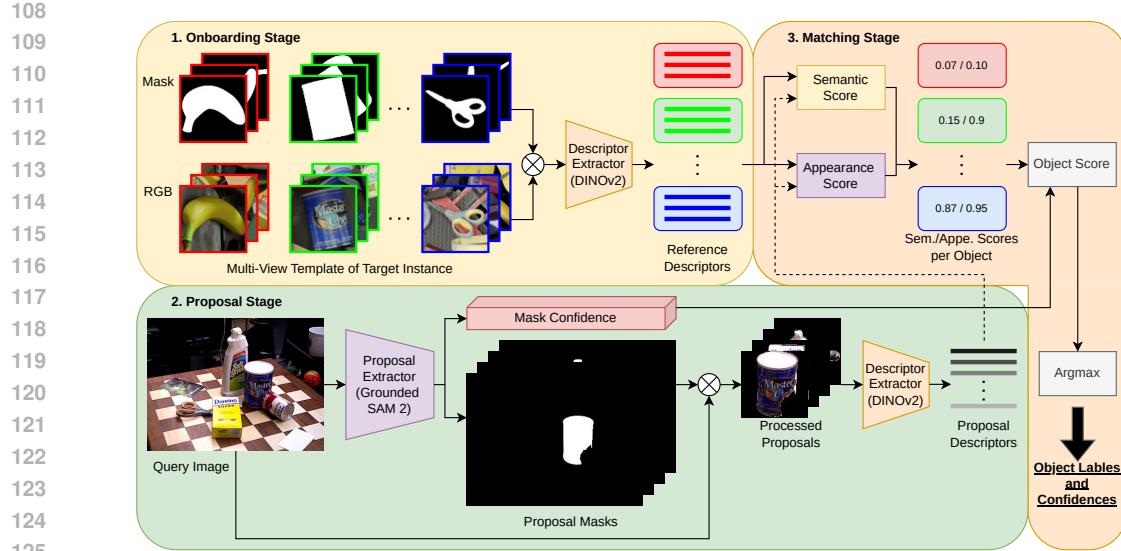


Figure 1: The three NOCTIS stages: onboarding stage, represents each object via descriptors from templates (Section 3.1); proposal stage (Section 3.2), where proposals (masks) and their descriptors from the query RGB image are generated; lastly, in the matching stage, object labels and confidences are assigned to each proposal based on their descriptors (Section 3.3).

Segmentation of unseen objects Traditionally, instance segmentation methods, like Mask R-CNN (He et al., 2017) or similar (Ren et al., 2015; Lin et al., 2020; Su et al., 2022), used to be fine-tuned on specific target objects (Sundermeyer et al., 2023). Even though these methods have been demonstrated to be robust in challenging scenarios with heavy occlusions and lighting conditions, they lack the flexibility to handle novel objects without retraining, known as a “closed-world” setting; a limitation that significantly hinders their applicability in real-world settings. To overcome this limitation, progress was made in the task of novel object instance segmentation, where ZeroPose (Chen et al., 2025) and CNOS (Nguyen et al., 2023) were among the first notable ones solving it. The core architecture of the latter, using template views as references and a SAM variant for proposal creation while classifying these via a similarity-based image matching technique, has laid the foundation for subsequent models such as SAM-6D and NIDS-Net. These works inspired us to adopt said approach as our starting point.

3 METHOD

In this section, we explain our approach for performing the instance segmentation, i.e. generating segmentation masks and labeling them, for all novel objects within an RGB query image $\mathbf{I} \in \mathbb{R}^{3 \times W \times H}$, given just a set of RGB template images of said objects and without any (re-)training; where W and H are the width and height in pixels, respectively, and 3 is the number of the channels (RGB). Our approach, as shown in Figure 1, is carried out in three steps. Starting with the onboarding stage in Section 3.1, visual descriptors are extracted from the template images via DINOv2; followed by the proposal stage in Section 3.2, where all possible segmentation masks and their descriptors, from the query RGB image, are generated with GSAM 2 and DINOv2, respectively. Lastly, in Section 3.3, the matching stage, each proposed mask is given an object label and a confidence value, based on the determined object scores using the visual descriptors.

3.1 ONBOARDING STAGE

The goal of the onboarding stage is to generate multiple visual descriptors to represent each of the N^O different novel objects \mathbb{O} . In the following, in all the descriptions and notations, we will consider just one object $O \in \mathbb{O}$; this is done to keep the notation simple. In detail, the object O is represented by a

162 set of N^T template images \mathbb{T} ($\mathbb{R}^{3 \times W' \times H'}$ images) and their corresponding ground truth segmentation
 163 masks showing the object from different predefined viewpoints. Given some fixed viewpoints, there
 164 are multiple possible sources for these templates and masks, e.g. pre-render them with renderers like
 165 Pyrender (Matthew Matl, 2021) or BlenderProc (Denninger et al., 2023); or even extract them out of
 166 some selected frames, e.g. annotated videos, where the object is not too occluded and has a viewpoint
 167 close to a predefined one.

168 In a preprocessing step, the segmentation masks are used to remove the background and to crop the
 169 object instance in each template; then, the crop size is unified via resizing and padding. Afterwards,
 170 the instance crops are fed into DINOv2 creating a class embedding/cls token $f_T^{cls} \in \mathbb{R}^{N_{cls}^{dim}}$ and N_T^{crop}
 171 patch embeddings/patch tokens $F_T^{patch} = [f_1^{patch} | \dots | f_{N_T^{crop}}^{patch}] \in \mathbb{R}^{N_T^{crop} \times N_{patch}^{dim}}$ for each template
 172 $T \in \mathbb{T}$, where N_T^{crop} denotes the number of not masked out patches within the cropped template
 173 mask ($N_T^{crop} \leq N^{patch}$). The cropped templates are internally divided into $N^{patch} = 256$ patches,
 174 on a 16×16 grid, for the patch tokens. The cls token and patch tokens, together, form the visual
 175 descriptor of each template.

177 3.2 PROPOSAL STAGE

179 At this stage, all object proposals from the query image I are acquired. While previous works (Li
 180 et al., 2023; Shen et al., 2023; Chen et al., 2025; Nguyen et al., 2023; Lin et al., 2024) have employed
 181 various “pure” SAM-based proposal generators, we instead adopt GSAM 2 as a modified version
 182 of GSAM used in NIDS-Net. The original GSAM obtains the bounding boxes of all objects from
 183 Grounding-DINO (Liu et al., 2024), a pre-trained zero-shot detector, matching a given text prompt;
 184 then, it uses these as a prompt for SAM to create masks. GSAM 2 replaced its SAM component with
 185 the qualitative (w.r.t. mIoU) and performance-wise improved SAM 2.

186 Therefore, GSAM 2, with the text prompt “objects”, is applied to the query image to extract all
 187 foreground object proposals \mathbb{P} . Each of the N_I^{prop} proposals $p \in \mathbb{P}$ consists of a bounding box, a
 188 corresponding segmentation mask and a confidence score for both of them; note that N_I^{prop} changes
 189 according to I . All proposals whose confidence scores are lower than a threshold value or are too
 190 small, relative to the image size, are filtered out. Using the pipeline from the previous section, for
 191 each proposal p the preprocessing step creates the image crop I_p , which is then used by DINOv2
 192 to generate the cls token $f_{I_p}^{cls}$ and patch tokens $F_{I_p}^{patch}$; which form the visual descriptors for all
 193 proposals.

194 3.3 MATCHING STAGE

196 At the matching stage, we calculate for each proposal-object pair their corresponding matching score,
 197 using the previously gathered visual descriptors; then, we assign to each proposal the most fitting
 198 object label and a confidence score.

199 The object matching score s_p^{obj} , between a proposal p and an object O , represented by its templates
 200 \mathbb{T} , is made of different components; namely: the semantic score s_p^{sem} ; the appearance score s_p^{appe} ;
 201 and a proposal confidence $conf_p$.

202 **Semantic score** The semantic score s_p^{sem} is used as a robust baseline measure of similarity via
 203 semantic matching and is defined as the top-5 average of the N_T cosine similarity values between
 204 $f_{I_p}^{cls}$ and f_T^{cls} for all $T \in \mathbb{T}$ cls tokens, where the cosine similarity is defined as:

$$207 \text{cossim}(\mathbf{a}, \mathbf{b}) = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\|\mathbf{a}\| \cdot \|\mathbf{b}\|}, \quad (1)$$

209 with $\langle \cdot, \cdot \rangle$ denoting the inner product and $\|\cdot\|$ the Euclidean norm. If the vectors point in the same
 210 direction, they have a cossim value of 1, -1 for opposite directions and 0 for orthogonality. It was
 211 shown in CNOS (Nguyen et al., 2023, Section 4.3), that for this score, using the top-5 average as an
 212 aggregating function, is the most robust option out of: Mean; Max; Median and top-K Average.

214 **Appearance score with cyclic threshold** The semantic score alone represents a degree of similarity
 215 between the templates and a specific query object instance. Whenever two images show the same
 object, albeit with different viewpoints on it, this score should be high. Conversely, when two images

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

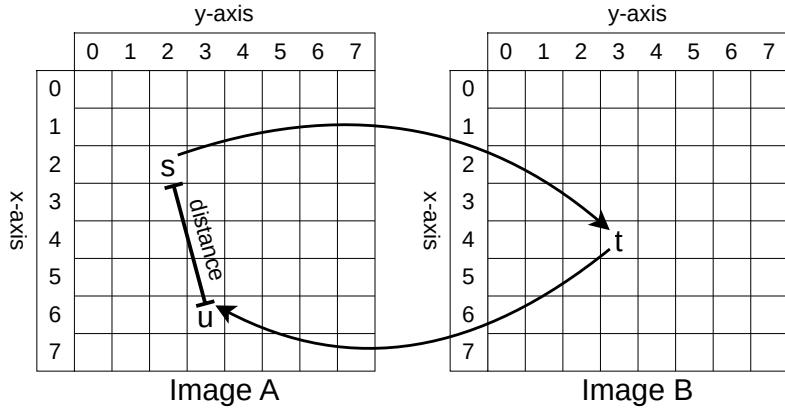


Figure 2: A general representation of the *cyclic* distance of patch s through t and u . Each image is divided into a 8×8 grid. Starting from patch s in image A , the most cosine similar patch in B is t . Vice versa, starting from t , its best match in A is u . The patch u is the *cyclic/round-trip* patch of s , their euclidean distance is called the *cyclic* distance.

are showing different objects, their similarity score should drop. However, there might be cases where two different objects, despite their different appearances, are still semantically similar to each other (e.g. two food cans). To address this issue, it is necessary to introduce the concept of an appearance score s_p^{appe} , which gives a way to discriminate between objects which are semantically similar, but with different patch/part-wise appearance. Indeed, one can consider the average of the best possible semantic scores for each proposal patch against all template patches using their respective *patch* tokens as a way to define it. Starting with each of the N_T proposal-template pairs, a sub-appearance score $s_{p,T}^{appe}$ is assigned for template $T \in \mathbb{T}$, which is defined as follows:

$$s_{p,T}^{appe} = \frac{1}{N_{I_p}^{crop}} \sum_{i=1}^{N_{I_p}^{crop}} \max_{j=1, \dots, N_T^{crop}} (cossim(\mathbf{F}_{I_p,:i}^{patch}, \mathbf{F}_{T,:j}^{patch})) \cdot \mathbf{1}_{cdist(I_p, T, i) \leq \delta_{CT}}, \quad (2)$$

where $\mathbf{F}_{I_p,:i}^{patch}$ represents the i -th column of the *patch* token matrix $\mathbf{F}_{I_p}^{patch}$; $\mathbf{F}_{T,:j}^{patch}$ the j -th column of \mathbf{F}_T^{patch} ; and $\mathbf{1}$ the indicator function, which is used to filter out certain patch pairs. As these sub-appearance scores show an inherent sensitivity to the visible parts of the object instances, thus to the viewpoint differences, they are aggregated into the final appearance score s_p^{appe} using the Max function (across the templates), to mitigate this phenomenon.

The idea behind the *cyclic* threshold (CT) filtering arises as DINOv2 descriptors can assign similar *patch* tokens to repetitive textures/similar looking parts (e.g. identical corners or surfaces), leading to many-to-one matches, which one would like to avoid via patch filtering of sorts. An often used technique to solve this issue is the nearest neighbor based image patch matching, e.g. for finding the most coherent pairs of patches Simakov et al. (2008) and points Oron et al. (2018); however, in practice, this incurs in a restrictive filtering, that is why we relaxed this bidirectional similarity aspect to account for a non strictly one-to-one mapping assumption between the template and the query regions, as different scene lighting and occlusions might dampen it. Therefore, our CT filtering allows a matching that is not just strictly mutual but permits a certain degree of tolerance, i.e. how many patches in the neighborhood of the considered ones, in terms of Euclidean distance, are still accepted.

In Figure 2, the general representation of the *cyclic* distance of patch s , through t and u , is given; where s and u belong to image A and t to B . Each example image is divided into an 8×8 grid for the sake of simplicity, resulting in 64 patches. From patch s in image A , we find t , the most similar patch of it in B , via the following function:

$$bestMatchIndex(\mathbf{F}_A^{patch}, \mathbf{F}_B^{patch}, i) = \underset{j=1, \dots, N_B^{crop}}{\operatorname{argmax}} cossim(\mathbf{F}_{A,:i}^{patch}, \mathbf{F}_{B,:j}^{patch}), \quad (3)$$

270 where $t = \text{bestMatchIndex}(\mathbf{F}_A^{\text{patch}}, \mathbf{F}_B^{\text{patch}}, s)$ using the DINOv2 *patch* tokens of A and B . Vice
 271 versa, starting from t , its best match in A is patch u ; by using the same function. We, therefore, call
 272 u the *cyclic*/round-trip patch of s and their euclidean distance, on the grid, the *cyclic* distance of s ,
 273 namely cdist .

274 Given the previous discussion regarding the mutual similarity principle, using a CT value of 0 is
 275 equivalent to mutual nearest neighbor based image patch matching. Therefore using the previously
 276 defined *cyclic* distance, our addition to the appearance score lies in the application of a patch filter,
 277 represented by the indicator function $\mathbf{1}$ in equation 2, to increase the score’s reliability/expressiveness;
 278 which allows for a relaxed mutual nearest neighbours matching. The function $\mathbf{1}_{\text{cdist}(I_p, T, i) \leq \delta_{CT}}$
 279 internally calculates the *cdist* for patch i of image crop I_p and template T , then checks if it is smaller
 280 than a predefined CT value. The default value for it is $\delta_{CT} = 5$, see also the Appendix Section A.1,
 281 where the effects of using different threshold values are discussed.

282 Lastly, to sum up our contributions to the appearance score, one can see that it significantly differs
 283 from the approach used in SAM-6D (Lin et al., 2024, Section 3.1.2), as its authors computed only
 284 the sub-appearance score for the single template of the object having the highest semantic score,
 285 thus resulting in a highly biased score. Indeed, as it was shown in CNOS (Nguyen et al., 2023,
 286 Section 4.4), the *cls* token contains insufficient information about matching viewpoints, potentially
 287 leading to low appearance values. Additionally, we included our CT filtering technique to improve
 288 the appearance score accuracy even further.

289 **Bounding box and segmentation mask confidence** Proposals might contain a high number of
 290 false positives; indeed, background regions and object parts might be misinterpreted as complete
 291 objects. To account for this, for each proposal p , the proposal confidence conf_p , as the average
 292 confidence value of its bounding box and segmentation mask, is included as a weighting factor for
 293 the object matching score in the next paragraph.

294 **Object matching score** By combining the previously mentioned scores and the proposal’s confi-
 295 dence, the object matching score s_p^{obj} is determined as follows:

$$s_p^{\text{obj}} = \frac{s_p^{\text{sem}} + w_{\text{appe}} \cdot s_p^{\text{appe}}}{1 + 1} \cdot \text{conf}_p, \quad (4)$$

296 where an appearance weight of $w_{\text{appe}} = 1$ computes the average. The object matching scores of
 297 all the N_I^{prop} proposals, over all possible N^O objects, are stored in the $N_I^{\text{prop}} \times N^O$ instance score
 298 matrix. Note that, as small CT values squash down the appearance scores, a $w_{\text{appe}} = 2$ is used.

303 **Object label assignment** In the last step, we simply apply the Argmax function across the ob-
 304 jects/rows of the instance score matrix. Each proposal gets assigned an object label and its object
 305 matching score as its corresponding confidence. Eventually, we obtain proposals consisting of: a
 306 bounding box of the object instance; its corresponding modal segmentation mask, which covers the
 307 visible instance part (Hodan et al., 2024); and an object label with a confidence score. To remove
 308 incorrectly labeled proposals and redundant ones, a confidence threshold filtering is applied with
 309 $\delta_{\text{conf}} = 0.2$ followed by a Non-Maximum Suppression, respectively.

311 4 EXPERIMENTS

313 In this section we first present our experimental setup (Section 4.1), followed by a comparison of our
 314 method with the SOTA ones, across the seven core datasets of the BOP 2023 challenge (Section 4.2).
 315 Moreover, we perform ablation studies regarding the score components’ choices in Section 4.3.
 316 Finally, in the last Section 4.4, we discuss some limitations of NOCTIS.

318 4.1 EXPERIMENTAL SETUP

320 **Datasets** We evaluate our method on the seven core datasets of the BOP 2023 challenge: LineMod
 321 Occlusion (LM-O) (Brachmann et al., 2014); T-LESS (Hodan et al., 2017); TUD-L (Hodan
 322 et al., 2018); IC-BIN (Doumanoglou et al., 2016); ITODD (Drost et al., 2017); HomebrewedDB
 323 (HB) (Kaskman et al., 2019) and YCB-Video (YCB-V) (Xiang et al., 2018). Overall those datasets
 contain 132 household and industrial objects, being textured or untextured, and are symmetric or

324 asymmetric; moreover, they are shown in multiple cluttered scenes with varying occlusion and
 325 lighting conditions.
 326

327 **Evaluation metric** As evaluation criterion for the “2D instance segmentation of unseen objects”
 328 task, we use the Average Precision (AP) following the standard protocol from the BOP 2023 challenge.
 329 The AP metric is computed as the average of precision scores, at different Intersection over Union
 330 (IoU) thresholds, in the interval from 0.5 to 0.95 with steps of 0.05.
 331

332 **Implementation details** To generate the proposals, we use GSAM 2, with an input text prompt
 333 “objects”, comprised of the Grounding-DINO model with checkpoint “Swin-B” and SAM 2 with
 334 checkpoint “sam2.1-L”. The corresponding regions of interest (ROIs) are resized to 224×224 , while
 335 using padding to keep the original size ratios. We use the default “ViT-L” model/checkpoint of
 336 DINoV2 (Oquab et al., 2024), for better comparability with previous works Nguyen et al. (2023); Lin
 337 et al. (2024); Lu et al. (2025), to extract the visual descriptors as 1024-dimensional feature vectors
 338 ($N_{cls}^{dim} = N_{patch}^{dim} = 1024$), where each *patch* token on the 16×16 grid represents 14×14 pixels.
 339 We use the “PBR-BlenderProc4BOP” pipeline with the same 42 predefined viewpoints, as described
 340 in CNOS (Nguyen et al., 2023, Sections 3.1 and 4.1), to select the templates representing every
 341 dataset object. See also the Appendix Section A.1, for a quick comparison between different types of
 342 template renderers.
 343 The main code is implemented in Python 3.8 using Numpy (Harris et al., 2020) and PyTorchPaszke
 344 et al. (2019) (Version 2.2.1 CUDA 11.8). To ensure reproducibility, the seed values of all the (pseudo-)
 345 random number generators are set to 2025. The tests were performed on a single Nvidia RTX 4070
 346 12GB graphics card and the average measured time per run, with one run using the same configuration
 347 on all the seven datasets, was approximately 90 minutes or 0.990 seconds per image.
 348

4.2 COMPARISON WITH THE STATE-OF-THE-ART

349 We compare our method with the best available results from the leaderboard² of the BOP challenges,
 350 comprising of the top-3 paper-supported methods: CNOS, SAM-6D and NIDS-Net; and the overall
 351 top-3 ones: “anonymity”, LDSeg and MUSE (November 2024 and July 2025 version); which do not
 352 have a paper or code publicly available. CNOS uses proposals from SAM or FastSAM and only the
 353 semantic score 3.3 for matching. SAM-6D uses the same proposals and semantic score as CNOS;
 354 additionally, it uses an appearance-based and geometric matching score of the single template with
 355 the highest semantic score; the latter score utilizes depth information to consider the shapes and sizes
 356 of instances during matching. NIDS-Net uses proposals from GSAM and the similarity between
 357 the weight adapter refined Foreground Feature Averaging (Kotar et al., 2023) embeddings together
 358 with SAM-6D’s appearance score. For the methods “anonymity”, LDSeg and MUSE, no further
 359 information nor clear details are available.

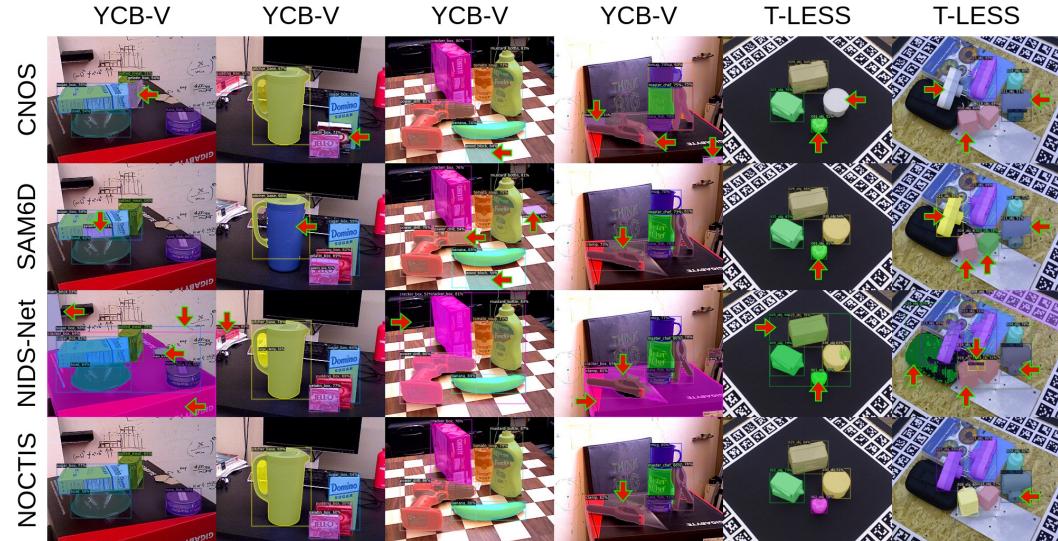
360 In the Table 1 we show the results for NOCTIS and the other methods on all seven datasets and
 361 the overall average. We surpass the best established method NIDS-Net by a significant margin of
 362 absolute 3.4% mean AP and we are on par with the best one (MUSE, July 2025 version); overcoming
 363 the second best undisclosed one by 0.8%. To further highlight that our pipeline performs better (in
 364 terms of mean AP score) than previous works like NIDS-Net, and that its results do not only stem out
 365 of a better foundation model; GSAM 2 was replaced with the older GSAM. The results in the last line
 366 of Table 1 show that, even when one makes this change, NOCTIS still achieves results comparable to
 367 the SOTA by showing an overall mean AP score of 0.513. Notably, our methodology outperforms
 368 the ones that are using depth data as well (see Section 4.4).

369 In Figure 3 we show some qualitative segmentation results of our method vs. the publicly available
 370 ones, where errors in the masks and/or classifications of the proposals are indicated by red arrows.
 371 One can clearly see that all the methods have their own strengths and weaknesses. CNOS and
 372 SAM-6D, for example, as they are using SAM/FastSAM as a proposal generator, have problems in
 373 differentiating between the objects and some of their parts. While NIDS-Net, due to its internal usage
 374 of GSAM, does not suffer from the previously mentioned problem, it still produces misclassifications
 375 in the form of labeling scene objects wrongly or by producing oversized bounding boxes around
 376 correctly identified objects, leading to multiple detections. NOCTIS, on the other hand, suffers
 377 less from said problems, but it is still prone to misclassification, like the other methods, when the
 378 objects are too similar looking or too close to each other; see columns 4 (left clamp) and 6 (bottom

²<https://bop.felk.cvut.cz/leaderboards/segmentation-unseen-bop23/bop-classic-core/>; Accessed: 2025-07-28

378
 379 Table 1: Comparison of NOCTIS against different methods on the seven core datasets of the BOP
 380 2023 challenge, w.r.t. the AP metric (higher is better). For each dataset, the best result is displayed in
 381 bold and the second best is underlined. NOCTIS(*) uses GSAM instead of GSAM 2.
 382
 383

BOP Datasets									
Method	Depth	LMO	TLESS	TUDL	ICBIN	ITODD	HB	YCBV	Mean
CNOS	-	0.397	0.374	0.480	0.270	0.254	0.511	0.599	0.412
SAM-6D	✓	0.460	0.451	0.569	0.357	0.332	0.593	0.605	0.481
NIDS-Net	-	0.439	0.496	0.556	0.328	0.315	0.620	0.650	0.486
MUSE	-	0.478	0.451	0.565	0.375	0.399	0.597	0.672	0.505
LDSeg	✓	0.478	<u>0.488</u>	0.587	0.389	0.370	0.622	0.647	<u>0.512</u>
anonymity	-	0.471	0.464	0.569	0.386	0.376	<u>0.628</u>	<u>0.688</u>	<u>0.512</u>
MUSE(new)	-	0.476	0.486	0.550	0.408	0.382	0.636	0.702	0.520
NOCTIS	-	0.489	0.479	<u>0.583</u>	<u>0.406</u>	<u>0.389</u>	0.607	0.684	0.520
NOCTIS(*)	-	0.484	0.483	0.567	0.391	0.386	0.613	0.664	0.513



415 Figure 3: Qualitative assessment of some segmentation results using CNOS, SAM-6D, NIDS-Net,
 416 and NOCTIS on YCB-V and T-LESS. The image addresses the strengths and limitations of these
 417 methods. The red arrows indicate errors in the segmentation masks and/or classifications of the
 418 proposals. For better visualization purposes, $\delta_{conf} = 0.5$ was used.
 419
 420

421 electric boxes and right adapters) for reference. Indeed, in the YCB-V dataset, due to the high
 422 similarity between the different sized clamps, one of them is easily confused with the other; the same
 423 is true for the electric boxes in T-LESS. Besides, the two stacked adapters are confused as one object
 424 and correspondingly misclassified. Overall, NOCTIS still displays fewer errors, on average, when
 425 compared to the other methods.
 426

4.3 ABLATION STUDIES

428 **Score components** In lines 1–6 of Table 2, we show the influence of the different score components
 429 on the mean AP metric to justify our architecture. Line 0 shows the result attained by the complete
 430 NOCTIS model as shown in Table 1. The combined use of semantic and appearance scores leads to a
 431 better mean AP score than just using them alone, as shown in lines 1 – 3. Line 4 then shows that the
 addition of the proposal confidence to the semantic score also increases the performances significantly.

432 Table 2: Ablation studies on the influence of the components on the mean AP metric. In the s^{appe}
 433 column, the values represent the corresponding value of w_{appe} , as shown in equation 4.
 434

	s^{sem}	s^{appe}	CT Filter	conf	Mean
437	0	✓	2	✓	✓
438	1	✓	-	-	0.464
439	2	-	1	-	0.480
440	3	✓	1	-	0.494
441	4	✓	-	-	0.494
442	5	✓	1	-	0.512
443	6	✓	1	✓	0.516

444
 445
 446 Furthermore, in a pure incremental fashion, one can see that adding the confidence to the pipeline in
 447 line 3, resulting in line 5, and on top of that adding the CT filter with a value of $\delta_{CT} = 5$ yields better
 448 results, see lines 5 and 6. As one can easily notice, the addition of the score components causes some
 449 clear performance gains; however, one cannot justify the inclusion of certain score components in
 450 our pipeline by the sheer increase in mean absolute AP score they provide on their own, as one is
 451 bound to meet diminishing returns at some point. Intuitively, getting a better mean AP score over all
 452 datasets is a daunting task, as some changes in the pipeline might result in better gains over some of
 453 them, but decreases over others. As a side note, line 1, when compared to the standard CNOS (see
 454 Table 1), emphasizes the importance of proposal mask quality; thus validating our proposal generator
 455 of choice, GSAM 2, against the previously used ones, i.e. SAM and FastSAM.

456 Further ablation studies regarding different CT values; the effect of w_{appe} on the mean AP score; and
 457 the usage of different renderers can be found in the Appendix Section A.1.
 458

459 4.4 LIMITATIONS

460 As seen in column 4 from Figure 3, our method does not perform at its highest when the objects
 461 are similar looking but different sized, e.g. all the clamps from YCB-V; or they are untextured (see
 462 column 6), e.g. the industrial models from ITODD. While these issues might be solved by using
 463 depth data, it does not seem that easy, as e.g. SAM-6D is still not able to solve this issue.
 464

465 Further discussion and limitations regarding the memory usage and runtime are present in the
 466 Appendix Section A.2.
 467

469 5 CONCLUSION

470 In this paper we presented NOCTIS, a new framework for zero-shot novel object instance segmentation;
 471 which leverages the foundation models Grounded-SAM 2 for object proposal generation and
 472 DINOv2 for visual descriptor based matching scores. The novelties introduced in Section 3 have
 473 proven to be largely effective; indeed, NOCTIS was able to perform better in terms of mean AP than
 474 all the other methodologies (barring MUSE July 2025 version), disclosed or not, on the seven core
 475 datasets of the BOP 2023 benchmark. This shows that it is not necessary to have overly complicated
 476 scores to achieve good performances. We hope that our work can be used as a new standard baseline
 477 to improve upon, especially regarding the formulation of a better scoring rule.
 478

481 REFERENCES

482 Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, and Carsten
 483 Rother. *Learning 6D Object Pose Estimation Using 3D Object Coordinates*, pp. 536–551. Springer
 484 International Publishing, 2014. ISBN 9783319106052. doi: 10.1007/978-3-319-10605-2_35. URL
 485 http://dx.doi.org/10.1007/978-3-319-10605-2_35.

486 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 487 Armand Joulin. Emerging properties in self-supervised vision transformers, 2021. URL <https://arxiv.org/abs/2104.14294>.

488

489 Jianqiu Chen, Zikun Zhou, Mingshan Sun, Rui Zhao, Liwei Wu, Tianpeng Bao, and Zhenyu He. Ze-
 490 ropose: Cad-prompted zero-shot object 6d pose estimation in cluttered scenes. *IEEE Transactions*
 491 *on Circuits and Systems for Video Technology*, 35(2):1251–1264, February 2025. ISSN 1558-2205.
 492 doi: 10.1109/tcsvt.2024.3482439.

493

494 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
 495 Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
 496 contrastive language-image learning. In *2023 IEEE/CVF Conference on Computer Vision and*
 497 *Pattern Recognition (CVPR)*, pp. 2818–2829. IEEE, June 2023. doi: 10.1109/cvpr52729.2023.
 498 00276. URL <http://dx.doi.org/10.1109/CVPR52729.2023.00276>.

499

500 Maximilian Denninger, Dominik Winkelbauer, Martin Sundermeyer, Wout Boerdijk, Markus Knauer,
 501 Klaus H. Strobl, Matthias Humt, and Rudolph Triebel. Blenderproc2: A procedural pipeline for
 502 photorealistic rendering. *Journal of Open Source Software*, 8(82):4901, 2023. doi: 10.21105/joss.
 503 04901. URL <https://doi.org/10.21105/joss.04901>.

504

505 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 506 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 507 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 508 In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,*
 509 *May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

510

511 Andreas Doumanoglou, Rigas Kouskouridas, Sotiris Malassiotis, and Tae-Kyun Kim. Recovering
 512 6d object pose and predicting next-best-view in the crowd. In *2016 IEEE Conference on*
 513 *Computer Vision and Pattern Recognition (CVPR)*, pp. 3583–3592, 2016. doi: 10.1109/CVPR.
 514 2016.390.

515

516 Bertram Drost, Markus Ulrich, Paul Bergmann, Philipp Härtinger, and Carsten Steger. Introducing
 517 mvtec itodd — a dataset for 3d object recognition in industry. In *2017 IEEE International*
 518 *Conference on Computer Vision Workshops (ICCVW)*, pp. 2200–2208, 2017. doi: 10.1109/ICCVW.
 519 2017.257. URL <https://ieeexplore.ieee.org/document/8265467>.

520

521 Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
 522 Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
 523 Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
 524 del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
 525 Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
 526 with NumPy. *Nature*, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.
 527 URL <https://doi.org/10.1038/s41586-020-2649-2>.

528

529 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *2017 IEEE*
 530 *International Conference on Computer Vision (ICCV)*, pp. 2980–2988, 2017. doi: 10.1109/ICCV.
 531 2017.322.

532

533 Stefan Hinterstoesser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt Konolige,
 534 and Nassir Navab. Model based training, detection and pose estimation of texture-less 3d objects
 535 in heavily cluttered scenes. In Kyoung Mu Lee, Yasuyuki Matsushita, James M. Rehg, and
 536 Zhanyi Hu (eds.), *Computer Vision – ACCV 2012*, pp. 548–562, Berlin, Heidelberg, 2013. Springer
 537 Berlin Heidelberg. ISBN 978-3-642-37331-2. doi: 10.1007/978-3-642-37331-2_42. URL
 538 https://link.springer.com/chapter/10.1007/978-3-642-37331-2_42.

539

540 Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl, Anders GlentBuch, Dirk Kraft,
 541 Bertram Drost, Joel Vidal, Stephan Ihrke, Xenophon Zabulis, Caner Sahin, Fabian Manhardt,
 542 Federico Tombari, Tae-Kyun Kim, Jiri Matas, and Carsten Rother. Bop: Benchmark for 6d
 543 object pose estimation. In *Proceedings of the European Conference on Computer Vision (ECCV)*,
 544 September 2018. URL https://openaccess.thecvf.com/content_ECCV_2018/papers/Tomas_Hodan_PESTO_6D_Object_ECCV_2018_paper.pdf.

540 Tomas Hodan, Martin Sundermeyer, Yann Labbe, Van Nguyen Nguyen, Gu Wang, Eric Brachmann,
 541 Bertram Drost, Vincent Lepetit, Carsten Rother, and Jiri Matas. Bop challenge 2023 on detection
 542 segmentation and pose estimation of seen and unseen rigid objects. In *Proceedings of the*
 543 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, pp. 5610–
 544 5619, June 2024. URL https://openaccess.thecvf.com/content/CVPR2024W/CV4MR/papers/Hodan_BOP_Challenge_2023_on_Detection_Segmentation_and_Pose_Estimation_of_CVPRW_2024_paper.pdf.

545 Tomáš Hodan, Pavel Haluza, Štepán Obdržálek, Jirí Matas, Manolis Lourakis, and Xenophon Zabulis.
 546 T-less: An rgb-d dataset for 6d pose estimation of texture-less objects. In *2017 IEEE Winter*
 547 *Conference on Applications of Computer Vision (WACV)*, pp. 880–888, 2017. doi: 10.1109/WACV.
 548 2017.103.

549 Qing Jiang, Feng Li, Zhaoyang Zeng, Tianhe Ren, Shilong Liu, and Lei Zhang. T-rex2: Towards
 550 generic object detection via text-visual prompt synergy, 2024. URL <https://arxiv.org/abs/2403.14610>.

551 Roman Kaskman, Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. Homebreweddb: Rgb-d
 552 dataset for 6d pose estimation of 3d objects. In *2019 IEEE/CVF International Conference on*
 553 *Computer Vision Workshop (ICCVW)*, pp. 2767–2776, 2019. doi: 10.1109/ICCVW.2019.00338.

554 Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu, Yu-Wing Tai, Chi-Keung Tang, and Fisher Yu.
 555 Segment anything in high quality, 2023. URL <https://arxiv.org/abs/2306.01567>.

556 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 557 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
 558 Segment anything. In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp.
 559 3992–4003, 2023. doi: 10.1109/ICCV51070.2023.00371.

560 Klemen Kotar, Stephen Tian, Hong-Xing Yu, Dan Yamins, and Jiajun Wu. Are these
 561 the same apple? comparing images based on object intrinsics. In A. Oh, T. Naumann,
 562 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Infor-*
 563 *mation Processing Systems*, volume 36, pp. 40853–40871. Curran Associates, Inc., 2023.
 564 URL https://proceedings.neurips.cc/paper_files/paper/2023/file/803c6ab3d62346e004ef70211d2d15b8-Paper-Datasets_and_Benchmarks.pdf.

565 Yann Labb , Justin Carpentier, Mathieu Aubry, and Josef Sivic. Cosopose: Consistent multi-view
 566 multi-object 6d pose estimation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
 567 Frahm (eds.), *Computer Vision – ECCV 2020*, pp. 574–591, Cham, 2020. Springer International
 568 Publishing. ISBN 978-3-030-58520-4.

569 Bowen Li, Jiashun Wang, Yaoyu Hu, Chen Wang, and Sebastian Scherer. Voxdet:
 570 Voxel learning for novel instance detection. In A. Oh, T. Naumann, A. Globers-
 571 son, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Infor-*
 572 *mation Processing Systems*, volume 36, pp. 10604–10621. Curran Associates, Inc.,
 573 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/21f1c5bbf2519321c1bee9bfa9edcd46-Paper-Conference.pdf.

574 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu
 575 Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and Jian-
 576 feng Gao. Grounded language-image pre-training. In *Proceedings of the IEEE/CVF*
 577 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10965–10975, June
 578 2022. URL https://openaccess.thecvf.com/content/CVPR2022/papers/Li_Grounded_Language-Image_Pre-Training_CVPR_2022_paper.pdf.

579 Jiehong Lin, Lihua Liu, Dekun Lu, and Kui Jia. Sam-6d: Segment anything model meets
 580 zero-shot 6d object pose estimation. In *Proceedings of the IEEE/CVF Conference*
 581 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 27906–27916, June 2024.
 582 URL https://openaccess.thecvf.com/content/CVPR2024/html/Lin_SAM-6D_SegmentAnythingModel_Meets_Zero-Shot_6D_Object_Pose_Estimation_CVPR_2024_paper.html.

594 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense
 595 object detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 42(2):318–327,
 596 February 2020. ISSN 1939-3539. doi: 10.1109/tpami.2018.2858826.

597

598 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 599 Li, Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. *Grounding DINO: Marrying DINO with
 600 Grounded Pre-training for Open-Set Object Detection*, pp. 38–55. Springer Nature Switzerland,
 601 November 2024. ISBN 9783031729706. doi: 10.1007/978-3-031-72970-6_3.

602 Yangxiao Lu, Jishnu Jaykumar P, Yunhui Guo, Nicholas Ruozzi, and Yu Xiang. Adapting pre-trained
 603 vision models for novel instance detection and segmentation, 2025. URL <https://arxiv.org/abs/2405.17859>.

604

605 Matthew Matl. Pyrender, 2021. URL <https://github.com/mmatl/pyrender>.

606

607 Van Nguyen Nguyen, Thibault Groueix, Georgy Ponimakin, Vincent Lepetit, and Tomas Hodan.
 608 Cnos: A strong baseline for cad-based novel object segmentation. In *Proceedings of the
 609 IEEE/CVF International Conference on Computer Vision (ICCV) Workshops*, pp. 2134–2140,
 610 October 2023. URL https://openaccess.thecvf.com/content/ICCV2023W/R6D/papers/Nguyen_CNOS_A_Strong_Baseline_for_CAD-Based_Novel_Object_Segmentation_ICCVW_2023_paper.pdf.

611

612 Van Nguyen Nguyen, Thibault Groueix, Mathieu Salzmann, and Vincent Lepetit. Gigapose: Fast
 613 and robust novel object pose estimation via one correspondence, 2024. URL <https://arxiv.org/abs/2311.14155>.

614

615 Van Nguyen Nguyen, Stephen Tyree, Andrew Guo, Mederic Fourmy, Anas Gouda, Taeyeop Lee,
 616 Sungphil Moon, Hyeontae Son, Lukas Ranftl, Jonathan Tremblay, Eric Brachmann, Bertram Drost,
 617 Vincent Lepetit, Carsten Rother, Stan Birchfield, Jiri Matas, Yann Labbe, Martin Sundermeyer, and
 618 Tomas Hodan. BOP challenge 2024 on model-based and model-free 6D object pose estimation.
 619 *IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW, CV4MR
 620 Workshop)*, 2025. URL <https://arxiv.org/abs/2504.02812>.

621

622 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 623 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas
 624 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 625 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut,
 626 Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 627 2024. URL <https://arxiv.org/abs/2304.07193>.

628

629 Shaul Oron, Tali Dekel, Tianfan Xue, William T. Freeman, and Shai Avidan. Best-buddies similarity—robust template matching using mutual nearest neighbors. *IEEE Transactions on Pattern
 630 Analysis and Machine Intelligence*, 40(8):1799–1813, 2018. doi: 10.1109/TPAMI.2017.2737424.

631

632 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 633 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 634 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 635 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 636 deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
 637 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran
 638 Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

639

640 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 641 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 642 Learning transferable visual models from natural language supervision. In Marina Meila and Tong
 643 Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume
 644 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL
 645 <https://proceedings.mlr.press/v139/radford21a.html>.

646

647 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 648 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev

648 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Feicht-
649 enhofer. SAM 2: Segment anything in images and videos. In *The Thirteenth International*
650 *Conference on Learning Representations*, 2025. URL [https://openreview.net/forum?](https://openreview.net/forum?id=Ha6RTeWMd0)
651 [id=Ha6RTeWMd0](#).

652 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
653 detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
654 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran Asso-
655 ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

656 657
658 Tianhe Ren, Qing Jiang, Shilong Liu, Zhaoyang Zeng, Wenlong Liu, Han Gao, Hongjie Huang,
659 Zhengyu Ma, Xiaoke Jiang, Yihao Chen, Yuda Xiong, Hao Zhang, Feng Li, Peijun Tang, Kent
660 Yu, and Lei Zhang. Grounding dino 1.5: Advance the "edge" of open-set object detection, 2024a.
661 URL <https://arxiv.org/abs/2405.10300>.

662
663 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
664 Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing
665 Jiang, and Lei Zhang. Grounded SAM: assembling open-world models for diverse visual tasks.
666 *CoRR*, abs/2401.14159, 2024b. doi: 10.48550/ARXIV.2401.14159.

667
668 Colin Rennie, Rahul Shome, Kostas E. Bekris, and Alberto F. De Souza. A dataset for improved
669 rgbd-based object detection and pose estimation for warehouse pick-and-place. *IEEE Robotics*
670 *and Automation Letters*, 1(2):1179–1185, 2016. doi: 10.1109/LRA.2016.2532924.

671
672 Qianqian Shen, Yunhan Zhao, Nahyun Kwon, Jeeun Kim, Yanan Li, and Shu Kong. A
673 high-resolution dataset for instance detection with multi-view object capture. In A. Oh,
674 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural*
675 *Information Processing Systems*, volume 36, pp. 42064–42076. Curran Associates, Inc., 2023.
676 URL https://proceedings.neurips.cc/paper_files/paper/2023/file/832ea0ff01bd512aab28bf416db9489c-Paper-Datasets_and_Benchmarks.pdf.

677
678 Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. Summarizing visual data using
679 bidirectional similarity. In *2008 IEEE Conference on Computer Vision and Pattern Recognition*,
680 pp. 1–8, 2008. doi: 10.1109/CVPR.2008.4587842.

681
682 Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Rambach, Nassir Navab, Benjamin Busam, Didier
683 Stricker, and Federico Tombari. Zebrapose: Coarse to fine surface encoding for 6dof object pose
684 estimation. In *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
685 pp. 6728–6738, 2022. doi: 10.1109/CVPR52688.2022.00662.

686
687 Martin Sundermeyer, Tomas Hodan, Yann Labbe, Gu Wang, Eric Brachmann, Bertram Drost, Carsten
688 Rother, and Jiri Matas. Bop challenge 2022 on detection, segmentation and pose estimation of
689 specific rigid objects, 2023. URL <https://arxiv.org/abs/2302.13075>.

690
691 Alykhan Tejani, Danhang Tang, Rigas Kouskouridas, and Tae-Kyun Kim. Latent-class hough forests
692 for 3d object detection and pose estimation. In David Fleet, Tomas Pajdla, Bernt Schiele, and
693 Tinne Tuytelaars (eds.), *Computer Vision – ECCV 2014*, pp. 462–477, Cham, 2014. Springer
694 International Publishing. ISBN 978-3-319-10599-4. doi: 10.1007/978-3-319-10599-4_30. URL
695 https://link.springer.com/chapter/10.1007/978-3-319-10599-4_30.

696
697 Antonin Melenovsky Tomas Hodan and Mederic Fourmy. Benchmark for 6d object pose estimation:
698 Bop challenge 2025. <https://bop.felk.cvut.cz/challenges/>, 4 2025. Accessed:
699 2025-04-16.

700
701 Stephen Tyree, Jonathan Tremblay, Thang To, Jia Cheng, Terry Mosier, Jeffrey Smith, and Stan
702 Birchfield. 6-dof pose estimation of household objects for robotic manipulation: An accessible
703 dataset and benchmark. In *2022 IEEE/RSJ International Conference on Intelligent Robots and*
704 *Systems (IROS)*, pp. 13081–13088, 2022. doi: 10.1109/IROS47612.2022.9981838.

702 Ao Wang, Hui Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Rep vit: Revisiting mobile cnn
703 from vit perspective. In *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
704 (*CVPR*), pp. 15909–15920, 2024. doi: 10.1109/CVPR52733.2024.01506.

705
706 Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn: A convolutional
707 neural network for 6d object pose estimation in cluttered scenes. In *Proceedings of Robotics:*
708 *Science and Systems*, Pittsburgh, Pennsylvania, June 2018. doi: 10.15607/RSS.2018.XIV.019.
709 URL <https://www.roboticsproceedings.org/rss14/p19.html>.

710 Chaoning Zhang, Dongshen Han, Yu Qiao, Jung Uk Kim, Sung-Ho Bae, Seungkyu Lee, and
711 Choong Seon Hong. Faster segment anything: Towards lightweight sam for mobile applications,
712 2023. URL <https://arxiv.org/abs/2306.14289>.

713 Xu Zhao, Wenchoao Ding, Yongqi An, Yinglong Du, Tao Yu, Min Li, Ming Tang, and Jinqiao Wang.
714 Fast segment anything, 2023. URL <https://arxiv.org/abs/2306.12156>.

715
716 Chong Zhou, Xiangtai Li, Chen Change Loy, and Bo Dai. Edgesam: Prompt-in-the-loop distillation
717 for on-device deployment of sam, 2024. URL <https://arxiv.org/abs/2312.06660>.

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 FURTHER ABLATION STUDIES**
759760 **Template creation** Table 3 demonstrates the effects of using different template sources on the mean
761 AP metric. Line 1 refers to Pyrender as a lightweight/fast renderer (similar to CNOS) and line 2 to
762 BlenderProc for more photo realistic renders; which was utilized by GigaPose (Nguyen et al., 2024)
763 for their “onboarding” stage. Both render the object floating in an empty (black) space.764 Our default “PBR-BlenderProc4BOP” pipeline gave the best results; while it also uses BlenderProc
765 for rendering, it renders objects in random cluttered scenes to make the reference crops even more
766 realistic. Indeed, the crops obtained this way appear more realistic because of the cross-effects of
767 other objects being in the scene (e.g. slight partial occlusions, other objects’ shadows, changes in the
768 ambient light perspective), compared to standalone objects that produce too clean/artificial templates
769 that seem to have a negative influence on the matching.770 For example, if one were to consider the same object in two different scenes, one without any other
771 object and the other with an object that is slightly occluding a part of it. The resulting masks would
772 be different, as the one in the “void” would result in a representation of the object that shows all of its
773 parts; the same cannot be said about the other case, as some of its parts would not be present in its
774 mask. As it turns out, these occluded objects can better represent the ones in the cluttered scenes of
775 the query/test images of the BOP challenge.776 Table 3: Ablation study on the influence of the adopted template creation technique on the mean AP
777 metric.

	Renderer	Mean
0	PBR	0.520
1	Pyrender	0.482
2	Blender	0.509

786 **Varying cyclic threshold** Table 4 exhibits the effects of utilizing various cyclic thresholds on the
787 mean AP metric. Smaller CT values filter out too many patches, thus reducing the performances. On
788 the other hand, too large ones are prone to noise. A CT value of 5 seems to be the point after which
789 the performances drop.790 As it can easily be noticed, Table 4 only shows results for fixed values of the CT used across all
791 objects of all datasets; thus one might wonder what would be the effects of using values adapted to
792 each object, e.g. based on their texture complexity or viewpoint variation, rather than having only
793 a static one. While it might look beneficial to adapt the CT value on object-specific characteristics,
794 NOCTIS is a zero-shot pipeline requiring no further tuning, aligning with BOP’s challenge goals
795 of methods that work out-of-the-box on novel objects. Introducing adaptive thresholds (partly)
796 undermines this zero-tuning philosophy and adds dataset-specific hyperparameters that would require
797 further tuning, probably leading into loss of generalization on new object instances. Moreover, the
798 adjusted CT value of an object would most likely be affected by cross influences of the other objects,
799 making NOCTIS incapable of adding new objects on-the-fly, as re-adjusting these values would
800 always be needed. Eventually, it is unclear, from the get-go, on how many different scenarios one
801 would have to test these new varying CT values internally, considering also the required runtime and
802 memory for such an optimization, to obtain a reliable, general and easily scalable model.803 **Appearance score weight** Table 5 illustrates how different w_{appe} values affect the mean AP
804 score on two different configurations of our pipeline; where the first one uses only the semantic
805 and appearance score, while the second one represents the full/best pipeline. While the choice of
806 including or not the appearance score is influential (see Section 4.3), changing its weight as shown by
807 the above results does not provide significant gains/losses over the final performances.808 As a side note, the value $w_{appe} = 2$ was originally chosen because some experiments with $\delta_{CT} = 0$
809 highlighted that the appearance score of some desired object was (roughly) halved, while for the
undesired ones it was reduced to (roughly) a third. To compensate for this effect, those values were

810 Table 4: Ablation study on the influence of different cyclic threshold (CT) values on the mean AP
 811 metric.

	CT	Mean
815	0	0.479
816	1	0.500
817	2	0.512
818	3	0.517
819	4	0.518
820	5	0.520
821	6	0.517
822	7	0.517
823	8	0.516

824 Table 5: Ablation study on the influence of different w_{appe} values on the mean AP metric.

	w_{appe}	$s^{sem} + s^{appe}$	Full
829	1	0.494	0.516
830	2	0.497	0.520
831	3	0.495	0.517
832	4	0.493	0.514

833
 834 doubled to have the same level of magnitude as they would have had before; otherwise, they would
 835 make the overall object score too small, risking filtering out of the proposal at the end.

838 A.2 ADDITIONAL DISCUSSION AND LIMITATIONS

840 **Memory usage and runtime** The memory usage for determining object matching scores, for a
 841 query image, has two bottlenecks; each of them requires calculating a large matrix at some point. A
 842 $N_I^{prop} \times N^O \times N^T$ matrix for the semantic scores before the aggregation, like in CNOS; and a “big”
 843 $N_I^{prop} \times N^O \times N^T \times N^{patch} \times N^{patch}$ internal floating-point matrix for the appearance scores. As
 844 a side note, one could speculate that the size of the latter matrix could be the reason why SAM-6D,
 845 originally, computed the appearance score only for one template. *Cyclic* filtering only temporarily
 846 adds ca. seven $N_I^{prop} \times N^O \times N^T \times N^{patch}$ matrices ($5 \times \text{integer} + 1 \times \text{float} + 1 \times \text{bool}$) to the
 847 memory, which is ca. $36 \times$ less memory compared to the big one and so negligible.

848 To reduce the CUDA memory requirements, we make use of mini batches on the N_P and N_O
 849 dimensions; however, this comes with an increase in computation time. Furthermore, until the
 850 templates remain the same between different runs; their visual descriptors stay the same after the
 851 onboarding stage (see Section 3.1), since DINoV2 is deterministic, they can be stored and cheaply
 852 reloaded later.

853 Regarding the runtime, the original full NOCTIS pipeline needs 0.990 seconds per image, while
 854 the other configuration, without CT filtering (Table 2 line 5), requires 0.995 seconds. Given that
 855 the evaluation was run on a normal office desktop PC, the difference is minimal and can be seen as
 856 noise. This short analysis, contrarily to what one might intuitively assume, shows that using the CT
 857 component in our pipeline does not imply heavy additional memory and runtime requirements.

858 **Other BOP datasets** Our method is only evaluated on the seven core BOP 2023 datasets; this is
 859 done due to, on one hand, a lack of other results’ data for the BOP classic Extra datasets (LM (Hinter-
 860 stoisser et al., 2013); HOPEv1 (Tyree et al., 2022); RU-APC (Rennie et al., 2016); IC-MI (Tejani
 861 et al., 2014) and TYO-L (Hodan et al., 2018)); on the other hand, because the BOP 2024 (Nguyen
 862 et al., 2025) and 2025 (Tomas Hodan & Fourmy, 2025) challenges are targeting only a detection
 863 task. But, as mentioned in Section 4.1, the chosen datasets provide a wide range of different scenes;
 therefore, their evaluation should still be reliable.

864
865

A.3 ADDITIONAL COMMENTS

866
867

Zero-shot generalization Zero-shot generalization has been one of the main driving forces behind NOCTIS’ implementation. Moreover, this is an important prerequisite for the “Model-based 2D segmentation of unseen objects” task of the BOP challenge to have. Indeed, NOCTIS just needs some template views (see Section3.1) for representing any object from any kind of image source (renderer, video frames, hand-made camera images, etc). For example, one could just take their camera to shoot some photos of an (rigid) object from multiple viewpoints, mask out the object (somehow) and feed the masked photos to NOCTIS as template views; afterwards the object can be detected. Thus, both the CAD/3D object models and the fixed viewpoints are not really necessary for our pipeline; as the models are only needed when rendering the object as a template source, while the viewpoints ensure a good overview of the object. Correspondingly, they are relevant only in the context of the BOP challenge for the evaluation of our pipeline according to the provided benchmarks; which means applying NOCTIS outside of the BOP benchmarks can be easily achieved.

877

As each object is represented by some embeddings/tokens stored in memory, and there are no cross-influences among tokens belonging to different objects, it is possible to manipulate the memory to allow for the addition/removal of objects on-the-fly. This aspect is relevant for example in industrial settings where one needs to dynamically detect objects without suffering from onboarding downtime; indeed, a whole database of possible objects can be precomputed and stored, making it easy to load or unload only the required ones from it.

883

884

BOP challenge runtime While computational efficiency is usually an important factor for real world applications, it is not an evaluation criterion for the BOP task. Given the fact that different hardware configurations heavily influence the runtime (“normal” graphic cards vs. server ones), the total time per image as stated in the BOP challenge rules is not a major factor regarding the quality of the algorithms proposed. Yet, our pipeline would benefit from better hardware/more CUDA memory, as the “Nvidia RTX 4070 12GB” graphic card used for the experiments is just a standard graphic card compared to what the other participants for the same BOP task were using, like e.g. “GeForce RTX 3090 24GB” (SAM-6D) or “V100 16GB” (CNOS).

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917