
Abstraction-Based Proof Production in
Formal Verification of Neural Networks

(Extended Abstract)

Yizhak Yisrael Elboher1, Omri Isac1, Guy Katz1, Tobias Ladner2, Haoze Wu3

1 The Hebrew University of Jerusalem, Israel
2 Technical University of Munich, Germany

3 Amherst College, USA

Abstract. Modern verification tools for deep neural networks (DNNs)
increasingly rely on abstraction to scale to realistic architectures. In par-
allel, proof production is becoming a critical requirement for increas-
ing the reliability of DNN verification results. However, current proof-
producing verifiers do not support abstraction-based reasoning, creating
a gap between scalability and provable guarantees. We address this gap
by introducing a novel framework for proof-producing abstraction-based
DNN verification. Our approach modularly separates the verification task
into two components: proving the property on an abstract network, and
proving the soundness of the abstraction with respect to the original
DNN. The former can be handled by existing proof-producing verifiers,
whereas we propose the first method for generating formal proofs for
the latter. This preliminary work aims to enable scalable and trustwor-
thy verification by supporting common abstraction techniques within a
formal proof framework.

Keywords: Neural Networks, Formal Verification, Proof Production,
Abstraction

1 Introduction

Deep Neural Networks (DNNs) [17, 30] have demonstrated exceptional perfor-
mance in various domains, including vision [27], language [46], audio [45] and
video [2] analysis, achieving state-of-the-art accuracy in complex tasks [39, 40].
However, despite their success, DNNs function as black-box models, making their
decision-making processes difficult to interpret and trust [31,41].

DNN verification [12,24,32] provides formal methods and tools (verifiers), to
ensure or refute that DNNs comply with required specifications, offering formal
guarantees of correctness. However, although verification algorithms are the-
oretically sound, their implementation can introduce potential issues [15, 23],
compromising their soundness and undermining the confidence in the verifier.

A notable approach to tackle these issues is by producing formal proofs,
i.e., mathematical objects that can be checked by an independent program and
witness the verifier’s correctness. Proof production was explored in SMT and
SAT solvers [6, 18], and recently also in DNN verification [21, 43]. Although
proofs enhance the reliability of the verification process, their generation limits



2 YY. Elboher, O. Isac, G. Katz, T. Ladner, H. Wu

the scalability of the verifier in two ways: (i) the generated proofs tend to be large,
which substantially increases the verifier’s memory consumption; and (ii) some
verifier optimization are not supported by the proof mechanism, and are disabled
whenever proof generation is used — slowing down the verifier.

Scalability is also an intrinsic challenge in the core of formal verification, since
a large, sometimes infinite, set of states should be scanned to formally guarantee
or refute correctness. In particular, DNN verification is an NP-complete prob-
lem [24, 42], and modern solvers might solve verification queries in worst-case
exponential time with respect to DNN size (number of neurons) [7]. A common
attempt to overcome this obstacle is to apply abstraction. This well-established
technique in formal verification [9–11] is used to manage the complexity of an-
alyzing large systems by creating a simpler, abstract model that retains the
essential properties of the original system. In the context of DNNs, abstraction
has gained attention as a method to enhance verification scalability and effi-
ciency [3, 13, 29]. Specifically, DNN abstraction involves the construction of a
reduced or approximate representation of the network such that the verification
of the abstract network provides meaningful guarantees for the original network.
Using abstraction, verification tools can handle larger networks and more com-
plex properties, making it a promising approach for scalable and efficient formal
analysis of DNNs.

This work addresses two key challenges in DNN verification: enabling proof
production for abstraction-based solvers and generating more compact proofs.
While abstraction improves scalability by simplifying the network, existing proof-
producing tools do not support it. To bridge this gap, we propose the notion of an
abstract proof—a modular proof consisting of (1) a proof that the abstract net-
work satisfies the query, and (2) a proof that the abstraction over-approximates
the original network.

This approach extends proof support to scalable abstraction-based solvers
and reduces proof size. Fig. 1 illustrates the improved proof workflow and ex-
pected efficiency gains compared to the standard approach.

Input
Query

Abstract

Verify &
Prove

Proof of
Abstraction

Check
Proofs

Verify &
Prove

Check
Proof

oursstandard

Fig. 1: Proof production flowchart: standard (left) versus ours (right). Bold colors
represent cheaper operations.

Inspired by CEGAR [9], our main contributions are:

1. Introduction of the concept of an abstract proof for DNN verification.
2. Design of an abstraction-refinement mechanism for proof production.
3. Formalization of a verifiable proof of the abstraction process itself, using the

Marabou DNN verifier [47] and the CORA abstraction engine [1].

The paper is organized as follows: Sec. 2 provides background on DNNs,
DNN verification and abstraction, and proof production. Sec. 3 introduces our



modular framework for constructing abstract proofs, describes the challenge of
aligning proofs between the original and abstract networks, and presents a gen-
eral abstraction-refinement algorithm for efficient proof production. Sec. 4 ex-
plains the abstraction process in CORA, and adapts it to our formulation. Sec. 5
details our implementation using Marabou (for proof production) and CORA
(for abstraction), including how to verify abstract networks and generate corre-
sponding proofs. Sec. 6 reviews relevant literature, and Sec. 7 summarizes our
contributions and outlines future work.

2 Preliminaries

2.1 Deep Neural Networks (DNNs)

A Deep Neural Network (DNN) is a parameterized function f : Rn0 → RnL ,
composed of multiple layers of interconnected neurons. Each layer performs an
affine transformation followed by a nonlinear activation function. Formally, given
an input x ∈ Rn0 , the output y = f(x) is computed as follows:

h0 = x, hk = ϕk(Wkhk−1 + bk), y = hL, k ∈ [L]. (1)

where Wk is the weight matrix, bk is the bias vector, and ϕk is the nonlinear
activation function (e.g., ReLU [36] or sigmoid) for the k-th layer. An illustration
for a neural network is given in Fig. 2.

−1

−1

0.1

0

1

−1
−2
0

0.2
1

−2

−1

0

0

1

0
−3
0
0

−1.3

1

1

−5

−5

1

1

1

1

1

b=0

b=0

b=0

b=0

b=0

0.2

Input Hidden Output

Fig. 2: A neural network f1 for which f1(1, 1, 1, 1) = 0.2. All biases are 0.

2.2 DNN Verification

DNN Verification aims to solve verification queries. A verification query is a
triplet ⟨f,P,Q⟩ where f : Rn0 → RnL is a DNN, P ⊂ Rn0 is an input property
and Q ⊂ RnL is an output property. The DNN Verification Problem is the
problem of deciding whether there exists an input satisfying P for which its
output of f satisfies Q:

∃x. x ∈ P ∧ f(x) ∈ Q. (2)



4 YY. Elboher, O. Isac, G. Katz, T. Ladner, H. Wu

Typically, Q is a set that characterizes an undesired behavior, such as vulnera-
bility of f to adversarial perturbations or danger conditions. If an input x ∈ P is
found whose output f(x) ∈ Q, we say the query is SAT, and x serves as a coun-
terexample to the desired property. Otherwise, if no such input exists, we say
the query is UNSAT, and thus the desired property is valid. To ease notation, we
also denote the latter case as unsat(⟨f,P,Q⟩). This can be captured as follows:

unsat(⟨f,P,Q⟩) ≡ ∀x. x ∈ P =⇒ f(x) /∈ Q. (3)

For simplicity, we assume for this work that P is a hyperrectangle, although our
approach can be generalized to any closed set P, e.g., by over-approximating P
with a bounding box thereof. An example of a verification query is ⟨f1,P1,Q1⟩
where f1 is the network in Fig. 2, P1 = {(1± ϵ, 1± ϵ, 1± ϵ, 1) | ϵ ∈ [0, 0.1]} and
Q1 = R≤0.

2.3 DNN Abstraction for Formal Verification

To accelerate DNN verification, it is often beneficial to reduce the size of the net-
work through abstraction. However, since the verification target is the original
DNN, one must ensure that any conclusions drawn from the abstract (simplified)
model also apply to the original. The over-approximation requirement is repre-
sented as follows, where f, f̂ are the original and abstract networks, respectively:

unsat(⟨f̂ ,P,Q⟩) =⇒ unsat(⟨f,P,Q⟩).

If the abstraction is too coarse to yield a conclusive result, the abstract model
is iteratively refined – made more precise over-approximation – until the verifi-
cation query can be resolved correctly.

Our framework is designed to be compatible with a wide range of abstraction
methods. In this work, we focus on CORA [1], a MATLAB toolbox used for
formal verification of neural networks via reachability analysis. With its recent
abstraction-refinement extension [29], CORA improves performance by replacing
the original network with a smaller abstract model that is iteratively refined as
needed. We leverage CORA as a backend for abstraction in our framework. Other
approaches to network abstraction are discussed in Sec. 6.

2.4 Proof Production for DNN Verification

As a satisfiability problem, proving a SAT DNN verification query is straightfor-
ward, using a satisfying assignment that could be checked by evaluation over the
network. Proving UNSAT, however, is more complicated due to the NP-hardness
of the DNN verification problem [25, 42]. Thus, bookkeeping the whole proof
may require large memory consumption, even for small DNNs.

In this work, we focus on the proof producing version of Marabou [21, 47],
a state of the art DNN verifier, which encodes verification queries as satisfiabil-
ity problems, utilizing satisfiability modulo theories (SMT) solving and linear
programming (LP) to analyze properties of interest. It handles nonlinear activa-
tion functions, such as ReLU, through case-splitting and relaxation techniques.
Marabou proof of UNSAT is represented by a proof-tree. By construction, its size
heavily relies on the number of splits performed by Marabou, which could be
exponentially large in the number of neurons.



Abtract Proof Production 5

3 Method

We intend to accelerate verification by applying abstraction to reduce the DNN
size and prove the property over the abstract DNN. However, a proof over the ab-
stract network alone is insufficient – it does not guarantee that the property holds
for the original network. To overcome this, we introduce a general framework for
constructing end-to-end proofs that remain sound while leveraging abstraction.

3.1 Proving Abstraction-Based DNN Verification

Since verifying DNNs using abstraction consists of two main components — con-
structing the abstraction and verifying the abstract network — our proof method
for UNSAT follows the same modular structure. This modularity ensures that our
approach remains agnostic to the underlying DNN verifier and abstraction tech-
nique, making it broadly applicable. Specifically, it enables combining any DNN
verification tool capable of producing proofs with any abstraction method that
comes with a corresponding proof rule.

Our method constructs a proof that consists of two independent parts. First,
given candidate DNNs f, f̂ and properties P,Q, we establish that if ⟨f̂ ,P,Q⟩ is
UNSAT, then so is ⟨f,P,Q⟩. This forms the proof of over-approximation, i.e., proof
of abstraction correctness, which ensures that verification results transfer from
the abstract network to the original one. The second part is the verification
proof for the abstract network, i.e., the proof that ⟨f̂ ,P,Q⟩ is indeed UNSAT.
These two proofs, when combined, yield the abstract proof following the proof
rule in Fig. 3. Even though this rule is a private case of implication elimination
(modus ponens), we define it to clearly indicate our modular approach.

abs− proof :
unsat(⟨f̂ ,P,Q⟩) =⇒ unsat(⟨f,P,Q⟩) unsat(⟨f̂ ,P,Q⟩)

unsat(⟨f,P,Q⟩)

Fig. 3: Proof rule for proving DNN verification with abstraction

As a proof system for verifying DNNs (i.e., the top right part of the rule) has
been introduced in prior work [21], our focus in this paper is twofold: (1) showing

how ⟨f̂ ,P,Q⟩ can be reduced to a verification query for DNNs; and (2) construct-
ing the proof of over-approximation (i.e., the top left part). We exemplify how
both are done in Sec. 5.1 and in Sec. 5.2, respectively.

3.2 Main Algorithm

The naive approach to improve proof production through abstraction-refinement
(described in Appendix A, Alg. 2) abstracts and iteratively refines the model and
verifies the query with proof production. This approach has a classical drawback:
Like any abstraction refinement procedure, the operation performed during ab-
straction might be redundant in the case of spurious SAT. Moreover, each doubt-
ful proof generation attempt is expensive.

We suggest Alg. 1 to overcome these problems. Unless UNSAT is accepted,
correctness is just verified but is not proved. In addition to avoiding redundant



6 YY. Elboher, O. Isac, G. Katz, T. Ladner, H. Wu

proof attempts and improving the performance in each iteration, another ad-
vantage is that any verifier can be applied to verify the property, making the
procedure more modular, not limited to verifiers with proof production capabil-
ities or specific limited configuration that support proof production.

The methods prove-over-approximation and verify-with-proofs repre-
sent proving the over-approximation and producing proof in the query on the
abstract network, and are explained in more detail in Sec. 5. ⟨pa, pq⟩ is a con-
catenation of the two proofs into a full proof.

Algorithm 1 Proof Production with Abstraction

Input: f , P, Q. Output: proof that unsat(⟨f,P,Q⟩), or counterexample.

1: f̂ = abstract(f,P)
2: while true do
3: result, example = verify(f̂ ,P,Q)
4: if result == SAT and example is not spurious then
5: return result, example
6: else if result == UNSAT then
7: pa = prove-over-approximation(f̂ ,f,P,Q)

8: pq = verify-with-proofs(f̂ ,P,Q)
9: if pa and pq were successfully generated then

10: return UNSAT, ⟨pa, pq⟩
11: else
12: f̂ = refine(f̂ , f)
13: end if
14: end if
15: end while

4 Abstraction in CORA

We provide an overview on how abstraction in CORA works and how it can
be integrated into the verification process. We refer the reader to [1, 29] for
additional details.

Given a neural network f as in (1) and an input set P, the exact output set
Y∗ = f(P) is computed by

H∗
0 = P, H∗

k = ϕk(WkH∗
k−1 + bk), Y∗ = H∗

L, k ∈ [L]. (4)

These exact sets are generally expensive to compute [24]. Thus, we enclose the
output of each layer Hk ⊇ H∗

k. In this work, we only consider the set Hk to be
represented as interval bounds, although more sophisticated set representations
exist [4, 16,26,28,35].

Since DNNs usually contain a large number of neurons per layer, their verifi-
cation can be computationally expensive as well. Thus, [29] suggests a construc-
tion of an abstract network that soundly merges neurons with similar bounds to
reduce the network size, which in turn decreases the verification time by decreas-
ing the computation time. The bounds are determined by a one-step look-ahead
algorithm using interval bound propagation (IBP). In particular, we compute



the output interval bounds of layer k as follows [29, Alg. 2]:

Ik = ϕk(Wk · bounds(Hk−1)) + bk) ⊇ Hk, (5)

where bounds(·) computes the interval bounds of the given set Hk−1. In order
to preserve soundness, multiple neurons with similar bounds are merged and the
resulting error is bounded by adapting the bias term in the next layer, converting
them from scalars into intervals. These bias intervals bound the deviation be-
tween the abstract network and the original network of each layer in the network
and, thus, also the output of both networks.

More formally, given a neural network, [29, Prop. 4] defines a way to merge
the neurons in the k-th layer, constructing the weights and biases such that the
output of the k + 1-th layer of the original neural network is contained in the
output of the k+1-th layer of the abstract network. Notice that the terminology
in [29] splits each layer into two layers, namely the linear layer and the nonlinear
layer, and indexes them separately. Here, we similarly treat each layer as having
two parts, but do not handle these as different layers.

Proposition 1 (Neuron Merging [29, Prop. 4]). Given a nonlinear hidden
layer k ∈ [L−1] of a network f with nk neurons, output interval bounds Ik ⊇ H∗

k,
a merge bucket B ⊂ [nk] containing the indices of the merged neurons, and

B̄ = [nk] \ B, we can construct an abstract network f̂ , where we remove the
merged neurons by adjusting the layers k and k + 1 as follows:

Ŵk = Wk(B̄,·), b̂k = bk(B̄), Îk = Îk(B̄),

Ŵk+1 = Wk+1(·,B̄), b̂k+1 = bk+1, Îk+1 = Wk+1(·,B)Ik(B).

where for S ∈ {B, B̄}, □(S,·) and □(·,S) represent the rows and columns with the

indices in S in lexicographic order, respectively. The interval bounds Îk require
us to extend the formulation for a neural network f as in (1) to an abstract

network f̂ , as illustrated in Fig. 4.

−1

−1

0.1

0

1

−1
−2
0

0.2
1

−2

−1

0

0

1

0
−3
0
0

−1.3

1

1

−5

−5

1

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

Input Hidden Output

Fig. 4: f̂1, the extension of f1 with the new formulation for abstract networks,
where the biases of f1 (zeros) are converted to intervals (singletones).



Given an input x ∈ P, the output Ŷ = f̂(x) is computed by

Ĥ0 = {x}, Ĥk = ϕk(ŴkĤk−1 ⊕ b̂k ⊕ Îk), Ŷ = ĤL, k ∈ [L]. (6)

where all Îk are initialized with {0}, or equivalently [0,0], and ⊕ denotes the
Minkowski sum of two sets, i.e., given S1, S2 ⊂ Rn, S1 ⊕ S2 = {s1 + s2 | s1 ∈
S1, s2 ∈ S1}. If either summand of the Minkowski sum is given as a vector, it is

implicitly converted to a singleton. The interval biases b̂k⊕Îk capture the error
between the abstract network and the original network. Thus, initially, it holds:

∀x ∈ P : f(x) ∈ f̂(x) = {f(x)}. (7)

As an abstract network outputs a set instead of a single vector, we also have to
generalize (3) to abstract networks:

unsat(⟨f̂ ,P,Q⟩) ≡ ∀x. x ∈ P =⇒ f̂(x) ∩Q = ∅. (8)

This formulation enables us the following corollary:

Corollary 1. Given an input set P, an abstract neural network f̂ where Prop. 1
is applied to all layers k′ ≤ k ∈ [L], we can merge the neurons in layer k using

Prop. 1 such that for the obtained abstract network f̂ ′, it holds that

∀x ∈ P : f̂(x) ⊆ f̂ ′(x).

In particular, it holds that

unsat(⟨f̂ ′,P,Q⟩) =⇒ unsat(⟨f̂ ,P,Q⟩).

Proof. Let Ĥk and Ĥ′
k denote the output of the k-th layer of f̂ and f̂ ′, respec-

tively. Please note that Prop. 1 only alters layer k and k+1, thus, all other layers
are identical between f̂ and f̂ ′ (6). In particular, we know that Ĥk−1 = Ĥ′

k−1

holds. We now show that Ĥk+1 ⊆ Ĥ′
k+1 holds by contradiction. Let us assume

that there exist a h̄k−1 ∈ Ĥk−1 for which the respective h̄k+1 ∈ Ĥk+1 but

h̄k+1 ̸∈ Ĥ′
k+1. However, this cannot be true as the values of the merged neurons

are captured by Îk+1, which is computed over-approximative using IBP ((5),

Prop. 1), and all remaining neurons are kept equal (Prop. 1). Thus, Ĥk+1 ⊆ Ĥ′
k+1

holds, which directly shows that f̂(x) ⊆ f̂ ′(x) as all subsequent layers are again
identical. The implication directly follows due to the subset relation and (8).

An example of abstraction is shown in Fig. 5. Given the input set P1, the
output bounds of the abstract network f̂ ′

1 contain the output bounds of the

basic abstract network f̂1. The first three hidden neurons have similar bounds,
making them a merge bucket B = {1, 2, 3}, and are thus merged into an abstract
neuron (in white). The set of bounds of the bucket ([0,0], [0,0] and [[0.09,0.11]])
is embedded into the bias ([0,0]) of the neuron in the output layer using IBP
(1 · [0, 0] + 1 · [0, 0] − 5 · [0.09, 0.11] = [−0.55,−0.45]) and Minkowski sum (⊕),
resulting with output bounds of [−0.05, 0.45] = −5 · [0.18, 0.22] + 1 · [1.4, 2] +
[−0.55,−0.45].



Abtract Proof Production 9

−1

−1

0.1

0

1

−1
−2
0

0.2
1

−2

−1

0

0

1

0
−3
0
0

−1.3

1

1

−5

−5

1

[0.9,1.1]

[0.9,1.1]

[0.9,1.1]

[1,1]

[0,0]

[0,0]

[0.09,0.11]

[0.18,0.22]

[1.4,2]

[0.05,0.35]

Input Hidden Output

(a) Basic abstract network f̂1

0

1

0.2

1

0

1

0

−1.3

−5

1

[-0.55,-0.45] ⊕ [0,0]

[0.9,1.1]

[0.9,1.1]

[0.9,1.1]

[1,1]

B = [1, 2, 3]

[0.18,0.22]

[1.4,2]

[-0.05,0.45]

Input Hidden Output

(b) After CORA-abstraction f̂ ′
1

Fig. 5: Example of abstraction. The basic abstract network f̂1 (left) is reduced

to another abstract network f̂ ′
1 (right).

5 Proving CORA Abstraction and Marabou Verification

In this work, we focus on the proof-producing version of Marabou [21, 47], a
state-of-the-art verification tool with the ability to produce proofs of its UNSAT
results. The abstraction process used in this work was suggested in [29] and
is implemented to improve set-based DNN verification and is part of CORA
[1]. In this section, we explain how to implement verify-with-proofs and
prove-over-approximation in Alg. 2 and Alg. 1 with these tools.

We start this section with explaining in 5.1 the details about the verification
process in Marabou, and then show how to implement verify-with-proofs

and apply Marabou on an abstract network obtained by the abstraction pro-
cess in CORA. In 5.2, we show how to implement prove-over-approximation
and produce a proof that the abstraction process is correct. By doing so, we
accomplish both necessary results as outlined in Sec. 3.1.

5.1 Proving Correctness of Abstract Network Queries in Marabou

The abstract networks obtained by the abstraction process in CORA general-
ize DNNs. As a result, the verification process should be adapted from solving
⟨f,P,Q⟩ and proving (3) to solving ⟨f̂ ,P,Q⟩ and proving (8). In the following,
we show how the latter can be represented as a query that the Marabou verifier
supports. We then implement verify-with-proofs, since the proofs generated

by Marabou during the verification of ⟨f̂ ,P,Q⟩ can be used as proofs for (8).
Recall that Marabou handles verification queries by trying to find satisfying as-
signments to the linear constraints in f with LP methods [8, 19] and check the
solution against the other, non-linear, constraints.

There are two differences to consider when using Marabou to solve queries
over abstract networks: First, the output of an abstract network is a set of vectors
and not a single vector. This does not require any change in the verification
query, as Marabou is capable of handling constraints that define continuous sets



10 YY. Elboher, O. Isac, G. Katz, T. Ladner, H. Wu

in both input and output. Second, the abstract network f̂ structure expresses
biases as intervals or singletons, instead of scalars. To address this, we propose
two options for encoding the verification query in a form supported by Marabou:

1. The architecture of the original network f is encoded in Marabou using
equations. Since the backend LP solver used in Marabou supports linear in-
equalities, linear constraints in an abstract network are represented directly
as inequalities, where the lower and upper bounds reflect the abstracted
bias interval. More formally, suppose the bias term b̂ki in the abstract net-
work f̂ (6) lies in the interval [̂blki, b̂

u
ki]. We can then express the linear con-

straint as the following pair of inequalities:

nki ≥
∑
j

Wk−1
ji xk−1

j + b̂lki, and nki ≤
∑
j

Wk−1
ji xk−1

j + b̂uki.

As an example, consider the output neuron in the network f1, which is
originally encoded by the equation:

nout =

5∑
i=1

W1
i1n1i + 0.0,

where n1i denotes the i-th neuron in the hidden layer, and the final term
is the bias. After converting f1 into its abstract counterpart f̂1, the output
neuron is instead represented using the pair of inequalities:

nout ≥
5∑

i=1

W1
i1n1i + 0.0, and nout ≤

5∑
i=1

W1
i1n1i + 0.0.

since its bias lies in the interval [0, 0]. After applying further abstraction to

obtain f̂ ′
1, these inequalities are updated to reflect the new bounds:

nout ≥
5∑

i=1

W1
i1n1i − 0.05, and nout ≤

5∑
i=1

W1
i1n1i + 0.45.

2. The Marabou solver supports skip connections, as these can be represented as
additional linear constraints, which are seamlessly handled by the underlying
LP solver. Consequently, for each bias term bki in an abstract network f̂ ,
we can introduce a fresh input variable pki that is connected via a skip
connection of weight 1 directly to the neuron nki. The set P is then extended
with a constraint that enforces the interval bounds associated with pki.
For example, in the network f̂ ′

1, the bias of the output neuron is encoded
through an additional input variable pout, and P1 is updated to include the
constraint −0.05 ≤ pout ≤ 0.45.

Both methods allow us to verify ⟨f̂ ,P,Q⟩ directly with Marabou; the first
introduces more inequalities, whereas the second introduces more variables. The
runtime differences between these approaches are studied in [8, Chap. 4].



Abtract Proof Production 11

5.2 Proving Correctness of the CORA Abstraction

After implementing verify-with-proofs in the previous section, we are left
with implementing prove-over-approximation for the CORA abstraction. In
this section, we describe this formalization.

A scheme of proof rules for a DNN with L layers is depicted in Fig. 6. As ab-
stract DNNs are generalizations of DNNs, we first reason about any DNN and its
trivial abstraction. For that, we use the proof rule triv − abs, based on (7). Recall
that the correctness of the CORA abstraction is established based on Prop. 1
and Cor. 1, applied sequentially to all layers of the network. This yields the main
part of the proof, depicted in the base− abs and the lk − abs rules. base− abs
established the correctness of CORA for the first layer based on any hyperrect-
angle I1 bounding the input property P. Then, using lk − abs repeatedly on each
layer of the abstract network. Then, we can conclude the correctness of CORA
using the CORA− L rule for a DNN with L layers. Then, these rules can be
integrated into the proof construction scheme described in Sec. 3.1. To ease no-
tation, we assume that all networks’ internal variables are well defined as in (1)
and (6). In addition, we define the following:

f(x) = ϕL(WL · · ·ϕ1(W1x+ b1) · · ·+ bL),

f̂0(x) = ϕL(WL · · · ϕ1(W1x+ b1 ⊕ {0}) · · · + bL ⊕ {0}),

f̂k(x) = ϕL(WL · · ·ϕk(ŴK · · ·ϕ1(Ŵ1x+ b̂1 ⊕ Î1) · · · b̂k ⊕ Îk) · · ·+ bL ⊕ {0}),

f̂(x) = f̂L(x) = ϕL(ŴL · · · ϕ1(Ŵ1x+ b̂1 ⊕ Î1) · · · + b̂L ⊕ ÎL)

Proof checking. In order to check a proof witness for CORA abstraction, the
checker needs to receive the original DNN verification query ⟨f,P,Q⟩, as well as
the candidate abstract network f̂ . Then, any intermediate abstract network f̂k
can be constructed during the checking process based on f̂ and f .

triv − abs :
f f̂0 x ∈ Rn0

f(x) ∈ f̂0(x)
base− abs :

f̂0 f̂1 x ∈ P ⊆ Î1

∀x ∈ P. f̂0(x) ⊆ f̂1(x)

lk − abs :

k ∈ {2, · · · , L− 1} B ⊂ [nk] f̂k f̂k+1

Ŵk = Wk(B̄,·) b̂k = bk(B̄) Ŵk+1 = Wk+1(·,B̄) b̂k+1 = bk+1

Îk = Îk(B̄) Îk+1 = Wk+1(·,B)Ik(B)

∀x ∈ P. f̂k(x) ⊆ f̂k+1(x)

CORA− L :
f(x) ∈ f̂0(x) ∀x ∈ P. f̂0(x) ⊆ f̂1(x) · · · ∀x ∈ P. f̂L−1(x) ⊆ f̂(x) Q ⊂ RnL

unsat(⟨f̂ ,P,Q⟩) =⇒ unsat(⟨f,P,Q⟩)

Fig. 6: A scheme of proof rules for CORA abstraction of a DNN with L layers

6 Related Work

This work builds on two main pillars in DNN verification: proof production and
abstraction.



12 YY. Elboher, O. Isac, G. Katz, T. Ladner, H. Wu

Proof production is a well-established area in formal verification, particularly
within SAT and SMT solvers [5, 20, 37] among many others, where the gener-
ation of proofs or certificates serves to improve trust in automated verification
results. These proofs can be independently checked, enhancing the reliability
of verification pipelines. Despite its importance in traditional verification, proof
production remains largely unexplored in the context of DNN verification, and
most existing tools do not provide formal proofs as part of their output.

Abstraction [9–11] is a classical technique in formal verification, widely used
to tackle scalability and complexity challenges. In the domain of DNN verifica-
tion, abstraction has been actively studied through two main lenses. The first is
abstract interpretation, which over-approximates neural network behavior using
abstract domains [16, 44]. The second is abstraction refinement, where the veri-
fier incrementally refines the abstraction based on counterexamples or property
violations, improving precision over time [3,13,29,33,38]. These techniques have
proven effective in improving both scalability and verification success rates.

However, the intersection of abstraction and proof production has received
very limited attention, in both directions: how proofs can influence abstraction,
and how abstraction can contribute to proof construction. An early example of
the former, in the SAT domain, is the work of [20], where proofs are used to
guide and refine the abstraction process.

As for the latter, our work is, to the best of our knowledge, among the
first to investigate how abstraction mechanisms can be directly integrated into
the production of formal proofs in the context of DNN verification. In a recent
work [43], a Domain Specific Language (DSL), designed for defining and certi-
fying the soundness of abstract interpretation DNN verifiers, is introduced and
evaluated over several DNN verifiers. This work is focused on proving DNN ver-
ifiers that employ linear over approximations of activation functions, while our
method focuses on separate proofs for neuron-merging abstraction process, and
for the verification process. An interesting future work would be to formalize our
scheme using the DSL of [43].

7 Conclusion and Future Work

This work in progress aims to bridge abstraction and proof production in DNN
verification. On the one hand, incorporating abstraction enhances the efficiency
and compactness of proof production in the formal verification of neural net-
works. On the other hand, proofs can be generated for verification tools that
apply abstraction to improve performance. To achieve this, we enforce the ab-
straction process itself to be certified. By introducing a modular proof rule that
separates the verification proof from the abstraction proof, we establish a foun-
dation for generating complete proofs while using abstraction to aid in their
construction. This modular approach allows integration with existing proof-
producing verifiers for the verification component, while enabling the devel-
opment of novel proof mechanisms specific to abstraction. We presented two
general algorithms for abstraction-refinement-based proof production in DNN
verification and demonstrated how these can be instantiated using current tools
for both proof generation and abstraction.



Abtract Proof Production 13

The next steps of our work include the implementation and evaluation of our
method with respect to proof size, verification time, and proof-checking time;
over real-world benchmarks. Looking forward, we identify two promising direc-
tions for future work. First, integrating residual reasoning [14] could improve the
effectiveness of abstraction refinement procedures. Second, leveraging abstract
proofs within CDCL-based frameworks [22, 34] offers a compelling avenue for
bridging abstraction and clause learning-based proof systems.

Acknowledgements

The research presented in this paper was partially funded by the project FAI
under project number 286525601 funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG).

This work was partially funded by the European Union (ERC, VeriDeL,
101112713). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the Euro-
pean Research Council Executive Agency. Neither the European Union nor the
granting authority can be held responsible for them.

This work was performed in part using high-performance computing equip-
ment obtained under NSF Grant #2117377.

References

1. Althoff, M.: An Introduction to CORA 2015. In: 1st and 2nd Int. Workshop on
Applied Verification for Continuous and Hybrid Systems, (ARCH). vol. 34, pp.
120–151 (2015)

2. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: A
Video Vision Transformer. In: Int. Conf. on Computer Vision (ICCV). pp. 6816–
6826 (2021)

3. Ashok, P., Hashemi, V., Křet́ınskỳ, J., Mohr, S.: DeepAbstract: Neural Network
Abstraction for Accelerating Verification. In: Proc. 18th Int. Symposium on Auto-
mated Technology for Verification and Analysis (ATVA). pp. 92–107 (2020)

4. Bak, S.: nnenum: Verification of relu neural networks with optimized abstraction
refinement. In: Proc. 13th NASA Formal Methods Symposium (NFM). pp. 19–36
(2021)

5. Barbosa, H., Reynolds, A., Kremer, G., Lachnitt, H., Niemetz, A., Nötzli, A.,
Ozdemir, A., Preiner, M., Viswanathan, A., Viteri, S., Zohar, Y., Tinelli, C., Bar-
rett, C.: Flexible Proof Production in an Industrial-Strength SMT Solver. In: Proc.
11th Int. Joint Conf. on Automated Reasoning (IJCAR). pp. 15–35 (2022)

6. Barrett, C., de Moura, L., Fontaine, P.: Proofs in Satisfiability Modulo Theories.
All about Proofs, Proofs for All 55(1), 23–44 (2015)

7. Brix, C., Müller, M., Bak, S., Johnson, T., Liu, C.: First Three Years of the Inter-
national Verification of Neural Networks Competition (VNN-COMP). Int. Journal
on Software Tools for Technology Transfer pp. 1–11 (2023)

8. Chvátal, V.: Linear Programming. Macmillan (1983)

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Proc. 12th Int. Conf. on Computer Aided Verification
(CAV). pp. 154–169 (2000)



14 YY. Elboher, O. Isac, G. Katz, T. Ladner, H. Wu

10. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)

11. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. 4th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL). p. 238–252 (1977)

12. Ehlers, R.: Formal Verification of Piece-Wise Linear Feed-Forward Neural Net-
works. In: Proc. 15th Int. Symp. on Automated Technology for Verification and
Analysis (ATVA). pp. 269–286 (2017)

13. Elboher, Y., Gottschlich, J., Katz, G.: An Abstraction-Based Framework for Neural
Network Verification. In: Proc. 32nd Int. Conf. on Computer Aided Verification
(CAV). pp. 43–65 (2020)

14. Elboher, Y.Y., Cohen, E., Katz, G.: Neural network verification using residual
reasoning. In: Proc. 20th Int. Conf. on Software Engineering and Formal Methods
(SEFM). pp. 173–189 (2022)

15. Elsaleh, R., Katz, G.: DelBugV: Delta-Debugging Neural Network Verifiers. In:
Proc. 23rd Int. Conf. Formal Methods in Computer-Aided Design (FMCAD). pp.
34–43 (2023)

16. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, E., Chaudhuri, S., Vechev,
M.: AI2: Safety and Robustness Certification of Neural Networks with Abstract
Interpretation. In: Proc. 39th IEEE Symposium on Security and Privacy (S&P).
pp. 3–18 (2018)

17. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT press Cam-
bridge (2016)

18. Griggio, A., Roveri, M., Tonetta, S.: Certifying Proofs for SAT-Based Model Check-
ing. Formal Methods in System Design (FMSD) 57(2), 178–210 (2021)

19. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2024), https:
//www.gurobi.com

20. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
Proofs. In: Proc. 31st ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL). p. 232–244 (2004)

21. Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural Network Verification with Proof
Production. In: Proc. 22nd Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD). pp. 38–48 (2022)

22. Isac, O., Refaeli, I., Wu, H., Barrett, C., Katz, G.: Proof-Driven Clause Learning
in Neural Network Verification (2025), Technical Report. http://arxiv.org/abs/
2503.12083

23. Jia, K., Rinard, M.: Exploiting Verified Neural Networks via Floating Point Nu-
merical Error. In: Proc. 28th Int. Static Analysis Symposium (SAS). pp. 191–205
(2021)

24. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In: Proc. 29th Int. Conf. on
Computer Aided Verification (CAV). pp. 97–117 (2017)

25. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: a Calculus
for Reasoning about Deep Neural Networks. Formal Methods in System Design
(FMSD) (2021)

26. Kochdumper, N., Schilling, C., Althoff, M., Bak, S.: Open- and Closed-Loop Neural
Network Verification Using Polynomial Zonotopes. In: Proc. 15th NASA Formal
Methods Symposium (NFM). pp. 16–36 (2023)

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet Classification with Deep
Convolutional Neural Networks. Advances in neural information processing sys-
tems (NeuRIPS) 25 (2012)

https://www.gurobi.com
https://www.gurobi.com
http://arxiv.org/abs/2503.12083
http://arxiv.org/abs/2503.12083


Abtract Proof Production 15

28. Ladner, T., Althoff, M.: Automatic abstraction refinement in neural network verifi-
cation using sensitivity analysis. In: Proc. 26th ACM Int. Conf. on Hybrid Systems:
Computation and Control (HSCC). pp. 1–13 (2023)

29. Ladner, T., Althoff, M.: Fully Automatic Neural Network Reduction for Formal
Verification (2023), Technical Report. http://arxiv.org/abs/2305.01932

30. LeCun, Y., Bengio, Y., Hinton, G.: Deep Learning. Nature 521(7553), 436–444
(2015)

31. Lipton, Z.C.: The mythos of model interpretability: In machine learning, the con-
cept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

32. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J., et al.:
Algorithms for Verifying Deep Neural Networks. Foundations and Trends in Opti-
mization 4(3-4), 244–404 (2021)

33. Liu, J., Xing, Y., Shi, X., Song, F., Xu, Z., Ming, Z.: Abstraction and Refinement:
Towards Scalable and Exact Verification of Neural Networks. ACM Transactions
on Software Engineering and Methodology 33(5), 1–35 (2024)

34. Liu, Z., Yang, P., Zhang, L., Huang, X.: DeepCDCL: A CDCL-based Neural Net-
work Verification Framework. In: Proc. 18th Int. Symposium on Theoretical As-
pects of Software Engineering (TASE). pp. 343–355 (2024)

35. Lopez, D.M., Choi, S.W., Tran, H.D., Johnson, T.T.: NNV 2.0: The Neural Net-
work Nerification Tool. In: Proc. 35th Int. Conf. on Computer Aided Verification
(CAV). pp. 397–412 (2023)

36. Nair, V., Hinton, G.E.: Rectified Linear Units Improve Restricted Boltzmann Ma-
chines. In: Proc. 27th Int. Conf. on Machine Learning (ICML). p. 807–814 (2010)

37. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: To-
wards Bit-Width-Independent Proofs in SMT Solvers. In: Proc. 27th Int. Conf. on
Automated Deduction (CADE). pp. 366–384. Springer (2019)

38. Ostrovsky, M., Barrett, C., Katz, G.: An abstraction-refinement approach to veri-
fying convolutional neural networks. In: Proc. 20th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA). pp. 391–396 (2022)

39. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning Transferable
Visual Models From Natural Language Supervision. In: Proc. 38th Int. Conf. on
Machine Learning (ICML) (2021)

40. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust
Speech Recognition via Large-Scale Weak Supervision. In: Proc. 40th Int. Conf.
on Machine Learning (ICML) (2023)

41. Rudin, C.: Stop Explaining Black Box Machine Learning Models for High Stakes
Decisions and Use Interpretable Models Instead. Nature machine intelligence 1(5),
206–215 (2019)

42. Sälzer, M., Lange, M.: Reachability Is NP-Complete Even for the Simplest Neural
Networks. In: Proc. 15th Int. Conf. on Reachability Problems (RP). pp. 149–164
(2021)

43. Singh, A., Sarita, Y.C., Mendis, C., Singh, G.: Automated verification of soundness
of dnn certifiers. Proc. ACM on Programming Languages 9 (2025)

44. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An Abstract Domain for Certifying
Neural Networks. In: Proc. 46th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL). pp. 1–30 (2019)

45. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: WaveNet: A Generative Model for
Raw Audio. In: Proc. 9th ISCA Workshop on Speech Synthesis Workshop (SSW).
p. 125 (2016)

http://arxiv.org/abs/2305.01932


16 YY. Elboher, O. Isac, G. Katz, T. Ladner, H. Wu

46. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is All You Need. In: Proc. 31st Conf. on Advances in
Neural Information Processing Systems (NeuRIPS). vol. 30 (2017)

47. Wu, H., Isac, O., Zeljić, A., Tagomori, T., Daggitt, M., Kokke, W., Refaeli, I.,
Amir, G., Julian, K., Bassan, S., Huang, P., Lahav, O., Wu, M., Zhang, M., Komen-
dantskaya, E., Katz, G., Barrett, C.: Marabou 2.0: A Versatile Formal Analyzer of
Neural Networks. In: Proc. 36th Int. Conf. on Computer Aided Verification (CAV)
(2024)



Abtract Proof Production 17

A Naive Algorithm

This appendix includes the naive algorithm to integrate proof production with
abstraction and refinement.

Algorithm 2 Naive Proof Production with Abstraction

Input f , P, Q Output proof that unsat(⟨f,P,Q⟩), or counterexample

1: f̂ = abstract(f,P)
2: while true do
3: pa = prove-over-approximation(f̂ ,f,P,Q)

4: result, pq = verify-with-proofs(f̂ ,P,Q)
5: if result == SAT and example is not spurious then
6: return SAT, example
7: else if pa and pq were successfully generated then
8: return UNSAT, ⟨pa, pq⟩
9: else

10: f̂ = refine(f̂ , f)
11: end if
12: end while


	Abstraction-Based Proof Production in Formal Verification of Neural Networks (Extended Abstract)

