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Abstract

We consider a decentralized setup in which the participants collaboratively train and
serve a large neural network, and where each participant only processes a subset of
the model. In this setup, we explore the possibility of unmaterializable weights,
where a full weight set is never available to any one participant. We introduce
Unextractable Protocol Models (UPMs): a training and inference framework that
leverages the sharded model setup to ensure model shards (i.e., subsets) held by
participants are incompatible at different time steps. UPMs periodically inject time-
varying, random, invertible transforms at participant boundaries; preserving the
overall network function yet rendering cross-time assemblies incoherent. On Qwen-
2.5-0.5B and Llama-3.2-1B, 10 000 transforms leave FP32 perplexity unchanged
(∆PPL< 0.01; Jensen–Shannon drift < 4× 10−5), and we show how to control
growth for lower precision datatypes. Applying a transform every 30s adds 3%
latency, 0.1% bandwidth, and 10% GPU-memory overhead at inference, while
training overhead falls to 1.6% time and < 1% memory. We consider several
attacks, showing that the requirements of direct attacks are impractical and easy to
defend against, and that gradient-based fine-tuning of stitched partitions consumes
≥ 60% of the tokens required to train from scratch. By enabling models to
be collaboratively trained yet not extracted, UPMs make it practical to embed
programmatic incentive mechanisms in community-driven decentralized training.

1 Introduction

Foundation models are trained on massively distributed infrastructures [13, 35], and there is a
growing interest in scaling beyond centralized computing clusters via communication-efficient and
fault-tolerant decentralized systems [11, 28, 51, 50, 47]. Even though decentralized systems may
facilitate volunteer-based, multi-party training; without a way for contributors to recoup the hundreds
of millions in training costs [8, 23, 41], such collaborations remain economically infeasible at large
scales [1, 57]. A viable solution is to design incentivization strategies to allow value flow from model
usage to the training contributors, however, this is not possible if the model is freely accessible to
participants (as with a full weight set participants can independently capture model value).

To resolve this seeming contradiction, how can a model be collaboratively trained and hosted, while
the weight set remains private, we introduce Unextractable Protocol Models (UPMs). UPMs utilize
structural properties of the Model Parallel (MP) [17, 54] training setup, where the neural network is
sharded into small subsets and split over devices (in our case, participants), and no one device accesses
the full model at any time. This is a novel setting, where the model architecture, hyperparameters,
and datasets can be open-sourced, yet a full weight set never exists in any location at any one point.
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In the decentralized case, a motivated attacker may attempt to periodically rejoin training in different
stages to obtain a full copy of the model. UPMs address this by making the weights of the model shards
time-dependent and incompatible across time-steps. Periodically, time-varying random invertible
transforms are morphed into the model weights at the stage boundaries. These transforms cancel out
at the same time step, preserving the end-to-end network function, however, they are incompatible
across time steps, ensuring that stitching shards from different times results in an incoherent model.

We show that our morphing approach is compatible with various neural network architectures,
including transformer layers [60], and discuss the efficacy of different types of transformations,
showing virtually no performance degradation and negligible communication and memory overhead
for inference. Furthermore, we analyze strong learning based attacks to stitch shards from different
time steps, and show that recovering the full model functionality requires training costs in the
same order as training the full model from scratch. Finally, we discuss how our framework affects
optimization, and show that training is unaffected for a compatible optimizer.

We make the following contributions:

• We introduce Unextractable Protocol Models (UPMs), a framework enabling collaborative training
and inference without allowing any participant to extract the full model weights.

• We provide a thorough analysis of UPMs, identifying which architectures and layer types they
support, the key requirements for the transforms, how they affect optimization, and potential attack
scenarios along with practical defenses.

• We empirically demonstrate on billion-parameter decoder-based language models that UPMs do
not alter the model performance even with up to 10k morphing steps, and the communication and
memory overhead is negligible compared to inference/training cost.

2 Setting: Decentralized Models and the Weight Materialization Threat

We first introduce the decentralized model setup (i.e., the protocol), where participants collaboratively
train or serve a model. To ensure economic viability, we argue that the full model weights cannot be
allowed to materialize, motivating a design where each participant processes only a model subset.
We then examine potential extraction attempts, where adversaries try to reconstruct the full weight
set across time steps. The next section introduces UPMs, which prevent this by ensuring that weights
across time steps form an incoherent model, while preserving exact functionality within each step.

2.1 Decentralized Protocols for Large Models

We consider a decentralized protocol that enables collaborative training and inference of large models
by pooling participants’ compute resources. This level of compute is not within the reach of a small
group of individuals and therefore requires a large group of participants. The setting is inherently
trustless, we can assume an honest majority but must assume there are malicious actors.

Economic feasibility. For such a protocol to be economically feasible, it must be able to derive
value from the trained model. The key to this, explained in Section A, is to ensure that the trained
model’s utility is excludable: accessible only through the protocol. As long as excludability holds,
access can be priced and revenue shared among participants.

To achieve excludability, we propose guaranteeing unextractability: preventing participants from
being able to extract the full weight set. This means the full model only exists within the protocol,
preventing weight materialization for any participant. We show that unextractability can be ensured
(with high probability) with a lightweight construction that uses the structure of the model setup,
as opposed to using expensive cryptographic primitives. Notably, code and data can remain open,
enabling open-source development of large models while preserving economic feasibility.

We also need to consider partial excludability, where an attacker can produce a model M ′ with
equivalent performance to the protocol model M̂ using information gained during participation (see
Section A). We quantify excludability by defining the excludability ratio Er = C(M ′)

C(M̂)
, where C(M̂)

is the (extremely large) compute required to train M̂ in the protocol, and C(M ′) is compute required
to produce M ′ (both participating in the protocol and extra training). If Er is very low, so C(M ′) is
within the reach of a small group of individuals, the protocol is not economically viable.
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Figure 1: A pipeline parallel setup with R pipelines and S stages, where each stage is occupied by
one of C compute nodes. Participants can operate multiple nodes within a stage (color indicates
participant identity). Nodes in red indicate an attacker, who hides their identity to try and get access
to different stages of the model over time.

Model setup. We require each participant to only hold and processes a subset of the model. This
can be done through Model Parallelism (MP) [14, 54], which divides the model into shards distributed
across devices. We consider a special case of MP, Pipeline Parallelism (PP) [14, 17], where each
shard contains a consecutive block of layers called a pipeline stage. Participants only communicate
with adjacent stages, avoiding the costly all-to-all communication common in other MP strategies.

Assume the model F : X → Y is divided into S sequential pipeline stages. The model computes

F (X0) = fS ◦ fS−1 ◦ ... ◦ f1(X0) , Xi = fi(Xi−1; θi) , for i = 1, . . . , S , (1)

where Xi are the intermediate model outputs (i.e., activations) with X0 as the input to the model, and
stage fi has parameters θi. The protocol maintains R replicas of each pipeline, both allowing to scale
for more participants and compute (data parallelism) and ensuring fault tolerance (stages are not lost
if a participant drops out).

Suppose a compute pool of C > RS nodes from all participants. The protocol randomly allocates
nodes to each of the RS slots, each a specific replica of a stage, without revealing the stage identity.
The protocol can implement stricter measures, such as ensuring that a participant can only hold
slots from a single stage. We assume that the total required compute for the protocol is much larger
than any participant can provide, so any attacker (or attack coalition) has total compute A where
A≪ RS < C. Thus, an attacker cannot have access to all stages at any given time. However, they
can hide their identity and access different stages over multiple time steps, which we discuss below.
Our overall setup is illustrated in Figure 1.

2.2 Threat of Weight Materialization

Let us consider how an attacker (or attack coalition) can attempt to extract the full model weights
over T time steps. Note that the attacker controls a small fraction p = A

C ≪ 1 of all nodes, so the
probability of the protocol allocating a particular slot to the attacker is approximately p.

For the attacker to be successful, the attacker must access at least one slot from each of the S stages.
If an attacker has multiple nodes, they can masquerade as multiple participants simultaneously to try
and access multiple stages. Since p ≪ 1, it is highly unlikely that the attacker will be assigned to
every stage, in fact it is likely that A < S. However, by repeatedly leaving the protocol and rejoining
as a new participant, the attacker may gain access to all stages over many time steps. The probability
of this happening within T time steps is approximately (pRT )S (derived in Section C). Note that
training and inference require an extremely large number of time steps, so even a small p can ensure
a successful attack once T ≈ 1

pR .

Such piecewise Sybil attacks pose a threat of weight materialization. One can try to deter this via
centralized authentication systems or cryptographic solutions [12, 53], but they require additional
constraints on the protocol and incur prohibitive computation and/or communication overhead at
scale. Instead, we leverage the sharded model structure itself to enforce weight unmaterializability.
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Figure 2: Our framework ensures stage weights vary over time by folding in transforms, yet the
end-to-end function is preserved. (A) Our transform inducing process. (B) Our framework reasons
about subfunctions gi, which are grouped into pipeline stages. (C) A transformer layer as a stage
with transforms applied. Note that every weight is morphed: Tint must align with Ti−1 and Ti due to
the skip connection, meaning compatibility at a stage boundary also depends on the other boundary.

3 Unextractable Protocol Models

To prevent an attacker from stitching together weights collected at different times, we make the
weights time-dependent while ensuring the end-to-end network function is unchanged at any point
in time. We achieve this by periodically morphing the weights with transformations that cancel out,
thus weights collected at different times are incoherent as their integrated transforms do not cancel
out. Note that the transforms are repeatedly applied to weights without removing old transforms, and
knowledge of the transform is discarded after the morphing.

Every morphing step, where transforms are folded into the model weights, defines a new transform
time step2 in the protocol. Consider two neighboring stages fi and fi+1 with weights θi(t) and
θi+1(t) at transform time step t. We morph weights so that θi(t) and θi+1(t) remain compatible, but
θi(t) and θi+1(t

′) for t ̸= t′ are incompatible. As shown in Figure 2 (A), this is done by introducing
an identity function between the neighbors, decomposing it into a random transform and its inverse,
and then folding them into the weights of the neighbors. This operation leaves the end-to-end
function F unchanged, though at each time step t the intermediate activations between stages lie in a
different space. Consequently, θi(t) and θi+1(t

′) are incompatible, as θi+1(t
′) is only compatible

with activations produced by θi(t
′). We now formalize this process.

3.1 Approach

The key to our approach is to identify which weight matrices need transforms applied to them and
how to apply those transforms. This involves decomposing the model into smaller subfunctions that
allow transforms to be applied between them.

Valid subfunctions. We first define a valid subfunction as a subfunction of the form

gi (X) = Φi (XUi)Vi (2)

where Ui and Vi are weight matrices, which we call the entry and exit matrices of the subfunction,
and Φi is any (possibly nonlinear) function. Let d denote the output dimension of gi.

We now show how to apply transforms between valid subfunctions so they become incompatible
across time steps. Consider two consecutive valid subfunctions gi = Φi (XUi)Vi and gi+1 =
Φi+1 (XUi+1)Vi+1, composed as gi+1 ◦ gi. As shown in (see Figure 2 (A)), this is done by

1. inserting an identity transforma between them: gi+1 ◦ gi = gi+1 ◦ I ◦ gi, I(X) = XId,
2. splitting it into a random transform and its inverse: I(X) = XTT−1, T ∈ GL(d,R)3, and
3. folding the transforms into the weights: Vi ← ViT , Ui+1 ← T−1Ui+1.

2This time step may be different from the time step of inference calls or training iterations.
3Group of d× d invertible matrices over R
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This procedure is called a morphing step and advances the protocol a transform time step. We index
components by time step, e.g., Vi(t) = Vi(t− 1)Ti(t). In practice, the morphing step between t− 1
and t consists of: gi generates the random transform pair T (t) and T (t)−1, sends it to gi+1, both fold
them into their weights and then discard them. Since the transforms are discarded, we consider them
to be ephemeral, they are baked into the weights and there is no other knowledge of them.

To see why this causes cross-time incompatibility, assume we have access to gi at time t and gi+1

at time t′ with t < t′. Then we have access to Vi(t), Ti(t), Ui+1(t
′) and Ti(t

′). However, Vi(t) and
Ui+1(t

′) cannot be used together: if gi(X) = Z before any transforms are applied, then using Vi(t)
within gi yields ZTi(1)...Ti(t) but Ui+1(t

′) expects ZTi(1)...Ti(t
′). Thus, Vi(t) and Ui+1(t

′) are
inconsistent, their composition no longer preserves gi+1 ◦gi. Aligning the weights requires the bridge
matrix T̂ = Ti(t + 1)...Ti(t

′), but we only know the last term Ti(t
′), so we only know the bridge

matrix for t′ = t + 1. For t′ > t + 1, aligning the weights requires guessing a random invertible
matrix. Finally, to prevent attackers from rejoining the protocol within consecutive time steps, the
protocol enforces a two-step joining delay.

Allowing identity entry/exit matrices. As Φi can be anything, the main constraint in Equation (2)
is the need for there to exist entry and exit weight matrices. We now relax this constraint so that
at a boundary gi, gi+1, only one of Vi, Ui+1 need to be a weight matrix; the other we can form
as an explicit identity matrix that gets morphed. For example, if our subfunction does not have
a weight matrix Vi, then we replace it with Qi where Q0 = Id. Qi(t) and Ui+1(t

′) will remain
incompatible and require a bridge matrix. However, we cannot have both Vi and Ui+1 as identity
matrices: although Qi(t) and Qi+1(t

′) stay incompatible, they contain no information, allowing an
attacker to remove them without altering the function.

Many neural network components can be expressed as compositions of these subfunctions. For
example, MLPs can be written as compositions gi(X) = σ(XUi) = σ(XUi)Qi with element-wise
activation function σ, or equivalently gi(X) = σ(X)Vi = σ(QiX)Vi.

Extending to complex components. We extend valid subfunctions to multiple inputs and outputs
by generating a transform at each exit matrix, reusing transforms if the exit matrices map to the same
input (or have the same dimension). Examples include RNN blocks Ht+1 = Φh(HtUh1+XtUh2)Vh1,
Xt+1 = Φo(HtUo1 +XtUo2)Vo2, or self attention SA(X) = Φ(XUQ, XUK , XUV )V (here Φ is
multi-headed attention). Subfunctions can also be combined: scaling in depth by composing multiple
subfunctions, scaling in breadth by applying in parallel like skip connections: (Φ(XUi)Vi, XQi), or
multiplying them for gating:

∑
k Gk(XUk,1)Φk(XUk,2)Vk.

Generalizing subfunctions. Ultimately, what matters is embedding the inverse transform into the
next subfunction’s weights while preserving the overall composition, leading to subfunctions of the
form gi (X) = Φi (Ω(X)Ui)Vi where gi(XT−1) = Φi (Ω(X)U ′

i)Vi for some morphing function
Ui 7→ U ′

i that involves T−1 and preserves the shape of Ui. For example, convolution layers can
be expressed as gi(X) = Φi(im2col(X)Ui) where X ∈ R...×di−1 , im2col(X) ∈ R...×Pdi−1 , Ui ∈
R(Pdi−1)×d and P is the convolution patch size. Thus for T−1 ∈ Rdi−1×di−1 , im2col(XT−1)Ui =
im2col(X)(IP ⊗ T−1)Ui, so the inverse should be folded into Ui as (IP ⊗ T−1)Ui.

Normalization Layers. Normalization layers pose a challenge, as they alter subfunctions to
be of the form Φ (Norm(X)Ui(t))Vi. The issue is that this is a non-linear transformation of X
before the matrix multiplication with Ui, so our previous strategy does not work. However, we
propose the following workaround for RMSNorm layers, which have been shown to match or exceed
LayerNorm and BatchNorm performance across many tasks while also being more efficient [67].
Given X ∈ Rb×di−1 with rows/instances x(j), RMSNorm is of the form

RMSNorm(X) = norm(X)Xdiag(w), norm(X) = diagb
j=1

((
d−1∥x(j)∥2

)−1/2
)

(3)

where norm(·) applies row-wise RMS normalization and w ∈ Rd are the feature scaling parameters.
We introduce a transform accumulation matrix into the normalization: norm(X)→ norm(XQi(t)),
with Qi(0) initialized as an orthogonal matrix. Then transforms are also folded into Qi(t), hiding
them and Q(0), while preserving the norm due to the orthogonality of Q(0). We also absorb diag(w)
into Ui so that transforms can be folded into the latter, Ui(0) = diag(w)Ui (during training this
is equivalent to removing w). We now have the desired functional equivalence (see Section D for
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details), after morphing step Qi → T−1Qi and Ui → T−1Qi

fi (Xi−1T ) = Φ (norm (Xi−1TQi)Xi−1TUi)Vi (4)
= Φ(RMSNorm(Xi−1)Xi−1Ui)Vi. (5)

Full model morphing. Having established how to apply transforms between neural network
components, we now consider the overall model. As shown in Figure 2 (B), we decompose our model
into such subfunctions, and group contiguous subfunction blocks into pipeline stages. Within each
stage, redundant transforms are removed.

Extraction probabilities. Our construction makes certain stage weights—specifically the entry/exit
matrices or their generalized forms—dependent on transforms at the stage boundaries. When these
weights depend on transforms from only one boundary, we call it partial incompatibility. For UPMs
with partially incompatible stages, the probability of an attacker accessing all stages within T time
steps is

(
(T − 2)× (3pR)2

)S−1
(derived in Section C). Although this offers stronger protection than

having no unextractability, it remains relatively high in practical settings.

Ideally, we would have full incompatibility, where at least one weight in each stage depends on the
transforms from both boundaries. Skip connections inherently achieve this; thus transformer layers
naturally satisfy full incompatibility (see Figure 2 (C), where both transforms are applied to Q at
each skip connection). For UPMs with fully incompatible stages, the approximate probability is now
(T − 2)(3pR)S (see Section C), which is very low for realistic settings (provided R remains small).

3.2 Transforms

Transforms must be sufficiently random to resist brute-force or bias-exploiting attacks, strongly
alter weights to prevent easy inversion, and remain numerically stable with minimal floating-point
error. We find that these properties largely depend on the transforms’ singular values (detailed in
Appendix E). In particular, controlling the condition number is crucial, since numerical error increases
exponentially with it. Thus, we select two transform classes:

Haar orthogonal matrices. Orthogonal matrices (QQT = I) have unit singular values, minimal
numerical error, determinant ±1, and an easily computable inverse (T−1 = TT ). Uniform sampling
from the Haar distribution ensures no exploitable bias.

Low-condition number matrices. To introduce higher frequencies while maintaining numerical
stability, we use matrices of the form UDV T , where U, V are Haar orthogonal matrices, and
D = diag(seui), ui ∼ U [−ε, ε]. Singular values now lie within [se−ε, seε], bounding condition
number by e2ε ≈ 1 + 2ε. We cycle scale factor s to prevent cumulative scale drift.

3.3 Training

While forward-pass equivalence under transforms is straightforward, ensuring correctness in the
backward pass requires extra care. Transforms affect weights and gradients differently: if weights
transform as W(T ) = WT then its corresponding gradients satisfy G(T ) = GT−T . For optimizers
using only the first gradient moment M (t), we change the update step from W (t+1) = W (t) −
ηf(G(t),M (t)) to W

(t+1)
(T ) = W (t)T −ηf

(
G(t)T−T ,M (t)T−T

)
. Furthermore, for some optimizers

this is equivalent to update steps with the untransformed model when using orthogonal transforms:
W

(t+1)
(T ) =

(
W (t) − ηf(G(t),M (t))

)
(T )

. We implement training with Muon [19], which satisfies
both properties. Further details and derivations appear in Section F.

3.4 Inference

Although morphing steps leave the forward function unchanged mathematically, repeated transform
folding accumulates numerical precision error. During training, gradient descent corrects such errors,
but at inference there is no correction mechanism. We mitigate this by storing high-precision weights
on disk and keeping a low-precision copy in GPU VRAM for inference. At each transform step, we
apply the transform to the high-precision weights on disk, cast them to low precision, and reload them
into GPU VRAM. Since transforms occur infrequently, disk-to-VRAM transfer overhead is negligible.
Floating-point error analysis in Section E.2 confirms this effectively limits error accumulation.
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Figure 3: Functional Equivalence during Inference. We evaluate the cumulative effect of transforms
by measuring logit drift (via Jensen–Shannon distance) and perplexity increase on the WikiText test
split across different numbers of orthogonal morphing steps. Results are shown for Qwen 2.5 0.5B
and Llama 3.2 1B across multiple precisions. Solid lines denote our high-precision (HP) workaround
described in Section 3.4. Without the workaround, low precision leads to logit drift and rising
perplexity, whereas with it, both remain stable over 10k steps.

4 Related Work

4.1 Decentralized and Federated Learning

Collaborative training primarily uses Data Parallelism (DP), where nodes store full model replicas,
limiting scalability and exposing models to extraction [11, 32, 25, 9]. Alternative methods like
SWARM [51] and Tasklets [66] shard models across nodes, and Hivemind [28] and Petals [6] futher
improve decentralized inference with throughput reaching 6 tokens/sec for a 70B model. However,
these methods have no mechanism to prevent model extraction. Federated Learning (FL) [30, 36, 20]
keeps data decentralized, emphasizing privacy, and has been extended to both large models [65, 69]
and incentives [21, 43]. Unlike FL, our work targets weight secrecy and robustness against untrusted
participants, addressing fundamentally different challenges.

4.2 Communication Efficient Decentralized Training

Since decentralized training operates over low-bandwidth and high-latency networks, communication
efficient methods that preserve training performance are essential. Many methods focus on the data
parallel (DP) setting, where weight gradients need to be synchronized between devices [61, 7, 5, 11,
68]. However, they are insufficient for the pipeline parallel setup we consider, where activations and
their gradients are also communicated between devices. Recently, several approaches have emerged to
address this gap. Ajanthan et al. [2] further improves approaches that use pipeline schedule strategies
to mask communication overhead by making optimization asynchronous. Ramasinghe et al. [47]
losslessly compress activations and their gradients, and has been deployed in a public decentralized
run [4]. As a result, pipeline parallel decentralized training is now well established.

4.3 Model Extraction Attacks

Black-box extraction attacks aim to replicate model capabilities without direct access. Tramèr
et al. [59] demonstrated feasibility through prediction APIs, and Krishna et al. [27] extended this to
neural language models via transfer learning and targeted queries. Wallace et al. [62] later extracted
translation models via imitation learning, and Lee et al. [29] recently showed projection layers could
be stolen with limited API queries. In contrast, we address extraction threats in collaborative training,
where attackers participate directly rather than through restricted black-box access.

5 Results

We empirically validate our approach as follows. First, we verify that inference-time morphing
preserves model behavior (Section 5.1), and quantify its practical overhead (Section 5.2). Next,
we demonstrate that training under our framework matches unconstrained baselines for orthogonal
transforms, consistent with theory (Section 5.3). Finally, we evaluate model-stitching and learning-
based attacks (Section 5.4).
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Figure 4: UPM training. Training on 1.9B FineWeb tokens with Muon across three GPT-2 scales,
comparing our UPM framework (with various transforms, morphing occurs every 0.5M tokens) to a
no-transform baseline. Top: training loss. Bottom: relative loss gap vs. the baseline. As per the
analysis in Section 3.3, orthogonal transforms are behaviorally indistinguishable from the baseline
(overlapping curves, constant and near-zero relative difference). A very small ε (ε = 0.01) also tracks
the baseline, ε = 0.1 drifts slowly and ε = 0.5 drifts slowly for at least 100 morphing steps before it
becomes unstable and fails.

5.1 Functional Equivalence

While UPMs preserve the model’s end-to-end function mathematically, during inference the precision
error builds as discussed in Section 3.4. To quantify this, we start with two pretrained open weight
LLMs, Qwen 2.5-0.5B [45] and Llama 3.2-1B [13], and iteratively apply our morphing steps. After
each morphing step, we measure deviation from the original model in two areas: output logits
distribution using Jensen-Shannon distance, and language modeling performance, using validation
perplexity. Evaluation is performed on the WikiText (v2-raw) validation set [37]. We test three
floating-point precisions: FP32 (single), FP16 (half), and BF16. We also apply the high-precision
accumulation workaround from Section 3.4, where transforms are folded into high-precision weights
on disk before downcasting to the GPU.

As shown in Figure 3, without the workaround (dashed lines) logit drift and perplexity grow with the
number of morphing steps: FP32 changes remain small even after 10k steps, but FP16 and BF16 drift
substantially, eventually rendering the model unusable. With the workaround (solid lines), growth is
negligible across all precisions, consistent with our floating-point error analysis in Section E.2.

5.2 Inference Overhead

We consider the case of Llama 3.2 1B (which has dimension D = 2048), with a batch size B = 4,
sequence length S = 1024, and morphing every 30s. The latter implies that new participants need to
wait 1 minute before getting assigned a stage so that participants cannot leave and join in adjacent
time steps (this time would be required for authentication checks anyway).

Time: On an NVIDIA A100 GPU (FP32), a morphing step requires approximately 0.05 s, 95% of
which is orthogonal matrix generation in FP64, yielding an amortized latency overhead of about 3%.
This overhead can be further reduced by overlapping local computations with communication.

Communication overhead: Inference steps require sending activations of shape (B,S,D) while
morphing steps require sending transforms of shape (D,D), resulting in an amortized bandwidth
overhead of ≈ 0.1%.

Memory overhead: Each layer stores four additional D×D matrices, increasing storage by roughly
20% per layer, or 10% extra GPU memory overall (around 1GB for typical inference workloads).
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GPT-2 GPT-2 Med GPT-2 XL

Original 3.28 3.26 3.16
Orthogonal 3.27 3.26 3.17
ε = 0.01 3.28 3.26 3.16
ε = 0.1 3.66 3.74 4.48
ε = 0.5 5.09 5.01 5.13

Table 1: UPM Training. Final validation loss for the experiment in Figure 4, demonstrating the same
trend: orthogonal transforms have identical behaviour to the baseline, and drift increase with ε.

5.3 Training

As explained in Section 3.3, we use the Muon optimizer for our training experiments. Muon is notable
for having powered numerous speedrun records on CIFAR-10 and NanoGPT [18]. To demonstrate
that UPMs support effective training, we build on a NanoGPT speedrun record [48] whose setup
most closely mirrors modern GPT architectures: a GPT-2 model (124 M parameters) equipped
with RMS-Norm, RoPE, and ReLU2 activations. The goal of the NanoGPT speedrun is to reach a
validation loss of 3.28 on FineWeb in as few tokens as possible. The particular record we use achieves
this target in just 1.9 billion tokens. We also demonstrate this with larger GPT-2 sizes.

We show training loss curves for both the original and with UPMs in Figure 4, experimenting with
different transforms, and report the final validation loss in Table 1. Consistent with the theory in
Section 3.3, orthogonal transforms yield identical loss curves to the baseline, while non-orthogonal
transforms (ε > 0) introduce gradual drift that accumulates with ε. Applying a transform every 100
steps adds only 1.6% time overhead and <1% memory overhead. These overheads are far smaller
than at inference since the backward pass dominates both time and memory costs.

5.4 Attacks

In Section 3.1, we explained that weights accessed across stages at different transform time steps are
inconsistent, and that the bridge matrix can only be determined if the time steps are adjacent (which
we prevent by adding a waiting window to rejoining). We now examine two strategies for recovering
consistent weights from inconsistent snapshots, and show they are impractical.

5.4.1 Model stitching attacks

esides transforms and weights, participants can observe intermediate activations Xi. Suppose an
attacker obtains stage i and i+ 1 at time t and t′ > t+ 1, so they have Vi(t), Ti(t), Xi(t) and Ti(t

′),
Xi(t

′), Ui+1(t
′). To make the weights compatible, they need the bridge matrix T̂ = Ti(t+1)...Ti(t

′).
However, if the same input was provided to the network in both time steps, then Xi(t

′) = Xi(t)T̂ ,
so T̂ can be expressed as a solution to a matrix system (see Section G for a detailed explanation).
Furthermore, if Xi(t) is full rank, then T̂ can be solved for by inverting Xi(t), and if not, T̂ might be
able to be determined using least squares. Such an attack would reduce the excludability ratio of the
model close to zero. Although the compute requirement of reaching each stage in the protocol may
be costly, it is extremely small compared to training from scratch.

However, requiring identical inputs across the time steps the weights were collected at is impractical
and easy to defend against. Since the attack hinges on there being equal activations Xi at both times
steps, Section G both explains how an attacker could try to force this, and why those attacks still
remain impractical and easily mitigated.

5.4.2 Learning based attacks

Beyond attacks that directly try to align incompatible weights that have been stitched together,
adversaries might use learning-based attacks, fine-tuning the stitched weights to reconstruct the
original model. If fine-tuning requires little compute, the excludability ratio approaches zero,
undermining the model’s economic security. We evaluate such attacks on a pretrained Llama 3.2-1B
model using the FineWeb dataset [42]. We use both the base Llama model trained by Meta (on a
wide variety of data) and a model we trained from scratch on FineWeb. We then apply transforms to
these model (treating each transformer layer as a stage) and stitch together weights from different
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Figure 5: Learning-based Attacks. Left: Tokens required, as a percentage of training from scratch
to a perplexity of 20, to reach various perplexities on FineWeb with a stitched Llama 3.2 1B model.
We evaluate this with two sets of pretrained model weights that are morphed and then stitched: the
base Llama model weights released by Meta (which is trained on a wide variety of data) and our
model weights that we train from scratch on FineWeb. Transforms are applied such that the boundary
between transformer layers are inconsistent. In all cases, finetuning the stitched model to a perplexity
of 20 required at least 60% of the compute required to train the model from scratch to the same
perplexity. Right: Average extra tokens in billions to reach a desired perplexity as ε increases.

transforms. From this, we measure the compute required to reach various perplexity thresholds when
finetuning (using FineWeb) compared to training from scratch. At the start of training we observe the
perplexity of the stitched models are >60 000, comparable to a randomly initialized model. As shown
in Figure 5, finetuning a stitched model that used orthogonal transforms still required roughly 60%
of the compute of training from scratch. Small ε transforms yield similar costs and larger ε values
slightly increase these costs, which we also show in terms of tokens.

Thus, UPMs are able to not only prevent direct weight set extraction, but also prevent information
leakage that can allow an equivalent model to be produced with reasonable compute. Even when all
weights are collected (though all are incompatible), the excludability ratio does not fall below 0.6.
Such compute is not within the means of even medium sized attack coalitions.

6 Conclusion

We introduce Unextractable Protocol Models (UPMs), which apply random invertible transforms at
each pipeline boundary to prevent piecewise Sybil attacks. In experiments with Qwen 2.5-0.5B and
Llama 3.2-1B, during inference UPMs incur negligible logit and perplexity drift after 10 000 morphs,
and add only ∼ 0.1% bandwidth and ∼ 3% latency overhead (amortized). We also demonstrated that
training dynamics are unaffected for orthogonal transforms with the Muon optimizer, consistent with
theory. Finally, we also show that stitching and learning-based attacks are computationally expensive
and impractical. By binding model value to the protocol rather than static weights, UPMs enable
compute providers to jointly serve and monetize large models without risking weight leakage. Our
preliminary training results suggest a path toward fully trustless, unextractable training, positioning
UPMs as a key technical pillar for open, decentralized AI.

Limitations Our security relies on standard cryptographic assumptions, notably that most par-
ticipants are honest; thus, security weakens if a large portion is dishonest (see Section C). Our
experimental evaluation is limited to single-machine simulations, excluding real-world decentralized
implementations and side-channel attacks (e.g., timing, cache). Consequently, actual latency and
bandwidth overhead depend on real deployment factors like batch sizes and network conditions.

Broader Impact This work develops Unextractable Protocol Models (UPMs) to allow for economic
sustainability and open participation in large-scale decentralized AI. However, UPMs prevent the
ability to inspect or disable model weights. This prevents safety evaluations and content-moderation
controls, such as determining if activations have unwanted correlations, and could empower actors
who wish to host unregulated or harmful AI services without fear of takedown or forensic analysis.
To mitigate these, we suggest ensuring that diverse stakeholder participants jointly monitor model
behavior and enforce usage policies, and continuously have transparent metrics evaluated and logged,
enabling external safety validation.
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in Section 5.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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address problems of privacy and fairness.
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will be specifically instructed to not penalize honesty concerning limitations.
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Justification: We reason about the main theoretical result in Section 3.1. Any justifications
only briefly given in the main paper (e.g. Sections 3.3 and 5.4) are properly justified in the
appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We give full details on how to implement our framework and on the transforms
we used. All of our experiments are done using openly available models. We provide
additional details (e.g. hyper-parameters) in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

17



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our framework is simple to implement, with all details needed to implement it
given. We use openly available neural network frameworks (discussed in the appendix) and
use openly available data (explained in the main paper).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Most of these are given in the main paper, hyperparameterss are given in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Experiments are too computationally expensive to report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We give a few of these in the main paper (memory and time overheads), and
give the rest (compute resource details) in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not breach any item.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: For word-level editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A The economics of decentralized models

While the decentralization of large models allows the huge computation cost of training and serving
inference at scale to be spread across a large number of participants, by nature such a setting is
trustless. We can assume an honest majority of participants, but we must also assume that there are
bad actors within the protocol. As a result, any information that participants receive unprotected
access to, be it code, data, or weights, can be utilized outside the protocol. We now explain what must
be protected in order for the economics of decentralized protocols for large models to be rational, and
why unextractability is sufficient to guarantee this.

A.1 Appropriability and Excludability

The key issue here is called the appropriability problem in economics: the difficulty for producers to
appropriate (capture) value from their product [3, 56, 44]. Not only do they need to recoup the cost
of production, but there needs to be surplus value as an incentive for the production. In the context of
decentralized protocol models, the producers are the participants of the protocol and the product is
the ability to utilize the model via the protocol (query the trained model). The value of this model
utility (the product) is largely governed by the capability of the model.

Increasing the appropriability of the product is often discussed in terms of the related economic notion
of excludability, the degree to which non-paying consumers can be denied access to the product
[52, 39, 22]. By only allowing access to query the model via the protocol, the protocol can then
monetize serving inference for general consumers and distribute returns to participants who supplied
compute. This gives participants the incentive to supply compute in the first place. However, if one of
the participants can gain access to the full model, then there is the ability to query the model outside
the protocol and the excludability of the protocol disappears.

This is the motivation for unextractable protocol models, ensuring that no participant can recreate
the full weight set while participating in the protocol, and thus guaranteeing the excludability of the
protocol.

A.2 Partial Excludability

Furthermore, we can consider partial excludability: if an attacker can produce an equivalent model
using whatever knowledge they gained from participating in the protocol and additionally some
amount of compute that is substantial (which includes the compute required to participate in the
protocol), then the excludability is fractional and depends on how large that required compute cost is
relative to the overall compute power needed to train the model from scratch.

Let us formalize partial excludability for our situation. Assume that a performance measureP(M) has
been defined for any model M along with a tolerance value ε, for example the validation perplexity
of the model on the dataset it is being trained on with a tolerance of 0.5 perplexity, or perhaps the
validation perplexity on an independent dataset. Let us also consider a compute measure C(M) for
obtaining a model M , for example the amount of flops, GPU hours, or cost of compute.

Consider the case of an original model trained from scratch in the protocol M̂ with performance
measure P(M̂), and a model M ′ that an attacker has derived from participating in the protocol with
performance measure P(M ′), where |P(M̂)− P(M ′)| ≤ ε. Then to quantify how excludable M̂
is and assuming this attack is the best possible attack, we define its excludability ratio as the ratio
between the compute C(M ′) required to derive M ′, and the compute C(M̂) required to train M̂ from
scratch

Er =
C(M ′)

C(M̂)
. (6)

B Possible Extraction Scenarios and their Excludability Ratio

Let us consider possible extraction scenarios and their excludability ratio, noting that we want to
ensure that all feasible attacks have a high excludability ratio. In fact, an excludability ratio of more
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than 0.1 is very likely to still be out of the reach of individual attackers / attack coalitions, as this is
still an enormous amount of compute.

Since we can consider the case when the code and data are completely open (as it is economically
feasible with our framework), with enough compute anyone can train their own model. However, this
requires the same amount of compute as the decentralized protocol, C, and so the excludability ratio
is one. On the other hand, if an attacker can somehow compromise the security of the protocol and
directly gain access to all trained weights, then their required compute is zero and the excludability
ratio is also zero. This is extremely unlikely as we assume that standard security measures have been
put in place.

Now let us consider the situation where the attacker participates in the protocol. If the attacker
manages to collect weights from each stage over multiple time steps and there are no unextractability
measures put in place, then the required compute is whatever was needed to participate in the protocol
until the attacker collected all weights. While this compute might be substantial for an individual (as
participating in the protocol requires compute), it is dwarfed by the enormous amount of compute
needed for training the large model, so the excludability ratio is essentially zero.

On the other hand, let us say that there are still no unextractability measures in place, and the attacker
manages to gain access to a large subset of the entire weight set. By keeping those weights fixed,
and training all the other weights in the model, the attacker may be able to gain access to a model
with equivalent capability. If the compute required for training is some fraction α of C, then the
excludability ratio is α. Similarly, when there are unextractability measures in place, the attacker
might be able to collect a full set of incompatible weights, and finetune from these weights in order
to align them and thus gain a compatible model with some fraction α of C. In both these cases, if α is
small enough that an adversarial entity has access to αC compute but not C compute (so cannot train
the model themselves but could carry out one of these attacks), then the appropriability of the model
is severely reduced.

Now let us consider attacks with our unextractability framework in place. It is still possible for an
attacker to participate in the protocol and manage to collect weights from each stage over multiple
time steps as well as the transforms needed to make the weights compatible. However, as shown in
Section C, the probability of this happening can be made vanishingly small, especially for the case of
transformers.

Another possible attack is to use intermediate results gained while in the protocol to solve for the
required bridge matrices. We discuss such attacks in Sections 5.4.1 and G, including easy ways to
prevent them.

Finally, an attacker might use whatever set of weights they obtained while participating in the protocol,
which will be incompatible with each other, to train an equivalent model with less compute than
training from scratch. This is the learning based attack discussed in Section 5.4.2. We demonstrated
that even with access to a full set of (incompatible) weights, the excludability ratio remains quite
high.

C Decentralized Model Pipeline Setup and Extraction Probabilities

Let us first summarize our setting from Section 2.

• We consider the situation of a pipeline with S stages and R replicas of each stage, and each of the
RS slots (individual replicas of a stage) require a compute node.

• The combined compute pool from all participants is C > RS nodes, nodes are allocated to slots at
random (hiding the stage identity)

• The protocol might implement stricter measures like the nodes belonging to a single participant
can only be allocated to slots in a single stage

• We assume that the total nodes an attacker controls is A≪ RS < C. This is reasonable since we
are considering a large-scale model that requires collaboration from multiple participants, meaning
no one participant has the computational capability to hold all the nodes in the protocol. Thus the
fraction that the attacker controls is p = A

C ≪ 1.

For further clarity, we assume the following standard requirements of the protocol:
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• In order to participate, a participant has to prove they have at least one compute node (i.e., they
have the GPU compute to at least run a single stage)

• Secure, authenticated communication is established between nodes.
• Decentralized work verification ensures that all participants contribute valid activations.

Finally, in order to compute the probability of an attacker being able to extract the entire model using
a piecewise Sybil attack in various scenarios, let us assume that RS is small compared to C. This
is not unreasonable since the monetary worth of large models attracts participants (c.f. blockchain).
The benefit of this is that choosing compute to fill RS slots from C nodes is well approximated by
sampling with replacement.

Thus the probability of a particular slot being controlled by an attacker is then p, the expected number
of attacker-occupied slots per timestep is pRS, and the expected number across T timesteps is pRST .
Furthermore the probability of the attacker getting access to a particular stage i (in any replica) in a
time step is

pi = 1− (1− p)R. (7)

We now calculate the probability of an attacker being successful under different scenarios. In many
cases we use a modification of the binomial approximation: 1−(1−x)α ≈ αx for |x| < 1, |αx| ≪ 1.
Note that this is an over-approximation for x > 0 (which is the region we use).

Default setup (no unextractability measures). In the default case, for the attacker to be successful
the attacker must have access to all S stages, each of which can be from any replica and from any
time step. Let us assume that the attacker is in the protocol for T time steps, then they can form a
complete weight set by getting access to the stages over the T time steps.

The probability of ever capturing stage i within T time steps is pi,T = 1−(1−pi)
T = 1−(1−p)RT .

This means that the probability of getting access to all S stages over the T time steps is[
1− (1− p)RT

]S ≈ (pRT )S . (8)

Note that p,R, S are fixed with p being very small (10−5 − 10−2), and R and S being small integers
(R is probably 3-100, S is around 10-100). However T can be very large (millions or billions of steps)
so the probability is almost certain for the attacker (in practice there would be some mechanisms to
prevent easy switching of stages between timesteps, slightly decreasing the chance).

C.1 With Unextractability

Now we consider the case when we make the stages time-varying, so that different stages are not
compatible across time steps. Note however, that the bridge matrix between neighboring stages is
available for subsequent time steps (see Section 3.1). Thus we consider two cases

• The weights in any stage i can be partitioned into two sets, θi,1 and θi,2, where the transforms
between stage i− 1 and i are only applied to weights in θi,1, and the transforms between
stage i and i+ 1 are only applied to weights in θi,2. We call this partial incompatibility.

• The weights in any stage i cannot be partitioned in the above manner, thus there is at least
one weight in the stage that depends on both the transform between stage i− 1 and i and
also depends on the transform between stage i and i+ 1. We call this full incompatibility.

Full Incompatibility. Let us first consider full incompatibility. Then if an attacker gets access to
stage i in time step t, in order for it to be compatible the weights of stage i− 1 and stage i+ 1 need
to be also gained at time t. Thus between any set of three consecutive stages, the weight of all three
stages have to be at the same transform time step. Since participants only have the bridge matrix (to
convert weights from one time-step to another) between subsequent time steps, this can be done if
stage i− 1 and i+ 1 are one time step away from stage i. However since this needs to hold between
any set of three consecutive stages, this can only work if all stages have a way to convert their weights
to a single time step.

Thus the attacker needs all stages within three consecutive time steps, as then any stage’s weights
can be converted to the middle time step. Then the probability of a specific stage being covered
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within a specific three time steps is pi,3 = 1− (1− p)3R, and the probability of all S stages covered
in the three time steps is pSi,3 = (1 − (1 − p)3R)S . In T time steps there are T − 2 sets of three
consecutive time steps, so the probability of a successful attack over T time stages is

1− (1− pSi,3)
T−2 = 1− (1− (1− (1− p)3R)S)T−2 ≈ (T − 2)(3pR)S . (9)

Thus as long as 3pR is reasonably small, e.g. less than 0.2, the probability of success is small even
for very large T .

Partial Incompatibility. Now let us consider partial incompatibility. Then each pair of θi,2, θi+1,1

between stages i and i+ 1 must be at the same time-step, though any other pair can be at different
time steps. Furthermore, since participants have bridge matrices between subsequent time steps, these
can be transformed to neighboring time steps only.

Thus the attacker needs each pair of stages i and i + 1 within three consecutive time steps, as
then the boundary weights of those two stages can be converted to the middle time step, and all such
pairing can be stitched together. Thus the probability of getting two specific stages within three time
steps is p2i,3, so getting this within the T − 2 opportunities is

1− (1− p2i,3)
T−2 ≈ (T − 2)(3pR)2 (10)

and finally doing this for all S − 1 pairs of stage boundaries is

(1− (1− p2i,3)
T−2)S−1 ≈

(
(T − 2)(3pR)2

)S−1
. (11)

Note that T is now scaled by S, unlike in the full incompatibility case. While this is much less
probable than the default setup, with reasonable p there is a high probability for large T . However,
unlike the default setup, the requirements here are much easier to defend against, as shown in the
next section.

Achieving Full Incompatibility. An easy way to achieve full incompatibility is to have skip
connections in the stage. Then the stage is of the form Φi(XUi)Vi+XQi, and transforms get applied
as Φi(XTi−1Ui)ViTi +XTi−1QiTi, thus making Qi(t) = Ti−1(t)Qi(t− 1)Ti(t) be dependent on
both neighbors.

C.2 Mechanisms

A key issue is therefore to reduce the chance that an attacker can control two neighboring stages
within three consecutive time steps. We can therefore take some effective measure

• Once compute has been assigned to a stage, have the compute keep that stage (note that
there are other replicas for redundancy and for checking malicious activity)

• To stop attacker compute from switching (in the hopes of using the same compute to get a
stage they need) we require newly joined nodes to wait two time steps before participating.

• Have a preference for assigning nodes that have been waiting for longer to join the pipeline.

Thus, an attacker can no longer switch compute within the required three consecutive time steps.
Instead, assuming they have A > 2 nodes, they need to switch all A nodes at the same time and hope
that at least two of the nodes get allocated to the required two neighboring stages within three time
steps. However, assuming node dropout is not very often, this is highly unlikely: if there is a lot of
nodes waiting most likely other nodes will get assigned, and if there is not a lot of nodes waiting then
the attacker nodes (even when masquerading as new identities) are likely to be assigned back their
original slots.

Finally, note that inference is the hardest case, as weights never go “stale”, whereas during the early
part of training, weights will drastically change over time and thus go stale. Thus, there is an extra
time requirement on the attacker during (early stage) training.
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D Applying UPMs to different components and architectures

D.1 MLPs

Let us consider an n-layer MLP gn ◦ gn−1 ◦ ...g1 where gi(X) = σ (XUi)Vi, the Ui are weight
matrices, Vi = I , and σ is an element-wise activation function. Let the output after the ith layer be
Xi, i.e. Xi = (gi ◦ gi−1 ◦ ...g1) (X0).

When we apply transforms, we have that

Ui(t) = T−1
i−1(t)Ui(t− 1) = T−1

i−1(t)...T
−1
i−1(1)Ui (12)

Vi(t) = Vi(t− 1)Ti(t) = ITi(1)...Ti(t) (13)
Xi(t) = Xi(t− 1)Ti(t) = XiTi(1)...Ti(t). (14)

Note that we only have partial incompatibility (no matrices in a stage depend on both boundaries).

Using weights at different time steps Let us assume an attacker tries to steal a consistent set of
weights by having different blocks in different time steps. In particular, let us assume they have fi at
time t1 and fi+1 at time t2 > t1. Then they have

Ui(t1) = T−1
i−1(t1)Ui(t1 − 1) = T−1

i−1(t1)...T
−1
i−1(1)Ui (15)

Vi(t1) = Vi(t1 − 1)Ti(t1) = ITi(1)...Ti(t1) (16)
Xi(t1) = Xi(t1 − 1)Ti(t1) = XiTi(1)...Ti(t1) (17)

Ui+1(t2) = T−1
i (t2)Ui+1(t2 − 1) = T−1

i (t2)...T
−1
i (1)Ui+1 (18)

Vi+1(t2) = Vi+1(t2 − 1)Ti+1(t2) = ITi+1(1)...Ti+1(t2) (19)
Xi+1(t2) = Xi+1(t2 − 1)Ti+1(t2) = Xi+1Ti+1(1)...Ti+1(t2) (20)

as well as Ti−1(t1), Ti(t1), Ti(t2), Ti+1(t2).

In order to get consistent weights, they need to have Vi(t), Ui+1(t) for the same time step t. Thus
they need one of the following configurations

• Vi(0) = I, Ui+1(0) = Ui+1 = Vi(t1)T̂Ui+1(t2)

• Vi(t1), Ui+1(t1) = T̂Ui+1(t2)

• Vi(t2) = Vi(t1)T̂ , Ui+1(t2)

where T̂ = Ti(t1 + 1)...Ti(t2 − 1)Ti(t2) is the bridge matrix, and anything the attacker has is
bolded. Note that the only thing missing in all three configurations is exactly T̂ , which the attacker
only knows if t2 = t1 + 1. Otherwise we need to factorize Ui+1(t2) into T̂−1Vi(t1)

−1Ui+1 where
only Vi(t1)

−1 is known and we know that Vi(t1)
−1 and T̂ are square and invertible. However there

are infinitely many possibilities, as T̂ V −1U =
(
T̂A

)
V −1

(
V A−1V −1U

)
= T̂ ′V −1U ′ for any

invertible matrix A.

D.2 RMSNorm

As explained in the main paper, we want RMSNorm applied layers to follow

Φ
(
RMSNorm

(
XT

)
Ui

)
Vi = Φ

(
RMSNorm

(
Xi−1

)
TUi

)
Vi (21)

and in order to do that we (1) introduce a transform accumulation matrix into the normalization:
norm(X) → norm(XQ(t)), where Q(0) is initialized to an orthogonal matrix, and (2) move the
feature scaling weights diag(w) into the next layer weights Ui(0) = diag(w)Ui (which for training
is equivalent to removing them). Then our layer is now of the form

fi (Xi−1) = Φ
(
norm

(
Xi−1Qi

)
Xi−1Ui

)
Vi, (22)
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and so after a morphing step Qi 7→ T−1Qi we have the desired functional equivalence

fi (Xi−1T ) = Φ
(
norm

(
Xi−1TT

−1Qi

)
Xi−1TUi

)
Vi (23)

= Φ
(
norm

(
Xi−1Qi

)
Xi−1TUi

)
Vi (24)

= Φ
(
RMSNorm(Xi−1)TUi

)
Vi. (25)

where the RMSNorm in the last line is the original version with diag(w) set to I (since we have
already moved diag(w) into Ui(t)).

D.3 Transformer

Let us consider a modern transformer layer with RMSNorm prenormalization. After applying the
above change for RMSNorm layers, we have that

RMSNorm(X) = norm(XQ)X (26)

where Q is a fixed (random) orthogonal matrix and the weights have been subsumed into the next
layer.

Thus the transformer layer is given by

fi(Xi) = (MLP ◦ ATT)(Xi) (27)
ATT(X) = SA(RMSNorm1(X)) +X (28)
MLP(X) = σ(RMSNorm2(X)Uw1)Vw2 +X (29)

where

SA(X) = Att(XUk, XUq, XUv)Vo (30)
RMSNorm1(X) = norm(XQn1)X (31)
RMSNorm2(X) = norm(XQn2)X. (32)

Applying transforms (see Figure 2 (C)) we get

ATT(X) = SA(RMSNorm1(X)) +XQ1(t) (33)
MLP(X) = σ(RMSNorm2(X)Uw1(t))Vw2(t) +XQ2(t) (34)

SA(X) = Att(XUk(t), XUq(t), XUv(t))Vo(t) (35)
RMSNorm1(X) = norm(XQn1(t))X (36)
RMSNorm2(X) = norm(XQn2(t))X (37)

where if the incoming transform is Ti−1 and the outgoing transform is Ti:

Qn1(t) = T−1
i−1(t)Qn1(t− 1) (38)

Uk(t) = T−1
i−1(t)Uk(t− 1) (39)

Uq(t) = T−1
i−1(t)Uq(t− 1) (40)

Uv(t) = T−1
i−1(t)Uv(t− 1) (41)

Vo(t) = Vo(t− 1)Tint(t) (42)

Q1(t) = T−1
i−1(t)Q1(t− 1)Tint(t) (43)

Qn2(t) = T−1
int (t)Qn2(t− 1) (44)

Uw1(t) = T−1
int (t)Uw1(t− 1) (45)

Vw2(t) = Vw2(t− 1)Ti(t) (46)

Q2(t) = T−1
int (t)Q2(t− 1)Ti(t). (47)

Here we have added an intermediate transform Tint, which is not redundant due to Q1 and Q2.

Note that we have full incompatibility due to the skip connections: Q1 depends on Ti−1 and Tint

and Q2 depends on Tint and Ti, so there is no way to partition the matrices in a way that one partition
can only depend on Ti without Ti−1 and vice-versa for the other.
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For SwiGLU MLPs, we have that

MLP(X) = (SiLU(RMSNorm2(X)Uw1) · (RMSNorm2(X)Uw3))Vw2 +X (48)
(49)

so we have the additional transformed weight

Uw3(t) = T−1
int (t)Uw3(t− 1). (50)

E Transforms

We first analyze the key properties we want in our transforms, then describe the specific families we
use.

E.1 Transform Properties

There are multiple factors that we would like in order for the weights to be sufficiently scrambled:

• the scrambling is done sufficiently randomly with respect to an infinite class of transforms, so it
is not possible to brute force all possible transforms or exploit there being a bias towards certain
transforms within the class

• the new weights are a far distance away from the old weights (so the effect on the network of a
single transform without its inverse is not small)

• the transforms introduce high frequencies, which makes finetuning transformed parameters difficult.

On the other hand, we want to control the transforms such that

• the floating point error is not too large
• the result does not overflow or underflow.

It turns out that we can link a lot of these properties to the singular values of our transforms,
which we will now define notation for. For a matrix M ∈ Rd×d we will denote its singular
values by {σi(M)}di=1 where the indexing orders them from largest to smallest. Some important
properties are: the condition number is given by κ(M) = σ1(M)

σd(M) , the determinant is given by

det(M) =
∏d

i=1 σi(M), and the Frobenius norm is given by ∥M∥F =
√∑d

i=1 σi(M)2.

Floating point error The floating point error (relative forward error) of computing W ′ =
WT1....Tn by post-multiplying the n transforms Ti one at a time is (see Section E.2 for proof)

∥Ŵ ′ −W ′∥2
∥W ′∥2

≲

{
γdκW

κ(κn−1)
κ−1 κ ̸= 1

nγdκW κ = 1
(51)

where W and the Ti are d× d, W has a condition number of κW and the Ti have a condition number
of κ, and γd = du

1−du where u is the unit roundoff (half machine epsilon). Thus if κ ̸= 1 then the error
grows exponentially in the number of transforms, which severely limits the number of transforms
that can be applied before the error is too large. Thus the singular values of the transforms should be
as close to each other as possible.

Scale Control When applying morphing steps V 7→ V T , U 7→ T−1U , the resulting size of the
weights as measured by the Frobenius norm is governed by the spectra of T . The von-Neumann
trace-inequality [16] gives

∥V T∥F ≤

√√√√ d∑
i=1

[
σi(V )σi(T )

]2
,

∥∥T−1 U
∥∥
F
≤

√√√√ d∑
i=1

[
σi(U)σi(T )−1

]2
. (52)

Thus if the singular values of T are all large (small), then the Frobenius norm of V greatly increases
(decreases) and Frobenius norm of U greatly decreases (increases). On the other hand, if T has both
large and small singular values, then the effect on U and V is unpredictable, and likely to make both
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grow (note that just one singular value needs to blow up). However from the previous paragraph we
want to keep the condition number small, so we anyway keep the singular values of T close to each
other. Thus to control the scale of the weights, we either have the singular values close to one, or
cycle between large and small singular values each time step so that the scaling cancels out on every
second time step.

Introducing high frequencies. It has been observed that neural networks trained with SGD are
biased towards low frequency functions, in particular the low frequencies of the target function are
learned before the high frequencies [64, 63, 46]. Thus we want to add transforms into weights such
that just applying the transform without its inverse introduces high frequencies, meaning to undo
the transform with gradient descent requires learning to cancel out the introduced high frequencies
(a high frequency target). To inject high-frequency behavior into the network’s input–output map,
our transforms should amplify the directions in weight-space that correspond to high-frequency
components of the learned function without amplifying other directions, i.e. have larger singular
values for high-frequency directions and smaller ones for the low-frequency directions. With our
random transforms, a simple approach is to sample a random orthonormal basis (singular vectors)
and assign a spectrum of singular values that is skewed toward larger values, on average this will
inject more high-frequency content than a flat spectrum would.

Scrambling distance. We need to generate transforms from a large class of transforms randomly,
and ideally uniform randomly so that there is no bias towards specific transforms in that class.
However most classes of transforms will contain transforms that do not do a good job at scrambling:
e.g. the class of orthogonal matrices contains rotation matrices, and if T corresponds to the rotation
matrix of a small angle then ∥W − TW∥2 might be small. Furthermore, folding in multiple rotation
matrices might make them cancel out. In order for an attacker to not be able to align weights from
different time steps, we need to ensure that transforms always drastically change the weight matrix
and never cycle back close to the original weights. Thus we need to ensure that our class of transforms
is distributed enough that low scrambling matrices have an extremely low probability.

E.2 Controlling Floating Point Error Drift

As discussed in Section 3.4, when folding in transforms a large number of times the floating point
error builds. We now analyze this formally.

E.2.1 FP analysis

We use the standard error bound for matrix multiplication from Higham [15]. Given two d × d
matrices A and B in precision P their error is bounded by

∥fl(AB)−AB∥2 ≤ γd∥A∥2∥B∥2. (53)

where fl(·) is floating point multiplication in precision P , γd = duP

1−duP
≈ duP and uP is the unit

roundoff in precision P .

Given some computation C whose result in floating point multiplication in precision P is denoted
C(P ), we want to compute relative errors

∥C(P ) − C∥2
∥C∥2

(54)

with respect to the condition number of the matrices.

Some important results are: ∥AB∥2 ≤ ∥A∥2∥B∥2, ∥A∥2 = σmax(A), ∥AB∥2 ≥ σmin(A)σmin(B),
κ(A) = σmax(A)

σmin(A) , κ(AB) ≤ κ(A)κ(B) and ∥AB∥2 ≥ σmin(A)∥B∥2

Single Product: The relative error in terms of the condition number of the matrices for a single
matrix multiply is:

∥fl(AB)−AB∥2
∥AB∥2

≤ γd
σmax(A)σmax(B)

σmin(A)σmin(B)
(55)

= γdκ(A)κ(B). (56)
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Chain of Products: Now let us consider doing a chain of n+1 matrices, e.g., n transforms Ti applied
to an initial weight matrix W : Cn = WT1...Tn. Let us denote the floating point representation by
C(P ) = fl(fl(WT1)...Tn).

Now the error in the kth multiplication is bounded by

∥fl(Ck−1Tk)− Ck∥2 ≤ γd∥Ck−1∥2∥Tk∥2. (57)

We will bound the total error in the chain as the sum of the errors in each multiplication times the
norm of the remaining computation done to that multiplication result (first order approximation
neglecting quadratic terms):

∥C(P )
n − Cn∥2 ≈

n∑
k=1

∥fl(Ck−1Tk)− Ck∥2∥Tk+1...Tn∥2 (58)

≤ γd

n∑
k=1

∥Ck−1∥2∥Tk∥2∥Tk+1...Tn∥2 (59)

so the total relative error is approximately bounded by

∥C(P )
n − Cn∥2
∥Cn∥2

≲ γd

n∑
k=1

∥Ck−1∥2∥Tk∥2∥Tk+1...Tn∥2
∥Cn∥2

(60)

≤ γd

n∑
k=1

∥Ck−1∥2∥Tk∥2∥Tk+1...Tn∥2
σmin(Ck−1Tk)∥Tk+1...Tn∥2

(61)

≤ γd

n∑
k=1

κ(Ck−1)κ(Tk) (62)

≤ γdκ(W )

n∑
k=1

k∏
i=1

κ(Ti). (63)

If each Ti have the same condition number κ(Ti) = κ, then this is a geometric sum given by

∥C(P )
n − Cn∥2
∥Cn∥2

≲

{
γdκW

κ(κn−1)
κ−1 κ ̸= 1

nγdκW κ = 1
. (64)

E.2.2 Comparison for different precisions

Let us consider two d× d weight matrices, W1 and W2, which are stored on GPU in a low-precision
datatype LP , e.g. FP32 or FP16. Their matrix multiplication in precision LP is W (LP )

1 W
(LP )
2 .

Note that when we generate an orthogonal transform T (t), we usually do this in high precision HP
anyway (Haar orthogonal is very sensitive to precision), specifically FP64. Thus, since the weight
matrices on the GPU are in low precision LP , we have three options

• (A) Cast down transforms to LP and then fold them into the weights
• (B) Whenever a transform needs to be folded in, cast the weights to HP , fold in the

transforms, and then cast the result back to LP

• (C) Keep a copy of the weights in HP , and always fold transforms into this copy. Whenever
the model needs to be queried, update the weight matrix by casting this copy to LP .

Let us now analyze the floating point error behavior of these three methods for a chain WT1...Tn

where the Ti are orthogonal (so κ(T − i) = 1). From above, we have that the relative error is bounded
by nduPκW .

Now in practice for large models, d is one of 1024, 2048, 4096 or 8192, so we will use d = 103.
The condition number of a weight matrix κW is usually around 102 − 105, we will use κW = 103.
For FP64, uFP64 ≈ 10−16, and for lower precisions we have uFP32 ≈ 10−8, uFP16 ≈ 10−4 and
uBF16 ≈ 10−3. Then the floating point error in a single multiply is given by 10−10 for FP64, 10−2

for FP32, 102 for FP16 and 103 for BF16.
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Now let us consider our three options from before with n = 104 transforms applied and low precision
set as FP32. Then the relative error is

• (A): nduPκW = 10410310−8103 = 102

• (B): a single matrix multiplication becomes duHPκ(A)κ(B) + uLP , however this then
accumulates in subsequent matrix multiplications so we can think of the bound as essentially
something like nduP ′κW where uP ′ is somewhere between uHP and uLP . Thus overall
still bounded by nduLPκ(W ) = 10410310−8103 = 102

• (C): this is the error in high precision plus a single low precision transfer, so nduHPκW +
uLP = 10410310−16103 + 10−8 = 10−6.

E.3 Transform Classes

Haar distributed orthogonal matrices. The first class is orthogonal matrices, which by definition
satisfy QQT = QTQ = I . Their singular values are all one, which leads to nice properties for our
use case: they have a determinant of 1 or -1 (so they keep the relative scale of the weights) and they
have a condition number of one (so they do not introduce too much floating error). Furthermore
T−1 = TT so the inverse is both easy to compute and does not require additional storage. We can
also generate them uniform randomly from the Haar distribution over the set of orthogonal matrices,
which is important so that there is no bias in the generation of the matrices that an attacker can use.
The Haar distribution is a uniform measure over orthogonal matrices, with the property that if Q is
an orthogonal matrix sampled from the Haar distribution and U and V are any orthogonal matrices,
then UQV is also a sample from the Haar distribution [38]. Note that this property of orthogonal
matrices from the Haar distribution implies the following useful property: given a transformed weight
W ′ = TW , then all candidates for T are equally likely, so there is no way to distinguish between
this decomposition of W ′ and any decomposition of the form W ′ = (TV )(V TW ) where V is any
orthogonal matrix. Thus, while the singular values and the right singular vectors are unchanged, the
left singular vectors are sufficiently scrambled giving no useful knowledge of W .

A standard way to generate a matrix from this distribution is to use the QR decomposition on matrices
with elements from the standard normal distribution [38]

Q, R = torch.linalg.qr(torch.randn(d,d)) (65)
T = Q * torch.diag(R).sign() (66)

where we use PyTorch [40] code.

We also experimentally confirm that these transforms scramble with high probability. We generate
orthogonal matrices Ti from the Haar distribution, and multiply them with random normal generated
weights: W ′ = WT1...Tn where we vary n. We find that the distribution of the W ′ are such that its
relative Frobenius norm

∥W −W ′∥F
∥W∥F

(67)

is tightly distributed around
√
2, and the cosine similarity of the flattened weights (where flat(·) is the

flattening operation)

⟨flat(W ),flat(W ′)⟩
∥flat(W )∥2∥flat(W ′)∥2

(68)

is tightly distributed around 0. This indicates that in practice the transforms are unlikely to align with
a given weight matrix, instead transforming it to an almost orthogonal direction.

Low condition number matrices In order to generate matrices with higher frequencies yet small
condition number, we generate matrices of the form UDV T where U, V are Haar orthogonal matrices
and D = diag(d) is such that di = seui , ui ∼ U [−ε, ε]. Thus the singular values, which are the
entries of d as this is in SVD form, are within [se−ε, seε] and the condition number is bounded by
e2ε (≈ 1 + 2ε). As the determinant, which is ≈ sd, scales the weights, we force the weight scale to
cycle by cycling s.
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F Optimization

Let us denote transformation of components of the network from its original space to the one
determined by a transform T applied to weights by the subscript (T ). Then we note that the
transformation of the weights W and the gradients of the weights G are not the same:

• Weight Space Transformation: W(T ) = WT

• Gradient Space Transformation: G(T ) = GT−T

To see this note G = ∇WL, G(T ) = ∇W(T )
L, so

G = ∇WL =
(
∇W(T )

L
)
(∇WWT ) = G(T )T

T (69)

which implies G(T ) = GT−T .

Note that we do not need to compute the transformed gradient G(T ) explicitly, if we use the
transformed weight W(T ) in the forward pass, in the backward pass automatic differentiation will
automatically calculate G(T ).

F.1 Stochastic gradient descent variants

Most variants of stochastic gradient descent (SGD) use an update of the form

W (t+1) = W (t) − ηf(G(t), Gold) (70)

where G(t) is the current gradient and Gold is saved information from previous gradients (e.g. nth

moments of the past gradients). Thus there are two alternatives we can have which may not necessarily
be the same, either we can ensure the parameter updates are equivalent to parameter updates in the
original space

W (t+1) =
(
W (t) − ηf(G(t), Gold)

)
(T )

(71)

=
(
W (t) − ηf(G(t), Gold)

)
T (72)

or we can ensure that every part of the computation uses the transformed result

W (t+1) =
(
W (t)

)
(T )
− ηf

((
G(t)

)
(T )

, Gold
(T )

)
(73)

= W (t)T − ηf
(
G(t)T−T , Gold

(T )

)
. (74)

Furthermore, it might not be trivial to compute Gold
(T ) from Gold. The most common saved gradient

information is an estimate of the first moment of the gradients, m = E[g], for which m(T ) = mT−T .
However Adam/AdamW also use the second moment v = E[g2], for which v(T ) cannot be computed
from just v. The issue here is that sign information is lost, so we cannot apply the transformation. As
a result, we stick to optimizers that only use m, e.g. SGD + Momentum.

In our implementation we use Muon, which also only uses m. Furthermore we use Equation (73),
which is easier to implement, rather than Equation (71). However, for Muon (and many other
optimizers), if we use orthogonal transforms T then Equation (71) and Equation (73) are equivalent,
with the key point being that T−T = T for orthogonal matrices.

F.2 Pure SGD

In pure SGD, we take steps of the form

W (t+1) = W (t) − ηG(t). (75)

If we transform our weights before the forward pass: our weights become (W (t))(T ) = W (t)T ,
and our gradient becomes G(T ) = GT−T , so our step is

W (t+1) = (W (t))(T ) − η(G(t))(T ) (76)

= W (t)T − ηG(t)T−T . (77)
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Note this is a valid step, we are just applying SGD to a different network.

What would the step be if we did the step in original space and then transformed to the new
weight space:

W (t+1) =
(
W (t) − ηG(t)

)
(T )

(78)

=
(
W (t) − ηG(t)

)
T (79)

= W (t)T − ηG(t)T. (80)

What correction term would make it equivalent: we would need to transform our gradients by
TTT

W (t+1) = (W (t))(T ) − η(G(t))(T )T
TT (81)

= W (t)T − ηG(t)T−TTTT (82)

= W (t)T − ηG(t)T. (83)

Issue with this correction: Note however this is a one transform correction. If we are just now
applying the nth transform, normal gradient descent would be

W (t+1) = W (t)T (1)...T (n)− ηG(t)T−T (1)..T−T (n) (84)

and to make the step equivalent to doing the step in the original space we would need to store
Q(n) = T (1)..T (n) and then apply

W (t+1) = W (t)T (1)...T (n)− η(G(t)T−T (1)...T−T (n))QT (n)Q(n). (85)

However storing Q(n) means we have an exact way to undo the transforms on our weights: W(T ) =

WT (1)...T (n)Q−1(n).

F.3 SGD + Momentum

In SGD + momentum, we take steps of the form

W (t+1) = W (t) − η
(
αm(t−1) + βG(t)

)
. (86)

If we transform our weights before the forward pass: our weights become (W (t))(T ) = W (t)T ,
and our gradient becomes G(T ) = GT−T , so our step is

W (t+1) = (W (t))(T ) − η
(
αm(t−1) + β(G(t))(T )

)
(87)

= W (t)T − η
(
αm(t−1) + βG(t)T−T

)
(88)

which is not a valid step as the previous momentum term is not in the right space.

Fixing the momentum to be in the right space: we need to apply the gradient space transform T−T

to the momentum too

W (t+1) = (W (t))(T ) − η
(
αm

(t−1)
(T ) + β(G(t))(T )

)
(89)

= W (t)T − η
(
αm(t−1)T−T + βG(t)T−T

)
. (90)

Correcting this to be equivalent: we would need to apply T to the momentum (not doing the above
correction) and TT to the gradient:

W (t+1) = (W (t))(T ) − η
(
αm(t−1)T + β(G(t))(T )T

T
)

(91)

= W (t)T − η
(
αm(t−1)T + βG(t)T−TTT

)
. (92)

Note however that no correction steps are needed if T is orthogonal, as then T = T−T .
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F.4 Muon

In Muon, we take steps of the form

W (t+1) = W (t) − ηO
(
αm(t−1) + βG(t)

)
. (93)

where O(M) is an efficient approximate orthogonalization procedure [19]. The non-approximate
orthogonalization procedure is the mapping USV T 7→ UV T .

If we transform our weights before the forward pass, and apply our momentum correction
term before the optimization step:

W (t+1) = (W (t))(T ) − ηO
(
αm(t−1)T−T + β(G(t))(T )

)
(94)

= W (t)T − ηO
(
αm(t−1)T−T + βG(t)T−T

)
. (95)

If T is orthogonal: Then T−T = T , and since SVD(M) = USV T implies that SVD(MT ) =
US(V TT ), then this is equivalent to original updates in the space.

G Matrix System attack

Applying transforms to the weights means that the intermediate activations Xi(t) have been trans-
formed. Thus one way to determine a bridge matrix is to use the intermediate activations.

Let us assume that the attacker has access to stage i and i+ 1 at time t and t′ > t, so they have Vi(t),
Ti(t), Xi(t) from stage i and Ti(t

′), Xi(t
′), Ui+1(t

′) from stage i+ 1. Note that

Xi(t
′) = Xi(0)Ti(1)...Ti(t)Ti(t+ 1)...Ti(t

′) (96)

so we have that

Xi(t
′) = Xi(t)T̂ (97)

where T̂ = Ti(t+ 1)...Ti(t
′) is the bridge matrix between times t and t′ for the boundary between

stage i and stage i+ 1. This means that T̂ is the solution of a matrix system.

However in reality the Xi(t) change over time steps t for reasons other than the transforms Ti(t).
This is due to (1) different initial inputs X0(t) being used at different time t, and (2) when training,
over different time steps the weights change.

We now investigate these two issues: the requirements the attacker needs to have this matrix system
be defined, and whether the attacker can determine the bridge matrix from the matrix system.

Requirements for the matrix system. The assumption that the same initial data was inputted to
the network at both time steps is impractical: we are serving inference or training from a very large
dataset where data is randomly sent to different pipelines, so the chances of the same initial data
being inputted to the network are extremely small.

However the important requirement in the attack was that the intermediate activations to stage i were
the same at both time steps, which an attacker can force. In order to do this, the attacker requires an
additional stage j ≤ i at both t and t′. Then at both time steps, the attacker can output equivalent
false activations: at time step t they can output FVj(t) and at time step t′ they can output FVj(t

′)
where F is a fixed full rank matrix. As long as Xi(t) ends up being full column rank, then this can
work.

However this is also easy to defend against: we can check if the activations outputted from a
node follow a similar distribution to activations at previous time steps, and also check against the
distribution of activations of the same stage in other replicas. The attacker is likely to be caught and
expelled between time step t and t′ (as we have put in place measures to ensure t′ >> t).

Determining T̂ from the matrix system. We consider the matrix system in Equation (97). Note
that Xi(t) and Xi(t

′) are of the same shape b× d where b is the batch size and d is the embedding
dimension, while T̂ is d× d.
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If Xi(t) has full column rank then T̂ can be uniquely determined by (Xi(t))
+
Xi(t

′) where +

indicates the Moore-Penrose pseudo-inverse.

If Xi(t) does not have full column rank, then there are infinitely many solutions. To bias towards a
specific solution we can use least squares, or if we know that T is orthogonal we can use orthogonal
Procrustes. This is likely to only give a good solution if Xi(t) is close to full column rank.

H Further Experimental Details

We use PyTorch [40] for our implementations. Since our framework is simple, we implement it
within three frameworks, torchtune [58], torchtitan [34] and NanoGPT [24]. We use torchtune for
our inference time experiments, torchtitan for our learning attack experiments, and NanoGPT (and its
derivatives, discussed below) for the training experiments.

When generating and folding in our transforms, we do this in float64, which is one of the reasons
that the morphing step is so expensive. This turns out to be very important for generating orthogonal
matrices (doing the QR decomposition at a lower precision causes the error in QTQ− I to be large).
Furthermore to reduce floating point error, when folding we first cast the weights to FP64, multiply
in our transforms, and then cast back down to the original precision of the weights.

For the learning attack experiments, we use the default hyperparameters in torchtitan. We grid search
on the learning rate between torchtune’s learning rate for finetuning Llama, 2e-5, to torchtitan’s
learning rate for from scratch training Llama, 3e-4. We find that for a few inconsistent boundaries,
the optimal learning rate is closer to finetuning, while for many inconsistent boundaries (which we
show results on) the optimal learning rate is closer to from scratch training.

For the training experiments we use the Muon speed-runs of NanoGPT [18]. However since the
architecture has diverged away from the standard transformer architecture over time, we use a re-
implementation of a specific speed-run milestone where the architecture is the closest to modern
transformers [48].
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Figure 6: Tokens required, as a percentage of compute optimal (20B tokens), to reach various
perplexities on FineWeb with a stitched Llama 3.2 1B model. We evaluate this with two sets of
pretrained model weights that are morphed and then stitched: the base Llama model weights released
by Meta (which is trained on a wide variety of data) and our model weights that we train from
scratch on FineWeb. Transforms are applied such that the boundary between transformer layers are
inconsistent.

I Further Results

In Section 5.4 models were trained to reach a perplexity of 20, which is similar to the perplexity of the
original base Llama model released by Meta (roughly 19). Here we continue running these models
(learning based attacks and their baselines) to a perplexity of 17, which is enough for the baseline
to reach compute optimal (20B tokens for our 1B parameter Llama model), updating Figure 5 to
Figure 6. We represent the tokens required as a percentage of compute optimal.
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Here, training with orthogonal required at least 80% of compute optimal (roughly 80% of baseline
compute) to reach a perplexity of 17, and ε > 0 transforms required roughly the same compute as the
baseline.

J Feasibility of Decentralized Training

We briefly review the literature in communication efficient training, noting that several works have
made progress towards large-scale model training in the decentralized setting and that progress here
may be more advanced than many researchers are aware.

Communication efficient DDP is effectively solved, as it is a side effect of much of the federated
learning literature. Gossip protocols can be used in place of the synchronous all reduce [7, 5], or
simply many inner steps can be taken for each outer step [11]. Convergence guarantees can be
obtained in this setting [31, 33] even with the communication graph altering during training [55, 26].

Moshpit-SGD [50] introduces a notable approach that is both communication efficient and scales well
with heterogeneous compute and communication bandwidth. Diskin et al. [10] perform a real run,
over 200 MB/s interconnects, using devices with a range of capabilities on a dynamic swarm to train
a 72.5M parameter ALBERT-xlarge variant. Here a community of volunteers completed a training
run that would have taken over 3 months using a standard 8xV100 setup, within 22 days on consumer
hardware. Nodes were verified with an allow-listing approach, all gradient computations are assumed
to be correct and each node computes full model gradients and hence has a copy of model weights.

Large models are also possible, with SWARM parallelism [51] showing pipeline parallel training
becomes less communication intensive relative to compute as models grow larger; hence improving
utilization. This work practically demonstrated training of a 1B parameter LLM on T4 GPU’s
with 500 MB/s interconnects, achieving roughly 20% throughput overhead to centralized training,
maintaining very high accelerator utilization, and also possessing basic fault tolerance. This is
achieved with redundancy within each pipeline stage, and dynamic and elastic routing between each
stage, and the assumption of good actors. Learning@Home [49] propose the Decentralized MoE
architecture and an asynchronous training scheme in order to achieve communication efficiency over
heterogeneous nodes. Such an approach can theoretically scale to very large parameter sizes but has
not been practically demonstrated beyond 257M, and while node failures are handled, byzantine
nodes are not.

Recently, Avraham et al. [4] performed a public, large-scale, pipeline-parallel, decentralized training
run at the 7.5-billion-parameter scale. This run was based on the SWARM [51] framework and used
the technique from Ramasinghe et al. [47] to losslessly compress activations and their gradients.
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