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ABSTRACT

As large language models (LLMs) advance their capabilities, aligning these mod-
els with human preferences has become crucial. Preference optimization, which
trains models to distinguish between preferred and non-preferred responses based
on human feedback, has become a crucial component for aligning LLMs. How-
ever, most existing works assume noise-free feedback, which is unrealistic given
the inherent errors and inconsistencies in human judgments. This paper addresses
the impact of noisy feedback on preference optimization, providing generalization
guarantees under these conditions. Unlike traditional analyses that assume con-
vergence, our work focuses on finite-step preference optimization, offering new
insights that are more aligned with practical LLM training. We establish gener-
alization guarantees for noisy preference learning under a broad family of pref-
erence optimization losses such as DPO, IPO, SLiC, etc. Our analysis provides
the basis for a general model that closely describes how the generalization decays
with the noise rate. Empirical validation on contemporary LLMs confirms the
practical relevance of our findings, offering valuable insights for developing Al
systems that align with human preferences.

1 INTRODUCTION

As large language models (LLMs) advance their capabilities, methods for aligning these models
with human preferences have garnered significant research attention (Ji et al., 2023). Preference
optimization, particularly through human-provided feedback, has emerged as a popular approach to
ensuring that Al systems behave effectively and safely. A key recipe to achieve alignment is through
the collection of binary preferences on generated outputs. In practice, human annotators are pre-
sented with two responses to the same question, and provide comparative judgments (e.g., preferred,
non-preferred) based on the quality of responses. Then, preference optimization algorithms such as
those in Rafailov et al. (2023); Azar et al. (2023); Zhao et al. (2023); Tang et al. (2024) align the
LLMs guided by the collected preferences. This process involves training models to assign a higher
implicit reward to the preferred response over the non-preferred response. Preference-based align-
ment has demonstrated considerable success in enhancing the safety and usability of LLMs, making
it a foundational component in the development of real-world LLM systems (OpenAl, 2023; An-
thropic, 2023; Touvron et al., 2023; Gemini et al., 2023).

However, most existing works on preference optimization operate under the assumption of noise-free
feedback. This assumption, while simplifying the problem, does not hold in real-world scenarios
where human feedback is inherently noisy. The practical implications of noisy feedback are signifi-
cant, as they directly impact the reliability and safety of Al systems deployed in critical applications.
Factors such as human error, biases, and inconsistencies contribute to this noise, potentially leading
to suboptimal or even harmful outcomes if not properly accounted for. Therefore, understanding
the effects of noisy feedback in preference optimization is crucial for the development of robust,
aligned Al systems. Recently, Gao et al. (2024b) empirically studied the impact of preference noise
and observed that alignment performance can be sensitive to noise rates. However, a rigorous the-
oretical understanding of these effects is still lacking, underscoring the need for further research on
this important problem.

In this work, we focus on the setting of noisy feedback in preference optimization and provide novel
generalization guarantees under this condition. To the best of our knowledge, our results are the
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first of their kind, addressing the gap in existing literature regarding the impact of noise on the gen-
eralization capabilities of preference learning algorithms. In particular, our theory is grounded in
the context of finite-step preference optimization, which contrasts with classical learning theory lit-
erature assuming convergence or near-convergence of learning algorithms (Cao & Gu, 2020; Arora
et al., 2019). By focusing on the finite-step setting, our analysis more accurately reflects the reali-
ties of LLM training, offering insights that are directly applicable to current practices of fine-tuning
LLMs to avoid overfitting. This approach allows us to provide more realistic and practical guar-
antees for the generalization of preference optimization under noisy feedback, making our results
particularly relevant for the development and deployment of robust Al systems.

In particular, we provide generalization guarantees for a broad family of preference optimization
methods under noisy samples, encompassing existing algorithms such as DPO (Rafailov et al.,
2023), IPO (Azar et al., 2023) and SLiC (Zhao et al., 2023) as special cases. All of these losses
can be cast as a general form, referred to as generalized preference optimization (GPO) in Tang
et al. (2024). Our guarantee captures how the generalization bound for GPO changes with the noise
rate €, and based upon our theoretical results, we provide a general model that closely describes how
the test error increases with the noise rate. The key insight of our Theorem 3.1 and Theorem 3.2 is
that given the bound on the risk for when there is no noise, Ry, we can determine an upper bound on
the rate at which the risk increases with €. In particular, as € increases from 0, the bound increases
at arate of 1/(1 — /Ro7e)?, and as the noise rate approaches 1/2, the expected risk transitions to
growing at a linear rate. Our theory also reveals that stronger concentration, more samples, and con-
trasting directions for positive and negative samples yields tighter bounds and slower degradation in
accuracy as the noise rate increases. We empirically verify our theory-based model on real-world
dataset HH-RLHF (Bai et al., 2022a), demonstrating the practical relevance of our results. Overall,
the close match between our theoretical analysis and empirical observation highlights the strength
and applicability of our theoretical framework in modeling the effects of noise on preference opti-
mization. Our contributions can be summarized as follows:

1. We establish the first generalization guarantees for preference optimization under noisy
feedback. Our guarantees can be broadly applicable to a generalized family of prefer-
ence optimization approaches (Tang et al., 2024), including DPO (Rafailov et al., 2023),
IPO (Azar et al., 2023), SLiC (Zhao et al., 2023) as special cases.

2. We provide a comprehensive theoretical analysis of the impact of noise rate in the finite-
step learning setting, leading to a general and practically relevant model that describes the
effect of noise on generalization across various settings.

3. We conduct comprehensive empirical evaluations that support our theoretical findings and
our derived model, showcasing the practical implications of our work.

2  PRELIMINARIES ON PREFERENCE OPTIMIZATION

We denote my as a language model policy parameterized by 6, which takes in an input prompt z,
and outputs a discrete probability distribution 7y (+|z) over the vocabulary space V. mp(y|z) refers
to the model’s probability of outputting response y given input prompt x. Preference optimization
typically operates on comparative data, where pairs of responses are presented, and the model is
trained to discern the preferred choice. Formally, we define the preference data below.

Definition 2.1 (Preference data). Consider two responses y.,, y; for an input prompt x, we denote
Yw > Y1 If Y I8 preferred over y;. We call y,, the preferred response and y; the non-preferred
response. Each triplet (x,y.,,y1) is referred to as a preference. Furthermore, the empirical dataset
D = {(x4, Yuw.i» Y1i) } Y1 consists of N such triplets sampled from a preference distribution.

Direct Preference Optimization (DPO). To model the preferences, one popular framework is the
Bradley-Terry model (Bradley & Terry, 1952), which assumes the following preference distribution

P (Yw = uilz) = o(r*(z,y0) — 7" (z,u1)), (1)

where o is the logistic function and r*(x,y) is the reward function. The reward function takes
in the prompt 2 and response y and outputs a higher scalar value r*(z,y) for the preferred re-
sponse, and vice versa. Guided by Equation (1), one can learn a reward model either explicitly (i.e.,
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by fitting a parametric reward model r(z, y)) or implicitly (i.e., via direct preference optimization
(DPO) (Rafailov et al., 2023).

Explicit reward models are optimized to maximize the following binary classification objective:

Ea.yuynenllogo(r(@, yuw) — (@, u))); )
which learns the reward function via maximum likelihood estimation (MLE) on the empirical pref-
erence dataset D = { (%, Yuw.i, y1.i) }}1, and r is a function parameterized by a neural network. The
resulting model is useful for RLHF (Christiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022a;
Ziegler et al., 2019), which aligns language models with the KL-constrained reward optimization:

N To\Y|T
M By 1 lr (o)) - Flog TAEL ®
where g is the output generated by the current model’s policy 7y for the prompt x, 7 is the policy of
the model before any steps of RLHF, and § is a regularization strength. We can view this objective
as maximizing the expected reward with KL regularization weighted by 5. We can see that the
difference in reward is equivalent to the log ratio difference of the optimal policy to Equation (3):
o (Yw|) o (y17)

T(.’E, yw) - r(x, yl) = ﬂ(log Wref(yw|$) a 10% 7"'ref(?-/l"r) ) (4)

DPO thus replaces the explicit reward function in Objective (2) with the implicit reward r(z,y) =
7o (y|®)

log 7475 yielding the following objective to minimize:
7o (Y |7) mo(yul)
E, —logo lo —lo ) >
( ,yw-,yz,)€D|: & (6< & Tret (Y| T) & Trer(y1|2) ©

Generalized Preference Optimization (GPO). Recent work by Tang et al. (2024) presented a
unified view of preference optimization encompassing existing algorithms including DPO (Rafailov
et al., 2023), TPO (Azar et al., 2023) and SLiC (Zhao et al., 2023) as special cases. All of these
losses can be cast as a general form, referred to as generalized preference optimization (GPO):

7o (Yw |7) o (y1]x) ))}
E log —="—~ —log ——~= | ||, (6)
e (7 1o T2 —on TS

where the function f can be instantiated differently:

* DPO: f(rr, (%, Yw,y1)) = —log o (r, (%, yuw, yi)) applies the logistic loss (Hastie et al., 2009).
* 1PO: f(7rmy (2, Y, 1)) = (rmy (T, Yu, 1) — 1)? applies the squared loss (Azar et al., 2023).

* SLiC: f(rz, (%, Yuw,y)) = max(0,1 —rx, (2, yw, y1)) applies the hinge loss function (Zhao et al.,
2023).

In this paper, our theoretical analysis revolves around this generalized formulation, and thus can
be broadly applicable to preference optimization losses in the GPO family. Specifically, we consider
a set of objectives where f(x) is a function with (i) f/(0) < 0 and |f” ()| bounded for all z > 0 or
(ii) f is the Hinge Loss as in SLiC. We define D as sup,~ | f”(x)] if f satisfies (i) and we can set

D= % for (ii).

3 GENERALIZATION OF GPO UNDER NOISY FEEDBACK

3.1 GENERALIZATION ANALYSIS TARGET

We begin by defining the analysis target for understanding the generalization behavior of preference
optimization. From Equation (6), we can see that GPO learns to have a positive reward margin for
a given sample (&, Y., Y1):

79 (Y 1| 1) Tref (Yuw,i| i)
™ y Yw) = 1 : -1 ’ > 0. 7
T o (f,U y yl) ﬂ < Og 71'9 (yhi |$L) Og ﬁref(yl,i |5UZ) ( )

Reward Margin

Under the notion of reward margin, the population risk can also be defined formally below based on
the notion of the reward margin.
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Definition 3.1 (Population risk of preference learning). We define the population risk in terms of
a 0-1 loss where a sample’s loss is 0 when the reward margin is positive and 1 otherwise.

0 ey (@Y, y) >0
R(x, Yuw, Y1) = { T 7y (7, Yoy 1) <0

where 1, (2, Yw, Y1) is the reward margin for a new sample (x,y.,,y1). Then, given a joint prefer-
ence distribution P where (x,yy,y;) is sampled from, the population risk with respect to P is

R(P) = E(aﬁ,yw,yl)NP [R(xv Yuw, yl)} . (8)

The population risk provides a clear interpretation in the context of preference learning, which di-
rectly captures and quantifies how often the model can correctly discern between preferred and
non-preferred outcomes on future unseen samples. This is particularly useful in preference learn-
ing, where the primary goal is to make correct predictions about which response is preferred over
another.

3.2 ANALYZE GPO UNDER NOISY FEEDBACK

Under the noise-free setting, Im & Li (2024a) analyzed generalization guarantees for models trained
with preference optimization loss. However, human feedback can be inherently noisy. To capture a
more practical setting, we aim to relax this strong assumption and instead analyze the generalization
behavior of preference optimization under noisy feedback.

e-noise preference data. We consider a noisy preference dataset D, = { (24, Juw.i, gl,i)}szl, which
flips the preference label with probability € from ¥, > y; to y; > vy, for samples in the noise-free
oracle dataset D = {(x, yw,,;,yl,i)}i]\il. Hence, € captures the amount of noise in the dataset,
where a larger e means more severe noise contamination, and vice versa. This setup simulates
the mistakes observed in both human-provided (Lindner & El-Assady, 2022) and heuristic-based
preferences (Chen et al., 2024). Given the empirical noisy dataset D, = {(@i, Ju i, U1.i) v, We
then fine-tune the LLM policy 7y to minimize the GPO objective:

B (o gu.i)eP. {f (5 < log Toldwle) _ log M(Ql'x))ﬂ : 9)

7rref(gw |SC) 7rref(gl |I)

where ¥, and 7, are the noisy preferred and rejected labels for preference learning.

Analyze GPO behavior under practical considerations. A key focus of our paper is to provide a
tractable analysis of GPO’s generalization behavior, without divorcing from practical considerations.
Our analytical framework is designed with practicality in mind. Besides taking noisy feedback into
account, we consider the generalization of models after finite gradient steps when the loss is within
a constant factor of its initial value. This scenario closely matches real-world practices, where large
language models are often fine-tuned for a finite number of steps to avoid overfitting. For this reason,
our analytical approach is different from classical generalization theory, which typically considers
overparameterized models that achieve near-optimal loss (Allen-Zhu et al., 2019; Arora et al., 2019;
Cao & Gu, 2020; Subramanian et al., 2022) or are independent of the training process (Arora et al.,
2018; Lotfi et al., 2022; 2023).

Our theory revolves around analyzing how the reward margin changes over the course of training,
which allows us to bound the generalization error after finite-step GPO updates. For an input prompt
= (M 2@ . (D)) with length T, we denote the model output fy(z) = softmax(Wg(z)),
where W is the unembedding matrix and g(z) is the final hidden state. The feature backbone
can be either fixed or tunable. For example, in recently popularized parameter-efficient fine-tuning
paradigm, the feature backbone is often kept frozen to prevent overfitting (Hu et al., 2021; Houlsby
et al., 2019), and in black-box fine-tuning scenarios where the backbone is not exposed to the end-
user. In what follows, we first focus on a fixed encoder as a pragmatic approach to manage tractabil-
ity while still extracting valuable insights into preference learning. Later we will also investigate
whether our theoretical insights hold when performing full fine-tuning, where the feature map is
allowed to change (Section 4).

We begin by stating a lemma on the gradient flow and reward dynamics.
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Lemma 3.1 (Gradient flow and reward dynamics). The dynamics of the reward margin for sample
J is given by

N
5 (t) = *% S B i) Fwy — F15) T Fwi — F1.4)Sis, (10)
i=1

where t is the time, r; is the shorthand notation for reward margin of sample x;, 3 is the sample
covariance matrix with ¥;; = g(x;) " g(x;), and T is inverse to the learning rate.

Proof. To analyze the reward margin associated with each sample and its evolution during training,
we begin by deriving the dynamics of the unembedding layer matrix W under gradient flow:

N
TW = _% Zﬁfl(ﬁ(yw,i —¥13) (W = Wo)g(2:)) (Fuwi — y1.)9(x:) ", 1D
i=1

where W) is the initial weight in the reference policy m.s. T determines the rate of change, where a
larger T corresponds to a slower rate of change. y., i, y;.; are one hot vectors of the token, indicating
either preferred or non-preferred. Let AW = W — W, a constant offset from W, we have:

N
PAW = 0SB (3w — $1) T AW () Fui — 51)0() (12)
i=1

Reward margin for z;

which contains the term of the reward margin. Since 3, y., ;,¥1,j, ; are fixed, we can consider the
flow of the reward margin by multiplying 3(¥..; — ¥1.;) ' on the left and multiplying g(z;) on the
right of 7AW, This yields the dynamics of the reward margin. O

From training to test input reward dynamics. We can extend this analysis beyond the training
samples to any possible input. Consider a new triplet (z*, y,,, ¥;') and let r* be its reward margin.
While we do not train on this input, we can still follow its reward trajectory to derive the dynamics,
which is given by

N
Tr(t) = —% Zﬁ2f/(7"i(t))(yzj =) Fwi — F1.0)9(@*) T g(x:). (13)

By being able to follow the dynamics of the reward margins for any sample, we are able to reason
about the shift in the decision boundary over the course of training, enabling us to establish a bound
on the true population risk and quantify how the risk increases as noise is introduced.

3.3 GENERALIZATION GUARANTEE

We now characterize the preference distribution in order to provide a tractable analysis and bound
the generalization error. Importantly, the features we model are designed to reflect the characteris-
tics of the real-world transformer backbone, ensuring that our theoretical analysis remains grounded
in the specific inductive biases and structures that are typical of such models. Specifically, we con-
sider the sample embeddings are from a hyperspherical distribution with unit norm. This closely
approximates the structure of embeddings observed after the RMSNorm layer in practical models
such as LLaMA (Zhang & Sennrich, 2019; Touvron et al., 2023). In particular, we consider the von
Mises-Fisher (vMF) distribution, a classical and important distribution in directional statistics (Mar-
dia & Jupp, 2009), which is analogous to spherical Gaussian distributions for features with unit

norms. The density function is given by p(x; u, k) = Cd(n)e"”"“T“’, where p represents the mean
direction and & is the concentration parameter, and Cy(x) normalization constant dependent on the
dimension d and k. We denote the distribution with mean direction p and concentration parameter
r as VMF(u, k). We also define a normalized concentration parameter v = 27“ In Appendix C, we
verify that embeddings from modern LLMs exhibit the key characteristics of the vMF distribution.

Under this characterization, we can now describe the data-generating process. First, we generate
the set of positive samples D, consisting of N/2 i.i.d. samples from vMF(u, k) and the set of
negative samples D_, consisting of N/2 i.i.d. samples from vMF(u_, k). Positive samples will
have some preferred token y; and some rejected token y_ while negative samples have the opposite
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preferences. We define 26 to be the angle between 2 and p—. For each sample, we then generate
an i.i.d. sample from a Bernoulli distribution with parameter e, flipping the sample’s label if the
outcome is 1. This results in our noisy dataset D, = D, U D_. By using the reward dynamics as
well as concentration results on the von Mises-Fisher distribution which we prove in Appendix B,
we are able to bound the generalization error and capture how it changes with noise rate e.

Theorem 3.1 (Generalization guarantee under noisy feedback). Suppose we have a noisy dataset

such that each sample has its labels flipped with probability €, with 0 < ¢ < 1. Then, with

probability at least 1 — %@ — %, Jor 0 < e < % (1 — % fcos% - 47v11<\>/gN) and
0<t< Siz(;Q/ g)T, the population risk of the model is bounded as
R
R(P) < - 7 (14)
(1= VRo7 (e + 20EY))
where the clean risk bound under noise-free human feedback, R, is given by
4
Ro = . (15)

2
1 6
¥ (1 — 5 —cos g)
Theorem 3.2 (Behavior of expected risk). Suppose we have a noisy dataset such that each sample

has its label flipped with probability €. Then, for 0 < e < 1 — % —cos® — YN 4nd0 <t <

3 N
Siz(;z/ 13;)7’ the expected population risk of the model Eg, [R(P)], averaged over the sampled noisy

datasets D, is bounded by

Ro 2Ry 2
5. [R(P)] < s+ + . (16)
(17m(€+2¢1§/ﬁ)) N —eN —/logN N
Additionally, we have that for any t and for any 6, ~,
d2
—E5 [R =0 17
B RP)| a7

Theoretical insight on how the risk bound grows with . Unlike classical generalization theory,
which typically analyzes model behavior at convergence, our theory leverages a finite-step analysis.
This approach enables us to precisely reveal the impact of noisy labels in a fine-tuning setting. The
key insight of the theorems is that given the bound on the risk for when there is no noise, Ry, we
can determine an upper bound on the rate at which the risk increases with e. In particular, as €
increases from 0, the bound increases as 1/(1 — /Ro7ye)? neglecting the finite-sample deviation
for label flipping. With tighter bounds on the mean and variance of the cosine similarity between a
sample and its corresponding mean, we can achieve tighter bounds on the noiseless risk and its rate
of increase. As a result, we expect the risk in practice to be more closely modeled by

Ep[R(P)]
(1 — ce)?

for e that is sufficiently away from 1/2, where Ep[R(P)] is the risk of the model averaged over
sampled noiseless datasets, and c is a parameter that depends on the data distribution and training
configuration. For € near 1/2, based upon the theorems, we expect an inflection point in the expected
risk at ¢ = 1/2, and therefore, we can expect the test accuracy, as € approaches 1/2, to decrease
at an approximately linear rate. We empirically observe that this theory-based model of the risk
growing as ﬁ and transitioning to linearity near € = 0.5 closely describes the test accuracy on
real-world datasets in Section 4. This suggests that building upon our theoretical results can lead to
a close match between theory and practice.

(18)

Additionally, we can understand how the risk bound varies with parameters of the data distribution.
As both 6 (distance between the mean of the two distributions) and + (concentration within each
distribution) increase, Ry decreases. In particular, R is approximately inversely proportional to
v, and R is inversely proportional to 1 — % — cos 5. Moreover, increasing v and 6 leads to an
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increase in v/R¢7y, which governs the rate at which the risk bound grows with e. A larger «/Ro7y
results in a slower increase in risk, meaning that greater v and € contribute to a slower rise in risk
as € approaches 0. In summary, less similarity between positive and negative examples, along with
more concentrated distributions, allows for a tighter bound on population risk and less sensitivity to
noise for smaller e.

Derivation overivew. We provide a high-level summary of the derivation of the risk bound. In the
noiseless case, the initial direction of the GPO update will always correspond to a sample estimate of
the difference between the means of the positive and negative example distributions. This estimate
becomes more robust as the number of samples increases, the distance between means increases,
and as the distributions become more concentrated, and as a result, the risk increases at a slower rate
with respect to the noise rate. Furthermore, by reasoning about the reward margin for any sample,
including those outside the training distribution (¢f Equation 13), we can control how the decision
boundary shifts by the end of training. We then analyze which samples would be classified correctly,
accounting for estimation error in the mean difference due to noise and finite samples, as well as the
boundary shift from training. Using tail bounds, we can provide a guarantee for the risk when € is
small. In order to determine how the expectation of the risk behaves as e approaches %, we use the
symmetry of the expected risk over 1/2 to determine that there is an inflection point at which the
risk approaches a linear rate.

In Section 4, we empirically validate our theoretical bound by training on contemporary LLMs such
as LLaMa (Touvron et al., 2023), where we observe the predicted behavior. Moreover, we extend
this analysis to full fine-tuning scenarios in large language models, demonstrating that the insight
holds broadly and offering practical guidance.

Key takeaways of Section 3

Ep[R(P)]

G—co? which is a function of the

1. Our theory suggests that the expected risk can be modeled as
noiseless risk and e for e sufficiently below 1/2.

2. As e approaches 1/2, the expected risk decreases approximately linearly as it approaches an inflec-
tion point.

3. Stronger concentration, more samples, and contrasting directions for positive and negative samples
allow for tighter bounds and slower degradation in accuracy as the noise rate increases.

4 CONNECTING THEORY TO PRACTICE

To understand how our theory guides practical LLM training, we verify the generalization behavior
of preference optimization when updating last-layer parameters and updating all model parame-
ters. In particular, Section 4.1 focuses on experiments conducted within a controlled setting, which
allows us to systematically verify the impact of noise rate and distributional properties on model
performance. In Section 4.2, we extend our investigation to a real-world dataset, to validate the
practical applicability of our findings in a more complex and realistic setting. Section 4.3 verifies
that our theoretical insights indeed hold on other preference optimization losses in the GPO family.

4.1 VERIFICATION OF BOUND IN A CONTROLLED SETTING

Experimental setup. We first validate the risk bound in a controlled setting where we can flexibly
parameterize the data distribution. We consider data points with dimension d = 512, sampled from
vMF distribution, with the mean vectors for the positive and negative samples separated by an angle
of 20. To study the effects of v and #, we vary the concentration parameter ~ over values 1/16,
1/8, and 1/4 while keeping 6 fixed at /3, and vary 6 over /3, 27/3, and 7 with ~ fixed at
1/8. We sample 1000 data points each from the positive and negative distributions, with € ranging
from 0 to 1/2 in increments of 0.025. The model, which has two outputs corresponding to positive
and negative samples, is trained with DPO loss for 10 epochs using gradient descent. For each
configuration, we perform 20 trials and plot the average test accuracy as a function of €. Additionally,
we fit the theoretical model from Equation 18 to the data for ¢ = 0 to 0.35, assuming that the true
noiseless risk is at most 1% from the observed average test error. We present the results in Figure 1.
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Figure 1: Empirical validation in a controlled setting with (left) concentration parameter  varying
over 1/16,1/8,1/4 and with (right) 6 varying over 7/3,27/3, 7. In both plots, we vary the noise
rate € on the x-axis from 0 to 1 with increments of 0.025. All curves are averaged over 20 runs.

Impact of noise rate . In Figure 1, we plot how the test accuracy of model changes with increas-
ing noise rate e. The figure aligns with our theoretical analysis of how the generalization error in
preference learning increases as the noise rate rises. In particular, we can observe that the theo-
retical fit closely follows the empirical accuracy observed, validating the theory that the growth in

the expected risk for noisy datasets is well approximated by ﬁ for € smaller than 0.5. Addi-

tionally, we observe an inflection point around € = 0.5, where the test accuracy begins to decrease
approximately linearly.

Impact of distribution parameters. We can observe in Figure 1a that as ~y increases and in Fig-
ure 1b that as 6 increases, the noiseless test accuracy is generally higher (when the noise rate is under
0.5). Moreover, when -y or 6 increases, the test accuracy decreases at a slower rate when € is closer
to 0. These empirical results match the relationship between the distributional parameters and the
risk discussed in detail in the theoretical insights.

4.2 VERIFICATION ON REAL-WORLD DATASET

Experimental setup. To further verify our theory on real-world dataset, we use HH-RLHF (Bai
et al., 2022a), a dataset consisting of human preferences about helpfulness and harmlessness with
161k training samples and 8.55k test samples'. We format each sample to be in the form of a prompt
and two responses, with one being preferred over the other, and we exclude samples that did not fit
this format resulting in 160k training samples and 8.53k test samples. We perform full fine-tuning
on the Llama-2-7B model (Touvron et al., 2023) using the DPO loss. This allows us to validate our
theory, updating all parameters, and thus provides more complete empirical validation. We train with
noise rates ranging from € = 0 to € = 0.5 with 0.05 increments, and measure the test performance
for each setting. Specifically, we perform SFT for 1 epoch on the preferred response to each prompt
in the noisy training set, where each training sample had its labels flipped with probability e. We
then perform DPO for 1 epoch on the same noisy dataset. As in Section 4.1, we plot the best
fit of our theory-based model in Equation 18, assuming the true noiseless risk deviates from the
observed average test error by no more than 1%. We provide the complete training hyperparameters
in Appendix A.

QOur theoretical implication holds on real-world dataset with full fine-tuning. For the HH-
RLHF dataset, we can see in Figure 2 that the accuracy decreases at a near constant rate. This
is due to the fact that about 30% of the labels are already noisy (Wang et al., 2024), and as the

"https://huggingface.co/datasets/Anthropic/hh-rlhf
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true range of the noise rate we consider is approx-
imately ranging from 0.3 to 0.5%, we expect the de- DPO HH-RLHF
cline in accuracy to already be transitioning towards
linearity according to our Theorem 3.2. Our theory-

o

. . 0.675

based model maintains a close fit to the observed test @ o5

accuracies, further validating our theoretical frame- 32,
So.

work. While a similar trend is observed in Gao et al. < ;600
(2024b), their work is purely empirical, lacking the 8 os7s |
rigorous theoretical foundation that we provide. Our " asso]
theoretical contribution offers a precise explanation 0525 1
of the behavior of test accuracy as € increases, as

well as the transition to a linear decline, which aligns

with the empirical results. Overall, the close match Figu.re 2: Tgst accuracy for HH-RLHF across
between our theoretical analysis and empirical ob- Vvarying noise rates €.

servation highlights the strength and applicability of

our theoretical framework in modeling the effects of noise on preference optimization.
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4.3  VERIFICATION ON DIFFERENT LOSSES IN GPO FAMILY

Qur theory holds on alternative loss in GPO family. We extend our experiments to the IPO ob-
jective (Azar et al., 2023) to confirm that our theoretical insights are not specific to DPO but hold
for other objectives in the GPO family. We keep the experimental setting the same as in Section 4.1
and provide the results in Figure 3. We can see that the theory-based model matches the empirical
average test accuracy well where it starts to transition to a linear decrease. Moreover, in Figure 3, we
observe the expected inverse relationship between the parameters y and 6 and the risk for IPO, fur-
ther validating the applicability of our analysis. This consistency highlights the broad applicability
of our theoretical framework to different preference optimization objectives.
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Figure 3: Empirical validation using IPO loss in the controlled setting. Left: concentration parame-
ter -y varies over 1/16,1/8,1/4. Right: ¢ varies over /3, 27w /3, 7. In both plots, we vary the noise
rate € on the x-axis from 0 to 1 with increments of 0.025. All curves are averaged over 20 runs.

5 RELATED WORKS

Alignment of LLMs. A key aspect of training and deploying large language models is ensuring
the models behave in safe and helpful ways (Ji et al., 2023; Casper et al., 2023; Hendrycks et al.,
2021; Leike et al., 2018). This is an important problem due to the potential harms that can arise in
large models (Park et al., 2023; Carroll et al., 2023; Perez et al., 2022; Sharma et al., 2023; Bang
et al., 2023; Hubinger et al., 2019; Berglund et al., 2023; Ngo et al., 2022; Shevlane et al., 2023;
Shah et al., 2022; Pan et al., 2022). A wide range of methods have been developed that utilize
human feedback or human preference data to train models to avoid harmful responses and elicit

With 30% initial noise, flipping the preference label with e = 0.5 results in 15% of the incorrect labels
becoming correct. Meanwhile, from the 70% of initially correct labels, 35% remain correct. Overall, this brings
the total noise level to 50%.
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safer or more helpful responses (Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020;
Lee et al., 2021; Ouyang et al., 2022; Bai et al., 2022a; Nakano et al., 2022; Glaese et al., 2022;
Snell et al., 2023; Yuan et al., 2023; Song et al., 2023; Dong et al., 2023; Bai et al., 2022b; Lee et al.,
2023; Munos et al., 2023; Hejna et al., 2023; Dai et al., 2023; Khanov et al., 2024). Particularly,
the Reinforcement Learning from Human Feedback (RLHF) framework has proven effective in
aligning large pre-trained language models (Christiano et al., 2017; Ziegler et al., 2019; Ouyang
et al., 2022; Bai et al., 2022a). However, given its computational inefficiency, recent shifts in focus
favor closed-form losses that directly utilize offline preferences, like Direct Preference Optimization
(DPO) (Rafailov et al., 2023) and related methodologies (Azar et al., 2023; Pal et al., 2024; Liu et al.,
2024b; Ethayarajh et al., 2024a; Xiong et al., 2023; Tang et al., 2024; Meng et al., 2024; Ethayarajh
et al., 2024b; Zeng et al., 2024; Calandriello et al., 2024; Muldrew et al., 2024; Ray Chowdhury
etal., 2024; Liu et al., 2024a; Gao et al., 2024a; Yang et al., 2024; Chakraborty et al., 2024). Despite
the empirical success and wide adoption in real-world systems (OpenAl, 2023; Anthropic, 2023;
Touvron et al., 2023), fewer works provide theoretical underpinnings (Azar et al., 2023; Rafailov
et al., 2024; Im & Li, 2024b; Tang et al., 2024; Ray Chowdhury et al., 2024; Tajwar et al., 2024;
Xu et al., 2024; Nika et al., 2024; Xiong et al., 2024). In this work, we make an initial attempt to
theoretically analyze the generalization behavior of preference optimization under noisy feedback,
making our results particularly relevant for the development and deployment of robust LLM systems.

Robustness of preference optimization. Ensuring that a model can generalize when trained with
noisy labels is crucial for building robust and reliable systems (Song et al., 2022). This problem has
led to a wide range of works Song et al. (2022) developing various methods that improve model gen-
eralization in the presence of noise with many of the works presenting theoretical guarantees of ro-
bustness (Natarajan et al., 2013; Zhang & Sabuncu, 2018; Li et al., 2020) for modified loss functions
or for early stopping. In the context of preference learning, increased noise levels have been shown
to degrade performance, especially when considering loss minimizers (Gao et al., 2024b; Fisch et al.,
2024; Liang et al., 2024). This has led to the development of methods such as ROPO (Liang et al.,
2024), cDPO (Mitchell, 2023), and rDPO (Ray Chowdhury et al., 2024) which introduce modifica-
tions to the DPO objective and its gradients. Fisch et al. (2024) considers a pessimistic distillation
loss to learn rewards robustly. These approaches have proven effective in enhancing the robustness
of preference optimization. Complementing these efforts, our study provides a rigorous generaliza-
tion analysis of finite-step preference optimization under noisy feedback. Our theory, grounded in
reward dynamics, offers new insights on how the population risk grows with the noise rate for offline
preference learning in a finite-step training setting.

6 CONCLUSION

Our work theoretically analyzes the generalization behavior of preference learning in the presence
of noisy labels through a dynamics-based approach based on a general class of objectives, includ-
ing methods such as DPO, IPO, SLiC, etc., which implicitly learn a reward model. Key to our
framework, we analyze the reward margin associated with each training sample and its trajectory
throughout the training process, enabling us to effectively bound the generalization error. Through
rigorous analysis and novel bounds, we establish a generalization guarantee that depends on the
noise rate and provide a model based upon the theoretical guarantee that closely describes how test
accuracy is impacted by noise on real-world datasets. Empirical validation on contemporary LLMs
and real-world alignment datasets confirms the practical relevance of our framework, offering in-
sights crucial for developing Al systems that align with human intentions and preferences. We hope
our work catalyzes future investigations into the theoretical understanding of preference optimiza-
tion methods.

LIMITATION

While our work provides new theoretical insights into preference optimization under noisy feedback,
it does have its constraints. Notably, our framework is limited to offline settings, which assumes that
the feedback is collected apriori. Analyzing generalization behavior in online RL settings remains a
significant challenge. This limitation underscores the necessity for future research to further explore
the theoretical understanding of preference optimization.
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A ADDITIONAL EXPERIMENTAL DETAILS

We provide the hyperparameters used for experiments.

Table 1: Summary of training hyperparameters for supervised fine-tuning and DPO for Llama-2-7B
for HH-RLHF.

Parameters Value

Number of epochs 1

Optimizer AdamW
Supervised fine-tuning Il%i?iﬁl;% ;ate é(5)6

Gradient accumulation steps 1
Maximum sequence length 512

DeepSpeed Zero stage 3
Weight decay 0
Number of epochs 1
Optimizer AdamW
Learning rate 1075
DPO/IPO I3 0.1
Batch size 256

Gradient accumulation steps 1
Maximum sequence length 512

DeepSpeed Zero stage 3
Max prompt length 256
Max target length 256
Weight decay 0
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B PROOF OF THEOREM 3.1

We start by proving concentration results on the von Mises-Fisher distribution.

Lemma B.1 (von Mises-Fisher Tail Bound). Given an i.i.d. sample x from the von Mises Fisher
Distribution with mean p and concentration k = vy (g) for v > 4, with probability at least 1 — %

/ 2 _
T >M,a 4 (19)

T > —
v g
Proof. We first start by determining a lower bound for the expected value of = " y1. This is given
by
1,
a/2(K) (20)
I d/2—1 (k)

where I, /2 is the Modified Bessel function of the first kind. Then, by Laforgia & Natalini (2010),
Theorem 1.1, we have that
d d\2
Iq/2(k) —5 +/(g)" +~2
>
Id/2—1 (H) K
Then, defining « through x = 77‘1, we have

2 _
Elz "y > 7”:”1 22)

Now, we will upper bound the variance of z ' . In order to do so, we need an upper bound on
E[(x " 12)2]. Notice that this expectation is equal to

2n

Ca(r) / emT’L(xTu)de (23)
§d—1
where Cy(x) is the normalizing constant and that
T d? T
Cd(/i)/ el M(xTM)de — Cd(/i)ﬁ/ et Mp (24)
§d—1 Y §d—1

Then, we have that

L et (0 e
dr? §d—1 (27T)d/21d/2_1(l€) dr? Hd/zil

and this can be simplified as

k4/2-1 g2 (Id/2—1(/€)> kY21 g (%/2—1(”) (d/2_1)Id/2—1("¢)> (26)

Ca(r)

(25)

m@ Kd/2-1 - Id/271(”€) i /21 Kd/2
and further as
:‘id/2_1 i I[Ii/Q_l(/ﬁl) _ (d/2 — 1) Id/g_l(fi)
Iyjo-q(k)ds \ kY21 /2
ki (I ()@= () (/4 d/2) e ()
Ig/2—1(k)

kd/2—1 kd/2 d/2+1

Iqj2-1(k) - klgsa—1(K) - K2

Then, using the identity from Wolfram (2001), we have that

<I£l//21("$) (d—2) 12/271(“) (d?/4 — d/2)>

(fé’/g_l(n) (d=2)1}), (r) (d2/4d/2)> on

- o 2

Id/2—1(/€) KId/g_l(I{) K
< 17/5-1(K) _ 13/2-1(K) S
T gjo—1(k)  vlgjpe-1(k) 292
1 N Lajo—5(k) + Lajo41 Lajp—2(k) + Laja(k)

1
— (28
2 414791 (k) 2v14/2—1(K) 22
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Then, by Theorem 1.1 from Laforgia & Natalini (2010), and the fact that ﬁ is an increasing
function for z > 0, we have that

1 Tajo—s(k) +1ajop1 Laja—2(k) + Ig/2(K) 1

2 4lg/5-1(K) 291 g/2-1(K) 2?2

3 2 Vity2-1 1 1
<S4 4 SR ] ; (29
4 41442 -1)2 2y 2y 2y

Then, the variance of x| 11 is upper bounded by

~2 VIt2-1 1 1 (V1+42-1)? 30)

Given that v > 4, we have that

€29

resulting in an upper bound of

_ _ 2
IRV it S S VA S et i o)

and as

V1 21 1
L>1_, (33)

Y Y
we have an upper bound of
2 1\*
1+—(1—> (34)
g v
and as
1\? 2
<1—> >1—- - (35)
Y Y
we have that the variance is upper bounded by
4
~ (36)
~
Then, applying Chebyshev’s inequality with the upper bound on the variance gives the desired result.
O
Lemma B.2 (von Mises-Fisher Mean Concentration). Given N i.i.d. samples x1, 2o, ..., TN from

the von Mises Fisher Distribution with mean p and concentration Kk = vy (%) for v > 4, with
probability at least 1 — ﬁ

ol N~

N

1 1 21 4

Sl T (37)
i=1

Proof. Since x1,zo9,...,x N areai.i.d. it follows that the variance of dot product of 1 and the mean
of the N samples is N times smaller than the variance of = 1. Then, applying the upper bound on
the variance from Lemma B.1 as well as Chebyshev’s inequality, we have the desired result. O

Lemma B.3 (Training Boundary Shift). For(0 <t < 4/?—{13, the angle between the boundary at time
t and the initial boundary is at most arcsin § for 0 < § < 1.
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Proof. We start with the case for f with f/(0) < 0 and |f”(z)| < D for z > 0. As the weights
follow the following dynamics,

1

N
TAW = N D BI(BFwi = F10) AW g(2:)) (Fwi — F1)g(wi) T, (38)
i=1

Reward margin for z;

we can say that the initial direction that the weights are along is
| N
N > BF(0)Fwi — Fri)g(zi) T (39)
i=1

which we will define as Wy. We aim to control the angle between the initial boundary and the
boundary at time ¢. To do so, consider any sample x* with corresponding reward r*. Then, we know
that at ¢ = 0,

7r(0) = B(ys —¥i)  Wosrg(a*). (40)
Now, let By = (y%, — y;) " Wos, and suppose the cosine similarity between By, g(z*) is greater

than or equal to 4. Then,
7r*(0) > B Bo| 6 41

Now, we will determine a lower bound, ¢, for t* which is defined as the first time |T7”.*(t) —
71*(0)| = B||Bol| 6, and the lower bound should hold for any sample that satisfies the equation
above as this will guarantee that the boundary shifts by at most an angle of arcsin § at time ¢;. First,
we bound the magnitude of the second time derivative of the reward which has the form

N
T (t) = —% S OB ) (O (v =) T Fwi — F)9(x) g(w:) (42)
=1

Since we consider f with second derivative with magnitude bounded by D and unit norm embed-
dings,
232D

) < =

| (t)] (43)

Since we consider time up to t,, we know that [r*(¢)| < 23 | Bo||. Then, it follows that

. 483D ||B
()] < M (44)
T
Then, we have that
: : 483D || By || t

(1) — (o)) < AP s)

Then, as we need |77*(t) — 7r*(0)| < /Byl §, we can lower bound ¢ by

oT

T 46
132D (46)

Then, it follows that for 0 < ¢ < 41‘3—;1), the angle between the boundary at time ¢ and the initial
boundary is at most arcsin 4.

In the case of SLiC, since f'(x) = 1 for 0 < = < 1, we can ensure that the boundary actually stays
the same as initialization as long as we stop before any reward is greater than or equal to 1. We can
ensure this by bounding |r*(¢)| for any sample 7*. Based on the fact that f/(z) = 1for0 <z < 1
and that we will only have rewards in this range, we have that
. 268
[r*(t)] < — (47)

T

Then, since § < 1, at any time 0 < t < 3773’ r*(t) < § for any r*, and since § < 1, we have that

the boundary will not shift from the initial direction during this range of time. Then, since we set
D= % for SLiC, this completes the proof. O
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Lemma B.4 (Generalization Error with Clean Samples). Suppose we have a dataset of N samples
with half being positive and half being negative. Suppose that the cosine similarity between i and
p— is less than or equal to cos(20) with 0 < 6 < T. Then, with probability at least 1 — QRO , we

have that for 0 < t < Sir;(ﬁi/ g)T, the population risk of the model is bounded as
R(P) <Ro (48)
where g
Ro = 5 (49)
0 (1 — % — cos %)
Proof. By Lemma B.2, we have that with probability at least 1 — %
N/2 P
~ z; 2T, > cos 3 (50)

Then, as empirical mean <> Efv/ 12 x, ) has at most unit norm, we know that it is w1th1n an angle of

/3 from pi . Similarly, by Lemma B.2, we have that with probability at least 1 — 57

2 _ 0
2N T > cos 51)

Then, as empirical mean % va/ 12 a:( ) has at most unit norm, we know that it is within an angle of

6/3 from p_. Then, it follows that

N/2 N/2

Z x, Z ng) (52)
i=1

is within an angle of /3 from puy — p—. Therefore, the resulting initial boundary direction is
within an angle of /3 from that corresponding to py — p—. By Lemma B.3, we know that for
0<t< M , the boundary at time ¢ is within an angle of /3 from the initial boundary. Then,
as [y — u_ 1s 6 away from each of p, u_, we know that any sample within an angle of /3 from
the corresponding mean will be classified correctly. For a new sample, by Lemma B.1, this occurs
with probability at least 1 — §, and therefore the risk is upper bounded by R or

R(P) < Ro (53)
O
Lemma B.5 (Concentration for Bernoulli). Suppose we have N ii.d. Ber(¢) random variables,
21, 22, - - - » 2N. Then, with probability at least 1 — 375
N
1 Viog N
— el < 54
¥ ; < (54)
Proof. The result follows directly from Hoeffding’s inequality. O
Lemma B.6 (Directional Perturbation from Noise). Suppose we have a noisy dataset, with each
sample having its labels flipped with probability €, with 0 < ¢ < % Let ;igﬂ, i:éJr),. LL‘E\J,;)
be the resulting set of samples that have labels corresponding to positive examples, and let
QEY), 9557), .. ( ) be the set of negative examples. Then, with probability at least 1 — ; - %
we have that
Ny
1 4y/log N 1
I B e 8 (55)
Ny =1 N v (N —eN — ylog N)y
N_
1 _ 4/log N 1
D YA - B S K 8 (56)
N_ — N 0% (N —eN — log N)~v
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Proof. Let N, be the number of samples that were originally labeled positive and remained
positive after the label flipping, and let N_, = % — N, be the number of samples that were
originally labeled positive and had their labels flipped. Similarly, let N__ be the number of samples
that were originally labeled negative and remained negative after the label flipping, and let N, _ =
% — N__ be the number of samples that were originally labeled negative and had their labels flipped.
We will arrange the samples such that those that did not have their labels flipped correspond to the
first N4 or N__ indices. Then,

1
o Zxﬁ 5 = me o Z it (57)
+ + 1= N++Jr1
N__ N/2
_ T~(-) T~(-)
72“ K 4 oz, + Z Mo, (58)
1=1 i=N__+1

Then, as p4, p— and all sample embeddings have unit norm, we have

1 & o+ (+) & 1. # — Ny
N T, = - 59
N, ;u +%i N Z N, (59)
1 b
i T(=) _ T ( ) —+ 60
N ;u_xl N Z plal) - St (60)
We will start by considering equation 59. Conditioned on the event that ’% ZzN:/f —e‘ <
@, which occurs with probability at least 1 — =, we have that the right hand side is
lower bounded by
N
1—€— 2 10g(N/2) 1 iﬂTf(‘H —€— M 61)
N Niy o e N

This is further lower bounded with probability at least 1 — % by

8
N vy a\/( N —eN — /log N)v (62)

as (1—a)(1=5) > 1—a—"bfor0 < a,b. By the same argument for equation 60, we can complete
the proof. [

Theorem B.1 (Generalization Error with Noisy Samples). Suppose we have a noisy dataset
such that each sample has its labels flipped with probability ¢, with 0 < ¢ < L Let

2
a?gH, ig'_), . ,ig\}i) be the resulting set of samples that have labels corresponding to positive ex-

amples, and let i‘gf), a?g*), ceey a?gvi) be the set of negative examples. Then, with probability at least
e R — o for0 < e < 5 (1= 4 —cos § = YEN) for 0 < ¢ < O the
population risk of the model is bounded as
R
R(P) < ° ; (63)

where

(64)
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Proof. By Lemma B.5 and B.6, we have that with probability at least 1 — Wm - &,
Ny
1 T ~(4) 4\/logN 1 8
pyZ; 21 =26 ——F— — — — 4| — (65)
Ny ; N v oy
N_
1 T.(0) 4y/logN 1 8
— >l -2 ———F— — — — 4| — 66
N_ ;/’l‘*xz —_ € N ’_y 67 ( )
and as Rog = m, we have that
Ny
1 T ~(4) 4\/10gN 1 1 9
m;ﬂ+xz 21—26—T_§— 1—;_(:085 (67)
N_
1 (=) 4y/logN 1 1 0
K;Mffﬂl 21_26_T—;_ 1_;—COS§ (68)
and therefore N
1 < 4y/Tog N
N Z ulz(ﬂ > cos 2e — ](\)[g (69)
=1
N_
1 _ 0 4+/log N
N—Zuf:ﬁg )zcosg—Qe—% (70)
T i=1
Let ¢ = arccos (cosg — 2e — Llf\’,gN) — g. By Lemma B.3, we know that for 0 < ¢ < %,

the boundary at time ¢ is within an angle of 6/3 from the initial boundary. Then, as py — u_
is 6 away from each of p,u_, we know that any sample within an angle of 6/3 — ¢ from the
corresponding mean will be classified correctly. Since cosine is concave for angles between 0 and

/2, we have that cos (0/3 — ¢) < cos % +2e+ Llf\}g]\'. Then, we can guarantee that a new sample

is classified correctly if its dot product with its corresponding mean is at least cos % +2e+ 47”;?1\’.
For a new sample, by Lemma B.1, this occurs with probability at least
8
1-— 5 (71)
fy(l—%—cosg—Qe—Llf\’,gN)
or 2
1- 0 ~ (72)
(1 R (2 )
and therefore the risk is upper bounded as
R
R(P) < : ; (73)
(1= 255
O

Theorem B.2 (Behavior of expected risk). Suppose we have a noisy dataset such that each sample

has its label flipped with probability €. Then, for 0 < € < 1 — % — COS% — el g0 <t <

N
Siz(ﬁi/ g)T, the expected population risk of the model E5_ [R(P)], averaged over the sampled noisy

datasets 156, is bounded by

7ZO 273,0 2
Ep [R(P)] < 5+ + s (74)
. (1—m(€+2¢W)) N —eN —/logN N
Additionally, we have that for any t and for any 6, ~,
d2
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Proof. By Theorem B.1, we have that with probability at least 1 — ﬁ — %,
R(P) < o ; (76)
(1 - VRoy (6 + @))
and that R('P) is always less than or equal to 1, so
R 2R 2
Now, we consider E_ [R(P)]. Let x1, . . ., x N represent the sample embeddings and let 21, ..., 2y

be Ber(¢€) variables that determine the label flipping. Then,
Ep, [R(P)] = /d- .- /d E.,, n[R(P)lz1,...,znv(z1,...,oN)der ... day (78)
R R

where v(x1,...,xy) is the joint density of the sample embeddings. We can additionally expand
E.,.. :n[R(P)|z1,...,2N] as a sum over the 2N possible z1,...,zy configurations. Since €
appears only within the sum and the sum is polynomial in €, we know that E5 [R(P)] is twice

differentiable in € as we can move j? inside the integral and inside the sum. Now, we will show
that

Ep [R(P)l], =1-Ep [R(P)]],_, (79)

Since v(x1, ..., zy) is independent of €, the above is true if for a given 1, ..., zy,
]EZLM,ZN [R(Pﬂxla oo 7‘75N] =1- Ezg,...,Z}v [R(P”xh ey CUN} (80)
where z1,...,zy ~ Ber(e) and 2,...,2)y ~ Ber(1 — €). The probability of sampling a given
z1,...,2n is the same as sampling 21, ..., 25 with the exact opposite set of labels being flipped.

‘We know that the reward dynamics, for any sample (z*, v,,, y;') and letting r* be its reward margin,
follow

N
. 1 " * ~ ~ *
=5 B )y =¥ T G — F1i)g() o) 81)
i=1
Additionally, the reward dynamics for the training samples are the same for zj,...,zy and
2{,..., 2N, so the reward dynamics for any new sample are the exact opposite for z1, ..., zy and
2}, ..., . This means that the resulting models have exact opposite predictions and therefore
E. .. :n[R(P)x1,...,zn]=1— Eu 2 [R(P)|z1,-..,xN] (82)
Now, since we know that
Ep [R(P)l], =1-Ep [R(P)]],_, (83)
We can apply % to both sides and we have that
d? d?
2B RPI| = 5B RPY| (84)
and at e = 1/2, this is only possible if
d2
—E5 [R =0 85
de? De[ (P)] =12 ( )
O
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C VMF DISTRIBUTION VERIFICATION

We verify that the embeddings from real-world models and datasets exhibit key characteristics of
the vMF distribution. We use the Anthropic Persona dataset (Perez et al., 2022) which consists of
a diverse set of personas. For each persona, there is a collection of 500 statements that align with
the persona, and 500 statements that misalign with the persona. These samples can be viewed as
positive and negative samples, respectively. All embeddings are collected after RMSNorm has been
applied. We collect the norm of the final layer embedding at the end of each statement and calcu-
late both the average norm and the variance across all samples. As depicted in the first two rows
of Table 2, the embeddings consistently show a similar norm with small variance, approximately
conforming to the vMF distribution. Additionally, for every persona, we compute the mean embed-
ding of the positive and negative samples, and calculate the cosine similarity between each sample
and its corresponding mean. We then average the cosine similarity for the positive samples and the
negative samples, and compile these averages across all personas. The results, shown in the last two
rows of Table 2, demonstrate high average cosine similarities with minimal variance. This suggests
that the embeddings are concentrated around their respective means across personas, supporting the
presence of the vMF distribution in a real-world dataset, aligning with our theoretical setup.

Table 2: Verification of vMF distribution.

Average norm 140.3
Norm Variance 1.618
Average cosine 0.9876
Cosine Variance 1.106e-5
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