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ABSTRACT

Graph sparsification is a key technique for improving inference
efficiency in Graph Neural Networks by removing edges with mini-
mal impact on predictions. GNN explainability methods generate
local importance scores, which can be aggregated into global scores
for graph sparsification. However, many explainability methods
produce only non-negative scores, limiting their applicability for
sparsification. In contrast, Shapley value based methods assign both
positive and negative contributions to node predictions, offering a
theoretically robust and fair allocation of importance by evaluating
many subsets of graphs. Unlike gradient-based or perturbation-
based explainers, Shapley values enable better pruning strategies
that preserve influential edges while removing misleading or adver-
sarial connections. Our approach shows that Shapley value-based
graph sparsification maintains predictive performance while signif-
icantly reducing graph complexity, enhancing both interpretability
and efficiency in GNN inference.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become very popular in the
field of machine learning, specifically in handling graph-structured
data [35]. Unlike traditional neural networks, GNNs leverage the
hidden relationships within graph data, making them one of the
preferred methods for social networks [11, 18], recommendation
systems [6, 33], molecular modeling [8, 35], and financial fraud
detection [4, 19]. GNNs’ ability to capture local and global patterns
through message passing has significantly improved predictive
model performance in these domains [46].

Since the weight matrices in GNNs are typically small, the com-
putational and memory complexity of GNN inference is often dom-
inated by the size of the graph, that is, the number of nodes and
edges. As real-world graphs continue to grow in size and struc-
tural complexity, the scalability and feasibility of GNN inference on
memory-constrained edge devices and GPUs become increasingly
challenging. To address this issue, various graph sparsification tech-
niques [3, 7, 28, 38, 41] have been introduced in the literature. Most
of these methods are inspired by the Lottery Ticket Hypothesis,
which suggests that a subnetwork of a GNN consisting of a sub-
set of parameters, layers, nodes, and/or edges can be trained to
achieve performance comparable to that of the full model. These
approaches, therefore, focus on identifying and pruning redundant
edges to reduce graph complexity, lower resource consumption,
and accelerate inference.

A second class of methods also seeks to identify uninformative
nodes and edges, but with the goal of explaining the predictions
made by GNN models [5, 14, 32, 37]. The GNN explanation meth-
ods aim to identify crucial subgraphs contributing more to the

Ariful Azad

Department of Computer Science & Engineering
Texas A&M University
College Station, Texas, USA
ariful@tamu.edu

predictions. The fidelity [39] metric is commonly used to evalu-
ate the success of GNN explanation methods. It measures how
model predictions change when some edges are removed. Specifi-
cally, Fidelity, measures how the model prediction changes when
important edges are removed, while Fidelity_ measures how the
model prediction changes when the least important edges are re-
moved. The ability to identify the most and least important edges
for GNN explanation methods motivated us to apply explanation
scores to graph sparsification. Graph sparsification using expla-
nation scores offers several advantages: (1) it eliminates the need
to retrain the model after sparsification, (2) it avoids the need to
repeatedly recompute edge scores to determine the optimal sparsity
level, and (3) the inference is inherently explainable as the graph is
already sparsified but removing unimportant edges.

While the fidelity score is a good metric for evaluating GNN
explanation methods, it has limitations. The fidelity metric only
focuses on the magnitude of score change in the model prediction; it
does not consider whether the model prediction improves or wors-
ens. Many GNN explanation methods generate only non-negative
explanation scores to define importance. However, some edges sig-
nificantly reduce model prediction, but those edges are considered
important since they significantly change the fidelity score. Ex-
planation methods that only give non-negative scores have this
shortcoming. We argue that an explanation score that can provide
positive and negative importance scores should perform similarly
or better on graph sparsification tasks.

Shapley value based GNN explanation methods [1, 17, 22, 40]
provide both positive and negative attribution scores in addition to
high-quality explanations. Figure 1 shows an example of Shapley
values for a node. In the figure, the edge from node 37 to node 60 is
the most important edge; however, removing this edge improves
model performance. The ability to prune the graph’s negatively
attributing and least significant edges without compromising the
accuracy allows for higher sparser graphs and faster inference.

In this paper, we explore graph sparsification using Shapley
values and demonstrate its unique advantages over existing expla-
nation methods for node classification tasks, particularly in reduc-
ing the computational complexity of inference. Overall, the paper
makes the following contributions:

e We comprehensively evaluate Shapley value explanations
across multiple datasets and models, demonstrating its ro-
bustness and generalizability on graph sparsification.

o We compare state-of-the-art GNN explanation methods
and sparsification techniques, highlighting superior perfor-
mance in maintaining model accuracy.

e We also compare our sparsification approach with graph
lottery ticket approaches, demonstrating competitive or
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Figure 1: Example Shapley value explanation on Cora node 60. Node colors denote classes. The bar chart on the right shows im-
portant edges and their Shapley values. While red colors show a positive contribution, blue colors show a negative contribution.

improved sparsification ratios while maintaining model
performance.

2 BACKGROUND & RELATED WORK

We denote a graph as G = {V, E}, where V is the set of N nodes,
E is the set of edges, and XeRNXF s the node feature matrix.
A€{0, 1}N*N s the binary adjacency of the graph, where A;; = 1
ifvj,0; € E, and A;j = 0 otherwise. Let y = {y1, 2, ..., yn} denote
the labels of the nodes, where each label y; belongs to one of C
classes in a multiclass node classification task. An I-layered GNN
model f takes X and A as input and generates predictions for the
ith node: g; = f(X, A), where 7j;€C.

Computational graph. When predicting the class of a node,
the GNN inference needs a small subgraph of the entire graph.
Specifically, the prediction of a node v with an [-layer GNN only de-
pends on v’s 1-hop through I-hop neighbors, the edges among them,
and any associated node and edge features. This I-hop subgraph is
referred to as the computational graph G.(v), which contains all
the necessary information for predicting v.

2.1 GNN Explanations

A GNN explanation method ® generates explanations for a given
node v with respect to a target class t € C. The target class may
correspond to either the ground truth label or the predicted class.
Popular GNN explanation methods aim to explain the prediction
for node v by taking as input a trained GNN model f and the node’s
computational graph G (v). The explanation typically consists of a
small subgraph G, (v) € G (v) and/or a subset of node features that
most significantly influence the prediction. The key idea is to retain
only the edges and features that contribute most to the model’s
decision. In this work, we focus exclusively on subgraph-based
explanations, as our goal is to sparsify graphs by pruning edges.
The explanation model assigns an importance score ¢? (i, j) to each
edge (v;,0}), indicating its contribution to node v’s prediction for
the target class t. Depending on the explanation method, these
scores can be either positive or negative.

2.2 Related Work

Graph sparsification aims to remove edges from a graph while
preserving the model’s predictive performance. Various approaches
have been proposed in the literature to achieve this goal.

Denoising methods, such as NeuralSparse [45] and PTDNet [15],
aim to enhance the GNN’s generalization capability by reducing
noise and making the GNN less sensitive to the graph’s quality. Neu-
ralSparse learns irrelevant edges during training and removes them
to improve node representations, whereas PTDNet utilizes a proba-
bilistic edge dropout mask to learn noisy edges and subsequently
drops them.

Graph lottery ticket approaches aim to find a sparser graph
and model parameters with similar or better accuracy than the
original graph and model, which are called winning tickets. UGS [3],
Early-Bird GCNs [38], WD-GLT [7], CGP [12], ICGP [28], FastGLT
[41] and [16, 42-44] aim to find the winning tickets. While these
approaches can sparsify graph and model parameters, shallow GNN
models (e.g., 2-4 layers) usually work well. Moreover, most of these
approaches require retraining for each target sparsity level. Since
models are shallow, starting with a small model and experimenting
with larger or deeper models is more practical. In addition, they only
use a small portion of nodes (the training set) in semi-supervised
GNN learning, which has a limited impact on graph sparsification.

Explainability based graph sparsification approaches use expla-
nation scores to sparsify the graph. EEGL [20] applies frequent
subgraph mining to find the most common patterns using GNNEx-
plainer. Then, patterns are used as additional features. The authors
train the model iteratively with found subgraphs to improve the
model’s accuracy. While EEGL finds subgraphs, it mainly focuses
on enhancing the model’s performance rather than sparsification.

IGS [10] focuses on brain graph sparsification. It iteratively learns
a trainable edge mask during training and removes unimportant
edges. xAI-Drop [13] computes node explanations and drops nodes
based on the explainability score. It first considers the model’s
probability for candidate nodes. Then, it computes explainability
scores. Finally, it applies Bernoulli-based node drops. While these
works utilize explainability, their primary target is to enhance model
accuracy during training. We focus on enhancing the inference
speed of the pre-trained model.



The work by Shin et al. [26] is closely related to ours, as it lever-
ages GNN explanations for graph sparsification. The authors pro-
pose a fidelity-inspired pruning method, where the Fidelity_score
measures the change in model prediction when non-essential edges
are removed. They aggregate individual edge explanation scores
into global importance scores and prune edges with the lowest
values. However, their method considers only non-negative edge
scores. While Fidelity_ effectively identifies unimportant edges,
we show that a better sparsification can be achieved by removing
edges with negative importance (i.e., edges that reduce prediction
confidence).

3 METHOD

3.1 Shapley Values

Shapley value [24] is a game-theoretic method that fairly distributes
gains to collaborating players. A Shapley value GNN explanation
method considers nodes or edges as players and fairly distributes
the model output to players.

The exact Shapley value of a player is computed by Eq. 1, where
n denotes the number of players, S a coalition (a subset of players),
and f(SU{i}) - f(S) is player i’s marginal contribution to coalition
S. Shapley values can be positive and negative; while positive values
increase model prediction probability, negative values decrease.
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Computing exact Shapley values is impractical when the number
of players is large, as it requires evaluating 2" coalitions. [1, 5]
use a simple surrogate model to compute the approximation of
Shapley values using a much smaller subset of coalitions (k < 2").
The surrogate model g is defined in Eq. 2, where m € {0,1}*"
denotes a binary coalition mask, S, and ¢ are model parameters:
the approximation of the Shapley values.

Fx) = g(x) = o+ ) gimi, ®)
i=1

3.2 Graph Sparsification by Explanation Scores

Most GNN explanation methods give local explanations, i.e, an
explanation for a node’s classification. Since the same edges are
in many different nodes’ I — hop neighborhoods, there are multi-
ple scores for each edge. To get a global score for each edge, we
need to aggregate scores. In this work, we use mean aggregation,
where we calculate the average score for each edge. We show our
sparsification algorithm in Algorithm 1 and Figure 2.

We also considered the sum and weighted mean aggregations.
We use model predictions as probabilities in the weighted mean,
thinking they should have less weight when the model is less sure.
However, we don’t see significant differences in pruning perfor-
mance. The sum and weighted mean results are provided in Appen-
dix A.

Algorithm 1 GNN Explanation-Based Graph Sparsification

Require: Graph G = (V, E), edge importance scores Sy (e) for each
node v € V and edge e € E, sparsification threshold 7

Ensure: Sparsified graph G’ = (V,E’)

1: Initialize empty set E «— 0

. Initialize edge score map S « 0

: for each edge e € E do

S(e) « ﬁ ZveVe Sy (e)

. end for

. Sort edges e € E by S(e) in descending order into list L

: for each edge e in L do

if [E'] < (1-7) - |E| then
E «— E' U{e}

10: end if

11: end for

12: return G’ = (V,E’)

w1
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Table 1: Dataset Summaries

Dataset Nodes Edges Features Classes
Cora 2708 10556 1433 7
CiteSeer 3327 9104 3703 6
PubMed 19717 88648 500 3

Coauthor-CS 18333 163788 6805 15

4 EXPERIMENTS

We hypothesize that Shapley-based explanation methods are partic-
ularly effective for graph sparsification. While several Shapley-
based GNN explanation methods have been proposed, we use
GNNShap [1], a recent method that has demonstrated superior
performance compared to other approaches. In our experiments,
we compare GNNShap-based sparsification with other explanation
methods. We also compare Shapley-based sparsification with graph
lottery ticket (GLT) baselines. In each experiment, we apply differ-
ent sparsification methods to the graph, perform GNN inference
on the test nodes, and report the resulting test accuracy. A sparsifi-
cation method is considered more effective if it maintains high test
accuracy despite sparsification of the graph. For GNN explanations,
we compute explanations for each node for predicted classes and
aggregate explainability scores. We repeat each experiment five
times and provide the average results.

4.1 Datasets

In our experiments, we utilize three well-known real-world citation
datasets: Cora, CiteSeer, and PubMed [36], as well as a coauthorship
dataset: Coauthor-CS [25]. In citation datasets, nodes represent pa-
pers, and edges represent citations. Node features are bag-of-words
vectors, the most common words in the documents. Coauthor-CS
is a coauthorship graph where nodes are authors and edges show
coauthorships. Its node features are keywords in the papers. Since
there is no public train, validation, and test split for Coauthor-CS,
we randomly sample 30 nodes from each for the training and val-
idation set, while using the remaining for testing. Table 1 shows
summaries of datasets.
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Figure 2: Overview of the explanation based graph sparsification algorithm. Firstly, explanation scores are computed for each
node. Secondly, the scores are aggregated for each edge. Finally, using the aggregated scores, edges are pruned until the target

sparsity ratio is reached.

Table 2: Trained GNN models and their training, validation,
and test set accuracies.

Model Dataset Train Validation Test
Cora 100.00 79.40 81.50
GCN CiteSeer 99.17 70.40 71.00
PubMed 100.00 80.20 78.80
Coauthor-CS  95.33 93.33 91.99
Cora 100.00 79.40 81.40
GAT CiteSeer 99.17 73.20 71.60
PubMed 98.33 80.60 78.50

Coauthor-CS  94.22 92.22 91.29

4.2 Models

We use a two-layer GCN [9] and GAT [30] models with 16 hidden
layer sizes for Cora, CiteSeer, and PubMed, and 64 for Coauthor-CS
datasets. In the GAT models, we use eight attention heads. We use
0.5 dropout and ReLU as the activation function. We train the model
for 200 epochs using a learning rate of 0.01. For GLT experiments,
we follow UGS, using the same parameters with a 512 hidden layer

size. Table 2 shows model training, validation, and test accuracies.

4.3 Baselines
4.3.1 GNN explanation methods.

e Saliency [2, 23]: uses the absolute values of gradients with
respect to edges as scores.

o Guided Backpropagation [27]: also uses gradients, except
negative gradients are pruned in the backpropagation.

o Integrated Gradients [29] computes the gradients of the
model’s output with respect to edges, tracing a path from a
baseline to the actual input.

o GNNExplainer [37]: uses mutual information to learn edge
scores. It uses a learnable mask and trains it iteratively
using gradients to maximize the mutual information.

o PGExplainer [14]: also utilizes mutual information. It trains
a neural network model to generate edge scores.

e FastDnX [21]: utilizes linear surrogate model based on the
SGC [34] to explain GNN models.

e GraphSVX [5] is a Shapley value based GNN explanation
method that uses a linear surrogate model to approximate
Shapley values.

e GNNShap [1] is another Shapley value method specifically
designed for GNNs. While it is similar to GraphSVX, it

generates explanation scores for edges and utilizes a GPU
for coalition sampling and model predictions. Therefore,
it is an order of magnitude faster than GraphSVX and can
evaluate more coalition samples.

FastDnX and GraphSVX generate scores for nodes. We convert
node scores to edges by averaging the scores of connected edges.

While there are other Shapley value based GNN explanation
methods, GraphShap [22] and EdgeSHAPEr [17] are designed for
graph classification; SubGraphX [40] can only be used for small
graphs. Therefore, we utilize GraphSVX and GNNShap in our work
as two representative Shapley value-based GNN explanation meth-
ods.

4.3.2  Graph lottery ticket baselines.

e Unified GNN Sparsification (UGS) [3]: iteratively prunes
the GNN model and the adjacency matrix to find a smaller
model and graph that gives similar or higher accuracy. Then,
it trains the pruned model with the pruned adjacency ma-
trix. We disable model pruning and use the same parameters
provided in the source code for UGS.

e WD-GLT [7]: addresses the limitation of UGS, which only
considers a fraction of the adjacency matrix in the loss.
WD-GLT adds the Wasserstein Distance (WD) [31] between
nodes predicted to be in the same class to the loss.

e FastGLT [41]: proposes a one-shot pruning method as a
faster alternative to iterative pruning, achieving higher
sparsity and faster speeds. It starts with a pre-trained model
and removes model weights and edges in a single step based
on their magnitude. Finally, a denoising process is applied
to minimize the effect of noise introduced during pruning.

5 RESULTS
5.1 Experimental Results with Explanation
Methods

We present our graph sparsification results using various explana-
tion methods in Figure 3. The figure demonstrates that the Shapley
value-based method, GNNShap, consistently achieves higher test
accuracy at high sparsification levels. For example, on the Cora
dataset using both GCN and GAT models, GNNShap can prune
80% of the edges with less than a 2% drop in accuracy. Similarly,
on the PubMed dataset with the GCN model, GNNShap can prune
80% of the edges with less than a 2% drop in accuracy. Notably, on
PubMed and Coauthor-CS with the GAT model, GNNShap matches
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Figure 3: Test accuracies when edges sparsified using mean aggregated explanation scores. GNNShap gives competitive or even
better accuracies for high sparsification percentages.
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Figure 4: Test accuracy comparison of two-layer GCN model with 512 hidden layer size. Shapley value-based sparsification

achieves higher accuracy with significantly less loss in accuracy.

the original accuracy even after pruning 80% and 55% of the edges,
respectively.

Overall, GNNShap enables significantly higher pruning rates
with minimal accuracy loss compared to other explanation methods.
One notable exception is the CiteSeer dataset with the GCN model,
where all explainers perform similarly. This is likely due to the
lower test accuracy of the model on CiteSeer. GNNShap’s superior
performance can be attributed to (i) its ability to better distinguish
between important and unimportant edges, and (ii) its capacity to
assign both positive and negative attribution scores to edges.

To evaluate the computational efficiency of Shapley value-based
sparsification, we report the number of Multiply-Accumulate oper-
ations (MACs) required during the message-passing step of GNN
inferences. For example, on the Cora dataset using a GCN model,
inference on the original graph requires 305,000 MACs. With 80%
edge pruning, this is reduced to 110,000 MACs, a 64% reduction
in message-passing computation. Similarly, for the GAT model
on Cora, the baseline requires 2,865,000 MACs, which drops to
1,040,000 MACs (a 64% reduction) at 80% On PubMed with GCN,
GNNShap reduces MACs from 2,058,000 to 711,000 (at 80% spar-
sity). For PubMed with GAT, the baseline requires 13,003 MACs,
which is reduced to 4,493 MACs at 80% sparsity (a 65% reduction
in computation). On Coauthor-CS with GAT, GNNShap reduces
MAC:s from 100,530 to 50,804 at 55% sparsity, resulting in a 49% re-
duction. These significant reductions in MACs highlight the ability
of Shapley value-based sparsification to maintain high accuracy
while substantially lowering the computational cost of message
passing.

While there are no significant differences among the other ex-
plainers, overall, PGExplainer tends to perform the worst. GrapSVX
is also based on Shapley value and generally provides high-quality
explanations; however, its consideration of nodes as players re-
quires score conversion by averaging the scores of two connected
nodes, which limits its sparsification performance. Moreover, we
do not have GraphSVX results for the PubMed and Coauthor-CS
datasets, as GraphSVX was unable to generate all node explanations
within the 10-hour time limit.

5.2 Experimental Results with GLT Methods

In this section, we compare Shapley value-based sparsification
(GNNShap) with GLT methods. Figure 4 shows test accuracies of
GLT methods and GNNShap. UGS only utilizes training nodes in the
gradient computation and learning process. Since training nodes
are a small subset of the data, UGS has gradient information on
a limited number of edges. For instance, 140 out of 2708 nodes
were used in the training on the Cora dataset. Therefore, its graph
pruning performance will be limited as shown in Figure 4. WD-GLT
includes edges not involved in the training data in its loss function.
This improves its sparsification capability compared to UGS on
the Cora and PubMed datasets. While Fast-GLT gives competitive
results, especially on PubMed, it loses considerable accuracy for
higher sparsification ratios. On the other hand, Shapley value based
GNNShap achieves significantly higher sparsity with minimal loss
in accuracy.

The results show us that Shapley value based GNN explanations
are better suited for graph sparsification due to the following limi-
tations of GLT methods: (i) they require model training for each
pruning percentage, and (ii) they have limited sparsification capabil-
ity because of the necessity of labeled data. However, explainability
approaches can learn the importance of edges for predicted classes,
which eliminates the need for labels and enables higher pruning
percentages with minimal loss of accuracy. Moreover, once edge
scores are computed, there is no need to recompute edge scores for
each sparsity level, making finding the ideal sparsity level much
more effortless. A downside of using graph explainability scores
to prune graphs is that it cannot sparsify model weights. However,
starting with a small model and gradually increasing the model size
until reaching a good accuracy requires less effort than starting
with a large model and finding the ideal sparsity level by training
the model multiple times.

5.3 Ablation Study

In this section, we investigate the effect of positive and negative
attribution scores compared to non-negative explanation scores.
For the non-negative GNNShap, we take the absolute value of
GNNShap’s scores and then compare the test accuracies. Figure 5
shows a significant decrease in GNNShap’s pruning effectiveness
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Figure 5: GNNShap test accuracy comparison when non-negative explanation scores are used. Non-negative scores significantly

reduce test accuracy.

when non-negative scores are utilized for pruning. Considering
negatively attributed edges as important (and thus not pruning
them) introduces noise to the sparsified graph and reduces the
pruning capability of GNNShap.

6 CONCLUSION

In this work, we have investigated the usability of Shapley values
for graph sparsification. Shapley values provide both positive and
negative explanation scores. This scoring mechanism enables more
effective graph sparsification, thereby enhancing the efficiency and
scalability of GNNs without compromising accuracy.

Our extensive evaluation demonstrates that Shapley value based
sparsification achieves superior accuracy for more significant spar-
sification percentages, outperforming existing methods on three out
of four datasets and across two models. Additionally, Shapley value
based sparsification shows better sparsification ratios than graph
lottery ticket approaches, highlighting its efficiency in reducing
graph complexity.

However, a limitation of using explanation scores in sparsifi-
cation is that if the underlying model does not perform well, the
explanations generated can be misleading, as they are based on
incorrect predictions. This limitation affects the applicability of
Shapley values, as the reliability of explanations depends on the
accuracy of the model.

In conclusion, Shapley value based graph sparsification success-
fully identifies important edges and provides more effective sparsi-
fication while maintaining the accuracy of GNNs. Future work can
be designing a more effective aggregation scheme to combine local
explanation scores with global importance scores. The improved
aggregation scheme can enhance the reliability and applicability of

Shapley values, resulting in even higher sparsities without compro-
mising accuracy.
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MORE AGGREGATION METHODS

We provide two alternative aggregation results: sum and weighted
mean. While sum uses the sum of scores as a global mask, the
weighted mean uses model prediction as weights and applies the
weighted mean. Figure 6 and 7 show these aggregation results.
However, we don’t see a significant difference compared to mean
aggregation.
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Figure 6: Test accuracies when edges sparsified using sum aggregated explanation scores. GNNShap gives competitive or even
better accuracies for high sparsification percentages.
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Figure 7: Test accuracies when edges sparsified using weighted mean aggregated explanation scores. GNNShap gives competitive
or even better accuracies for high sparsification percentages.
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