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Abstract
Score-based diffusion models are a powerful class
of generative models, widely utilized across di-
verse domains. Despite significant advancements
in large-scale tasks such as text-to-image genera-
tion, their application to constrained domains has
received considerably less attention. This work
addresses model learning in a setting where, in
addition to the training dataset, there further ex-
ists side-information in the form of an oracle that
can label samples as being outside the support of
the true data generating distribution. Specifically
we develop a new denoising diffusion probabilis-
tic modeling methodology, Gen-neG, that lever-
ages this additional side-information. Gen-neG
builds on classifier guidance in diffusion mod-
els to guide the generation process towards the
positive support region indicated by the oracle.
We empirically establish the utility of Gen-neG
in applications including collision avoidance in
self-driving simulators and safety-guarded human
motion generation.

1. Introduction
What should we do when we train a generative model that
generates samples known to be invalid within the constraints
of the data domain? For instance, when generating traffic
scenes, road users cannot overlap each other. Likewise, in
robotics, adherence to numerous physics-based constraints
is essential for maintaining the appropriate motion and con-
figuration of the robot. Typically, generative models are
only trained to maximize the likelihood of a set of “good”
training data samples. Nevertheless, when sampling from
a fully trained, highly expressive model, some fraction of
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generated samples fall into the category of “bad” samples.
Here we consider the problem of generative modeling where
in addition to the conventional training dataset of good sam-
ples, we are also given access to constraints in the form
of an oracle, which provides insights into whether a given
sample is considered bad. Such oracles are ubiquitous in
practice and are often a simple function implemented by
domain experts.

Modern deep generative models are sufficiently parameter-
ized that they can effectively be trained to result in a model
placing a mixture of Dirac measures directly on the train-
ing data (Somepalli et al., 2023a;b; Carlini et al., 2023).
However, training such models on large amounts of data
(Rombach et al., 2022) or imposing regularization (such as
smaller architectures or fewer integration steps) ensures that
they generalize rather than memorize (Arpit et al., 2017;
Zhang et al., 2021). This also results in these models plac-
ing mass in the invalid part of the support (Hanneke et al.,
2018). In this paper, we assume a modeling regime where
the model generalizes effectively. Within this context, our
objective is to reduce the probability mass assigned to in-
valid outputs while avoiding overfitting. Consequently, our
contribution can be viewed as a method for controlling the
specific type of the model’s generalization.

The simplest way to use an oracle is to deploy the model
with a rejection sampling loop in which the oracle is used
to filter the output and return the constraint-satisfying sam-
ples (Kim et al., 2023). Depending on circumstances this
may constitute an acceptable final “generative model”, but
this solution comes at a (potentially unacceptable) compu-
tational cost. Consider the concrete example of real-time
autonomous vehicle path planning and model predictive
control (Zhong et al., 2022). This task involves generating
the next control action for an autonomous vehicle based the
past and current state of itself and its surroundings. The
generated action must avoid collisions and other types of in-
valid behavior, collectively referred to as “infractions.” This
is an extremely challenging task that requires low latency
and high success rates. To guarantee low latency, it is es-
sential to generate a sufficiently large number of parallel
samples to ensure obtaining at least one valid sample with
high probability. Assume that a generative model trained
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on trajectories with no infractions produces infracting tra-
jectories for all vehicles with probability ϵ (state of the art
models (Lee et al., 2017; Djuric et al., 2018; Gupta et al.,
2018; Cui et al., 2019; Ngiam et al., 2021; Ścibior et al.,
2021; Niedoba et al., 2023) can have high infraction rates.)
Generating at least one non-infracting sample with 1 − δ
probability without looping the rejection sampler requires
log δ
log ϵ parallel samples. Depending on the specific concrete
value of 1− δ required (e.g. 1 chance in a billion of having
latency arising from rejection sampling looping imposed)
and the baseline trajectory model rejection rate (e.g. 30-50%
is not atypical) this could require running many parallel sam-
plers (in this concrete example around 30). Depending on
model size and available realtime edge computational capac-
ity, this quantity may be prohibitively large. Other examples
of this nature arise in many control as inference problems
(Levine, 2018).

Minimizing ϵ directly i.e., restricting the generative model
to only place mass on the positive support region indicated
by the oracle, is the most natural approach to combat this
problem. Working towards this goal includes a body of work
on amortized rejection sampling (Warrington et al., 2020;
Naderiparizi et al., 2022) and the body of related work on
generative adversarial networks (GANs) (Goodfellow et al.,
2014). Of course in the GAN setting, the discriminator
(which can be used in a rejection sampling loop for im-
proved performance (Azadi et al., 2018; Che et al., 2020))
is learned rather than being a fixed, pre-defined oracle as in
the case we consider.

We focus specifically on learning with constraints in score-
based models. What we reveal in this study is a necessary
condition, essential for the accurate functioning of classi-
fier guidance in this problem domain, which, to the best
of our knowledge, has been surprisingly overlooked until
now. Following recent findings on discriminator guidance
in diffusion processes (Kim et al., 2022), we introduce a
new methodology for classifier guidance. Our approach
involves training and employing a series of differentiable
classifiers, trained on synthetic samples generated from a
sequence of classifier-guided diffusion models and labeled
by the oracle. The resulting sequence of multiply classifier-
guided diffusion models effectively reduce the rejection
rate while empirically maintaining a competitive probabil-
ity mass assigned to validation samples. We demonstrate
that comparable performance can be achieved with a re-
duced computational overhead by distilling the sequence of
classifiers.

We evaluate our proposed methodology, which we call
Generative modeling with neGative examples (Gen-neG)
on several problems, including modeling motion capture
sequence data in a way that eliminates ground plane vio-
lations, and static traffic scene vehicle arrangements that

avoid collisions and off-road placements.

2. Background
2.1. Score-based Diffusion Models

Score-based diffusion models (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021),
also referred to as diffusion models (DMs) are a class of gen-
erative models that are defined through a stochastic process
which gradually adds noise to samples from a data distribu-
tion q0(x0), such that when simulated forward from t = 0
the marginal distribution at time T is qT (xT ) ≈ π(xT )
for some known π(xT ) typically equal to N (0, I). This
is known as the “forward process” and is formulated as an
SDE

dxt = f(xt, t)dt+ g(t)dw, x0 ∼ q0(x0), (1)

where f and g are predefined drift and diffusion coefficients
of xt and w is the standard Wiener process. DMs define
another stochastic process known as the “reverse process”
defined as

dxt = [f(xt, t)−g(t)2sθ(xt; t)]dt+g(t)dw̄, xT ∼ π(xT ),
(2)

where w̄ is the infinitesimal reverse time and reverse Wiener
process, respectively. If sθ matches the score function of the
marginals of the forward process, the terminal distribution
of the reverse process coincides with q0(x0) (Anderson,
1982). Formally,

sθ(xt; t) = ∇xt
log qt(xt)⇒ pθ(x0; 0) = q0(x0), (3)

where pθ(xt; t) is the marginal distribution of the reverse
process.

In order to approximate the score function ∇xt
log qt(xt),

DMs minimize the following score matching objective func-
tion (Hyvärinen & Dayan, 2005; Vincent, 2011; Song &
Ermon, 2019):

LDM
θ = Et,x0,xt

[
γt ∥sθ(xt; t)−∇xt log q(xt|x0)∥2

]
,

(4)
where x0 ∼ q(x0), xt ∼ q(xt|x0), t is sampled from a
distribution over [0, T ], and γt is a positive weighting term.
Importantly, the Wiener process in Equation (1) allows di-
rect sampling from the marginals of the forward distribu-
tions (Song et al., 2021), i.e. q(xt|x0) = N (αtx0, σt), with
αt and σt determined by the drift and diffusion coefficients
in Equation (1). This formulation moreover allows the eval-
uation of the conditional score function (∇xt log q(xt|x0))
in closed form.

Many of the DMs reported in the literature operate on dis-
crete time steps (Ho et al., 2020; Nichol & Dhariwal, 2021),
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1. Gen-neG applied to a diffusion model of non-infracting static vehicle placements (i.e. a set of oriented rectangles) for the
efficient initialization of autonomous vehicle planning simulators (see Zwartsenberg et al. (2023) for a similar model and full problem
description). The top row show samples (green “cars”) that are not colliding (non-overlapping) and not off-road (stay within the unshaded
area of road surfaces) from a baseline diffusion model improved by Gen-neG. The second row shows the kind of infractions our oracle
identifies as not being in the support of the true distribution. (e) shows a collision (yellow overlapping cars) and (f) shows an off-road car
in yellow. (g) and (h) graphically illustrate the reduction in infractions per unit area before and after Gen-neG is applied to the baseline
model (both plots are normalized to the same maximum value). Quantitative results corresponding to this plot appear later in Table 1.

and can be considered as particular discretizations of the
presented framework.

In the remainder of this paper we use q to denote the forward
process, sθ for the score function of the reverse process and
pθ as the distribution generated by running Equation (2)
backward in time. This applies to the marginals, condition-
als, and posteriors as well. Furthermore, to reduce notational
clutter throughout the rest of the paper, we omit the explicit
mention of θ and ϕ and t when their meaning is evident
from the context.

2.2. Classifier Guidance

A distinctive and remarkable property of DMs is the ability
to utilize an unconditional diffusion model to draw sam-
ples from its class-conditional distributions at inference
time without requiring re-training or fine-tuning (Dhari-
wal & Nichol, 2021; Song et al., 2021). However, doing
so typically utilizes a time-dependent classifier q(y|xt) =∫
q(y|x0)q(x0|xt) dx0 (alternative approaches include (Wu

et al., 2023)). Here, q(y|x0) is a traditional classifier, that
predicts the class probabilities for each y given a datum x0

from the dataset. While q(y|xt) classifies a noisy datum xt
sampled from qt(xt) =

∫
q(xt|x0)q(x0) dx0.

Classifier guidance follows from the identity
∇xt

log q(xt|y) = ∇xt
log q(xt) +∇xt

log q(y|xt). Since
the score function of the DM sθ(xt; t) ≈ ∇xt

log q(xt),

we have

sθ(xt|y; t) = sθ(xt; t) +∇xt
log q(y|xt). (5)

Binary classification A special case of the above classifier
guidance that we use in this paper is when there are only two
classes. We provide here a brief overview of such a binary
classification task and the notation associated with it. Let
q(x|y = 1) and q(x|y = 0) be the distribution of positive
and negative examples, respectively. Let α = q(y = 1)
and 1 − α = q(y = 0) be the prior probabilities q(y) of
positive and negative examples. We then have q(x) =
αq(xt|y = 1) + (1 − α)q(xt|y = 0). A binary classifier
Cϕ : X , [0, T ]→ [0, 1], can then be trained to approximate
q(y = 1|xt) by minimizing the expected cross-entropy loss

LCE
ϕ = −Et,xt

[
q(y = 1|xt) logCϕ(xt; t)+

q(y = 0|xt) log(1− Cϕ(xt; t))
]
,

(6)

where xt ∼ q(xt). Minimizing the cross-entropy loss be-
tween the classifier output and the true label is equivalent
to minimizing the KL divergence between the classifier out-
put and the Bayes optimal classifier (Sugiyama et al., 2012,
Chapter 4). Therefore, Equation (6) is minimized when

Cϕ∗(xt; t) = q(y = 1|xt)

=
αq(xt|y = 1)

αq(xt|y = 1) + (1− α)q(xt|y = 0)
.

(7)
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Hence, sθ(xt|y = 1; t) = sθ(xt; t) + ∇xt
logCϕ∗(xt; t).

Note that this minimizer critically depends on the class prior
probabilities α and 1− α. Gen-neG works by ensuring that
these are properly accounted for.

3. Methodology
In this section, we describe Generative modeling with
neGative examples (Gen-neG), a method for guiding the
sampling of diffusion models to satisfy the constraints im-
posed by an oracle function. Gen-neG has two stages. It
starts by training a DM on available training data following
standard DM training procedures (e.g. Section 2.1) without
utilizing the oracle. We refer to this model as the “baseline
DM” throughout. In the second stage of Gen-neG, we draw
samples from this baseline DM, label them using the oracle,
and train a binary classifier using those samples, which we
later use for guidance. Next, we use the obtained classifier
to guide our baseline DM, and the combination of both con-
stitutes a new generative model. Gen-neG establishes this
combined model as a new DM and then repeats the process
of sampling, classifying using the oracle, and training a time
dependent classifier to form yet another model. Refinement
using this iterative process can be repeated until the desired
performance is obtained. We refer to this type of refinement
as “stacking”. Optionally, if better computational perfor-
mance is desired, the stacked model can be distilled into
a new model at any desired stage. As mentioned before,
an important feature of Gen-neG is to properly account for
the prior class probabilities α and 1− α in the training of
all classifiers, which is formalized later in this section and
demonstrated later in Section 4. An overview of Gen-neGis
shown in Figure 2 and Algorithm 1.

Problem formulation and notation Let D = {xi}Ni=1 ∼
q(x) be a dataset of i.i.d. samples from an unknown data
distribution q. Furthermore, let O : X → {0, 1} be an
oracle function that assigns each point in the data space
X a binary label. In other words, this oracle partitions the
data space into two disjoint sets X = Ω ∪ Ω∁ such that
O(x) = 1Ω(x). Moreover, assume D ⊆ Ω i.e., all training
examples satisfy the oracle constraints. Our objective is to
learn a score-based diffusion model that (i) maximizes the
likelihood of D and (ii) avoids allocating probability to Ω∁.

3.1. Bayes Optimal Classifier Guidance for Diffusion
models

The core component of Gen-neG is in the second stage
where a Bayes optimal diffusion-time dependent classifier
that discriminates between positive and negative samples
in Ω and Ω∁ respectively, is used to guide the baseline DM.
There are two main questions that Gen-neG answers. (i)
Which data and class distribution should the classifier be

Figure 2. Overview of Gen-neG. The process begins with a base-
line diffusion model. In each iteration, a synthetic training dataset
is generated from the current model and labeled by the oracle
function O. A time-dependent classifier is trained on this dataset
and then used to update the model by guiding it towards the posi-
tive support region (see Equation (10)). The guided model (with
multiple classifiers) can be distilled into a new, improved baseline
diffusion model at any iteration by minimizing Equation (12).

Bayes optimal with respect to such that classifier guidance
does not modify the sampling distribution in the oracle
approved region? (ii) How can one train such a classifier?

Classifier guidance in score-based models is typically used
to generate samples from a specific pre-defined class on
the training dataset. As such, the classifier and generative
model share the same training distribution. In our case,
however, there is no pre-defined dataset of positive and neg-
ative classes. Even the training dataset D only includes
samples from one class, since they all satisfy the oracle
constraints. Despite that, as we show later in Section 4,
classifier guidance using a Bayes optimal classifier for the
binary classification task on the fully-synthetic data gener-
ated by the same baseline DM leads to (i) zero infraction and
(ii) improved likelihood estimation on the data distribution,
including a held-out test set.

The goal of Gen-neG is therefore to solve this classification
task on synthetic data. Formally, the data is distributed as
pθ(x0), the labels are y = O(x0), and the noise distribution
is pθ(xt|x0). One can obtain the Bayes optimal classifier
for this task using a cross-entropy objective similar to Equa-
tion (6) in which q is replaced by pθ. This objective can be
equivalently written as

LCE
ϕ,θ = −Et,x0,xt

[
O(x0) logCϕ(xt; t)+

(1−O(x0)) log(1− Cϕ(xt; t))
]
,

(8)

where (x0,xt) ∼ pθ(x0,xt) (see the Appendix for details).
In order to avoid the computational cost of sampling from
the baseline DM to compute this objective, Gen-neG ap-
proximates pθ(x0,xt) ≈ pθ(x0)q(xt|x0). This is similar
to the approximation in Kim et al. (2022). The objective
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function of Gen-neG is therefore

Lcls
ϕ = −Et,pθ(x0)

[
Eq(xt|x0)

[
O(x0) logCϕ(xt; t)+

(1−O(x0)) log(1− Cϕ(xt; t))
]]
.

(9)

For notational simplicity, we drop the dependence of Lcls
ϕ

on θ, including in the equation above. Once trained, the
classifier is incorporated into the baseline DM by

sθ,ϕ(xt; t) = sθ(xt; t) +∇xt
logCϕ(xt; t). (10)

We denote the marginal distributions generated by the oracle-
assisted DM, implicitly defined through Equation (10) as
pθ,ϕ(xt; t).

Training the classifier Training the classifier in our ap-
proach presents a noteworthy challenge due to the major
label imbalance within the synthetic dataset D̂ generated by
the model. This imbalance emerges when the baseline is
already close to the target distribution, resulting in a scarcity
of negative examples. Meanwhile, these negative examples
play a crucial role in guiding the model at the boundary
between positive and negative examples, where the model
requires the most guidance.

Gen-neG addresses this challenge by sampling a balanced
dataset D̂ from the model, ensuring the same number of pos-
itive and negative examples. However, this changes the class
prior probabilities from the true marginal distribution over
labels α and 1− α which in turn changes the optimal clas-
sifier the cross-entropy objective targets (see Equation (7)).
We show evidence of this happening in Figure 3. Gen-neG
crucially employs importance sampling in the classifier’s
training objective to rectify the bias introduced by having
to balance the dataset to achieve high classifier accuracy in
training.

Given a balanced dataset D̂ = D̂+ ∪ D̂− where D̂+ ∼
p(x0|y = 1), D̂− ∼ p(x0|y = 0), N = |D̂+| = |D̂−|, and
α = pθ(y = 1),

L̂cls
ϕ (α, D̂+, D̂−)

:=
1

N

∑
x0∈D̂+

αEq(xt|x0) [− logCϕ(xt; t)]

+
1

N

∑
x0∈D̂−

(1− α)Eq(xt|x0) [− log(1− Cϕ(xt; t))] ,

(11)

is an importance sampling estimator of the objective func-
tion in Equation (9); proof in Appendix A.5.

3.2. Iterative Training by Stacking Classifiers

With an optimal classifier minimizing Equation (8), the DM
with score function sθ,ϕ will have improved likelihood and

Algorithm 1 Gen-neG
1: Input: dataset D, oracle O, synthetic dataset size N
2: i← 0
3: θi ← argminθ LDM

θ {train baseline DM, Eq. (4)}
4: si ← sθi(xt; t)
5: repeat
6: D̂+

i , D̂−
i ← ∅

7: repeat
8: D̂+, D̂− ← generate more samples from DM with

score function si and label with O
9: D̂+

i ← D̂+
i ∪ D̂+, D̂−

i ← D̂−
i ∪ D̂−

10: until min(|D̂+
i |, |D̂−

i |) < N

11: αi ← |D̂+
i |/(|D̂+

i | + |D̂−
i |) {Estimate class prior

probabilities for Bayes optimal classifier}
12: D̂+

i ← select(N, D̂+
i ), D̂−

i ← select(N, D̂−
i ) {bal-

ance dataset for IS classifier training}
13: ϕi ← argminϕ L̂cls

ϕ (αi, D̂+
i , D̂−

i ) {train guidance
classifier, Eq. (11)}

14: i← i+ 1
15: if distill then
16: ψ ← argminψ Ldtl

ψ {See Eq. (12)}
17: si ← sψ(xt; t)
18: else
19: si ← si−1 +∇xt logCϕi(xt; t) {See Eq. (10)}
20: end if
21: until done
22: Output: DM score function si

zero infraction (see Corollary 3.2). However, in practice the
trained classifier is only an estimate because learning the
true decision boundary would require an infeasible synthetic
dataset size and optimization budget, thus infractions may
not be entirely eliminated.

To alleviate this problem, we note that once the classifier
is trained, the guided score function sθ,ϕ(x) itself defines
a new diffusion model. Consequently, we can employ a
similar procedure to train a new classifier on sθ,ϕ, aiming to
further lower its infraction rate. This iterative approach in-
volves training successive classifiers and incorporating them
into the model, progressively enhancing its performance and
reducing the infraction rate.

3.3. Model Distillation

Adding a stack of classifiers to the model linearly increases
its computational cost, since each new classifier requires
a forward and backward pass each time the score function
is evaluated. To avoid this, we show that it is possible and
sometimes beneficial to distill the classifiers into a combined
diffusion model.

Let sθ,Φ be a “teacher model” consisting of a baseline model
sθ and a stack of classifiers {Cϕ}ϕ∈Φ. We distill sθ,Φ into
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(a) (b) (c) (d)
Figure 3. Samples from the checkerboard experiment. Samples with infraction (i.e. O(x) = 0) are shown in brown. (a) The baseline
training dataset; (b) baseline DM; (c) first iteration of Gen-neG using a Bayes optimal classifier trained on a balanced dataset and correct
α; (d) a classifier trained on a balanced dataset without employing importance sampling results in suboptimal density estimation. We see
samples are suboptimally pushed inwards from the boundaries. We also have observed that validation ELBOs in these kinds of cases are
significantly worse.

a new “student model” sdtl
ψ , possibly with the same archi-

tecture as the baseline model, by minimizing the following
distillation loss

Ldtl
ψ = Ex0∼q(x0),t

[
γt
∥∥sθ,Φ(xt; t)− sdtl

ψ (xt; t)
∥∥2] ,

(12)
where γt is the weight term, similar to the training objec-
tive of diffusion models. Here, Ldtl makes the outputs of
the student model match that of the teacher. Algorithm 1
summarises Gen-neG.

3.4. Theory

Here we provide the theoretical grounding for why the clas-
sifier Gen-neG targets results in improved likelihood esti-
mation and avoids violating the constraints.

Theorem 3.1. Let pθ(x) be the distribution learned by
a baseline DM with marginal distributions denoted by
pθ(xt; t) and let pθ(y = 1|x0) = O(x0). Further, let
Cϕ∗ : X , [0, T ] → [0, 1] be the Bayes-optimal time-
dependent binary classifier arising from perfectly optimizing
the following cross-entropy objective

LCE
ϕ,θ = −Et

[
Epθ(x0,xt)

[
O(x0) logCϕ(xt; t)+

(1−O(x0)) log(1− Cϕ(xt; t))
]] (13)

then

∇xt log pθ(xt|y = 1; t) = ∇xt log pθ(xt; t)+

∇xt logCϕ∗(xt; t).
(14)

In other words, by using a Bayes-optimal binary classifier
for guidance, we target exactly the score function of pos-
itive (oracle-approved) examples, without modifying the
underlying distribution in the oracle-approved region.

Corollary 3.2. For an optimal classifier Cϕ∗ ,

1. pθ,ϕ∗(xt) = pθ(xt|y = 1),

2. There is no mass on Ω∁, i.e.
∫
x∈Ω∁ pθ,ϕ∗(xt) = 0,

3. For any dataset D ⊆ Ω, pθ,ϕ∗(D) ≥ pθ(D).

Corollary 3.2 suggests that our Gen-neG methodology can
improve the baseline DM in terms of both infraction rate
and test dataset likelihood.

See the proofs for the Theorem 3.1 and Corollary 3.2 in
Appendices A.1 and A.2.

4. Experiments
We evaluate Gen-neG on three datasets: a 2D checkerboard,
collision avoidance in traffic scenario generation, and safety-
guarded human motion generation. In each experiment we
report a likelihood-based metric on a held out dataset to
measure distributional shifts and a form of infraction metric
which measures faithfulness to the oracle. We release the
source code for the checkerboard and motion generation
experiments1.

4.1. Checkerboard

To develop some insight, we start by demonstrating the
principles and performance of Gen-neG on a dataset of 2-
dimensional points uniformly distributed on a checkerboard
grid as shown in Figure 3(a). We apply EDM (Karras et al.,
2022), a continuous-time DM, to this problem. The training
dataset only contains 1000 points. This makes the model
prone to over-fitting. As shown in Figure 4 and further
explored in Appendix D.5(blue dots), training the model for
long causes strong overfitting. We therefore stop training
of the baseline DM before it starts overfitting measured by
the evidence lower bound (ELBO) on a held-out validation
set. Figure 3(b) shows samples from this baseline DM and
the blue dot with a red edge in Figure 4 shows its measured
performance.

Figure 3(c) shows samples from the first iteration of Gen-
neG and the orange stars in Figure 4 show the metrics for
the first five iterations of Gen-neG. These results show Gen-

1https://github.com/plai-group/gen-neg
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Figure 4. Infraction, ELBO and MMD estimates from the checkerboard experiment. Dashed lines connect different iterations of the same
method. For the baseline DM, it corresponds to training iterations. For Gen-neG it corresponds to different iterations of our algorithm.
The plot shows (i) prolonged training of the baseline DM reduces the infraction rate but leads to overfitting. (ii) Our experiments on
larger datasets, denoted by triangles in varying shades of green (up to 1000× larger than the original dataset; darker shades indicate
larger datasets), maximum likelihood training even on substantially larger datasets is strongly outperformed by Gen-neG. (iii) Various
iterations of Gen-neG consistently decrease the infraction rate while maintaining fidelity to the data distribution. (iv) Diffusion bridges
perfectly achieve zero infraction rate and improved likelihood estimation. However, they require analytical access to constraints and are
not generalizable to complex constraints.

neG dramatically reduces the rate of infractions while still
matching the data distribution for non-infracting regions.
Figure 7 in the appendix shows distilling various Gen-neG
models maintains a comparable performance.

We test the effectiveness Gen-neG against training on a
larger dataset. The green triangles in Figure 4 show the
performance of models trained on datasets up to 106 points
(1000× larger than our original dataset). Even the first itera-
tion of Gen-neG achieves significantly lower infraction rates
compared to any of these models. This also emphasizes the
importance of negative samples, consistent with Giannone
et al. (2023).

An alternative approach to learning constrained distributions
with diffusion models is diffusion bridges (Liu et al., 2023b)
that provably produce no infraction. However, it requires
analytical access to the constraints and quantities that are
only tractable under very simple constraints. As such it is
not applicable to our problem setting. Therefore, it should
be treated as an upper bound to Gen-neG’s performance.
As shown by the brown diamond in Figure 4, this method
achieves zero infractions with a better ELBO.

Kong & Chaudhuri (2023) proposed an algorithm for data
redaction in GANs that is applicable to our oracle-based
constraints. Since GANs do not provide ELBO estimates,
we only compute MMD and infraction rates for this baseline.
We train this model on our problem and choose the two
checkpoints with the best value for either metric. The purple
crosses in the right panel of Figure 4 show our results. The
MMD scores are significantly worse than those of diffusion-
based models, including Gen-neG. Additionally, Gen-neG

quickly outperforms this baseline in infraction rate.

The Gen-neG models in this experiment reach near-zero
infraction rates. This makes the balanced synthetic dataset
generation step slow. We explore an importance sampling-
based approach to avoid this slowdown. Our approach and
its results are presented in Figure 9 but we leave further
exploration for future research.

4.2. Traffic Scene Generation

We continue to the task of traffic scene generation where
vehicles of varying sizes are placed on a given two-
dimensional map. Traditionally implemented by rule based
systems (Yang & Koutsopoulos, 1996; Lopez et al., 2018),
this task has recently been approached using generative
modeling techniques (Tan et al., 2021; Zwartsenberg et al.,
2023). In both of these prior works, the common approach
has been to discard any samples that violate predefined rules,
such as a vehicle being outside the designated driving area
(“offroad”) or overlapping with another vehicle (“collision”).
Rejecting such samples, while effective, can be computa-
tionally wasteful, particularly when rule violations occur
frequently. Hence, in this context, we employ Gen-neG to
enhance performance. The specific task we consider is to
generate 12 vehicles in a given scene, conditioned on a ren-
dered representation of the roadway. Each vehicle is repre-
sented by its position, length, width, orientation and velocity
for a total of 7 dimensions per vehicle. Vehicles are sampled
jointly, meaning that the features are in RN×7. We train the
baseline DM employing the formalism in DDPM (Ho et al.,
2020) with a transformer-based denoising network (Vaswani
et al., 2017) on a private dataset. Our architecture consists
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Table 1. Results for traffic scene generation, in terms of collision, offroad, and overall infractions as well as reweighted ELBO (r-ELBO).
We compare Gen-neG against a normalizing flow baseline (Zwartsenberg et al., 2023), a classifier trained on imbalanced synthetic dataset,
and a classifier without importance sampling and a time-independent classifier. The final two rows provide the results of distilling the
models labeled with † and *.

Method Collision (%) ↓ Offroad (%) ↓ Infraction (%) ↓ r-ELBO (×10−2) ↑
baseline DM 28.3± 0.70 1.3± 0.14 29.3± 0.64 −27.5± 0.01
Normalizing flow (Zwartsenberg et al., 2023) 91.2± 0.27 13.1± 0.48 91.9± 0.25 —

Time-independent classifier 20.7± 0.59 0.9± 0.09 21.4± 0.63 −244± 30.4
Imbalanced classifier (ablation) 17.8± 1.21 0.9± 0.16 18.6± 1.30 −27.7± 0.01
w/o IS classifier (ablation) 14.6± 0.49 0.8± 0.13 15.2± 0.50 −28.0± 0.01
Gen-neG† (iteration 1) 16.4± 0.5 0.9± 0.12 17.2± 0.44 −27.7± 0.01
Gen-neG∗ (iteration 2) 11.6± 0.65 0.6± 0.10 12.2± 0.60 −28.0± 0.01

Gen-neG (distillation of †) 12.2± 0.42 0.8± 0.06 12.9± 0.36 −26.8± 0.01
Gen-neG (distillation of *) 5.1± 0.24 0.5± 0.09 5.6± 0.20 −27.0± 0.01

of self-attention layers and map-conditional cross-attention
layers in an alternating order. We use relative positional en-
codings (RPEs) (Shaw et al., 2018; Wu et al., 2021). Further
details are provided in Appendix B.2. Relevant examples
(including infracting, and non-infracting ones) and road
geometry can be seen in Figure 1.

Table 1 summarizes the results of this experiment. We com-
pare against the baseline DM model and various guided
models. Further, we compare against a prior work on this
problem based on normalizing flows (NFs) (Zwartsenberg
et al., 2023). Comparing to the baseline DM, Gen-neG
lowers the infraction rates while maintaining a compara-
ble distribution match. Gen-neG significantly outperforms
the NF baseline because DMs are much more expressive
generative models. The infraction rates reported here for
the NF baseline are worse than those of Zwartsenberg et al.
(2023). This can be attributed to the higher average traf-
fic density in our dataset compared to the INTERACTION
dataset (Zhan et al., 2019) which Zwartsenberg et al. (2023)
uses. In Appendix D.3 we empirically verify this by training
the baseline DM on the INTERACTION dataset.

In the second section of Table 1 we report results of various
guided diffusion models using a synthetic dataset generated
by the baseline DM and labelled by the oracle. First, we
consider a common approach of classifier guidance in which
a time-independent classifier pre-trained on clean data is uti-
lized to perform (approximate) classifier guidance (Wu et al.,
2023; Bansal et al., 2023). In this approach, one-step esti-
mate of x0 ≈ xt+σ

2
t sθ(xt;t)
αt

is obtained using the diffusion
model. This estimate is then passed to the pre-trained classi-
fier. This method enhances the infraction rate but exhibits
a significant decrease in ELBO, indicating a strong distri-
butional misalignment. We also present ablations where
we omit the importance sampling (“w/o IS”) step or forego
balancing the dataset (“imbalanced classifier”) in Gen-neG.
The “w/o IS” ablation improves infraction rates, but they

both deteriorate the ELBO.

Different iterations of Gen-neG, however, shows even better
infraction rates. The presence of lower ELBO can be justi-
fied by the approximations in Gen-neG’s objective function
and classifiers not being trained to optimality. This is why
the results deviate from theory to some extent. On the other
hand, training the baseline DM is the only stage where we
explicitly maximize the ELBO. Classifiers trained on all the
other iterations only implicitly improve ELBO through guid-
ing the model to not allocate probability mass on the invalid
region. Finally, in the third section of Table 1 we demon-
strate that our approach of distilling the resulting models
back into a single one works well here too, sometimes even
surpassing their teacher models. This can be attributed to
knowledge distillation effects (Hinton et al., 2015). Overall
we find that Gen-neG works as expected, and provides a
competitive infraction rate boost over our baseline model,
without shifting the distribution. To relate this to the in-
troduction, as explained in Appendix D.1, using Gen-neG
in producing non-infracting scenes for autonomous vehicle
synthetic data generation would reduce GPU costs by 57%
on average.

4.3. Motion Diffusion

Our final experiment focuses on human motion generation.
Diffusion models have been successfully applied to motion
generation and editing tasks (Tevet et al., 2023; Zhang et al.,
2024; Shafir et al., 2023; Xie et al., 2023; Cohan et al., 2024).
While these models produce diverse and realistic results,
they often lack physical plausibility (Yuan et al., 2022). For
instance, issues like ground penetration frequently occur
in the generated examples. Such imperfections can affect
the quality of the generated motions and limit the model’s
applicability in real-world scenarios.

For our baseline DM, we use the pre-trained checkpoints
provided by Motion Diffusion Model (MDM) (Tevet et al.,
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Table 2. Results of the Motion Diffusion experiment. “Inf. per step” is the average rate of generated motion frames with infraction while
“infraction” is the average rate of generated motions that at least including one infracting frame. r-ELBO is a reweighted ELBO with the
same weighting as in diffusion loss.

Method Infraction (%) ↓ Inf. per step (%) ↓ r-ELBO (×10−2) ↑ FID ↓ KID (×10−3) ↓
MDM (baseline DM) 27.66± 0.77 7.84± 0.27 −1.06± 0.02 0.445± 0.040 8.27± 2.14
Gen-neG (Ours) 24.25± 0.35 6.12± 0.19 −1.01± 0.03 0.414± 0.030 6.99± 0.78
w/o IS (ablation) 22.85± 0.18 5.47± 0.18 −1.13± 0.06 0.415± 0.030 8.40± 1.83

2023), tailored for text-conditioned motion generation.
MDM is a DDPM model with a transformer-based architec-
ture trained on the HumanML3D dataset (Guo et al., 2022).
It uses a pre-trained CLIP embedding module (Radford
et al., 2021) for conditioning on the text descriptions. To
address the issue of ground penetration, we implement an
oracle that labels motions with ground penetration at any
point in their duration as negative. We employ Gen-neG
with a classifier having the same architecture as MDM, but
the CLIP encoder, as the classifier is not text-conditional.

Table 2 summarizes our results of one iteration of Gen-neG
on this dataset. We report infraction rate, reweighted ELBO
(referring to a uniform schedule of γt in Equation (4)). We
also report Fréchet Inception Distance (FID) (Heusel et al.,
2017), and Kernel Inception Distance (KID) (Bińkowski
et al., 2018) to measure quality of samples. Gen-neG im-
proves on all metrics. While the ablation of omitting the
IS weighting produces lower infraction rates compared to
Gen-neG, it worsens the reweighted ELBO and KID. Hence,
Gen-neG improves infraction, with a improved model like-
lihood and sample quality. We conjecture the relatively
smaller improvement in the motion experiment is because
the baseline DM predicts x0 (Zhong et al., 2022).

5. Related Work
Hanneke et al. (2018) proposes a theoretical framework for
oracle-based constraints. They however, do not provide
practical considerations. More recently, use of negative and
invalid data have been explored to improve the training of
generative models. Sinha et al. (2021) uses heuristic func-
tions to augment the training set of GANs with negative
samples, while (Giannone et al., 2023) utilizes a pre-defined
negative set. Meanwhile, data redaction approaches propose
methods for removing undesirable learned concepts from
pre-trained generative models in safety and security appli-
cations (Gandikota et al., 2023; Schramowski et al., 2023).
Similarly, (Kong & Chaudhuri, 2023) explores various data
redaction methods, with the validity-based approach being
the most relevant to our oracle-assisted guidance, although
in the context of GAN literature. They implicitly carry out
data redaction by integrating it into the discriminator and
fine-tuning the generator. Another approach to constrained
generative modeling explicitly incorporates the constraints

in the model, similar to a final layer that maps to the con-
straint set (Stoian et al., 2024).

Several studies have explored constrained score-based mod-
eling employing techniques such as diffusion bridges (Wu
et al., 2022; Liu et al., 2023b), barrier methods (Fishman
et al., 2023), or reflected diffusion (Lou & Ermon, 2023;
Fishman et al., 2023) or mirror diffusion (Liu et al., 2023a).
Despite being effective, they rely on constraint-specific in-
formation such as closed form, linear, or convex constraints.
This imposes strong limitations, making them impractical
for general problems where such information is unavailable.

6. Conclusion
We have proposed a framework to incorporate constraints
into diffusion models. These constraints are defined through
an oracle function that categorizes samples as either good
or bad. Importantly, such a flexibility allows for simple
integration with human feedback. We have demonstrated
our model on different modalities demonstrating how it can
benefit safety constraints.

The current limitations we recognize, and the possible fu-
ture directions for this work are (i) incorporating the true
training dataset into the later iterations of the method, as
the training dataset only affects the baseline DM. The next
stages solely use synthetic data. Although we show theo-
retically that our guidance only improves the model, this
lack of revisiting the true dataset in presence of practical
errors and approximations poses challenges for large-scale
adoption of our method. Our preliminary experiments of
visiting the true dataset at the distillation time have not been
successful yet. (ii) Avoiding stacking of classifiers, instead
directly learning an artifact that can replace the previous
classifier in our method, similar to (De Bortoli et al., 2021),
is vital to the computational complexity of the method as the
current computational cost scales linearly with the number
of classifiers. (iii) Extending Gen-neG on tabular diffu-
sion to support tabular data (Kotelnikov et al., 2023), which
compasses a mixture of continuous and categorical data to
generalize our work is an inspiring area to future research.
(iv) Bridging the gap the diffusion bridge-based approaches
and our work which is practically applicable to a larger set
of applications is another avenue for future developments.
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A. Proofs
A.1. Proof of Theorem 3.1

Proof. Let α and (1− α) be the prior probabilities of positive and negative examples under pθ(xt; t). Note that α remains
independent of t because

α =

∫
pθ(xt; t)pθ(x0|xt)pθ(y = 1|x0) dx0 dxt =

∫
pθ(xt; t)pθ(x0|xt)O(x0) dx0 dxt

=

∫
pθ(x0,xt; t)O(x0) dx0dxt =

∫
pθ(x0; 0)O(x0) dx0.

The objective in Equation (13) is equal to

− Et
[
Epθ(xt)

[
Epθ(x0|xt) [O(x0)] logCϕ(xt; t) + Epθ(x0|xt) [(1−O(x0))] log(1− Cϕ(xt; t))

]]
= −Et

[
Epθ(xt) [p(y = 1|xt) logCϕ(xt; t) + p(y = 0|xt) log(1− Cϕ(xt; t))]

]
(15)

This is equivalent to Equation (6) after replacing q with pθ, i.e. sampling from the reverse process instead of the forward.
Therefore, its optimal solution follows Equation (7). Hence,

∇xt
log pθ(xt; t) +∇xt

logCϕ∗(xt; t)

= ∇xt
log pθ(xt; t) +∇xt

logαpθ(xt|y = 1; t)

−∇xt log
[ pθ(xt;t)︷ ︸︸ ︷
αpθ(xt|y = 1; t) + (1− α)pθ(xt|y = 0; t)

]
= ∇xt

logαpθ(xt|y = 1; t) = ∇xt
log pθ(xt|y = 1; t)

A.2. Proof of Corollary 3.2

Proof. Since pθ,ϕ∗ is defined as the distribution generated by simulating the SDE in equation 2, its score function
∇xt

log pθ,ϕ∗(xt; t) is by definition equal to sθ,ϕ∗(xt; t) (Risken & Risken, 1996; Song & Ermon, 2019). Similarly
for the baseline DM we have sθ(xt; t) = ∇xt log pθ(xt; t). Therefore,

∇xt
log pθ,ϕ∗(xt; t) = sθ,ϕ∗(xt; t)

Equation (10)
== sθ(xt; t) +∇xt

logCϕ∗(xt; t) (16)

= ∇xt
log pθ(xt; t) +∇xt

logCϕ∗(xt; t)
Thm. 3.1
== ∇xt

log pθ(xt|y = 1) (17)

Here we derived sθ,ϕ∗(xt; t) = ∇xt log pθ(xt|y = 1). By (Anderson, 1982), we proved the first statement.

The second statement follows by decomposing pθ(xt|y = 1):

pθ,ϕ∗(x) = pθ(x|y = 1) ∝ pθ(x)O(x) ⇒ pθ,ϕ∗(x) = 0 ∀x ∈ Ω∁.

For the last statement, we have

pθ,ϕ∗(x) = pθ(x)O(x)∫
pθ(x)O(x) dx∫

pθ(x)O(x) dx ≤ 1

⇒ pθ,ϕ∗(x) ≥ pθ(x) ∀x ∈ Ω

D⊆Ω
=⇒ log pθ,ϕ∗(D) =

∑
x∈D

log pθ,ϕ∗(x) ≥
∑
x∈D

log pθ(x) = log pθ(D).

We demonstrate this corollary with a one-dimension density in Figure 5. We show a “base distribution” p(x) and the positive
and negative regions Ω and Ω∁, respectively. We can see that the distribution p(x|y = 1) assigns no mass to Ω∁ and has a
larger mass assigned to any point in Ω.
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Figure 5. We use this one-dimensional density plot to show how we guide the generation process towards the positive support region
indicated by the oracle. The base distribution p(x) is a mixture of two Gaussian distributions shown by the brown curve. We show the
regions allowed and disallowed by the oracle respectively by the cyan and light brown shaded areas. Gen-neG with a Bayes optimal
classifier targets the distribution p(x|y = 1) that has probability mass in the allowed region and assigns zero probability outside this
region.

A.3. Equivalence of cross-entropy loss minimization and KL divergence minimization

This is a well-known result in the literature. Nonetheless, we include the result and its proof here for completeness and ease
of reference.

Claim: minimizing the cross-entropy loss between the classifier output and the true label is equivalent to minimizing the KL
divergence between the classifier output and the Bayes optimal classifier.

Proof. The Bayes optimal classifier C∗(xt; t) approximates q(y = 1|xt). Let pϕ(y|xt) be the distribution represented by
the learned classifier Cϕ(xt; t) i.e., pϕ(y = 1|xt) = Cϕ(xt; t). For an arbitrary diffusion time step t, the expected KL
divergence between the Bayes optimal and the learned classifier therefore is

Eq(xt) [KL (q(y|xt)||pϕ(y|xt))]

= Eq(xt)

[
Eq(y|xt)

[
log

q(y|xt)
pϕ(y|xt)

]]
(18)

= Eq(xt)

[
q(y = 1|xt) log

q(y = 1|xt)
Cϕ(xt; t)

+ q(y = 0|xt) log
q(y = 0|xt)
1− Cϕ(xt; t)

]
(19)

= Eq(xt) [H(q(y|xt))]− Eq(xt) [q(y = 1|xt) logCϕ(xt; t) + q(y = 0|xt) log(1− Cϕ(xt; t))] . (20)

The first term is the expected entropy of the optimal classifier and is independent of ϕ. Therefore,

argmin
ϕ

Eq(xt) [KL (q(y|xt)||pϕ(y|xt))]

= argmin
ϕ

−Eq(xt) [q(y = 1|xt) logCϕ(xt; t) + q(y = 0|xt) log(1− Cϕ(xt; t))] (21)

= argmin
ϕ

CE(q(y|xt), pϕ(y|xt)). (22)

Note that Equation (6) is the expected cross entropy for different time steps t.

A.4. Connection between Eq. (11) and Eq. (13)

In this section we make the connection between Equation (9) and Equation (13) more clear. We start with Equation (13),
ignoring the outer expectation with respect to t, is equal to
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−
(
Epθ(x0,xt) [O(x0) logCϕ(xt; t) + (1−O(x0)) log(1− Cϕ(xt; t)]

)
(23)

= −
∫
pθ(x0,xt)

(
pθ(y = 1|x0) logCϕ(xt; t) + pθ(y = 0|x0) log(1− Cϕ(xt; t))

)
dx0dxt (24)

= −
∫
pθ(y = 1)pθ(x0|y = 1)pθ(xt|x0) logCϕ(x; t) dx0dxt

−
∫
pθ(y = 0)pθ(x0|y = 0)pθ(xt|x0) log(1− Cϕ(xt; t)) dx0dxt (25)

≈ −
∫
pθ(y = 1)pθ(x0|y = 1)q(xt|x0) logCϕ(x; t) dx0dxt

−
∫
pθ(y = 0)pθ(x0|y = 0)q(xt|x0) log(1− Cϕ(xt; t)) dx0dxt (26)

= αEpθ(x0|y=1)

[
Eq(xt|x0) [− logCϕ(xt; t)]

]
+ (1− α)Epθ(x0|y=0)

[
Eq(xt|x0) [− log(1− Cϕ(xt; t))]

]
(27)

:=
1

N

∑
x0∈D̂+

αEq(xt|x0) [− logCϕ(xt; t)] +
1

N

∑
x0∈D̂−

(1− α)Eq(xt|x0) [− log(1− Cϕ(xt; t))] , (28)

which recovers Equation (11).

A.5. Gen-neG’s objective function

Here we show why Equation (11) is an importance sampling estimator of the original objective function in Equation (9).

Lcls
ϕ (α) := αEpθ(x0|y=1)

[
Eq(xt|x0) [− logCϕ(xt; t)]

]
+ (1− α)Epθ(x0|y=0)

[
Eq(xt|x0) [− log(1− Cϕ(xt; t))]

]
(29)

= − Epθ(y)
[
Epθ(x0|y)

[
Eq(xt|x0) [y logCϕ(xt; t) + (1− y) log(1− Cϕ(xt; t)]

]]
. (30)

Now we apply importance sampling to pθ(y) by sampling from π(y) as the proposal distribution. Therefore,

Lcls
ϕ (α) = − Epθ(y)

[
Epθ(x0|y)

[
Eq(xt|x0) [y logCϕ(xt; t) + (1− y) log(1− Cϕ(xt; t)]

]]
(31)

= − Eπ(y)
[
pθ(y)

π(y)
Epθ(x0|y)

[
Eq(xt|x0) [y logCϕ(xt; t) + (1− y) log(1− Cϕ(xt; t)]

]]
(32)

=
pθ(y = 1)

π(y = 1)
Epθ(x0|y=1)

[
Eq(xt|x0) [− logCϕ(xt; t)]

]
+
pθ(y = 0)

π(y = 0)
Epθ(x0|y=0)

[
Eq(xt|x0) [− log(1− Cϕ(xt; t))]

]
(33)

= Epθ(x0|y=1)

[
α

π(y = 1)
Eq(xt|x0) [− logCϕ(xt; t)]

]
+ Epθ(x0|y=0)

[
1− α

π(y = 0)
Eq(xt|x0) [− log(1− Cϕ(xt; t))]

]
(34)

In our case, π(y) is a uniform Bernoulli distribution i.e., π(y = 1) = π(y = 0) = 0.5. Therefore, minimizing Equation (11)
is equivalent to minimizing a Mone Carlo estimate of Equation (34).

A.6. Error bound on the prior probability of positive examples α

In practice, the prior probability of generating positive samples α = p(y = 1) is not accessible, and we use an empirical α̂
obtained from the generated synthetic dataset to estimate it. We perform a statistical analysis to investigate the difference
between joint log-probabilities that we want to maximize based on the true α and the empirically estimated α. We start with
a naive Lemma A.1 about Delta method:
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Lemma A.1. (Delta method) Suppose θ̂n follows an asymptotic normal distribution,
√
n(θ̂n − θ) converges to N (0, σ2) in

distribution as n→∞ , then if g is a continuous function with a well-defined first derivative at θ and g′(α) ̸= 0, then

√
n(g(θ̂n)− g(θ)) D−→ N (0, (g′(θ))2σ2). (35)

Proof. By Taylor approximation expansion,

g(θ̂n) ≈ g(θ) + g′(θ)(θ̂n − θ)⇒
√
n(g(θ̂n)− g(θ)) ≈

√
ng′(θ)(θ̂n − θ) (36)

by subtracting g(θ) and multiplying
√
n on the both sides. Therefore,

√
n(g(θ̂n)− g(θ)) D−→ N (0, (g′(θ))2σ2).

Theorem A.2. The difference of true log-joint probability and the estimated log-joint probability converges in distribution
N
(
0, 1

α −
pθ(xt|y=1;t)−pθ(xt|y=0;t)

αpθ(xt|y=1;t)+(1−α)pθ(xt|y=0;t) (α− α2)
)

.

Given a fully synthetic dataset of size N , we estimate α with α̂ = 1
N

∑
i 1[yi = 1], and its expectation and variance are:

E [α̂] = E

[
1

N

∑
i

1[yi = 1]

]
=

1

N

∑
i

E [1[yi = 1]] =
1

N

∑
i

pθ(yi = 1) = α (37)

Var [α̂] = Var

[
1

N

∑
i

1[yi = 1]

]
=

1

N2

∑
i

(
E
[
1
2[yi = 1]

]
− (E [1[yi = 1]])

2
)
=
α− α2

N
(38)

Let N → ∞, by central limit theorem (CLT), we have α̂ D−→ N
(
α, α−α

2

N

)
. If α−α2

N → 0, we have α̂ → α, then by
Theorem 3.1, the joint log-probability is:

log pθ(xt; t, α) + logCϕ∗(xt; t, α) = log(αpθ(xt|y = 1, t) + (1− α)pθ(xt|y = 0, t))

+ log

(
αpθ(xt|y = 1, t)

αpθ(xt|y = 1, t) + (1− α)pθ(xt|y = 1, t)

)
(39)

= logα+ log pθ(xt|y = 1, t) (40)

otherwise,

log pθ(xt; t, α) + logCϕ∗(xt; t, α̂) = log(αpθ(xt|y = 1, t) + (1− α)pθ(xt|y = 0, t))

+ log

(
α̂pθ(xt|y = 1, t)

α̂pθ(xt|y = 1, t) + (1− α̂)pθ(xt|y = 1, t)

)
(41)

= log

(
αpθ(xt|y = 1; t) + (1− α)pθ(xt|y = 0; t)

α̂pθ(xt|y = 1; t) + (1− α̂)pθ(xt|y = 0; t)

)
+ log α̂+ log pθ(xt|y = 1, t) (42)

The difference between Equation (42) and Equation (40) is:

ℓ(xt; t, α̂) =

∣∣∣∣log( α̂α
)
− log

(
α̂pθ(xt|y = 1; t) + (1− α̂)pθ(xt|y = 0; t)

αpθ(xt|y = 1; t) + (1− α)pθ(xt|y = 0; t)

)∣∣∣∣ (43)

Let g(α) = logα− log
(
αpθ(xt|y = 1; t) + (1− α)pθ(xt|y = 0; t)

)
, then

g′(α) =
1

α
− pθ(xt|y = 1; t)− pθ(xt|y = 0; t)

αpθ(xt|y = 1; t) + (1− α)pθ(xt|y = 0; t)
. (44)

Based on Lemma A.1, we have
√
N (ℓ(xt; t, α̂))

D−→ N (0, g′(α)(α− α2)) (45)

where g′(α) follows Equation (44).
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Figure 6. Architecture of the network in the checkerboard experiment. Left: the overall of the model. Right: detailed architecture of our
“Residual Block”. In this architecture, timestep is embedded using sinusoidal embedding and all nonlinearities are SiLU. The output of the
network Fθ(xt, t) is then used in a preconditioning function to get an estimate of x0.

B. Experimental details
B.1. Checkerboard Experiment

Architecture We use a fully connected network with 2 residual blocks as shown in Figure 6. The hidden layer size in our
experiment is 256 and timestep embeddings (output of the sinusiodal embedding layer) is 128. Our classifier has a similar
architecture, the only difference is that the classifier has a different output dimension of one. Our baseline DM and classifier
networks both have around 330k parameters.

Training the baseline DM We train our models baseline models on a single GPU, (we use either of GeForce GTX 1080
Ti or GeForce GTX TITAN X) for 30,000 iterations. We use the Adam optimizer (Kingma & Ba, 2014) with a batch size of
3× 10−4 and full-batch training i.e., our batch size is 1000 which is the same as the training dataset size.

Training the classifiers Each classifier is trained on a fully-synthetic dataset of 100k samples which consists of 50k
positive and 50k negative samples. This dataset is generated with 100 diffusion steps. We train the classifier for 20k
iterations with a batch size of 8192. We use Adam optimizer with a learning rate of 3× 10−3.

Distillation The distilled models have the same architecture and hyperparameters as the baseline DM model. They are
trained for 250k iterations on the true dataset with a batch size of 1000. We use Adam optimizer with a learning rate of
3× 10−4.

Diffusion process We use the EDM framework in this experiment with a preconditioning similar to the one proposed in
Karras et al. (2022). In particular, the following precoditioning is applied to the the network in Figure 6, called Fθ(xt, t), to
get Dθ(xt; t) which returns an estimate of x0.

Dθ(xt; t) =
σ2

data

σ(t)2 + σ2
data

xt + σ(t)Fθ

(
1√

σ(t)2 + σ2
data

xt;
1

4
ln(σ(t))

)
, (46)

where σdata = 1. Since smaller noise levels are important in our application, we changed the training distribution of t from
the log-Normal used in Karras et al. (2022) to a log-uniform with the support of σmax = 80 and σmin = 2× 10−3. In total,
we spent around 250 GPU-hours for this experiment.
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Sampling We use the second-order Heun solver of Karras et al. (2022) with 100 sampling steps and Schurn = 10. We
modify the schedule of σ to a log-linear schedule from σmax to σmin.

B.2. Traffic Scene Generation

Overview This section provides additional details for the traffic scene generation task. The architectures for training
the baseline DM model, classifiers and distillation models are majorly based on transformers introduced by Vaswani et al.
(2017) . In particular, the architecture backbone consists of an encoder, a stack of attention residual blocks, and a decoder.
Each of them will be discussed in detail later. The original data input shape is [B,A, F ] corresponding to A vehicles and F
feature dimensions in a batch with B many scenes.

In terms of parameters, the attention layers comprise the major portion of the entire architectures. This leads to the difference
in decoder being relatively minor, and the resulting architectures all contain approximately 6.3 million parameters. We use
NVIDIA A100 GPUs for training and validating models, synthetic datasets generation with around 400 GPU-hours in total.
We train each model with a batch size of 64 and Adam optimizer with a learning rate of 10−4.

Encoder and time embeddings To generate input features, we use sinusoidal positional embeddings to embed the
diffusion time step and 2-layer MLP with activation function SiLU to embed the original data separately into H = 196
hidden feature dimensions. The sum of the two embeddings is the input that is fed into the attention-based architecture.

Self-attention and cross-attention layers The major implementation of multi-head (k = 4) attention blocks is built
on Transformer (Vaswani et al., 2017). Applying self-attention across agents enables model to learn the multi-agent
interactions, while applying map-conditional cross-attention between agents and map allows agents to interact with the
road representations. To prepare road image for model input, we use a convolutional neural network and a feed-forward
network (Carion et al., 2020) to generate a lower-resolution mapm′ ∈ R196×32×32 from the original imagem ∈ R3×256×256.
Since the transformer architecture is permutation-invariant, we add a 2D positional encoding (Parmar et al., 2018; Bello
et al., 2019) based on m′ on the top of the map representation to preserve the spatial information of the image.

Relative Positional Encodings (RPEs) During experiments, we find the collision rate is much higher than the offroad
rate. In order to effectively lower the frequency of or completely avoid vehicle collision occurrence, we manage to capture
the relative positions by performing relative positional encodings (RPEs) in self-attention residual blocks and enforce the
vehicles being aware of the other vehicles in close proximity in each scene. Following Shaw et al. (2018); Wu et al. (2021);
Harvey et al. (2022), we compute the distances of each pair of vehicles and summarise into a tensor of shape [B,A,A],
where dbij is the distance between vehicle i and j in the bth scene. We choose to use sinusoidal embeddings (similar to
how we embed diffusion time t) to parameterize dbij rather than logarithm function fRPE(d

b
ij) = log(1 + dbij), as we need

to adequately amplify the pairwise distances between vehicles when it is comparably small. We perform this operation
together with diffusion time embedding at each diffusion time step, and we regard their sum as the complete pairwise
distance embeddings. The resulting embedding tensor p is of the shape [B,A,A,H], where pbij is the encoding vector of
length H representing the pairwise distance of vehicle i and j in the bth scene.

In each scene, we have an input sequence, x = (x1, · · · ,xA), and each xi is linearly transformed to query qi = WQxi,
key ki = WKxi and value vi = WV xi. We also apply linear transformation onto RPEs to obtain query pQij = UQpij ,
key pKij = UKpij and value pVij = UV pij . Then the add-on output from the self-attention residual block is the aggregated
outputs of the vanilla transformer and the relative-position-aware transformer:

xoutput
i = xi +

A∑
j=1

αij(vj + pVij) (47)

where αij =
exp(eij)∑A
k=1 exp(eik)

and eij =
q⊤
i kj + pQ

⊤

ij kj + q⊤
i p

K
ij√

dx
(48)

Decoder The settings for baseline, distillation models and classifiers are almost identical except the decoder for producing
the final output. For baseline and distillation models, we apply 2-layer MLP and reconstruct the output of the shape
[B,A,H] from the final attention layer into [B,A,D] through the decoder. To ensure we output individual label for each
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Figure 7. Infraction and ELBO estimations from different iterations of Gen-neG, distilled Gen-neG and an ablated version of it without
label imbalance correction. Gen-neG achieves a lower infraction rate and a comparable ELBO.

vehicle with classifiers, we conduct the operations as follows. The decoder takes the hidden representation of the shape
[B,A,H] and produces a tensor with feature dimension F ′ = 1 with a 2-layer MLP, which is the predicted labels from the
classifiers.

B.3. Motion Diffusion

For the task of text-conditional motion generation, we use the HumanML3D dataset (Guo et al., 2022). This dataset contains
14,616 human motions annotated by 44,970 textual descriptions. It includes motions between 2 and 10 seconds in length and
their total length amounts to 28.59 hours. Each motion is between 36 and 196 frames, with the majority of them comprising
196 frames. Each frame is represented by a 263-dimensional feature vector, resulting in a dimensionality of over 51, 000 for
the largest motions.

We used the official implementation of MDM2 for our Motion Diffusion experiment. For the baseline DM, we used their
officially released best pretrained checkpoint of text-to-motion task on HumanML3D dataset. We generate a synthetic
dataset of around 250k positive and 250k negative examples from the baseline DM which is a DDPM-based model with
1000 diffusion steps. We then define our classifier architecture using their code base. Following our other experiments, our
classifier architecture is the same as the baseline DM model. We train the classifier with a batch size of 128 and a learning
rate of 10−4 for 300k iterations. Otherwise, we use the same hyperparameters as in Tevet et al. (2023). All the training and
data generation is done on A100 GPUs.

To compute the FID scores, in accordance with Tevet et al. (2023), we generate one motion for each caption in the
HumanML3D test set, resulting in a total of 4,626 generated motions.

The total compute used for this experiment (generating the datasets and training the classifiers) was around 600 GPU-hours.

C. Ablation studies
C.1. Label imbalance

As mentioned in Section 3.1, generating synthetic datasets for training the classifiers without careful planning leads to
significant label imbalance issues, which impede the training process. In this section we perform an ablation study to
empirically demonstrate its detrimental impact in our experiments.

As a reminder, Gen-neG requires an equal number of positive and negative examples in the synthetic datasets, and it employs
importance sampling to address any distribution shift introduced. In the ablated experiment (referred to as "imbalanced" in
the results), the ratio of positive to negative examples is model-dependent, being equal to the model’s infraction rate. It
results in a gradual increase in the dominance of positive examples as the model’s infraction rate decreases.

2https://github.com/GuyTevet/motion-diffusion-model
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Figure 8. Ablation study for checkerboard experiment on synthetic dataset size

Table 3. Ablation study for the traffic scene generation experiment on synthetic dataset size

Classifier dataset size Collision (%) ↓ Offroad (%) ↓ Infraction (%) ↓ r-ELBO (×10−2) ↑
baseline DM 28.3± 0.7 1.3± 0.1 29.3± 0.6 −27.5± 0.01

8, 000 23.8± 0.4 0.9± 0.2 24.5± 0.5 −28.0± 0.01
40, 000 19.7± 0.8 0.8± 0.2 20.3± 0.9 −27.8± 0.01
80, 000 17.6± 0.7 0.7± 0.2 18.2± 0.6 −27.7± 0.01
400, 000 16.6± 0.7 0.8± 0.2 17.5± 0.7 −27.7± 0.01
800, 000 16.4± 0.5 0.9± 0.1 17.2± 0.4 −27.7± 0.01

Checkerboard experiment We repeat our checkerboard experiment with and without Gen-neG’s imbalance correction.
In each iteration, we create a synthetic dataset of 20,000 samples and train a binary classifier for 10,000 iterations. The other
details are the same as the experiment in the main text. We show the performance of these models in Figure 7. We observe
that “imbalaced”, the ablated version of Gen-neG, is consistently outperformed by Gen-neG in infraction rate. Furthermore,
the performance gap between the two methods widens as the models improve. However, it is worth noting that Gen-neG
achieves a comparable ELBO to that of “imbalanced” despite these infraction rate differences.

Traffic Scene Generation We conduct a similar ablation as described above, where we train classifiers on a imbalanced
datasets of the same size as our method. The results of this ablated experiment are presented in Table 1 in the main text.

C.2. Synthetic dataset size

We conducted an ablation on the number of samples required on the checkerboard and the traffic scene generation
tasks. Figure 8 and Table 3 show our results. We observe that the infraction rate constantly decreases irrespective of the
dataset size. However, in order to avoid distribution shift we need a large enough dataset, as is evident from the ELBO plot.
It is important to emphasize that the classifiers are trained on fully synthetic data generated by the model itself. Therefore, in
principle we have access to an unbounded number of samples. As our results show, for the best performance, it is important
to ensure the sample size is sufficiently large.

D. Additional results
D.1. Computational cost and sampling latency

Here we discuss the latency of different models considered in this paper. We first report the wall-clock time of generating
samples from models. However, in order to deploy any of these models, one should ensure a generated sample is valid.
Therefore, all the models should be used together with rejection sampling. We discuss the latency in conjunction with
rejection sampling in the second part of this section.
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Table 4. Wall-clock time of one denoising step

Time per diffusion step (s) (×10−3)

Method Checkerboard Traffic Scenes Motion Diffusion

Baseline DM / distilled Gen-neG 0.2± 1× 10−2 32± 9× 10−3 83± 2× 10−1

Gen-neG (iteration 1) 0.5± 2× 10−2 86± 2× 10−2 171± 8× 10−1

Gen-neG (iteration 2) 0.8± 2× 10−2 138± 3× 10−2 -

Table 5. Sampling time of the traffic scenes experiment (1000 steps)

Method Parameters (M) Latency (s)

Baseline DM 6.3 38.58± 0.20
Gen-neG (iteration 1) 12.6 86.71± 0.19
Gen-neG (iteration 2) 18.9 138.73± 0.42
Gen-neG (distilled) 6.3 38.43± 0.37
Time-Independent classifier 12.6 126.40± 0.20
Imbalanced classifier 12.6 86.88± 0.20
w/o IS classifier 12.6 86.81± 0.21

Latency We compute the average wall-clock time of the baseline models and iterations of Gen-neG for different exper-
iments and present the results in Table 4. We observe that additional classifiers linearly increase the running time (for
conciseness, we have not included further iterations of Gen-neG on checkerboard experiments in Table 4 as its runtime
simply continues growing linearly). Moreover, in the Traffic Scenes and checkerboard experiments, the overhead of each
classifier is larger than the runtime of the baseline model alone (almost 1.5 times). This is because the architecture of our
classifier is the same as the baseline model and for each forward pass of a classifier-guided model, one forward and one
backward pass through the classifier is required. However, in the Motion diffusion experiment, since the classifier is not
text-conditional, this overhead is relatively smaller. We also report the total time to generate one batch of samples for all the
models in Table 1. This table also includes the number of parameters for each model as a proxy for memory consumption. It
is important to note that our distilled models have the exact same latency and memory consumption as the baseline diffusion
model, since we use the same architecture for the distilled model.

Rejection sampling To ensure that a sample from a model is valid, deploying any of these models requires using them
with rejection sampling. Assume a model with infraction rate of ϵ and sampling time of t seconds is given. A rejection
sampling loop with this model takes 1

1−ϵ t seconds. However, in a different, more realistic setting, we require an accepted
sample in “one iteration” of running the model. Since all models have some infraction rate, we instead generate a batch of
samples and require at least one non-infracting sample with high probability. As stated in Section 1, generating at least one
non-infracting sample with (1− δ) probability requires log δ

log ϵ parallel samples. Therefore, any improvement to ϵ leads to
improved computational complexity. In particular, we get the following reductions in the required number of samples:

• 47% on the checkerboard experiment (baseline vs. distillation of 5 iterations of Gen-neG),

• 57% on the traffic scenes experiment (baselines vs. distillation of stacked Gen-neG),

• 9% on the motion diffusion experiment.

We conjecture the relatively smaller improvement in the motion diffusion experiment is because the baseline DM predicts
x0. A follow up to MDM, argues that x0-prediction models are hard to guide (see appendix A of Zhong et al. (2022)).

D.2. Faster synthetic dataset generation

With the iterative stacking of the classifiers in Gen-neG, as the model becomes better in avoiding invalid samples, it becomes
harder to generate a balanced synthetic dataset. To further reduce the computational cost for cases where the infraction rate
is very small, one can employ Sequential Importance Sampling (SIS) using a proposal distribution with higher infraction
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Figure 9. The results of the SIS approach for faster synthetic dataset generation for Gen-neG. SIS makes the sampling time grow linearly
with iterations of Gen-neG while maintaining a comparable performance to the standard synthetic dataset sampling approach in Gen-neG.

Table 6. Comparison of a diffusion model and normalizing flow model trained on the INTERACTION dataset. The normalizing flow
results are taken from Zwartsenberg et al. (2023).

Method Collision (%) ↓ Offroad (%) ↓ Infraction (%) ↓
Diffusion model 7.34± 0.16 6.94± 0.06 13.62± 0.13
Normalizing flow (Zwartsenberg et al., 2023) 9.00± 1.00 12.00± 1.00 20.00± 1.00

rate. Concretely, assume we use an SDE solver with pre-defined timesteps t0 = 0 < t1 < . . . < tT = 1 to generate the
samples. Therefore the loss function in Equation (9) becomes

Lcls
ϕ = Epθ(x0)

[
l(x0)

]
= Epθ(xt0

,...,xtT
)

[
l(x0)

]
= Eπ(xt0

,...,xtT
)

[pθ(xt0 , . . . ,xtT )
π(xt0 , . . . ,xtT )

l(x0)
]
, (49)

where l(x0) = Et,q(xt|x0) [O(x0) logCϕ(xt; t) + (1−O(x0)) log(1− Cϕ(xt; t))] and π is a proposal distribution defined

as another diffusion model for example, an earlier iteration of Gen-neG. Therefore, p(xt0
,...,xtT

)

π(xt0
,...,xtT

) =
∏T
i=1

p(xt−1|xt)
π(xt−1|xt)

in
which both the numerator and denominator are Gaussian distributions with the same variances but different means.

Figure 9 shows the results of this approach on the checkerboard experiment. It shows that SIS dataset sampling time grows
linearly and independent of the infraction rate while maintaining a comparable performance. This linear growth is due to the
linear growth in complexity of (non-distilled) Gen-neG models.

D.3. INTERACTION dataset

Here we report our results of training a baseline DM model on the INTERACTION dataset (Zhan et al., 2019). Table 6
shows the superior performance of our diffusion model compared to the normalizing flow results from Zwartsenberg et al.
(2023). The lower infraction rates compared to Table 1 suggests that the INTERACTION dataset is a simpler dataset
compared to the one we used in Section 4.2. One can further improve upon the diffusion model in Table 6 by using it as a
baseline DM in Gen-neG.

D.4. More visualization results for the traffic scene generation experiment

In Figure 10 we report more visualization results from our traffic scene generation experiment. This figure follows from and
adds more details to Figure 1.

D.5. Overfitting in the checkerboard experiment

Here we present our results regarding the overfitting of the baseline DM in the checkerboard experiment. We run an
experiment with 200,000 training iterations, much larger than the 30,000 iterations in the reported results. As we can see
in Figure 11, the infraction rate keeps decreasing. However, the model starts overfitting after around 30,000 iterations, as
measured by the ELBO on a held-out set. This suggests that the architecture is expressive enough to model sharp jumps in
the learned density. However, simply training it on a small dataset without incorporating any prior on “where to allocate its
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(a) (b) (c) (d) (e)

Figure 10. Complete visualization comparisons for infraction in traffic scene generation experiments. Subplots show infraction per unit
area under different models. (a) baseline DM; (b) first iteration of Gen-neG; (c) second iteration of Gen-neG. (d) and (e) are the distillation
models corresponding to (b) and (c) respectively. A clear reduction in terms of infractions per unit area can be observed from left to right.

0 30 100 150 200

Iteration (×103)

10−2

10−1

In
fr

a
ct

io
n

(%
)

0 30 100 150 200

Iteration (×103)

−10

−5

0
E

L
B

O

0 30 100 150 200

Iteration (×103)

1.5

2.0

L
os

s

Validation

Training

Figure 11. Overfitting results in the checkerboard experiment. The first two plots on the left respectively show the infraction rate and
ELBO on a held-out validation set. We observe that training the baseline DM for longer can achieve much lower infraction rates. However,
it quickly starts to overfit, leading to poor ELBO estimates on the held-out validation set. The last plot shows the training and validation
loss of the model. These plots confirm that the checkpoint we used for baseline DM in Gen-neG at 30,000 iterations does not overfit.

capacity” fails because the model does not receive any signal on where the actual “sharp jump” is. Gen-neG, on the other
hand, provides this kind of signal through the oracle-assisted guidance.

24


