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ABSTRACT

Learning efficient distributed representations of code edits is fundamental for
various software engineering tasks, such as the automatic identification of com-
mits that introduce or correct vulnerabilities. Some successful models, includ-
ing commit2vec and edit2vec, represent code changes using paths extracted
from the Abstract Syntax Trees (AST). Other works have shown that, in addition
to the AST, considering graph structures that encode the control flow and the data
flow of a program can lead to more effective code embeddings.
In our work, we introduce a new model to represent code edits that leverages dif-
ferent paths derived from the AST, the Control Flow Graph (CFG) and the Data
Flow Graph (DFG). Our preliminary evaluation on the task of classifying security-
relevant commits yielded encouraging results that call for further investigation.

1 INTRODUCTION

Learning distributed representations of source code is the central problem of many deep-learning
based approaches to solve software-engineering tasks such as code clone detection, code summari-
sation or vulnerability identification. There is now an already considerable and nevertheless rapidly
growing number of works that address this problem (Alon et al., 2019b; Allamanis et al., 2018; Ma
et al., 2022; Hellendoorn et al., 2020; Feng et al., 2020). Some of these works are inspired by mod-
els coming from the field of Natural Language Processing (NLP) (Feng et al., 2020; Lachaux et al.,
2020). Others leverage the formal nature of programming languages and rely on Abstract Syntax
Trees (AST) or other graph representations of code (Alon et al., 2019b;a; Hellendoorn et al., 2020;
Allamanis et al., 2018), and finally some combine the two approaches (Guo et al., 2021; Zügner
et al., 2021).

Compared to the literature on code representation methods, the volume of works that focus on learn-
ing a representation of code edits or “commits” is more modest (Cabrera Lozoya et al., 2021; Yin
et al., 2019; Hoang et al., 2020; Qureshi et al., 2021). However, only in rare occasions the source
code of a program remains static and unchanged for long periods of time. The process of software
development is essentially incremental: most programs and libraries are continually updated. Con-
sequently, often times, program analysis tasks require scanning several versions of the source code
to identify when and where a particular change was introduced, and the impact it has on the pro-
gram itself. An important example is identifying commits that introduce or correct vulnerabilities
(Cabrera Lozoya et al., 2021).

Of the many different code representation models, only a few can be easily adapted to obtain dis-
tributed representations of code edits. Among these, code2vec is a the widely successful method
that leverages the context (the actual code tokens) and paths extracted from its Abstract Syntax Tree
(AST). In code2vec, code is initially represented as a set of so-called path-contexts and subse-
quently embedded using an attention-based neural network.
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code2vec constitutes the basic building block of the commit2vec model (Cabrera Lozoya et al.,
2021). Its basic principles (initial representation based on paths extracted from the AST, attention-
based network) are used in other embedding methods for code changes, such as edit2vec
(Qureshi et al., 2021). Whether these path-based approaches lead to more effective representa-
tions with respect to simpler models is disputed (Qureshi et al., 2021), however they have proven to
be at least as good as the baselines on several tasks, and are considered state of the art. Moreover,
recent works (Vagavolu et al., 2021) have shown that path-based approaches like code2vec could
be improved by leveraging the semantic information encoded in graph representations of the code,
such as the Control Flow Graph (CFG) and the Program Dependency Graph (PDG).

Building on the previous works of Cabrera Lozoya et al. (2021), and Vagavolu et al. (2021), we
introduce a new path-based model for the distributed representation of code edits, that combines
multiple representations of the code associated to different graph structures. In particular, we con-
sider different types of paths extracted from the AST, the CFG and the Data Flow Graph (DFG).
We define a new method for extracting meaningful paths from the CFG that requires splitting the
graph into its basic blocks. We show how this method leads to better computational efficiency and
reduced redundancy, when considering changes in the control flow. Our model can be applied to
any programming language, whereas the generation of the AST, CFG and DFG from source code is
language-specific.

We evaluate our model on the task of classification of security-relevant commits in Java projects
using the dataset from Ponta et al. (2019). Comparison with current state of the art (commit2vec)
shows that considering multiple representations can improve the classification performance.

This is the layout of the paper: in the next section we introduce previous work on which our model
is built upon. The third section is dedicated to the presentation of the model itself, with a focus on
the innovative aspects with respect to previous works. In the fourth section we report some details
on the practical implementation, and the results of the evaluation on the task of classification of
security-relevant commits. Finally, the last section contains the concluding remarks.

2 BACKGROUND

The main idea of our model is to represent code-changes by combining multiple path-based repre-
sentations obtained from different graph abstractions of the code. We follow a similar approach to
the one used by Vagavolu et al. (2021) in their “mocktail” of source code representations. To apply
this method to commits we employ the same methodology used in commit2vec, that allows to
represent commits using the path-contexts introduced in code2vec. Differently to commit2vec,
we we rely on the code2seq encoder to obtain the embeddings.

Figure 1: Example of two AST path-contexts used in code2vec and derived models.
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code2vec & commit2vec. code2vec (Alon et al., 2019b) is an attention-based representation
learning model for source code at the function (or method) level, that relies on an initial representa-
tion of the code as a set of path-contexts extracted form its AST. More formally, path-contexts are
triplets of the form (t1, p, tk+1), where t1 and tk+1 are the code tokens associated to two terminal
nodes of the AST (the ”start” terminal node n1 and the ”end” terminal node nk+1), and p is the path
in the AST connecting them. p is represented by a sequence of the form l1d1l2d2...lkdklk+1 where
l1, ..., lk+1 are the labels associated to the nodes n1, ..., nk+1 and d1, ..., dk are the directions of
movements between path nodes in the AST. The symbol ↑ represents upward movement and ↓ rep-
resents a downward movement in the tree. Figure 1 shows an example of two path contexts obtained
from a simple AST. The terminals and the path of each path-context are embedded using a simple
token embedding and concatenated to obtain a path-context vector. Features are extracted from each
path-context vector using a fully-connected linear layer followed by a layer normalization and an
activation function. Finally a global attention mechanism is used to aggregate the information from
all the path-context vectors. A schema of the model is shown in Figure 2.

Figure 2: code2vec model.

Cabrera Lozoya et al. (2021) devised a way to represent commits as a set of path-contexts. In
commit2vec, a commit C is defined as a change in the source code of a given project in a set
of files fi ∈ F, where i = 1, . . . , I, and where I is the number of files changed within C. The
concept of commit implies a prior and a posterior version of files fi, denoted respectively fi,pre and
fi,post. Let the set of all the path-contexts of the prior versions of all methods m1..J,pre in all files
f1..I,pre in commit C be defined as Spre = {π1, π2, . . . , πk}, and the set of all the path-contexts
of the posterior versions of all methods m1..J,post in all files f1..I,post in commit C be defined as
Spost = {π1, π2, . . . , πk} (to avoid confusion, we use the letter π to indicate path-contexts as a
whole, as opposed to the paths that are part of the path-contexts, indicated with the letter p). Then,
the set of path-contexts describing a commit C is defined as the symmetric difference between Spre

and Spost :

SC = Spost∆Spre = {π : π ∈ Spre ∪ Spost, π /∈ Spre ∩ Spost}

SC is the input provided to the code2vec neural network to obtain a distributed representation of
the code changes contained in commit C.

A “Mocktail” of path-based code representations. Vagavolu et al. (2021) showed that one can
improve the representation capabilities of code2vec by combining the original AST-based em-
bedding with other representations of the code, obtained using paths derived from the CFG and the
PDG. These graphs encode semantic information about the code that cannot be extrapolated from
the AST alone. In order to do that, they defined new methods for extracting path-contexts from the
DFG and the CFG. In particular, the paths in the PDG path-contexts represent sequential dependen-
cies between statements, and are defined in a straightforward manner as all simple paths connecting
source nodes (nodes with no incoming PDG edges) to sink nodes (nodes with no outgoing PDG
edges). The contexts are the code tokens associated to the source and sink node. Path-contexts from
the CFG are defined in a similar fashion as simple paths connecting source nodes to sink nodes. In
this case, the source node is unique (the Methods node n1), and the sink nodes nk+1 can be either:

• The Return node,

• A previously visited intermediate node that represents a loop control structure
(i.e., nk+1 ∈ {n2, . . . , nk}).
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Each of the CFG paths represents a control flow during program execution. To represent loops in
CFG, three different paths are extracted from it - the first one ignores the loop and proceeds to the
next node, the second path goes through the loop only once and proceeds to the next node, the last
one goes back to the visited loop node and ends there. The architecture proposed in (Vagavolu et al.,
2021) consists of three stacked code2vec networks, each used to obtain an embedding of the path-
contexts extracted from the different graphs. The final code vector is a concatenation of the three
vectors obtained from the AST, CFG and PDG representations.

code2seq. Previous works use code2vec as a basic building block. Alon et al. (2019a) intro-
duced a variant of the method called code2seq. As the name suggests, this is a seq2seq model
that was originally applied to the task of code summarisation.

Figure 3: The code2seq path-context encoder.

The encoder part of code2seq proposes an alternative way to embed each individual path-context,
in particular there are two main differences with respect to code2vec, that are shown in Figure 3:

• The terminals (code tokens) are first split into sub-token, and the embedding for the termi-
nal is the sum of the embedding of each sub-token.

• Instead of using a simple token embedding, paths are considered as sequences of nodes and
are embedded using a Long-Short Term Memory network (LSTM).

Thanks to these gimmicks, the code2seq encoder has fewer parameters with respect to
code2vec. Moreover, it solves the problem of Out-Of-Vocabulary (OOV) paths, since they are
represented as sequences of nodes (which in turn are fixed in number), and significantly mitigates
the risk of encountering OOV contexts, thanks to the sub-token split.

3 MOCKTAIL OF CODE EDIT REPRESENTATIONS

We propose a new multi-path approach inspired by the work of Vagavolu et al. (2021) to learn
distributed representations of code changes. Following the approach of commit2vec, we initially
represent a code edit using three different sets of symmetric path-context differences:

S(∗)
C = S(∗)

post∆S(∗)
pre = {p : π ∈ S(∗)

pre ∪ S(∗)
post, π ∈ S(∗)

pre ∩ S(∗)
post},

where ∗ ∈ {AST, CFG, DFG}

The main differences with respect to the work of (Vagavolu et al., 2021) are the following:

1. Instead of the Program Dependency Graph (PDG) we extract paths from the Data Flow
Graph (DFG). DFGs specifically represent data dependencies between the different state-
ments.

2. We propose an alternative way of extracting paths from CFG that we name Control Flow
Basic Blocks (CFBB), which is more suited to represent code edits. Details about this
method are presented next.
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Figure 4: Example of Control Flow Basic Blocks. The graph on the right is a slightly simplified
version of the CFG of the code on the left. Each of the four different colors represents separate
building blocks.

Control Flow Basic Blocks (CFBB). In (Vagavolu et al., 2021) each CFG path represents a com-
plete control flow during program execution. The number of possible CFG paths is thus exponential
with respect to the number of control structures (i.e., if, for, or while statements), since any of
these introduce a bifurcation in the graph. In the original paper, this was not an issue since the
model was applied to methods written in the C programming language. As stated by the authors, C
functions tend to be shorter and have simpler control flows with respect to projects written in other
programming languages like Java (Vagavolu et al., 2021). In the context of our work, this is a major
computational bottleneck.

The specific issue we address is how to represent commits: we do not consider the path-contexts
extracted from methods themselves, but the difference (∆) of path-contexts between the prior and
the posterior version of the method. The problem with complete control flows is that many parts or
“blocks” of the control flow are included in all the CFG paths. If a change is made involving one
of these blocks it can potentially modify all the CFG paths of the method (we empirically observe
this is the case most of the time). In this scenario the set S(CFG)

C will contain all the control flows
from S(CFG)

pre and S(CFG)
post since S(CFG)

post ∩S(CFG)
pre = ∅. As a consequence, extracting the complete

control flow not only can be impractical, but also leads to redundancy and noise in the data.

To tackle this issue, we propose to split the control flows into its basic blocks. A Control Flow Basic
Block (CFBB) is a sequence of nodes connected by a CFG edge. Segments terminate when one of
these conditions is met:

1. A terminal node is reached (Return).

2. A bifurcation is encountered. Then, the next nodes in the bifurcation become the starting
point of new separate segments.

3. A node with more than one incoming CFG edge is reached. Then, the following node(s)
become the starting point(s) of a segment.

Basic blocks are the fundamental units that can form every possible complete control flow from the
method definition to the return statement(s). An example of how Control Flow Basic Blocks is
shown in Figure 4.

Crucially, the number of CFBB is linear with respect to the number of control structures. Moreover,
the CFBB reduces redundancy and allows to focus only the parts in the control flow that were
actually modified in the commit.
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Figure 5: Illustration of our model and how it combines multiple path-based representations of a
commit from different graphs.

The model. Figure 5 depicts our proposed model. Instead of using code2vec, we rely on the
code2seq encoder. The reason of this choice is that code2seq has been consistently shown to
yield better results than code2vec (Alon et al., 2019a; Qureshi et al., 2021). Moreover, the use of
RNNs to encode the paths makes code2seq more adapted to encode longer paths extracted from
the DFG and CFG (CFBB).

4 PRELIMINARY EVALUATION

As a preliminary evaluation, we test our model on the task of binary classification of security-
relevant commits. We use the dataset of Ponta et al. (2019), that contains 1821 commits from 210
public Java projects, of which 921 (50,58%) are labeled security relevant, since they contain one or
more fixes to existing vulnerabilities, and 900 are labeled not security relevant.

The pre-processing pipeline is the following:

1. We download the changed Java files for each commit.

2. Using git we identify the methods that have been modified.

3. We use Fraunhofer CPG (https://github.com/Fraunhofer-AISEC/cpg) to
generate the Code Property Graphs (CPG) (Yamaguchi et al., 2014) of each modified
method (both pre- and post-commit versions). CPGs are multi-edged graphs containing
all the nodes and edges of the AST, the CFG and the DFG in a unified structure.

4. We extract the path-contexts from the graphs, and we compute the symmetric difference
for each method. The path-contexts serve as input to the model.

Because we could not access some of the repositories in the commit2vec dataset, the final dataset
used for the evaluation contains 1678 commits of which 865 security relevant (51.55%).

On average we found 3708 modified AST path-contexts per commit, compared to an average of
15.81 for the CFBB and 29.37 for DFG paths. Consistently with the original commit2vec work,
we limit the maximum number of AST path-contexts to 500. If the number of AST path-contexts
exceeds this threshold, we randomly sample 500.
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Precision (%) Recall (%) F1-score Accuracy (%)

commit2vec 61.22± 4.75% 66.13± 5.76% 63.49± 4.64% 61.57± 3.91%
ours (AST only) 67.17± 2.18% 73.51± 4.89% 70.13± 2.77% 67.69± 2.31%
ours (AST + DFG) 68.53± 3.39% 73.85± 1.51% 71.06± 2.25% 68.1± 2.24%
ours (AST + CFG) 68.91± 3.14% 75.98± 3.43% 72.20± 2.09% 69.63± 1.77%
ours (CFG + CFG + DFG) 68.28± 2.93% 75.42± 4.58% 71.56± 2.09% 69.59± 2.03%

Table 1: Evaluation metrics of the models on the task of classification of security-relevant commits.

Because of the unbalance in the number of paths of different types, we chose different encoding
sizes for the three partial commit vectors (64 for AST paths, 32 for DFG paths and 16 for CFBB).
We used Pytorch Lightning (https://www.pytorchlightning.ai) to implement the
model.

We report the performance evaluation metrics in Table 1. Values show the average and standard de-
viation over 8 experiments in which we changed the seed. Results confirm the code2seq encoder
yields significantly better results than code2vec, even when only the AST paths are considered.
Adding one representation to the baseline AST paths leads to improved metrics, with the highest
gains coming from the AST + CFG model that uses Control Flow Basic Blocks (13% improve-
ment in average F1 score and accuracy with respect to commit2vec). The “full” model using the
three representations at once yields slightly worse results in terms of classification performance with
respect to the AST + CFG model, but yields the highest AUC-ROC score as shown in Figure 7.

These results suggests that considering multiple path-based representations can potentially lead to
a more effective representation of code changes. In particular, despite the fact that on average the
CFBB are half as numerous as DFG paths, the AST + CFG model outperforms the AST + DFG
model. This would seem to suggest that the information contained in CFBBs is indeed significant
for classification purposes, and that the CFBBs are a sensible approach to represent changes in the
control flow of a program.

Figure 6: Boxplots of different classification metrics.
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Figure 7: Comparison of the ROC curves of the commit2vec model and ours.

5 CONCLUSION

We introduced a new language-agnostic, path-based method that leverages multiple abstract repre-
sentations of source code to learn embeddings of code edits. In particular, we defined a new, scalable
strategy to extract meaningful paths from Control Flow Graphs, that also reduces redundant informa-
tion. Our preliminary results corroborate the intuition that relying on multiple code representations
is a sensible approach, but we need to extend the experimental campaign on larger and more realistic
datasets to fully appreciate the impact of our proposed model. Moreover, we will improve the simple
model we used in this work, by considering a hierarchical attention mechanism, as well as studying
a Bayesian treatment of the model, by casting every input source (the path-contexts coming from the
different graphs) as experts (Hinton, 2002) such that their “uncertainty” can be taken into account
when merging their contributions into a single distributed representation.
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