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ABSTRACT
Federated learning (FL), a prominent distributed learning approach, involves col-
laborative updates among participants and individual updates on private data.
While widely-used FL methods, such as FedDC and others, traditionally rely
on first-order optimization techniques like Stochastic Gradient Descent (SGD) to
achieve convergence, there is a growing interest in leveraging second-order opti-
mization methods to enhance convergence in complex models. However, applying
these second-order techniques to FL models often results in convergence chal-
lenges. To address these issues, we present an innovative integrated methodology
known as FedHC, combining proximal correction with Hessian optimization and
cosine correlation for FL. FedHC introduces the Hessian optimizer with proximal
correction to accelerate convergence. Additionally, we employ cosine correlation
to minimize learning discrepancies and bridge the gap between local and global
models. Experimental results and analyses conducted on four datasets demon-
strate that FedHC significantly accelerates convergence and outperforms existing
methods in various image classification tasks, maintaining robustness in both IID
and Non-IID client settings.

1 INTRODUCTION

Deep learning algorithms have made impressive progress owing to the abundance of large-scale data
Lin et al. (2014); Cordts et al. (2016). However, in real-world scenarios, data is often distributed
among different clients, including mobile devices and organizations. Due to increasing concerns
about privacy and strict data protection regulations Voigt & Von dem Bussche (2017), these clients
can not pool their data to train a model collectively. Driven by such realistic issues, Federated
Learning (FL) approaches Yang et al. (2019); McMahan et al. (2017a) have emerged as a privacy-
preserving approach.

FL enables multiple participants to cooperate in training a global model collaboratively in a de-
centralized manner without leaking private data. This novel approach represents a significant ad-
vancement in deep learning paradigms, offering new possibilities for secure and collaborative model
training across diverse data sources. FL has become a vibrant and challenging research area, show-
casing promising results in real-world applications. Albeit immense progress, researchers have en-
countered noteworthy challenges Kairouz et al. (2021); Li et al. (2020a) in FL. A prominent and
inevitable challenge is the heterogeneity problem arising from both statistical and systematic differ-
ences among the participating clients. Statistical heterogeneity encounters due to non-independent
and identically distributed (Non-IID) data. This Non-IID data distribution leads to inconsistencies
in clients’ local objective functions and optimization directions, making achieving efficient and accu-
rate model training more complex. The distinct data distributions create a fundamental discrepancy
in achieving minimum local empirical loss while simultaneously reducing the global empirical loss.
This discrepancy poses a challenge in highly heterogeneous environments, where FedAvg McMa-
han et al. (2017b) lacks convergence assurance. It only attains compromised rates of convergence
speed and model performance. Research studies Karimireddy et al. (2020); Khaled et al. (2020)
have proven that data heterogeneity causes drift in clients’ local updates, consequently leading to a
deceleration in convergence speed. The drift in parameters between a client’s model and the central-
ized learning model arises as a result of two factors: residual parameter drift carried over from the
previous round and the gradient drift occurring in the current round Zhao et al. (2018).
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To resolve the issue of client drift in FL, researchers have come up with different approaches Karim-
ireddy et al. (2020); Li et al. (2019). Li et al. (2020c) proposed a FedProx approach, where a prox-
imal term is utilized to reduce the differences between the local and global models. This makes the
local updates less variable and brings them closer to the global model. However, there’s a trade-off
with this approach, as the introduced proximal term helps reduce drift, but it may hinder the global
model from reaching its optimal global stationary point. To overcome the problem of client drift,
Karimireddy et al. (2020) provided a solution in Scaffold. The Scaffold used a control gradient vari-
ate to reduce the drifting of gradients in each communication round. Gao et al. (2022) used gradient
correction term with variance reduction to dynamically update the loss function for overcoming the
drift. However, it is unable to completely eliminate the drifting and some residual deviation between
local and global models. Consequently, residual deviations accumulate during the training process,
causing slower learning leading Zhao et al. (2018).

In many of the earlier FL approaches, the focus was on ensuring that the local models were consistent
with the global model to reduce gradient drift. These FL approaches were successful to some extent
in reducing the drift but enlarged the deviation between local and global model parameters. To
address this problem, Gao et al. (2022) decoupled the local and global models by establishing a
relationship among them using constraint penalty terms. Nevertheless, the disparity between the
local and global models has not been entirely resolved. Considering the fundamental discrepancy
between local and global optimal points in FL, we propose a novel proximal correction with Hessian
and cosine correlation in federated learning (FedHC). In FedHC, we introduce a cosine similarity
correlation to establish a harmonious relationship between global parameters and local parameters
to reduce the disparities between global and client models.

Deep learning techniques frequently leverage similarity measures such as cosine similarity to boost
model generalization. Cosine similarity, which primarily focuses on vector directions, is notably
effective in Natural Language Processing (NLP) tasks, especially when confronted with vastly dif-
ferent word frequency magnitudes. We noticed considerable gradient inconsistencies in the Scenario
among clients. To rectify this, we implemented cosine similarity correlation, which has proven ef-
ficient through mathematical proofs and experimental results. In addition, we propose an approx-
imated Hessian optimizer to elevate the training with fast convergence. By the synergistic effect
of both cosine correlation and approximated Hessian optimizer, the proposed FedHC effectively
reduces the drift between local and global models, achieving faster convergence compared to state-
of-the-art (SOTA) FL algorithms. Our main contributions are as follows:

1. An approximated Hessian optimizer is proposed to elevate and optimize the training models
with fast convergence for federated learning.

2. A proximal cosine correlation is introduced in the objective function to mitigating the dis-
parities between the global and client models.

3. We also integrated the Hessian diagonal operator and cosine correlation to strengthen the
connection between global and local models and to promote collaborative learning for fast
convergence.

We have verified empirical convergence results on various public datasets, such as MNIST,
EMNIST-L, CIFAR10, and CIFAR100 datasets. The results demonstrate that the proposed FedHC
outperforms SOTA FL methods (e.g., FedDC Gao et al. (2022); FedDyn Acar et al. (2021); Scaf-
fold Karimireddy et al. (2020); FedProx Li et al. (2020b); and FedAvg McMahan et al. (2017b))
in both IID and Non-IID client settings, achieving the best performance with significantly faster
convergence.

2 RELATED WORK
Federated Learning (FL) is a rapidly evolving topic involving mainly two types of updates: server
and device. In FL, the goal is to minimize a local loss function associated with each update, which
can be dynamically updated over different rounds. Some methods aim to fully optimize the updates,
while several methods propose inexact optimization Konečný et al. (2016); Kairouz et al. (2021).

FedAvg McMahan et al. (2017b) is a pioneering work that uses weighted parameter averaging to
update parameters from multiple clients. It has been shown in works Patel & Dieuleveut (2019);
Khaled et al. (2020) that FedAvg achieves asymptotic convergence in scenarios involving homoge-
neous clients. However, Woodworth et al. (2018) analyzed that the convergence bounds of FedAVG
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can exhibit notable variations for heterogeneous clients. Researchers Li et al. (2019); Karimireddy
et al. (2020) suggest that client drift caused by Non-IID data is the prime factor affecting hetero-
geneous client’s convergence speed. Previous research Li et al. (2019); Karimireddy et al. (2020)
highlighted the challenges introduced by Non-IID data, such as gradient divergence, biases in opti-
mization, and unassured convergence. Some approaches Kim et al. (2022); Wang et al. (2023) aim
to reduce the variance of clients’ updates to accelerate convergence. The empirical risk function may
be minimized using a uniform global model across clients with non-IID distributed data, however,
making convergence to an optimal global model becomes a more difficult task Li et al. (2020b).
FedProx Li et al. (2020b) addresses statistical heterogeneity and improves stability by introducing
proximal regularization to the local model with the global model. This proximal term ensures that
the updated local parameter remains close to the global model, thereby mitigating the risk of gradi-
ent divergence. Nevertheless, this approach overlooks the distinction between the optimal points of
local empirical objectives and the global optimal point, which can result in suboptimal performance.
An important drawback of these methods is their failure to account for differences in client models,
leading to suboptimal performance and slower convergence rates, especially in scenarios involving
Non-IID data distributions.

Scaffold Karimireddy et al. (2020) modified the gradients for each client to overcome the client
drift between local and global models. Likewise, FedDyn Acar et al. (2021) urges an adaptive reg-
ularizer for each client to align the global and client model parameters and reduce communication
overhead. Another line of research focuses on optimizing the server’s parameter in the aggregation
step to obtain a significantly better model. Work Zhang et al. (2020) dynamically computes the
optimal weighted clients model for the creation of a global model. Reddi et al. (2020) federated
adaptive optimization technique that considers client heterogeneity and communication efficiency
to prevent undesirable convergence behaviour. It builds upon the work of Yang et al. (2021), which
achieved linear speedup with Non-IID data by using two-sided learning rates in local and global up-
dates. These approaches can be seamlessly integrated into existing methods and have demonstrated
improved convergence speed and performance compared to FedAvg. However, Zhao et al. (2018)
presented a theoretical concern that parameter deviation accumulates and leads to suboptimal solu-
tions in federated learning settings. Gao et al. (2022) strives to minimize the variances in global,
local model parameters, and previous local gradients and expected gradient values. To address these
issues, the proposed FedHC bridges the gap between local and global models by establishing a co-
sine correlation. Also, the proposed FedHC uses proximal correction with an approximated Hessian
optimizer to ensure better convergence.

3 FEDHC- FEDERATED OPTIMIZATION USING HESSIAN AND COSINE
CORRELATION

The SOTA FL methods, FedAvg Mills et al. (2019); FedProx Li et al. (2020c); Scaffold Karimireddy
et al. (2020); FedDyn Acar et al. (2021); and FedDC Gao et al. (2022); employ first-order optimiza-
tion with SGD to achieve convergence. However, research indicates 202 (2020) that second-order
optimization techniques, such as Hessian optimization, can enhance the convergence of complex
models. Nonetheless, employing second-order optimization with the current FL (FedDC, FedDyn,
etc.) model results in non-convergence (as evident from experiments, Section 4) due to the nature
of existing objective functions. This issue arises from the linear nature of the gradient correction
and dynamic regularizer components within the objective function of FedDC and FedDyn, causing
them to lose significance during the second-order optimization process. This demands necessary ad-
justments to the objective function to effectively harness the capabilities of second-order optimizers.
To address this and inspired by the successful application of cosine correlation in Natural Language
Processing (NLP) tasks, we propose a unique integration method that combines the Hessian oper-
ator with cosine correction. This innovative approach has proven successful in achieving model
convergence within the context of FL. Furthermore, we consider utilizing an approximated Hessian
optimizer to balance computational complexity without significantly compromising performance.
The primary objective of this paper is to minimize the global loss by optimizing the global model
parameters across D datasets from N clients. To achieve this, we employ a second-order optimizer
on the local parameters as follows.

argminθ∈RN

{
Lt(θ) = Lt

i(θi) : θ = (θi) is the local model parameters at round t.
}

(1)
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Definition 3.1 A point θ∗ = (θ∗i ) ∈ RN is said to be a argmin point of Lt if

Lt
i(θ

∗
i ) ≤ Lt

i(θi), ∀θ = (θi) ∈ RN , and at any time t.

The necessary condition for optimal points is the following:

Theorem 3.1 Assume that the loss function L is a continuous twice-differentiable function. Then L
attains a minimum value at point θ∗ if

∇(Li(θ
∗
i )) = 0 ∀i∈ N and |H(Li(θ

∗
i ))| > 0,

here, |H| is the determinant of the Hessian operator.

More details about the definitions, theorems, and equations are presented in the supplementary doc-
ument.

3.1 OBJECTIVE FUNCTION USING THE COSINE CORRELATION

In FL, a federation is formed by N clients, each having its private local dataset denoted as Di. We
select Ct, (Ct ⊆ [N ]) active clients, and share the global model w for training using client data.
Then, each client computes the loss and updates the model parameters using four components: an
empirical loss, a drift-based penalty, a proximal gradient correlation, and a Hessian optimizer. The
drift-based penalty and the proximal gradient correlation are employed to enhance the optimization
capability of the loss function. This optimization addresses the intricacies of data heterogeneity
among clients, amplifying the learning process’s overall efficiency and effectiveness.

Specifically, each client computes the drift value di, under the constraint that satisfies the condition:
di = w − θi, where θi represents the client ith local model. Maintaining this constraint throughout
training is paramount to effectively controlling the local drift variable. To achieve this, we transform
the constraint into a penalized term as follows Pi:

Pi(θi, di, w) = ∥di + θi − w∥2, ∀ i ∈ [N ] (2)
Here, ∥ · ∥ represents the ℓ2−norm of a vector and [N ] denotes the set of all clients.

Each client can effectively update its model parameters and local drift variables by integrating this
penalized term with the empirical loss term on their respective client’s dataset. As a result, we
convert an equation-constrained optimization problem into an unconstrained optimization problem.
In the proposed FedHC approach, the objective function consists of three main components: the local
empirical loss term L(θi), the penalized term Pi, and proximal gradient correction Si. Specifically,
for client i (where i ∈ [N ]), the local objective function is as follows:

Lt
i(θi, di, Di, w) = L(θi) +

α

2
Pi(θi; di, w) + Si(w, θi, gi, g) (3)

where, Lt
i(θi, di, Di, w), is objective function to optimize ith client in tth round, L(θi) represents

the ordinary empirical loss, The Pi is the penalized term as defined in Eq. 2, and (α) is a hyper-
parameter that controls the weight of the penalized term.

Furthermore, drawing inspiration from Scaffold Karimireddy et al. (2020), we introduce a proximal
gradient correction, Si, to support the second-order optimization. The proximal cosine correction
involves the (·) product of the cosine correlation and the variance of the last local model parameters.
As a result, the cosine correlation effectively identifies the differences between the current local and
global models. The detailed definition of cosine correlation is present in Definition 3.2.

Definition 3.2 The cosine correlation between local (θi) and global (wi) parameters for the ith

client Si : R4 → R is defined as

Si(wi, θi, gi, g) =
1

ηK

((
1− w · θi

∥w∥ · ∥θi∥

)2

(g − gi)

)
(4)

Here, η is the learning rate, K is the number of training iterations in one round, gi denotes the
local update value of client i’s local parameters in the last round, while g represents the estimated
update value of all the clients’ local parameters in the previous round. In the tth round, we have
gi = θti − θt−1

i and g = Ei∈N (gi), where θti and θt−1
i are client i’s local model parameters in the

tth round and (t− 1)th round, respectively.

4



Under review as a conference paper at ICLR 2024

The term Si aims to reduce the disparities at local and global gradients, thereby contributing to a
more stable and efficient training process. The detailed structure for FedHC is outlined in Algorithm
3.2.

The following Lemma proves the smoothness of the cosine correlation term
1

2k
, where k is the

number of epochs on the client side.

Lemma 3.1 ∥Si(w1, θi, gi, g)− Si(w2, θi, gi, g)∥ ≤ 1

2k
∥w1 − w2∥2 ∀θi, gi and g, i ∈ [N ].

3.2 THE LOCAL MODEL PARAMETERS UPDATE USING APPROXIMATED HESSIAN OPTIMIZER

In FL, the global model (w) is initially distributed to all clients i (∀i ∈ [N ]). Subsequently, each
client proceeds to train this global model using its respective local dataset by minimizing the objec-
tive function outlined in Eq 3. The gradients of the objective function γt,k

i in the tth global round
and kth local iteration are calculated as follows.

γt,k
i =

∂L(θt,ki , di, Di, w
t)

∂θt,ki

(5)

By assuming the Hessian of the objective function is positive-definite, we get the descent direction
can be represented as a positive-definite Hessian Ht,k

i .

Definition 3.3 The Hessian optimizer for federated learning is defined as:

∇θt,ki = Ht,k,−p
i γt,k

i (6)

where the Hessian decomposition is given as: Ht,k,−p
i = U T

i Λ−p
i U t,k

i .

The value p (0 < p < 1) is known as the ”Hessian power”. The matrix U T
i ΛiU

t,k
i presents the

eigen decomposition of the Hessian matrix Ht,k
i . It’s important to note that when the value of p is

set to 1, the optimizer behaves similarly to the Newton method, while for p = 0, it behaves more
like the regular gradient descent method.

The novel idea in the second-order Hessian-based optimizer for the loss function involves reloading
the gradient γt,k

i onto the Hessian Ht,k,−p
i . It is well known that determination of the Hessian is a

daunting task and is computationally expensive. To reduce the computational cost associated with
the second-order optimization, we replaced the Hessian Ht,k,−p

i with its diagonal counterpart. This
transformative tweak unveils the following equation:

∇θt,ki = Diag(Ht,k,−p
i ) γt,k

i (7)

To compute this diagonal, we employ Hutchinson’s method Yao et al. (2018).

It is widely acknowledged that Hutchinson’s method efficiently computes the Hessian’s diagonal
matrix by utilizing the Hessian-free method as a resource for Hessian vector products, all at a rea-
sonable computational expense.

In particular, the Hessian-free method acts as a medium between the Hessian matrix with a random
vector z via chain rule as follows:

∂γt,k
i z

∂θi
=

∂γt,k
i

∂θi
z + γt,k

i

∂z

∂θi
=

∂γt,k
i

∂θi
z = Ht,k,−p

i z (8)

Here, z represents a random vector (independent of θi) following the Rademacher distribution. This
efficiently computes Ht,k,−p

i z without having the explicit form of the Hessian, by back-propagating

the
(
γt,k
i

)T
z term. This reduces the computational cost Yao et al. (2018). Further, the Hessian

diagonal is obtained by using the following Hutchinson’s method:

Diag(Ht,k,−p
i ) = E[z ⊙ (Ht,k,−p

i z)] (9)
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Algorithm 1 Proximal correction with Hessian and cosine correlation
for federated learning
Input: Randomly initialize the global model- w, learning rate- η, training global rounds- T, local
iterations- K, initially local drift hi = 0, N - total number of clients, Ct- fraction of selected clients

Output: w∗ minima of global empirical loss

1: for t = 1, 2, 3...T do
2: Sample the active client set Ct ⊆ [N ]
3: for client i ∈ Ct in parallel do
4: Set the local model parameter θi := w
5: for k = 1, 2, ...,K do
6: Compute the local loss Lt,k

i (θi, di, Di, w)

7: Compute the local gradient γt,k
i = η

∂Lt,k
i (θi;di,Di,w)

∂θi

8: Calculate the first and second-order momentum mt,k
i and vt,ki

9: mt,k
i =

(1−β1)
∑K

k=1 βK−k
1 γt,k

i

1−βk
1

10: vt,ki =

√
(1−β2)

∑K
k=1 βK−k

2 Diag(Ht,k,−p
i )

s
Diag(Ht,k,−p

i )
s

1−β2

11: Update the local model parameters: θt,k+1
i = θt,ki − η

mt,k
i

vt,k
i

12: end for
13: Set the local gradient drift ∆θi = θi − w
14: Update the local gradient drift: di = di +∆θi
15: end for
16: Update the global model: w = 1

|Ct|
∑
i∈Ct

(θi + di)

17: Set global gradient drift ∆θ = 1
|Ct|

∑
i∈Ct

∆θi

18: end for

Hutchinson’s method enables the computation of the Hessian diagonal by using the expectation of z
⊙(Ht,k,−p

i z) Bekas et al. (2007). Here ⊙ represents component-wise multiplication of vectors.

The Hessian diagonal might vary significantly across each unique parameter dimension in the under-

lying problem. To diminish this, we perform spatial averaging
(
Diag(Ht,k,−p

i )
)s

of the Hessian
diagonal. Further, the responses of smooth spatial averaging will be used in the Hessian diagonal
momentum. This second-order moments, denoted as vt,ki and computed as:

vt,ki =

√√√√ (1− β2)
∑K

k=1 β
K−k
2

(
Diag(Ht,k,−p

i )
)s (

Diag(Ht,k,−p
i )

)s
1− β2

(10)

Instead of applying only a second-order momentum, the Hessian diagonal momentum, FedHC uses
a first-order gradient momentum

(
mt,k

i

)
and Hessian diagonal momentum

(
vt,ki

)
to smooth out

local variations in the gradient update. The first-order momentum is computed as follows:

mt,k
i =

(1− β1)
∑K

k=1 β
K−k
1 γt,k

i

1− βk
1

(11)

In continuous with the previous discussion, the proposed FedHC model parameters are updated as
follows:

θt,k+1
i = θt,ki − η

mt,k
i

vt,ki

(12)

3.3 UPDATING THE LOCAL DRIFT AND GLOBAL MODEL PARAMETER

The proposed FedHC method uses the local drift variables, which are used to quantify the deviation
of each client’s local model from the global model. These drift variables are computed by taking the
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difference between the local and global model parameters, and are used to adjust the local model
parameters before sending them to the global model for aggregation. The adjustment process aims
to reduce the communication overhead and improve the convergence speed of the FL. The objective
of FedHC is to minimize a loss function that depends on both the local model parameters and the
local drift variables. To optimize this objective, we adopt the local drift and global model parameters
updating rules of FedDC Gao et al. (2022).

3.4 CONVERGENCE ANALYSIS OF THE PROPOSED FEDHC
Combining cosine correlation and Hessian diagonal approximation leads to a better convergence of
the proposed FedHC. The convergence of the FedHC follows from the fact that the Hessian of the
objective function is positive and lipschtiz continuous, i.e. Hii > 0, for all i ∈ [N ].

Definition 3.4 Let {xn} be an iterative scheme of a numerical method. Suppose x∗ is the original
solution of the method. A number p ≥ 1 is said to be an order of convergence of the method if there
exists a C ≥ 0 such that

lim
n→∞

∥xn+1 − x∗∥
∥xn − x∗∥p

= C

The following theorem ensures the better convergence of the proposed method.

Theorem 3.2 The order of the convergence of the FedHC is 2.

Additional insights regarding the thorough convergence analysis and order of convergence for the
FedHC is available in the supplementary materials.

4 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we assess the performance of the proposed FedHC and compare it with several SOTA
procedures FedDC Gao et al. (2022), FedDyn Acar et al. (2021), Scaffold Karimireddy et al. (2020),
FedProx Li et al. (2020b), FedAvg McMahan et al. (2017b). We present compelling evidence of
FedHC’s efficacy, establishing its superiority over existing FL approaches in terms of convergence
speed and model accuracy.

4.1 DATASETS

To test the performance of the proposed FedHC, we used the four benchmark datasets: CIFAR10,
CIFAR100 Krizhevsky et al. (2009), MNIST LeCun et al. (1998), and EMNIST-L Cohen et al.
(2017), over both IID and Non-IID settings. We follow the literature Gao et al. (2022) for exper-
imental settings such as train/test split, IID, and Non-IID data division strategies. For Non-IID,
we used Dirichlet data distribution with Dirichlet coefficients 0.6 and 0.3. To evaluate the proposed
FedHC, we used different baseline deep learning architectures for different datasets. Particularly, we
utilized fully connected CNN architectures from McMahan et al. (2017b) for MNIST, EMNIST-L,
CIFAR10, and CIFAR100.

4.2 HYPER-PARAMETER SETTINGS

We adhered to the FL framework, wherein multiple clients independently train a global model using
their respective local datasets during each communication round. Subsequently, a central server
aggregates these client updates to update the global model parameters. However, for weight updation
and optimization, we utilized the second-order Hessian optimizer. To preserve consistency across all
techniques on the real-world datasets, we have set batch size equal to 50 for all the clients, number
of local epochs of 5 for training in each communication round. We set the initial learning rate to
0.1, and the weight decay rate is 0.998. Based on the extensive experiments hyper-parameter values
β1 = 0.5, β2 = 0.9, and p = 0.5 for MNIST, EMNIST-L, CIFAR10 and β1 = 0.8, β2 = 0.9, and
p = 0.5 used in Hessian optimizer. β1 delineates the first-order momentum and β2 is second-order
momentum enumerating local gradient directions, and p defines the Hession power. The parameters
listed above all, except weight updation adhere to the earlier works Gao et al. (2022), Acar et al.
(2021), Karimireddy et al. (2020), Li et al. (2020b). We set the hyper-parameter (α) of FedHC and
FedDC as 0.01 for CIFAR10, CIFAR100, and 0.1 for MNIST. We preserve the same values for the
individual hyper-parameters of the baselines as their cited studies. We adopted the Acar et al. (2021)
and Li et al. (2020b) hyper-parameters value α = 0.01 and µ = 10−4, respectively.
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Table 1: Communication rounds required to achieve target accuracy for existing and proposed
FedHC, FL approaches.

Model
Full Participation Partial Participation

D1 D2 IID D1 D2 IID
R# S R# S R# S R# S R# S R# S

MNIST, 100 clients, Target Accuracy 98%
FedAvg 258 - 492 - 142 - 361 - >600 - 158 -
FedProx 263 .98× 480 1.03× 136 1.04× 383 .94× 418 1.44× 149 1.06×
Scaffold 58 4.45× 58 8.48× 53 2.68× 62 5.82× 72 8.33× 50 3.16×
FedDyn 46 5.61× 51 9.65× 27 5.26× 122 2.96× 153 3.92× 71 2.23×
FedDC 35 7.37× 37 13.30× 26 5.46× 60 6.02× 62 9.68× 46 3.43×
FedSim* 42 6.14× 53 9.28× 58 2.45× 59 6.12× 80 7.5× 52 3.04×
FedAdha* NC NC NC NC NC NC NC NC NC NC NC NC
Proposed 34 7.59× 37 13.30× 25 5.68× 42 8.60× 61 9.83× 36 4.39×

EMNIST-L, 100 clients, Target Accuracy 94%
FedAVG 142 - 192 - 107 - 153 - 245 - 108 -
FedProx 135 1.05× 198 0.97× 92 1.16× 145 1.06× 240 1.02× 105 1.03×
Scaffold 43 3.30× 52 3.69× 27 3.96× 73 2.10× 81 3.02× 61 1.77×
FedDyn 30 4.73× 52 3.69× 27 3.96× 73 2.11× 81 3.02× 61 1.77×

FedDC 43 3.30× 60 3.2× 21 5.09× 48 3.19× 74 3.31× 47 2.30×
FedSim* 48 2.95× 66 2.90× 23 4.65× 75 2.04× 89 2.75× 49 2.20×
FedAdha* NC NC NC NC NC NC NC NC NC NC NC NC
Proposed 35 4.06× 48 4× 21 5.10× 42 3.64× 55 4.45× 34 3.18×

CIFAR 10, 100 clients, Target accuracy 80%
FedAvg >1000 - >1000 - 286 - 616 - >1000 - >1000 -
FedProx 474 2.11× >1000 1× 277 1.03× 459 1.34× >1000 1× 307 3.26
Scaffold 165 6.06× 218 4.58× 120 2.38× 200 3.08× 263 3.80× 126 7.94×
FedDyn 60 16.67× 75 13.33× 55 5.2× 193 3.19× 195 5.12× 145 6.90×
FedDC 53 18.86× 70 14.29× 43 6.65× 141 4.37× 143 6.99× 108 9.25×
FedSim* 58 17.24× 73 13.70× 57 5.01× 170 3.62× 191 5.24× 132 7.58×
FedAdha* NC NC NC NC NC NC NC NC NC NC NC NC
Proposed 47 21.28× 59 16.95× 42 6.81× 122 5.05× 165 6.06× 104 9.61×

CIFAR 100, 100 clients, Target accuracy 40%
FedAvg 476 - 847 - 1000 - 615 - 520 - 724 -
FedProx 502 0.93× 507 1.67× 273 3.66× 280 2.19× 503 1.03× 650 1.11×
Scaffold 91 5.31× 94 9.01× 84 11.90× 106 5.80× 114 4.56× 113 6.40×
FedDyn 51 9.16× 53 15.98× 56 17.86× 149 4.13× 148 3.51× 143 5.06×
FedDC 39 12.20× 41 20.66× 37 27.03× 102 6.03× 103 5.05× 100 7.24×
FedSim* 54 8.81× 54 15.68× 58 17.24× 144 4.27× 160 3.25× 144 5.03×
FedAdha* NC NC NC NC NC NC NC NC NC NC NC NC
Proposed 36 13.22× 39 21.72× 39 25.64× 105 5.86× 103 5.05× 104 6.96×

Here, ’R#’, S, and NC represent the communication round, corresponding convergence speedup relative to Fed-
Avg, and non-convergence, respectively. > represents the greater than operation. Whereas, D1 and D2 imply for
0.6-Dirichlet and 0.3-Dirichlet in Non-IID, settings. ∗ represents the ablation study experiments.

4.3 RESULTS AND ANALYSIS

We conducted extensive experiments to assess the proposed FedHC convergence speed and model
performance superiority. Additionally, we demonstrated the robustness and effectiveness of the pro-
posed FedHC across various participation levels and data heterogeneity scenarios. All our findings
are presented in the context of the global model. Since the baselines and the proposed FedHC utilize
the same computational resources in each round, we report the number of communication rounds
rather than FLOPS. The primary objectives of FedHC are (1) accelerating the model’s convergence
rate to reduce communication costs and (2) enhancing the performance of models trained on diverse
datasets. Our results underscore the advantages of the proposed FedHC over existing federated
learning optimization approaches. Table 1 compares the convergence speed between the proposed
FedHC and the aforementioned baseline methods. The results demonstrate that the proposed FedHC
outperforms the other methods in effectively managing local drift and expediting convergence. The
proposed FedHC achieves the target accuracy with significantly fewer communication rounds com-
pared to McMahan et al. (2017b); Li et al. (2020b); Karimireddy et al. (2020); Acar et al. (2021);
Gao et al. (2022). Moreover, the proposed FedHC achieves a reduction in the number of communi-
cation rounds by 319, 539, and 122 times with 8.56 times, 9.83 times, and 4.39 times higher speed,
respectively, under D1, D2, and IID settings to attain 98% accuracy with 100 clients over partial
participating settings for the MNIST dataset as compared to FedAvg. In the case of the EMNIST
dataset, the proposed FedHC also achieves a reduction in the number of communication rounds by
100, 185, and 68 times with 3.4 times, 4.45 times, and 2.91 times higher speeds, respectively, un-
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der D1, D2, and IID settings, resulting in 94% accuracy with 100 clients over partial participating
settings as compared to FedAvg. Additionally, the proposed FedHC reduces the number of com-
munication rounds by 494, 885, and 896 with 5.05 times, 6.06 times, and 9.61 times higher speeds,
respectively, under D1, D2, and IID settings, achieving 80% accuracy with 100 clients over partial
participating settings for the CIFAR-10 dataset as compared to FedAvg. Similarly, for full partic-
ipation, the proposed FedHC consistently achieves equivalent or slightly better performance than
FedDC regarding the number of rounds and speed across all four datasets, encompassing all three
settings of D1, D2, and IID.

4.4 ABLATION STUDY
To examine the efficacy of the proposed FedHC, we analyze the role of the proximal gradient cor-
rection and Hessian optimizer approximation in the ablation study.

Impact of cosine correlation: To test the effectiveness of the cosine correlation, we conducted
the experiment using an SGD optimizer with a proximal gradient correction factor FedSim. This
ablation experimental results are tabulated in Table 1. From the results, it is clear that the pro-
posed FedHC outperforms the ablation approach FedSim. To provide more specific details, FedHC
substantially reduces the number of communication rounds across various scenarios. For instance,
under the D1, D2, and IID settings, it accomplishes reductions of 17, 19, and 10, respectively, in
conjunction with 28.81%, 23.75%, and 21.73% headway from FedSim. These improvements led to
an impressive 98% accuracy with 100 clients when considering partial participation for the MNIST
dataset. A similar positive impact is observed with the EMNIST dataset, where the proposed FedHC
achieves reductions by 30, 34, and 12 communication rounds while maintaining 40%, 38.2%, and
24.48% higher convergence than FedSim under the respective settings. This yields a commendable
94% accuracy in the context of partial participation. Moreover, when dealing with the CIFAR-10
dataset under D1, D2, and IID settings, the proposed FedHC once again showcases its capabilities,
substantially reduced by 35, 26, and 28 in communication rounds alongside 20.59%, 13.61%, and
21.21% progress. The outcome is an 80% accuracy rate with 100 clients in partial participation sce-
narios. For the CIFAR-100 dataset under D1, D2, and IID settings, the proposed FedHC achieved
substantial reductions by 39, 57, and 40 in communication rounds alongside 27.08%, 35.62%, and
27.78% higher speeds. The outcome is a 40% accuracy rate with 100 clients’ partial participation
scenarios.

Impact of approximated Hessian optimizer: To examine the role of the approximated Hessian
optimizer, we evaluated results for FedDC Gao et al. (2022) with the approximated Hessian opti-
mizer called FedAdha. Experimental results are reported in from the results presented in Table 1, it is
evident that FedAdha is not conducive to achieving convergence in FL models. Typically, first-order
derivatives are commonly utilized for optimizing weight parameters. However, existing literature
202 (2020) has demonstrated that incorporating second-order derivatives can significantly improve
convergence. In the ablation of FedAdha, we initially attempted to employ a second-order optimizer
in conjunction with FedDC Gao et al. (2022). Regrettably, this FL approach failed to converge due
to conflicts arising from the interaction between linear and non-linear optimization methods. This
failure served as the impetus for us to seek an effective solution. Consequently, we introduced a
novel approach: combining second-order cosine correlation with second-order approximated Hes-
sian optimizer. This unique combination, implemented in the proposed FedHC, has proven highly
effective, enabling the model to achieve superior performance while maintaining rapid convergence.

5 CONCLUSION

We proposed a novel proximal correction with an approximated Hessian optimizer and proximal
cosine correlation for federated learning. The proposed approx. Hessian optimizer elevates and op-
timizes the training models with fast convergence. Cosine correlation is introduced in the objective
function to mitigate the disparities between the global and client models. We have proven that in-
tegrating the Hessian diagonal operator and cosine correlation strengthens the connection between
global and local models and promotes collaborative learning for fast convergence. The proposed
FedHC method outperforms SOTA FL approaches on four datasets: MNIST, EMNIST, CIFAR-10,
and CIFAR-100 by accelerating convergence and exhibiting superior performance across various
image classification tasks, robust in both IID and Non-IID client settings.
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