
Learning Markov Networks With Arithmetic Circuits

Daniel Lowd LOWD@CS.UOREGON.EDU
Amirmohammad Rooshenas PEDRAM@CS.UOREGON.EDU

Department of Computer and Information Science, University of Oregon, Eugene, OR 97403

Abstract
Markov networks are an effective way to rep-
resent complex probability distributions. How-
ever, learning their structure and parameters or
using them to answer queries is typically in-
tractable. One approach to making learning and
inference tractable is to use approximations, such
as pseudo-likelihood or approximate inference.
An alternate approach is to use a restricted class
of models where exact inference is always effi-
cient. Previous work has explored low treewidth
models, models with tree-structured features, and
latent variable models. In this paper, we in-
troduce ACMN, the first ever method for learn-
ing efficient Markov networks with arbitrary con-
junctive features. The secret to ACMN’s greater
flexibility is its use of arithmetic circuits, a linear-
time inference representation that can handle
many high treewidth models by exploiting local
structure. ACMN uses the size of the correspond-
ing arithmetic circuit as a learning bias, allow-
ing it to trade off accuracy and inference com-
plexity. In experiments on 12 standard datasets,
the tractable models learned by ACMN are more
accurate than both tractable models learned by
other algorithms and approximate inference in
intractable models.

1. Introduction
Markov networks (MNs) are one of the most effective ways
to compactly represent a complex probability distribution
over a set of random variables. Unfortunately, answering
marginal or conditional queries in an MN is #P-complete in
general (Roth, 1996). Learning MN parameters and struc-
ture is also intractable in the general case, since computing
the gradient of the log-likelihood requires running infer-
ence in the model.

As a result, most applications of MNs use approximate

Proceedings of the 30 th International Conference on Machine
Learning, Atlanta, Georgia, USA, 2013. JMLR: W&CP volume
28. Copyright 2013 by the author(s).

methods for learning and inference. For example, param-
eter and structure learning are often done by optimizing
pseudo-likelihood instead of log-likelihood, or by using ap-
proximate inference to compute gradients. Many approx-
imate inference algorithms have been developed, but, de-
pending on the problem and the algorithm, the approxima-
tion may be inaccurate or unacceptably slow.

The key to making MNs more useful is to make exact infer-
ence efficient. Even though inference is #P-complete in the
worst case, there are many interesting special cases where
exact inference remains tractable. Previous work has inves-
tigated methods for learning MNs with low treewidth (Bach
& Jordan, 2001; Elidan & Gould, 2008; Chechetka &
Guestrin, 2008), which is a sufficient condition for effi-
cient inference, but not a necessary one. Another approach
is to learn a tree of features (Gogate et al., 2010), which
may have high treewidth but still admits efficient inference.
However, this approach leads to many very long features,
with lengths proportional to the depth of the tree.

Another method for learning tractable graphical models is
to use mixture models with latent variables. The simplest
example is a latent class model (Lowd & Domingos, 2005),
in which the variables are conditionally independent given
a single latent variable. Other examples include mixtures of
trees (Meila & Jordan, 2000) and latent tree models (Wang
et al., 2008; Choi et al., 2011). Sum-product networks that
use a carefully structured network of latent variables have
been very successful at certain computer vision applica-
tions (Poon & Domingos, 2011). Latent variable models
excel when there are natural clusters present in the domain,
but may do worse when such structure is not present. An-
other limitation of latent variable models is that they can-
not efficiently compute the most likely configuration of the
observable variables conditioned on evidence (the MPE
state), since summing out the latent variables makes the
maximization problem hard.

In this paper, we propose ACMN, a new method for learn-
ing the structure and parameters of tractable MNs over dis-
crete variables. Our method represents the network struc-
ture as a set of conjunctive features, each of which is a log-
ical rule that evaluates to 1 if the specified variables take on
their given values and 0 otherwise. Unlike previous work,
there are neither latent variables nor explicit restrictions on



Learning Markov Networks With Arithmetic Circuits

the treewidth or structure of these features, as long as they
admit a model with efficient inference.

To ensure efficient inference, ACMN simultaneously learns
an arithmetic circuit (AC) that encodes the same distribu-
tion as the MN. An AC is a compact representation with
linear time inference. ACs are similar to junction trees,
but can be exponentially more compact by exploiting lo-
cal structure or determinism. Thus, as long as the AC is
relatively small, inference can be done quickly in the MN.
ACMN exploits this directly by performing a greedy search
in the space of possible structures, using the size of the AC
as a learning bias.

ACMN is similar to the LearnAC algorithm (Lowd &
Domingos, 2008), except that it learns an MN rather than
a Bayesian network. Bayesian networks are a less flexible
representation than MNs, since every probability distribu-
tion that can be encoded as a compact Bayesian network
can also be encoded as an MN, but the converse is not
true. The disadvantage of MNs is that the likelihood is no
longer node decomposable and parameter estimation can
no longer be done in closed form. ACMN overcomes these
challenges with intelligent heuristics to minimize the cost
of scoring candidate moves. Even so, ACMN is more com-
putationally expensive than LearnAC, but offers the bene-
fits of a more flexible representation and thus more accurate
models.

The rest of the paper is organized as follows. In Section
2, we present additional background on ACs. In Section
3, we present the details of ACMN. We compare ACMN
empirically to a variety of baseline algorithms in Section 4,
and conclude in Section 5.

2. Arithmetic Circuits
Consider a set of n discrete random variables, X =
{X1, X2, . . . , Xn}. For simplicity, we assume that each
Xi is Boolean, with states xi (meaning Xi is true) and ¬xi
(Xi is false). However, these methods can be generalized
to multi-valued variables as well. For positive distributions,
a Markov network (MN) over these variables can be repre-
sented as a log-linear model, logP (X ) =

∑
i wifi(Di) −

logZ, where Z is the partition function, each fi is a real-
valued feature function with domain Di ⊂ X , and wi is
a real-valued weight. We focus on the special case where
each fi is a logical conjunction of variable tests that evalu-
ates to 1 if the expression is satisfied and 0 otherwise.

The network polynomial for an MN is a polynomial with
an exponential number of terms, one for each possible state
of the random variables (Darwiche, 2003). Each term is a
product of indicator variables (λxi

) for the states of the ran-
dom variables and the parameters (θj) of all features satis-
fied by that state. For example, consider an MN over X1

and X2 with two conjunctive features, f1 = x1 ∧ x2 and
f2 = x2. Since the weights are in log-space, we define
θ1 = ew1 and θ2 = ew2 . Now we can construct the network
polynomial, which is multilinear in the λ and θ variables:

λx1λx2θ1θ2 + λx1λ¬x2 + λ¬x1λx2θ2 + λ¬x1λ¬x2

When all indicator variables λ are set to 1, the network
polynomial computes the partition function of the MN. The
network can be conditioned on evidence by setting the ap-
propriate indicator variables to zero. For example, condi-
tioning the network on X1 = ¬x1 can be done by set-
ting λx1

to zero, so that all terms involving λx1
evaluate

to zero. Marginals of variables and features can also be
computed by differentiating the network polynomial. See
Darwiche (2003) for more details.

Since the network polynomial has exponential size, work-
ing with it directly is intractable. However, in some cases, it
can be represented compactly as an arithmetic circuit (Dar-
wiche, 2003). An arithmetic circuit (AC) is a rooted, di-
rected acyclic graph in which leaves contain numerical val-
ues, such as parameters or indicator variables, and interior
nodes are addition and multiplication operations. Evaluat-
ing or differentiating the AC with or without evidence can
be done in linear time in the size of the circuit. Therefore,
we can perform efficient inference in any MN if we have a
compact representation of it as an AC.

ACs are very closely related to sum-product networks
(SPNs) (Poon & Domingos, 2011). In fact, every AC can
be compactly represented as an SPN and vice versa. The
key difference is that SPNs attach weights to the outgoing
edges of sum nodes, while ACs represent the same oper-
ation using additional product and parameter nodes. The
specific structures used by Poon and Domingos involved a
complex arrangement of implicit latent variables, while we
focus on learning MNs with no latent variables.

Lowd and Domingos (2008) demonstrated that an AC
could be learned from data by adapting a Bayesian network
structure learning algorithm to use the size of the corre-
sponding circuit as a learning bias. Rather than compiling
the AC from scratch each time, LearnAC evaluates candi-
date structure modifications by performing equivalent mod-
ifications to the AC. In the following section, we will show
how this idea can be extended to learning arbitrary MNs,
which is our main contribution in this paper.

3. The ACMN Algorithm
We now describe ACMN, our proposed method for learn-
ing an MN with conjunctive features and its corresponding
compact AC.

ACMN performs a greedy search through structure space,



Learning Markov Networks With Arithmetic Circuits

similar to the methods of Della Pietra et al. (1997) and Mc-
Callum (2003). The initial structure is the set of all single-
variable features, which define a product of marginals dis-
tribution. The search operations are to take an existing fea-
ture in the model, f , and combine it with another variable,
V , creating two new features: f ∧ v and f ∧ ¬v. We re-
fer to this operation as a “split,” since it takes an existing
feature and splits it into three: the original feature and two
new ones that condition on the value of V .

Splits are scored according to their effect on the log-
likelihood of the MN and the size of the corresponding AC:

score(s) = ∆ll(s)− γ∆e(s)

Here, ∆ll is a measure of how much the split will increase
the log-likelihood. Measuring the exact effect would re-
quire jointly optimizing all model parameters along with
the parameters for the two new features. To make split
scoring more efficient, we instead use the log-likelihood
gain from modifying only the weights of the two new fea-
tures, keeping all others fixed. This gives a lower bound on
the actual log-likelihood gain. This gain can be computed
by solving a simple two-dimensional convex optimization
problem, which depends only on the empirical counts of the
new features in the data and their expected counts in the
model, requiring performing inference just once to com-
pute these expectations. A similar technique was used by
Della Pietra et al. (1997) and McCallum (2003) for effi-
ciently computing feature gains.

∆e(s) denotes the number of edges that would be added to
the AC if this split were included. Computing this has sim-
ilar complexity to performing the split. γ gives the relative
weightings of the two terms. The combined score function
is equivalent to maximizing likelihood with an exponential
prior on the number of edges in the AC.

3.1. The Overall Algorithm

ACMN makes one additional approximation that leads to
a much faster implementation. ACMN assumes that, as
learning progresses, the score of any given split decreases
monotonically. The score of a split can decrease for two
reasons. First, a split’s likelihood gain ∆ll(s) may decrease
as other similar splits are performed, making s increasingly
redundant. Second, as the circuit grows in size, the edge
costs typically increase, since there are more edges that
may need to be duplicated when performing a split. While
this assumption does not always hold, it allows us to eval-
uate only a small fraction of the available splits in each
iteration, rather than rescoring every single one.

A high-level view of our algorithm is shown in Algo-
rithm 1. This simple description assumes that every split
is rescored in every iteration. To achieve reasonable run-
ning times, our actual implementation of ACMN uses a

Algorithm 1 Greedy algorithm for learning MN ACs.
function ACMN(T )
initialize model M and circuit C as product of marginals
initialize priority queue Q with initial candidate splits
loop

Update edge and likelihood gain for each split in Q.
s← Q.pop() // Select best split
(M,C, f, θ, f ′, θ′)← ACMN-Split(s,M,C)
(M,C)← OptimizeWeights(M,C, T )
for V ∈ X do

Add new splits (f, θ, V ) and (f ′, θ′, V ) to Q.
end for

end loop
return (M,C)

priority queue which ranks splits based on their most re-
cently computed score. The split at the front of the queue
is therefore the most promising candidate. We repeatedly
remove the split from the front of the queue and recompute
its likelihood gain or edge gain if either is out of date. Since
computing likelihood gain is usually cheaper, we compute
it first and reinsert the split into the priority queue with the
updated score, since a bad likelihood may be enough to rule
it out. If both gains are up-to-date, then the split is better
than any other split in the priority queue, as long as we as-
sume that the scores for other splits in the queue have not
increased since they were inserted.

One final optimization is that we can compute many of the
expectations we need in parallel using the AC. Specifically,
by conditioning on feature f and differentiating the circuit
with respect to the indicator variables, we can compute the
expectations E[f ∧ xi] and E[f ∧ ¬xi] for all variables
Xi in a single pass, which takes linear time in the size of
the circuit. In other words, the time to estimate the like-
lihood gain for all splits of a single feature can be done in
O(e) time rather thanO(ne) time, where e is the number of
edges in the circuit. We can use this same technique when
recomputing likelihood gains, by caching the expectations
for all of a feature’s splits when we compute the first one.

3.2. Updating the Circuit

One of the key subroutines in ACMN is ACMN-Split,
which updates an AC without recompiling it from scratch.
(A very similar procedure is also used for ComputeEdge-
Gain, which computes exactly how many edges ACMN-
Split would add.) Given a circuit C that is equivalent to an
MN M and a valid split s, SplitAC returns a modified cir-
cuit C ′ that is equivalent to M after applying split s, along
with the new features and parameters.

Pseudocode is present in Algorithm 2, followed by an illus-
tration of the basic operation in Figure 1. In an AC, the mu-
tual ancestors of two sets of nodes N and M are the nodes
that are ancestors of at least one node in each set, and that



Learning Markov Networks With Arithmetic Circuits

Algorithm 2 Subroutine that updates an arithmetic circuit
C by adding two new features, g = f ∧ v and g′ = f ∧¬v.

function ACMN-Split(s,M,C)
Let θ = s.paramNode, V = s.varNodes
Let A be the mutual ancestors of the parameter node (θ) and
the variable nodes (λv , λ¬v).
Let Gθ be the subcircuit between θ and A.
Let Gv,¬v be the subcircuit between {λv, λ¬v} and A.
A← mutual ancestors of θ and V
Gv ← Clone(Gv,¬v)[0/λ¬v]
G¬v ← Clone(Gv,¬v)[0/λv]
Gθ1 ← Clone(Gθ)[Prod(θ1, θ)/θ]
Gθ2 ← Clone(Gθ)[Prod(θ2, θ)/θ]
A′ ← Sum(Prod(λv, Gv, Gθ1), Prod(λ¬v, G¬v, Gθ2))
Let g = f ∧ v, g′ = f ∧ ¬v
return (M ∪ {g, g′}, C[A′/A], g, θ1, g

′, θ2)

Before Split After Split

λv! λ¬v!

×!Gθ!

θ!

Gv,¬v!

θ!

+"
×" ×"

λv! λ¬v"

θ1! θ2!

Gθ1! Gθ2!Gv! G¬v!

Figure 1. Illustration of the operation of the ACMN-Split subrou-
tine, splitting a feature with parameter node θ on variable V .
Dashed lines indicate sections of the circuit where details have
been omitted.

have no children that are mutual ancestors of N and M .
The subcircuit between N and M consists of all nodes in
the circuit that are ancestors of a node in N and descen-
dants of a node in M . Clone creates a copy of a subcircuit
that maintains the same connectivity both within the sub-
circuit and to external nodes. We also define (sub)circuit
substitution syntax as follows: C[n′/n] represents a new
circuit where all nodes that had node n as a child now have
n′ as a child instead. Finally, Sum and Prod construct new
addition and multiplication nodes.

To split a feature f on a variable V , we must introduce two
new parameters for the new features, so that all terms in
the network polynomial that satisfy one of the new features
will include the appropriate parameter. In other words,
whenever f is satisfied and V = v, we must multiply by
both θ, the parameter for f , and θ1, the parameter for the
new feature f ∧ v. For the AC to be consistent, we must
“sum out” V only once. The logical place to do this is at the
mutual ancestors of the parameter node θ and the variable
nodes {λv, λ¬v}. This allows us to condition θ on V , with-
out invalidating the existing portions of the AC that already
depend on V .

4. Experiments
4.1. Methods

To evaluate the accuracy of ACMN, we compared it to
four state-of-the-art algorithms, two for learning MNs and
two for learning other forms of tractable graphical mod-
els. Our MN baselines are GSSL (Haaren & Davis, 2012)
and L1-regularized logistic regression (L1) (Ravikumar
et al., 2009), which have shown good performance on
these datasets in previous work. Our two tractable base-
lines are a recent method for learning latent tree mod-
els (LTM) (Choi et al., 2011) and the LearnAC algo-
rithm (Lowd & Domingos, 2008). We refer to LearnAC
as ACBN since, like ACMN, it learns an AC and graphical
model through greedy combinatorial search, but it searches
through BN structures rather than MNs. The objective
function of GSSL and L1 is pseudo log-likelihood while
ACMN, ACBN, and LTM optimize log-likelihood.

For all baseline methods, we used publicly available code
and replicated recommended tuning procedures as closely
as possible. For the tractable models (ACMN, ACBN,
LTM) all options and parameters were tuned to maximize
log-likelihood on the validation set; for GSSL and L1, the
pseudo-likelihood of the validation set was used instead.

For our evaluation, we used 12 binary variable datasets,
which have been used by several previous papers on MN
structure learning (Davis & Domingos, 2010; Lowd &
Davis, 2010; Haaren & Davis, 2012).

Table 1. Log-likelihood comparison
Dataset ACMN ACBN LTM
NLTCS -6.01 -6.02 -6.49
MSNBC -6.04 -6.04 -6.52
KDDCup 2000 -2.15 -2.16 -2.18
Plants -12.89 -12.85 -16.39
Audio -40.32 -41.13 -41.90
Jester -53.35 -54.43 -55.17
Netflix -57.26 -57.75 -58.53
MSWeb -9.77 -9.81 -10.21
Book -35.62 -36.02 -34.22
WebKB -161.30 -159.85 -156.84
Reuters-52 -89.54 -89.27 -91.23
20 Newsgroup -159.56 -159.65 -156.77

To evaluate the effectiveness of each method at answer-
ing queries, we used the test set to generate proba-
bilistic queries with varying amounts of evidence, rang-
ing from 90% to 10% of the variables in the domain.
The evidence variables were randomly selected separately
for each test query. All non-evidence variables were
query variables. For LTM, ACBN, and ACMN, we com-
puted the exact conditional log-likelihood (CLL) of the
query variables given the evidence (logP (X = x|E =
e)). For L1 and GSSL, we computed the conditional



Learning Markov Networks With Arithmetic Circuits

−0.5

−0.4

−0.3

C
(M

)L
L

NLTCS

−0.3

−0.2

−0.1

C
(M

)L
L

Plants

−0.5

−0.4

−0.3
Audio

8

−0.55
−0.5

−0.45
−0.4

Jester

−0.034

−0.032

−0.03
MSWeb

−0.08

−0.075

−0.07

−0.065
Book

20 40 60 80

−0.2

−0.18

−0.16

% of Query Vars.

C
(M

)L
L

WebKB

20 40 60 80

−0.1

−0.05

0

% of Query Vars.

Reuters−52

20 40 60 80
−0.18

−0.17

−0.16

% of Query Vars.

20 Newsgroups−0.6
−0.58
−0.56
−0.54
−0.52
−0.5

C
(M

)L
L

Netflix

−0.035

−0.034

−0.033

−0.032

−0.031
KddCup 2000

−0.4

−0.35

−0.3
MSNBC

 

 

ACMN
GSSL
L1
LTM
ACBN

Figure 2. Normalized CLL and CMLL vs. fraction of query variables. CLL is reported for all tractable models (ACMN, LTM, ACBN)
while CMLL is reported for the rest.

0 50 100
10−4

10−2

100

102 Audio

% of Query Vars.
0 50 100

10−4

10−2

100

102

Ti
m

e

% of Query Vars.

Book

0 50 100
10−5

100

105

% of Query Vars.

20 Newsgroups

 

 

ACMN
GSSL
L1
LTM
ACBN

Figure 3. Query time for different percentages of query variables

marginal log-likelihood (CMLL) instead, a popular alterna-
tive when rare joint probabilities are hard to estimate (Lee
et al., 2007). CMLL is similar to CLL, but the log-
likelihood of the query variables is computed using their
conditional marginals rather than their joint probability:∑

i logP (Xi = xi|E = e). Marginals were computed by
running Gibbs sampling with 100 burn-in and 1000 sam-
pling iterations; results using belief propagation were sim-
ilar. To make the results with different amounts of evi-
dence more comparable, we divided the CLL and CMLL
by the number of query variables to obtain normalized CLL
(NCLL) and normalized CMLL (NCMLL), respectively.

4.2. Results

Table 1 shows the log-likelihoods of LTM, ACBN, and
ACMN on each of the 12 datasets. (Computing log-
likelihoods for GSSL or L1 is intractable.) ACMN is the
most accurate algorithm on 6 of the 12 datasets, beating
ACBN on 8 (plus 1 tie) and LTM on 9.

Since ACMN and ACBN often have very similar log-
likelihoods, we wanted to determine whether or not their
actual distributions were similar as well. We used sampling
to estimate the KL divergence between ACBN and ACMN
models, and found that it was often much larger than the
difference in log-likelihood. Furthermore, the number of
nodes and edges was often very different as well.



Learning Markov Networks With Arithmetic Circuits

Figure 2 shows NCMLL and NCLL values for each dataset
with different fractions of query variables. GSSL and L1
more or less follow the same trend in all datasets. They
perform well when there are few query variables (and a
lot of evidence), but their performance quickly degrades
with more query variables and less evidence. This trend
is consistent with the properties of optimizing the pseudo-
likelihood objective, which is suitable for queries with a
small number of variable conditioned on a large amount of
evidence. In high dimensional datasets such as Reuters-52,
WebKB, Book, and 20-Newsgroups, the very large number
of query variables exacerbate the condition by preventing
the Gibbs sampler from converging in the given number of
iterations. Increasing the number of iterations might lead
to improved performance, but Gibbs sampling is already
quite slow on these domains, taking over 9 days for GSSL
to compute the queries for 20 Newsgroups conditioned on
20 percent of the variables. When the queries are condi-
tioned on only 10 percent of variables, the query time for
the whole dataset goes up to 15 days.

ACMN, ACBN, and LTM, on the other hand, are less sen-
sitive to the number of query variables, since they opti-
mize log-likelihood and can perform exact inference. LTM
shows better performance on 20-Newsgroups, WebKB,
and Book, the same datasets where it has the largest log-
likelihood. For the most part, ACMN dominates ACBN; in
the few cases where ACBN has higher NCLL, the differ-
ence is very small.

Finally, we measured the query time of each method on
each dataset, and show the result for three representative
datasets in Figure 3. Note that the Y-axis is on a log-scale.
Among these algorithms, LTM is considerably faster than
the others because the LTM models can be represented as
ACs with relatively few edges. For example, the LTM
model for Book can be expressed as an AC with 1428 edges
while the ACs learned with ACMN and ACBN each had
over 1 million edges. The ACMN and ACBN inference
times could be reduced somewhat by lowering the maxi-
mum number of allowed edges, although this would also
reduce accuracy by a very small amount. Even so, the rela-
tively large circuits selected by ACMN and ACBN are still
more efficient than running Gibbs sampling in L1 or GSSL
models, especially when there is less evidence. If Gibbs
sampling were run for longer to obtain higher accuracy,
then L1 and GSSL would be even further behind.

5. Conclusion
Overall, ACMN is less accurate than pseudo-likelihood
based methods when there is a large amount of evi-
dence available, but easily dominates them in both in-
ference speed and accuracy when there is less evidence
available. Compared to other tractable graphical models,

ACMN is more accurate a majority of the time on these
datasets. Therefore, ACMN is a excellent choice for appli-
cations that require reliable speed and accuracy with lesser
amounts of evidence.

Acknowledgments

This research was partly funded by ARO grant W911NF-08-1-
0242, NSF grant IIS-1118050, and NSF grant OCI-0960354. The
views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of ARO, NSF, or
the U.S. Government.

References
Bach, F.R. and Jordan, M.I. Thin junction trees. Advances in

Neural Information Processing Systems, 2001.
Chechetka, A. and Guestrin, C. Efficient principled learning of

thin junction trees. Advances in Neural Information Processing
Systems. 2008.

Choi, M. J., Tan, V., Anandkumar, A., and Willsky, A. Learning
latent tree graphical models. JMLR, 2011.

Darwiche, A. A differential approach to inference in Bayesian
networks. Journal of the ACM, 50(3):280–305, 2003.

Davis, J. and Domingos, P. Bottom-up learning of Markov net-
work structure. ICML, 2010.

Della Pietra, S., Della Pietra, V., and Lafferty, J. Inducing features
of random fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1997.

Elidan, G. and Gould, S. Learning bounded treewidth Bayesian
networks. JMLR, 2008.

Gogate, V., Webb, W., and Domingos, P. Learning efficient
Markov networks. NIPS’10, 2010.

Haaren, J. Van and Davis, J. Markov network structure learning:
A randomized feature generation approach. AAAI, 2012.

Lee, S.-I., Ganapathi, V., and Koller, D. Efficient structure learn-
ing of Markov networks using L1-regularization. Advances in
Neural Information Processing Systems 19, 2007.

Lowd, D. and Davis, J. Learning Markov network structure with
decision trees. ICDM, 2010.

Lowd, D. and Domingos, P. Naive Bayes models for probability
estimation. ICML, 2005.

Lowd, D. and Domingos, P. Learning arithmetic circuits. UAI,
2008.

McCallum, A. Efficiently inducing features of conditional ran-
dom fields. UAI, 2003.

Meila, M. and Jordan, M. Learning with mixtures of trees. JMLR,
2000.

Poon, H. and Domingos, P. Sum-product networks: A new deep
architecture. UAI, 2011.

Ravikumar, P., Wainwright, M. J., and Lafferty, J. High-
dimensional ising model selection using L1-regularized logis-
tic regression. Annals of Statistics, 2009.

Roth, D. On the hardness of approximate reasoning. Artificial
Intelligence, 1996.

Wang, Y., Zhang, N. L., and Chen, T. Latent tree models and ap-
proximate inference in Bayesian networks. Journal of Artificial
Intelligence Research, 2008.


