
Published as a conference paper at ICLR 2022

AUTO-SCALING VISION TRANSFORMERS WITHOUT
TRAINING

Wuyang Chen1 , Wei Huang2 , Xianzhi Du3, Xiaodan Song3, Zhangyang Wang1, Denny Zhou3

1University of Texas, Austin 2University of Technology Sydney 3Google
{wuyang.chen,atlaswang}@utexas.edu weihuang.uts@gmail.com
{xianzhi,xiaodansong,dennyzhou}@google.com

ABSTRACT

This work targets automated designing and scaling of Vision Transformers (ViTs).
The motivation comes from two pain spots: 1) the lack of efficient and principled
methods for designing and scaling ViTs; 2) the tremendous computational cost of
training ViT that is much heavier than its convolution counterpart. To tackle these
issues, we propose As-ViT, an auto-scaling framework for ViTs without training,
which automatically discovers and scales up ViTs in an efficient and principled
manner. Specifically, we first design a “seed” ViT topology by leveraging a training-
free search process. This extremely fast search is fulfilled by a comprehensive
study of ViT’s network complexity, yielding a strong Kendall-tau correlation with
ground-truth accuracies. Second, starting from the “seed” topology, we automate
the scaling rule for ViTs by growing widths/depths to different ViT layers. This
results in a series of architectures with different numbers of parameters in a single
run. Finally, based on the observation that ViTs can tolerate coarse tokenization in
early training stages, we propose a progressive tokenization strategy to train ViTs
faster and cheaper. As a unified framework, As-ViT achieves strong performance
on classification (83.5% top1 on ImageNet-1k) and detection (52.7% mAP on
COCO) without any manual crafting nor scaling of ViT architectures: the end-to-
end model design and scaling process costs only 12 hours on one V100 GPU. Our
code is available at https://github.com/VITA-Group/AsViT.

1 INTRODUCTION

Transformer (Vaswani et al., 2017), a family of architectures based on the self-attention mechanism,
is notable for modeling long-range dependencies in the data. The success of transformers has evolved
from natural language processing to computer vision. Recently, Vision Transformer (ViT) (Doso-
vitskiy et al., 2020), a transformer architecture consisting of self-attention encoder blocks, has been
proposed to achieve competitive performance to convolution neural networks (CNNs) (Simonyan &
Zisserman, 2014; He et al., 2016) on ImageNet (Deng et al., 2009).

However, it remains elusive on how to effectively design, scale-up, and train ViTs, with three
important gaps awaiting. First, Dosovitskiy et al. (2020) directly hard-split the 2D image into a
series of local patches, and learn the representation with a pre-defined number of attention heads and
channel expansion ratios. These ad-hoc “tokenization” and embedding mainly inherit from language
tasks (Vaswani et al., 2017) but are not customized for vision, which calls for more flexible and
principled designs. Second, the learning behaviors of ViT, including (loss of) feature diversity (Zhou
et al., 2021), receptive fields (Raghu et al., 2021) and augmentations (Touvron et al., 2020; Jiang
et al., 2021), differ vastly from CNNs. Benefiting from self-attention, ViT can capture global
information even with shallow layers, yet its performance is quickly plateaued as going deeper.
Strong augmentations are also vital to avoid ViTs from overfitting. These observations indicate that
ViT architectures may require uniquely customized scaling-up laws to learn a more meaningful
representation hierarchy. Third, training ViTs is both data and computation-consuming. To achieve
state-of-the-art performance, ViT requires up to 300 million images and thousands of TPU-days.
Although recent works attempt to enhance ViT’s data and resource efficiency (Touvron et al., 2020;
Hassani et al., 2021; Pan et al., 2021; Chen et al., 2021d), the heavy computation cost (e.g., quadratic
with respect to the number of tokens) is still overwhelming, compared with training CNNs.

1

https://github.com/VITA-Group/AsViT

Published as a conference paper at ICLR 2022

We point out that the above gaps are inherently connected by the core architecture problem: how to
design and scale-up ViTs? Different from the convolutional layer that directly digests raw pixels,
ViTs embed coarse-level local patches as input tokens. Shall we divide an image into non-overlapping
tokens of smaller size, or larger but overlapped tokens? The former could embed more visual details
in each token but ignores spatial coherency, while the latter sacrifices the local details but may benefit
more spatial correlations among tokens. A further question is on ViT’s depth/width trade-off: shall
we prefer a wider and shallower ViT, or a narrower but deeper one? A similar dilemma also persists
for ViT training: reducing the number of tokens would effectively speed up the ViT training, but
meanwhile might sacrifice the training performance if sticking to coarse tokens from end to end.

In this work, we aim to reform the discovery of novel ViT architectures. Our framework, called
As-ViT (Auto-scaling ViT), allows for extremely fast, efficient, and principled ViT design and
scaling. In short, As-ViT first finds a promising “seed” topology for ViT of small depths and widths,
then progressively “grow” it into different sizes (number of parameters) to meet different needs.
Specifically, our “seed” ViT topology is discovered from a search space relaxed from recent manual
ViT designs. To compare different topologies, we automate this process by a training-free architecture
search approach and the measurement of ViT’s complexity, which are extremely fast and efficient.
This training-free search is supported by our comprehensive study of various network complexity
metrics, where we find the expected length distortion has the best trade-off between time costs and
Kendall-tau correlations. Our “seed” ViT topology is then progressively scaled up from a small
network to a large one, generating a series of ViT variants in a single run. Each step, the increases
of depth and width are automatically and efficiently balanced by comparing network complexities.
Furthermore, to address the data-hungry and heavy computation costs of ViTs, we make our ViT
tokens elastic, and propose a progressive re-tokenization method for efficient ViT training. We
summarize our contributions as below:

1. We for the first time automate both the backbone design and scaling of ViTs. A “seed” ViT
topology is first discovered (in only seven V100 GPU-hours), and then its depths and widths are
grown with a principled scaling rule in a single run (five more V100 GPU-hours).

2. To estimate ViT’s performance at initialization without any training, we conduct the first compre-
hensive study of ViT’s network complexity measurements. We empirically find the expected length
distortion has the best trade-off between the computation costs and its Kendall-tau correlations
with ViT’s ground-truth accuracy.

3. During training, we propose a progressive re-tokenization scheme via the change of dilation and
stride, which demonstrates to be a highly efficient ViT training strategy that saves up to 56.2%
training FLOPs and 41.1% training time, while preserving a competitive accuracy.

4. Our As-ViT achieves strong performance on classification (83.5% top-1 on ImageNet-1k) and
detection (52.7% mAP on COCO).

2 WHY WE NEED AUTOMATED DESIGN AND SCALING PRINCIPLE FOR VIT?

Background and recent development of ViT1 To transform a 2D image into a sequence,
ViT (Dosovitskiy et al., 2020) splits each image into 14 × 14 or 16 × 16 patches and embeds
them into a fixed number of tokens; then following practice of the transformer for language model-
ing, ViT applies self-attention to learn reweighting masks as relationship modeling for tokens, and
leverages FFN (Feed-Forward Network) layers to learn feature embeddings. To better facilitate the
visual representation learning, recently works try to train deeper ViTs (Touvron et al., 2021; Zhou
et al., 2021), incorporate convolutions (Wu et al., 2021; d’Ascoli et al., 2021; Yuan et al., 2021a), and
design multi-scale feature extractions (Chen et al., 2021b; Zhang et al., 2021; Wang et al., 2021).

Why manual design and scaling may be suboptimal? As the ViT architecture is still in its infant
stage, there is no principle in its design and scaling. Early designs incorporate large token sizes,
constant sequence length, and hidden size (Dosovitskiy et al., 2020; Touvron et al., 2020), and
recent trends include small patches, spatial reduction, and channel doubling (Zhou et al., 2021; Liu
et al., 2021). They all achieve comparably good performance, leaving the optimal choices unclear.
Moreover, different learning behaviors of transformers from CNNs make the scaling law of ViTs

1We generally use the term “ViT” to indicate deep networks of self-attention blocks for vision problems. We
always include a clear citation when we specifically discuss the ViTs proposed by Dosovitskiy et al. (2020).

2

Published as a conference paper at ICLR 2022

highly unclear. Recent works (Zhou et al., 2021) demonstrated that attention maps of ViTs gradually
become similar in deeper layers, leading to identical feature maps and saturated performance. ViT
also generates more uniform representations across layers, enabling early aggregation of global
context (Raghu et al., 2021). This is contradictory to CNNs as deeper layers help the learning of
visual global information (Chen et al., 2018). These observations all indicate that previously studied
scaling laws (depth/width allocations) for CNNs (Tan & Le, 2019) may not be appropriate to ViTs.

What principle do we want? We aim to automatically design and scale-up ViTs, being principled
and avoiding manual efforts and potential biases. We also want to answer two questions: 1) Does ViT
have any preference in its topology (patch sizes, expansion ratios, number of attention heads, etc.)?
2) Does ViT necessarily follow the same scaling rule of CNNs?

3 AUTO-DESIGN & SCALING OF VITS WITH NETWORK COMPLEXITY

Image: 3×𝐻×𝑊

Patch Embedding: Kernel = 𝐾&, Stride = 4

Attention: #splits = 𝑆&
FFN: expansion ratio = 𝐸&

C×
𝐻
4
×
𝑊
4

L& layers

Patch Re-embedding: Kernel = 𝐾,, Stride = 2

Attention: #splits = 𝑆,
FFN: expansion ratio = 𝐸,

2C×
𝐻
8
×
𝑊
8

L, layers

Patch Re-embedding: Kernel = 𝐾/, Stride = 2

Attention: #splits = 𝑆/
FFN: expansion ratio = 𝐸/

4C×
𝐻
16
×
𝑊
16

L/ layers

Patch Re-embedding: Kernel = 𝐾2, Stride = 2

Attention: #splits = 1
FFN: expansion ratio = 𝐸2

8C×
𝐻
32
×
𝑊
32

L2 layers

topology search
scaling-up

output

Figure 1: Overall architecture of our As-ViT.
Blue italics indicates topology configurations to
be searched (Table 1). Red indicates depth/width
to be scaled-up.

To accelerate in ViT designing and avoid tedious man-
ual efforts, we target efficient, automated, and prin-
cipled search and scaling of ViTs. Specifically, we
have two problems to solve: 1) with zero training cost
(Section 3.2), how to efficiently find the optimal ViT
architecture topology (Section 3.3)? 2) how to scale-up
depths and widths of the ViT topology to meet different
needs of model sizes (Section 3.4)?

3.1 EXPANDED TOPOLOGY SPACE FOR VITS

Before designing and scaling, we first briefly introduce
our expanded topology search space for our As-ViT
(blue italics in Figure 1). We first embed the input
image into patches of a 1

4 -scale resolution, and adopt
a stage-wise spatial reduction and channel doubling
strategy. This is for the convenience of dense prediction
tasks like detection that require multi-scale features.
Table 1 summarizes details of our topology space, and
will be explained below.

Elastic kernels. Instead of generating non-
overlapped image patches, we propose to search for the kernel size. This will enable patches to be
overlapped with their neighbors, introducing more spatial correlations among tokens. Moreover, each
time we downsample the spatial resolution, we also introduce overlaps when re-embedding local
tokens (implemented by either a linear or a convolutional layer).

Table 1: Topology Search Space for our As-ViT.

Stage Sub-space Choices

#1
Kernel K1 4, 5, 6, 7, 8

Attention Splits S1 2, 4, 8
FFN Expansion E1 2, 3, 4, 5, 6

#2
Kernel K2 2, 3, 4

Attention Splits S2 1, 2, 4
FFN Expansion E2 2, 3, 4, 5, 6

#3
Kernel K3 2, 3, 4

Attention Splits S3 1, 2
FFN Expansion E3 2, 3, 4, 5, 6

#4 Kernel K4 2, 3, 4
FFN Expansion E4 2, 3, 4, 5, 6

- Num. Heads 16, 32, 64

Elastic attention splits. Splitting the attention into
local windows is an important design to reduce the
computation cost of self-attention without sacrificing
much performance (Zaheer et al., 2020; Liu et al., 2021).
Instead of using a fixed number of splits, we propose to
search for elastic attention splits for each stage2. Note
that we try to make our design general and do not use
shifted windows (Liu et al., 2021).

More search dimensions. ViT (Dosovitskiy et al.,
2020) by default leveraged an FFN layer with 4× ex-
panded hidden dimension for each attention block. To
enable a more flexible design of ViT architectures, for
each stage we further search over the FFN expansion
ratio. We also search for the final number of heads for
the self-attention module.

2Due to spatial reduction, the 4th stage may already reach a resolution at 7× 7 on ImageNet, and we set its
splitting as 1.

3

Published as a conference paper at ICLR 2022

3.2 ASSESSING VIT COMPLEXITY AT INITIALIZATION VIA MANIFOLD PROPAGATION

Training ViTs is slow: hence an architecture search guided by evaluating trained models’ accu-
racies will be dauntingly expensive. We note a recent surge of training-free neural architecture
search methods for ReLU-based CNNs, leveraging local linear maps (Mellor et al., 2020), gradient
sensitivity (Abdelfattah et al., 2021), number of linear regions (Chen et al., 2021e;f), or network
topology (Bhardwaj et al., 2021). However, ViTs are equipped with more complex non-linear func-
tions: self-attention, softmax, and GeLU. Therefore, we need to measure their learning capacity in
a more general way. In our work, we consider measuring the complexity of manifold propagation
through ViT, to estimate how complex functions can be approximated by ViTs.

Intuitively, a complex network can propagate a simple input into a complex manifold at its output
layer, thus likely to possess a strong learning capacity. In our work, we study the manifold complexity
of mapping a simple circle input through the ViT: h(θ) =

√
N
[
u0 cos(θ) + u1 sin(θ)

]
. Here, N is

the dimension of ViT’s input (e.g. N = 3× 224× 224 for ImageNet images), u0 and u1 form an
orthonormal basis for a 2-dimensional subspace ofRN in which the circle lives. We further define the
ViT network as N , its input-output Jacobian v(θ) = ∂θN (h(θ)) at the input θ, and a(θ) = ∂θv(θ).
We will calculate expected complexities over a certain number of θs uniformly sampled from [0, 2π).
In our work, we study three different types of manifold complexities:

1. Curvature can be defined as the reciprocal of the radius of the osculating circle on the ViT’s output
manifold. Intuitively, a larger curvature indicates that N (θ) changes fast at a certain θ. According to
Riemannian geometry (Lee, 2006; Poole et al., 2016), the curvature can be explicitly calculated as
κ =

∫
(v(θ) · v(θ))−3/2

√
(v(θ) · v(θ))(a(θ) · a(θ))− (v(θ) · a(θ))2dθ.

2. Length Distortion in Euclidean space is defined as LE = length(N (θ))
length(θ) =

∫ √
‖v(θ)‖2dθ. It

measures when the network takes a unit-length curve as input, what is the length of the output curve.
Since the ground-truth function we want to estimate (usingN) is usually very complex, one may also
expect that networks with better performance should also generate longer outputs.

3. The problem of LE is that, stretched outputs not necessarily translate to complex outputs. A
simple example: even an appropriately initialized linear network could grow a straight line into a
long output (i.e. a large norm of input-output Jacobian). Therefore, one could instead use Length
Distortion taking curvature into consideration to measure how quickly the normalized Jacobian
v̂(θ) = v(θ)/

√
v(θ) · v(θ) changes with respect to θ, defined as LEκ =

∫ √
‖∂θv̂(θ)‖2dθ.

Figure 2: Correlations between κ,LE ,LEκ and trained accuracies of ViT topologies from our search space.

Table 2: Complexity Study. τ :
Kendall-tau correlation. Time: per ViT
topology on average on 1 V100 GPU.

Complexity τ Time

κ -0.49 38.3s
LE 0.49 12.8s
LEκ -0.01 48.2s

In our study, we aim to compare the potential of using these
three complexity metrics to guide the ViT architecture selection.
As the core of neural architecture search is to rank the perfor-
mance of different architectures, we measure the Kendall-tau
correlations (τ) between these metrics and models’ ground-truth
accuracies. We randomly sampled 87 ViT topologies from Ta-
ble 1 (with L1 = L2 = L3 = L4 = 1, C = 32), fully train them
on ImageNet-1k for 300 epochs (following the same training
recipe of DeiT (Touvron et al., 2020)), and also measure their
κ,LE ,LEκ at initialization. As shown in Figure 2, we can clearly see that both κ and LE exhibit high
Kendall-tau correlations. κ has a negative correlation, which may indicate that changes of output
manifold on the tangent direction are more important to ViT training, instead of on the perpendicular
direction. Meanwhile, κ costs too much computation time due to second derivatives. We decide to
choose LE as our complexity measure for highly fast ViT topology search and scaling.

4

Published as a conference paper at ICLR 2022

3.3 LE AS REWARD FOR SEARCHING VIT TOPOLOGIES

We now propose our training-free search based on LE (Algorithm 1). Most NAS (neural architecture
search) methods evaluate the accuracies or loss values of single-path or super networks as proxy
inference. This training-based search will suffer from more computation costs when applied to ViTs.
Instead of training ViTs, for each architecture we sample, we calculate LE and treat it as the reward to
guide the search process. In addition to LE , we also include the NTK condition number κΘ = λmax

λmin

to indicate the trainability of ViTs (Chen et al., 2021e; Xiao et al., 2019; Yang, 2020; Hron et al.,
2020). λmax and λmin are the largest and smallest eigenvalue of NTK matrix Θ.

Algorithm 1: Training-free ViT Topology Search.
1 Input: RL policy π, step t = 0, total steps T .
2 while t < T do
3 Sample topology at from π.
4 Calculate LEt and κΘ,t for at.

5 Normalization: L
∧E
t =

LE
t −L

E
t−1

maxt′ L
E
t′−mint′ L

E
t′

, κ
∧

Θ,t =
κΘ,t−κΘ,t−1

maxt′ κΘ,t′−mint′ κΘ,t′
, t′ = 1, · · · , t.

6 Update policy π using reward rt = L
∧E
t − κ

∧
Θ,t by policy gradient (Williams, 1992).

7 t = t+ 1.

8 return Topology a∗ of highest probability from π.

Table 3: Statistics of topology
search. *Standard deviation is nor-
malized by mean due to different
value ranges.

Search Space Mean Std*

K1 7.3 0.1
K2 4 0
K3 4 0
K4 4 0
E1 3.3 0.4
E2 3.9 0.4
E3 4.2 0.3
E4 5.2 0.2
S1 4 0.6
S2 2.7 0.5
S3 1.5 0.3

Head 42.7 0.5

We use reinforcement learning (RL) for search. The RL policy
is formulated as a joint categorical distribution over the choices
in Table 1, and is updated by policy gradient (Williams, 1992).
We update our policy for 500 steps, which is observed enough
for the policy to converge (entropy drops from 15.3 to 5.7). The
search process is extremely fast: only seven GPU-hours (V100) on
ImageNet-1k, thanks to the fast calculation ofLE that bypasses the
ViT training. To address the different magnitude ofLE and κΘ, we
normalize them by their relative value ranges (line 5 in Algorithm
1). We summarize the ViT topology statistics from our search in
Table 3. We can see that LE and κΘ highly prefer: (1) tokens with
overlaps (K1 ∼ K4 are all larger than strides), and (2) larger FFN
expansion ratios in deeper layers (E1 < E2 < E3 < E4). No
clear preference of LE and κΘ are found on attention splits and
number of heads.

3.4 AUTOMATIC AND PRINCIPLED SCALING OF VITS

After obtaining an optimal topology, another question is: how to balance the network depth and
width? Currently, there is no such rule of thumb for ViT scaling. Recent works try to scale-up or
grow convolutional networks of different sizes to meet various resource constraints (Liu et al., 2019a;
Tan & Le, 2019). However, to automatically find a principled scaling rule, training ViTs will cost
enormous computation costs. It is also possible to search different ViT variants (as in Section 3.3),
but that requires multiple runs. Instead, “scaling-up” is a more natural way to generate multiple
model variants in one experiment. We are therefore motivated to scale-up our searched basic “seed”
ViT to a larger model in an efficient training-free and principled manner.

We depict our auto-scaling method in Algorithm 2. The starting-point architecture has one attention
block for each stage, and an initial hidden dimension C = 32. In each iteration, we greedily find the
optimal depth and width to scale-up next. For depth, we try to find out which stage to deepen (i.e.,
add one attention block to which stage); for width, we try to discover the best expansion ratio (i.e.,
widen the channel number to what extent). The rule to choose how to scale-up is by comparing the
propagation complexity among a set of scaling choices. For example, in the case of four backbone
stages (Table 1) and four expansion ratio choices ([0.05×, 0.1×, 0.15×, 0.2×]), we have 4× 4 = 16
scaling choices in total for each step. We calculate LE and κΘ after applying each choice, and the
one with the best LE / κΘ trade-off (minimal sum of rankings by LE and κΘ) will be selected to
scale-up with. The scaling stops when a certain limit of parameter number is reached. In our work,
we stop the scaling process once the number of parameters reaches 100 million, and the scaling only
takes five GPU hours (V100) on ImageNet-1k.

5

Published as a conference paper at ICLR 2022

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Total Depths

0

2000

4000

6000

8000

10000

12000

T
ot

al
W

id
th

s Swin-S

Swin-B

Swin-T

ViT-s/16

ViT-B/16

ViT-Ti/16

ViT-S/16

ResNet-18

ResNet-50

ResNet-101

Auto-scaling (ours)

Random scaling

Swin (Liu et al. 2021)

ViT (Zhai et al. 2021)

ResNet (He et al. 2016)

1200 1250 1300 1350 1400 1450 1500 1550 1600

∑£: NTK condition number (#)
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

LE
:

E
xp

ec
te

d
L
en

gt
h

D
is
to

rt
io

n
("

)

12
3
4

5
6

7

8

9

10

Figure 3: Left: Comparing scaling rules from As-ViT, random scaling, Swin (Liu et al., 2021), ViT (Zhai et al.,
2021), and ResNet (He et al., 2016). “Total Depths”: number of blocks (“bottleneck” of ResNet, “attention-block”
of ViTs). “Total Widths”: sum of output channel numbers from all blocks. Grey areas indicate standard deviations
from 10 runs with different random seeds. Right: During the auto-scaling, both the network’s complexity and
trainability improve (numbers indicate scaling-up steps, LE higher the better, κΘ lower the better).

The scaling trajectory is visualized in Figure 3. By comparing our automated scaling against random
scaling, we find our scaling principle prefers to sacrifice the depths to win more widths, keeping a
shallower but wider network. Our scaling is more similar to the rule developed by Zhai et al. (2021).
In contrast, ResNet and Swin Transformer (Liu et al., 2021) choose to be narrower and deeper.

Algorithm 2: Training-free Auto-Scaling ViTs.
1 Input: seed As-ViT topology a0, stop criterion (#parameters) P , t = 0,

channel expansion ratio choices C = {1.05×, 1.1×, 1.15×, 1.2×} (to increase the width by 5%, 10%,
15%, or 20%), depth choices D = {(+1, 0, 0, 0), (0,+1, 0, 0), (0, 0,+1, 0), (0, 0, 0,+1)} (to add one
more layer to one of the four stages in Table 1).

2 while P > number of parameters of at do
3 for each scaling choice gi ∈ C × D do
4 Scale-up: at,i = at ← gi. . Grow both the channel width and depth.
5 Calculate LEi and κΘ,i for at,i.

6 Get ranking of each scaling choice rL,i by descendingly sort LEi , i = 1, · · · , |C × D|.
7 Get ranking of each scaling choice rκΘ,i by ascendingly sort κΘ,i, i = 1, · · · , |C × D|.
8 Ascendingly sort each scaling choice gi by rLE ,i + rκΘ,i.
9 Select the scaling choice g∗i with the top (smallest) ranking.

10 at+1 = at ← g∗i .
11 t = t+ 1.

12 return Growed ViT architectures a1,a2, · · · ,at.

4 EFFICIENT VIT TRAINING VIA PROGRESSIVE ELASTIC RE-TOKENIZATION

𝐾' = 4
stride' = 16
dilation' = 5
FLOPs: 13.2%

𝐾' = 4
stride' = 8
dilation' = 2
FLOPs: 28.5%

𝐾' = 4
stride' = 4
dilation' = 1
FLOPs: 100%

Coarse Sampling Fine-grained Sampling

Small #Tokens Large #Tokens

Figure 4: By progressively changing the sampling granularity
(stride and dilation) of the first linear project layer, we can re-
duce the spatial resolutions of tokens and save training FLOPs
(37.4% here), while still maintain a competitive final perfor-
mance (ImageNet-1k 224× 224). See Table 6 for more studies.

Recent works (Jia et al., 2018; Zhou
et al., 2019; Fu et al., 2020) show that
one can use mixed or progressive preci-
sion to achieve an efficient training pur-
pose. The rationale behind this strategy
is that, there exist some “short-cuts” on
the network’s loss landscape that can be
manually created to bypass perhaps less
important gradient descent steps, espe-
cially during early training phases. As
in ViT, both self-attention and FFN have
quadratic computation costs to the num-
ber of tokens. It is therefore natural to
ask: do we need full-resolution tokens
during the whole training process?

We provide an affirming answer by proposing a progressive elastic re-tokenization training strategy.
To update the number of tokens during training without affecting the shape of weights in linear
projections, we adopt different sampling granularities in the first linear projection layer. Taking the

6

Published as a conference paper at ICLR 2022

first projection kernel K1 = 4 with stride = 4 as an example: during training we gradually change
the (stride, dilation) pair 3 of the first projection kernel to (16, 5), (8, 2), and (4, 1), keeping the
shape of weights and the architecture unchanged.

Table 4: As-ViT topology and scaling rule.

Design Stage K S E Head

Seed Topology
(Blue italics in Fig. 1)

#1 8 2 3 4
#2 4 1 2 8
#3 4 1 4 16
#4 4 1 6 32

Scaling
(Red in Fig. 1)

Stage-wise Depth
Width (C)

L1 L2 L3 L4

As-ViT-Small 3 1 4 2 88
As-ViT-Base 3 1 5 2 116
As-ViT-Large 5 2 5 2 180

This re-tokenization strategy emulates curricu-
lum learning for ViTs: when the training be-
gins, we introduce coarse sampling to signif-
icantly reduce the number of tokens. In other
words, our As-ViT quickly learns coarse infor-
mation from images in early training stages at
extremely low computation cost (only 13.2%
FLOPs of full-resolution training). Towards
the late phase of training, we progressively
switch to fine-grained sampling, restore the
full token resolution, and maintain the com-
petitive accuracy. As shown in Figure 4, when the ViT is trained with coarse sampling in early
training phases, it can still obtain high accuracy while requiring extremely low computation cost. The
transition between different sampling granularity introduces a jump in performance, and eventually
the network restores its competitive final performance.

5 EXPERIMENTS

5.1 AS-VIT: AUTO-SCALING VIT

Table 5: Image Classification on ImageNet-1k (224× 224).
Method Params. FLOPs Top-1

RegNetY-4GF (Radosavovic et al., 2020) 21.0 M 4.0 B 80.0%
ViT-S (Dosovitskiy et al., 2020) 22.1 M 9.2 B 81.2%
DeiT-S (Touvron et al., 2020) 22.0 M 4.6 B 79.8%

T2T-ViT-14 (Yuan et al., 2021b) 21.5 M 6.1 B 81.7%
TNT-S (Han et al., 2021) 23.8 M 5.2 B 81.5%

PVT-Small (Wang et al., 2021) 24.5 M 3.8 B 79.8%
CaiT XS-24 (Touvron et al., 2021) 26.6 M 5.4 B 81.8%

DeepVit-S (Zhou et al., 2021) 27 M 6.2 B 82.3%
ConViT-S (d’Ascoli et al., 2021) 27 M 5.4 B 81.3%

CvT-13 (Wu et al., 2021) 20 M 4.5 B 81.6%
CvT-21 (Wu et al., 2021) 32 M 7.1 B 82.5%
Swin-T (Liu et al., 2021) 29.0 M 4.5 B 81.3%

BossNet-T0 (Li et al., 2021) - 3.4 B 80.8%
AutoFormer-s (Chen et al., 2021c) 22.9 M 5.1 B 81.7%
GLiT-Small (Chen et al., 2021a) 24.6 M 4.4 B 80.5%

As-ViT Small (ours) 29.0 M 5.3 B 81.2%

RegNetY-8GF (Radosavovic et al., 2020) 39.0 M 8.0 B 81.7%
T2T-ViT-19 (Yuan et al., 2021b) 39.2 M 9.8 B 82.2%
CaiT S-24 (Touvron et al., 2021) 46.9 M 9.4 B 82.7%

ConViT-S+ (d’Ascoli et al., 2021) 48 M 10 B 82.2%
ViT-S/16 (Dosovitskiy et al., 2020) 48.6 M 20.2 B 78.1%

Swin-S (Liu et al., 2021) 50.0 M 8.7 B 83.0%
DeepViT-L (Zhou et al., 2021) 55 M 12.5 B 82.2%

PVT-Medium (Wang et al., 2021) 44.2 M 6.7 B 81.2%
PVT-Large (Wang et al., 2021) 61.4 M 9.8 B 81.7%

T2T-ViT-24 (Yuan et al., 2021b) 64.1 M 15.0 B 82.6%
TNT-B (Han et al., 2021) 65.6 M 14.1 B 82.8%

BossNet-T1 (Li et al., 2021) - 7.9 B 82.2%
AutoFormer-b (Chen et al., 2021c) 54 M 11 B 82.4%
ViT-ResNAS-t (Liao et al., 2021) 41 M 1.8 B 80.8%
ViT-ResNAS-s (Liao et al., 2021) 65 M 2.8 B 81.4%

As-ViT Base (ours) 52.6 M 8.9 B 82.5%

RegNetY-16GF (Radosavovic et al., 2020) 84.0 M 16.0 B 82.9%
ViT-B/16 (Dosovitskiy et al., 2020) † 86.0 M 55.4 B 77.9%

DeiT-B (Touvron et al., 2020) 86.0 M 17.5 B 81.8%
ConViT-B (d’Ascoli et al., 2021) 86 M 17 B 82.4%

Swin-B (Liu et al., 2021) 88.0 M 15.4 B 83.3%
GLiT-Base (Chen et al., 2021a) 96.1 M 17.0 B 82.3%

ViT-ResNAS-m (Liao et al., 2021) 97 M 4.5 B 82.4%
CaiT S-48 (Touvron et al., 2021) 89.5 M 18.6 B 83.5%

As-ViT Large (ours) 88.1 M 22.6 B 83.5%
† Under 384× 384 resolution.

We show our searched As-ViT topology in
Table 4. This architecture facilitates strong
overlaps among tokens during both the first
projection (“tokenization”) step and three
re-embedding steps. FFN expansion ratios
are first narrow then become wider in deeper
layers. A small number of attention splits
are leveraged for better aggregation of global
information.

The seed topology is automatically scaled-
up, and three As-ViT variants of compara-
ble sizes with previous works will be bench-
marked. Our scaling rule prefers shallower
and wider networks, and layers are more bal-
anced among different resolution stages.

5.2 IMAGE CLASSIFICATION

Settings. We benchmark our As-ViT on
ImageNet-1k (Deng et al., 2009). We use
Tensorflow and Keras for training implemen-
tations and conduct all training on TPUs. We
set the default image size as 224× 224, and
use AdamW (Loshchilov & Hutter, 2017)
as the optimizer with cosine learning rate
decay (Loshchilov & Hutter, 2016). A batch
size of 1024, an initial learning rate of 0.001,
and a weight decay of 0.05 are adopted.

Table 5 demonstrates comparisons of our
As-ViT to other models. Compared to the
previous both Transformer-based and CNN-
based architectures, As-ViT achieves state-
of-the-art performance with a comparable
number of parameters and FLOPs.

3dilation = round((stride/S1 − 1) ∗K1/(K1 − 1)) + 1, S1 = 4 is the stride at the full token resolution.

7

Published as a conference paper at ICLR 2022

More importantly, our As-ViT framework achieves competitive or stronger performance than con-
current NAS works for ViTs with much more search efficiency. As-ViTs are designed with highly
reduced human or NAS efforts. All our three As-ViT variants are generated in only 12 GPU hours
(on a single V100 GPU). In contrast, BoneNAS (Li et al., 2021) requires 10 GPU days to search a
single architecture. For each variant of ViT-ResNAS (Liao et al., 2021), the super-network training
takes 16.7∼21 hours, followed by another 5.5∼6 hours of evolutionary search.

Table 6: Efficient training on ImageNet-1k (224 × 224) via pro-
gressive elastic re-tokenization strategy (Section 4). 4× (resp. 2×)
indicates we reduce the number of tokens by 4 (resp. 2) times, and
"N/A" indicates no token reduction.

Token Reduction (Epochs) FLOPs
Saving

Training Time
(TPU days) Top1 Acc.

4× 2× N/A
1∼40 41∼70 71∼300 18.7% 36.9 83.1%

1∼80 81∼140 141∼300 37.4% 31.0 82.9%

1∼120 121∼210 211∼300 56.2% 25.2 82.5%

Baseline 100% 42.8 83.5

Efficient Training. We lever-
age the progressive elastic re-
tokenization strategy proposed in
Section 4 to reduce both FLOPs
and training time for large ViT
models. As illustrated in Figure 4,
we progressively apply 4× and 2×
reductions on the number of tokens
during training by changing both
the dilation and the stride of the
first linear projection layer. We tune
the epochs allocated to each token
reduction stage and show the results in Table 6. Standard training takes 42.8 TPU days, whereas
our efficient training could save up to 56.2% training FLOPs and 41.1% training TPU days, still
achieving a strong accuracy.

Table 7: Decoupling the contributions from the seed
topology and the scaling, on ImageNet-1K.

Model Params. FLOPs Top-1

As-ViT Topology 2.4 M 0.5 B 61.7%
Random Topology 2.2 M 0.4 B 61.4%

As-ViT Small 29.0 M 5.3 B 81.2%
Random Scaling 24.2 M 8.7 B 80.5%

As-ViT Base 52.6 M 8.9 B 82.5%
Random Scaling 42.4 M 15.5 B 82.2%

As-ViT Large 88.1 M 22.6 B 83.5%
Random Scaling 81.1 M 28.7 B 83.2%

Disentangled Contributions from Topology and
Scaling. To better verify the contribution from our
searched topology and scaling rule, we conduct more
ablation studies (Table 7). First, we directly train
the searched topology before scaling. Our searched
seed topology is better than the best from 87 random
topologies in Figure 2. Second, we compare our
complexity-based scaling rule with “random scaling
+ As-ViT topology”. At different scales, our auto-
mated scaling is also better than random scaling.

5.3 OBJECT DETECTION ON COCO

Settings Beyond image classification, we further evaluate our designed As-ViT on the detection
task. Object detection is conducted on COCO 2017 that contains 118,000 training and 5000 validation
images. We adopt the popular Cascade Mask R-CNN as the object detection framework for our
As-ViT. We use an input size of 1024 × 1024, AdamW optimizer (initial learning rate of 0.001),
weight decay of 0.0001, and a batch size of 256. Efficiently pretrained ImageNet-1K checkpoint
(82.9% in Table 6) is leveraged as the initialization.

We compare our As-ViT to standard CNN (ResNet) and previous Transformer network (Swin (Liu
et al., 2021)). The comparisons are conducted by changing only the backbones with other settings
unchanged. In Table 8 we can see that our As-ViT can also capture multi-scale features and achieve
state-of-the-art detection performance, although being designed on ImageNet and its complexity is
measured for classification.

Table 8: Two-stage object detection and instance segmentation results. We compare employing different
backbones with Cascade Mask R-CNN on single model without test-time augmentation.

Backbone Resolution FLOPs Params. APval APmask
val

ResNet-152 480∼800×1333 527.7 B 96.7 M 49.1 42.1
Swin-B (Liu et al., 2021) 480∼800×1333 982 B 145 M 51.9 45

As-ViT Large (ours) 1024×1024 1094.2 B 138.8 M 52.7 45.2

8

Published as a conference paper at ICLR 2022

6 RELATED WORKS

6.1 VISION TRANSFORMER

Transformers (Vaswani et al., 2017) leverage the self-attention to extract global correlation, and
become the dominant models for natural language processing (NLP) (Devlin et al., 2018; Radford
et al., 2018; Brown et al., 2020; Liu et al., 2019b). Recent works explored transformers to vision
problems: image classification (Dosovitskiy et al., 2020), object detection (Carion et al., 2020; Zhu
et al., 2020; Zheng et al., 2020; Dai et al., 2020; Sun et al., 2020), segmentation (Chen et al., 2020;
Wang et al., 2020), etc. The Vision Transformer (ViT) (Dosovitskiy et al., 2020) designed a pure
transformer architecture and achieved SOTA performance on image classification. However, ViT
heavily relies on large-scale datasets (ImageNet-21k (Deng et al., 2009), JFT-300M (Sun et al.,
2017)) for pretraining, requiring huge computation resources. DeiT (Touvron et al., 2020) proposed
Knowledge Distillation (KD) (Hinton et al., 2015; Yuan et al., 2020) via a special KD token to
improve both performance and training efficiency. In contrast, our proposed As-ViT introduces more
flexible tokenization, attention splitting, and FFN expansion strategies, with automated discovery.

6.2 NEURAL ARCHITECTURE DESIGN AND SCALE

Manual design of network architectures heavily relies on human prior, which is difficult to scale-up.
Recent works leverage AutoML to find optimal combinations of operators/topology in a given search
space (Zoph & Le, 2016; Real et al., 2019; Liu et al., 2018; Dong & Yang, 2019). However, the
searched model are small due to the fixed and hand-crafted search space, far from being scaled-up
to modern networks. For example, models from NASNet space (Zoph et al., 2018) only have ∼5M
parameters, much smaller than real-world ones (20 to over 100M). One main reason for not being
scalable is because NAS is a computation-consuming task, typically costing 1∼2 GPU days to search
even small architectures. Meanwhile, many works try to grow a “seed” architecture to different
variants. EfficientNet (Tan & Le, 2019) manually designed a scaling rule for width and depth. Give
a template backbone with fixed depth, Liu et al. (2019a) grow the width by gradient descent. For
ViT, we for the first time bring both architecture design and scaling together in one framework. To
overcome the computation-consuming problem in the training of transformers, we directly use the
complexity of manifold propagation as a surrogate measure towards a training-free search and scale.

6.3 EFFICIENT TRAINING

A number of methods have been developed to accelerate the training of deep neural networks,
including mixed precision (Jia et al., 2018), distributed optimization (Cho et al., 2017), large-batch
training (Goyal et al., 2017; Akiba et al., 2017; You et al., 2018), etc. Jia et al. (2018) combined
distributed training with a mixed-precision framework. Wang et al. (2019) proposed to save deep
CNN training energy cost via stochastic mini-batch dropping and selective layer update. In our work,
customized progressive tokenization via the changing of stride/dilation can effectively reduce the
number of tokens during ViT training, thus largely saving the training cost.

7 CONCLUSIONS

To automate the principled design of vision transformers without tedious human efforts, we propose
As-ViT, a unified framework that searches and scales ViTs without any training. Compared with
hand-crafted ViT architecture, our As-ViT leverages more token overlaps, increased FFN expansion
ratios, and is wider and shallower. Our As-ViT achieves state-of-the-art accuracies on both ImageNet-
1K classification and COCO detection, which verifies the strong performance of our framework.
Moreover, with progressive tokenization, we can train heavy ViT models with largely reduced training
FLOPs and time. We hope our methodology could encourage the efficient design and training of
ViTs for both the transformer and the NAS communities.

ACKNOWLEDGEMENT

Z.W. is in part supported by the NSF AI Institute for Foundations of Machine Learning (IFML) and a
Google TensorFlow Model Garden Award.

9

Published as a conference paper at ICLR 2022

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D Lane. Zero-cost
proxies for lightweight nas. arXiv preprint arXiv:2101.08134, 2021.

Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch sgd: Training resnet-50
on imagenet in 15 minutes. CoRR, abs/1711.04325, 2017.

Kartikeya Bhardwaj, Guihong Li, and Radu Marculescu. How does topology influence gradient
propagation and model performance of deep networks with densenet-type skip connections?
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13498–13507, 2021.

Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. Soft-nms–improving object
detection with one line of code. In Proceedings of the IEEE international conference on computer
vision, pp. 5561–5569, 2017.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. arXiv preprint arXiv:2005.12872,
2020.

Boyu Chen, Peixia Li, Chuming Li, Baopu Li, Lei Bai, Chen Lin, Ming Sun, Wanli Ouyang,
et al. Glit: Neural architecture search for global and local image transformer. arXiv preprint
arXiv:2107.02960, 2021a.

Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale vision
transformer for image classification. arXiv preprint arXiv:2103.14899, 2021b.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chun-
jing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. arXiv preprint
arXiv:2012.00364, 2020.

Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng,
Ziwei Liu, Jianping Shi, Wanli Ouyang, et al. Hybrid task cascade for instance segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4974–4983, 2019.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the
European conference on computer vision (ECCV), pp. 801–818, 2018.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. arXiv preprint arXiv:2107.00651, 2021c.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity
in vision transformers: An end-to-end exploration. Advances in Neural Information Processing
Systems, 34, 2021d.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in
four gpu hours: A theoretically inspired perspective. International Conference on Learning
Representations (ICLR), 2021e.

Wuyang Chen, Xinyu Gong, Yunchao Wei, Humphrey Shi, Zhicheng Yan, Yi Yang, and Zhangyang
Wang. Understanding and accelerating neural architecture search with training-free and theory-
grounded metrics. arXiv preprint arXiv:2108.11939, 2021f.

Minsik Cho, Ulrich Finkler, Sameer Kumar, David Kung, Vaibhav Saxena, and Dheeraj Sreedhar.
Powerai ddl. arXiv preprint arXiv:1708.02188, 2017.

10

Published as a conference paper at ICLR 2022

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen. Up-detr: Unsupervised pre-training for
object detection with transformers. arXiv preprint arXiv:2011.09094, 2020.

Stéphane d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari Morcos, Giulio Biroli, and Levent Sagun.
Convit: Improving vision transformers with soft convolutional inductive biases. arXiv preprint
arXiv:2103.10697, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In
Proceedings of the IEEE Conference on computer vision and pattern recognition, pp. 1761–1770,
2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chaojian Li, Kailash Gopalakrishnan, Zhangyang
Wang, and Yingyan Lin. Fractrain: Fractionally squeezing bit savings both temporally and spatially
for efficient dnn training. Advances in Neural Information Processing Systems, 33:12127–12139,
2020.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. arXiv preprint arXiv:2103.00112, 2021.

Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and Humphrey Shi.
Escaping the big data paradigm with compact transformers. arXiv preprint arXiv:2104.05704,
2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and ntk
for deep attention networks. In International Conference on Machine Learning, pp. 4376–4386.
PMLR, 2020.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pp. 646–661. Springer, 2016.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou, Liqiang Xie,
Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable deep learning training system with
mixed-precision: Training imagenet in four minutes. arXiv preprint arXiv:1807.11205, 2018.

Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two pure transformers can make one
strong gan, and that can scale up. Advances in Neural Information Processing Systems, 34, 2021.

11

Published as a conference paper at ICLR 2022

John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer Science &
Business Media, 2006.

Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng, Bing Wang, Xiaodan Liang, and Xiaojun
Chang. Bossnas: Exploring hybrid cnn-transformers with block-wisely self-supervised neural
architecture search. arXiv preprint arXiv:2103.12424, 2021.

Yi-Lun Liao, Sertac Karaman, and Vivienne Sze. Searching for efficient multi-stage vision transform-
ers. arXiv preprint arXiv:2109.00642, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Qiang Liu, Lemeng Wu, and Dilin Wang. Splitting steepest descent for growing neural architectures.
arXiv preprint arXiv:1910.02366, 2019a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without
training. arXiv preprint arXiv:2006.04647, 2020.

Bowen Pan, Rameswar Panda, Yifan Jiang, Zhangyang Wang, Rogerio Feris, and Aude Oliva. Ia-
red2: Interpretability-aware redundancy reduction for vision transformers. Advances in Neural
Information Processing Systems, 34, 2021.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. arXiv preprint arXiv:1606.05340,
2016.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training, 2018.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10428–10436, 2020.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do
vision transformers see like convolutional neural networks? arXiv preprint arXiv:2108.08810,
2021.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE international conference on
computer vision, pp. 843–852, 2017.

Zhiqing Sun, Shengcao Cao, Yiming Yang, and Kris Kitani. Rethinking transformer-based set
prediction for object detection. arXiv preprint arXiv:2011.10881, 2020.

12

Published as a conference paper at ICLR 2022

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877, 2020.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. arXiv preprint arXiv:2103.17239, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30:5998–6008, 2017.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. arXiv preprint arXiv:2102.12122, 2021.

Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan Lin, and Zhangyang
Wang. E2-train: Training state-of-the-art cnns with over 80% energy savings. arXiv preprint
arXiv:1910.13349, 2019.

Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and Huaxia
Xia. End-to-end video instance segmentation with transformers. arXiv preprint arXiv:2011.14503,
2020.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808, 2021.

Lechao Xiao, Jeffrey Pennington, and Samuel S Schoenholz. Disentangling trainability and general-
ization in deep learning. arXiv preprint arXiv:1912.13053, 2019.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Imagenet training in
minutes. Proceedings of the 47th International Conference on Parallel Processing - ICPP 2018,
2018. doi: 10.1145/3225058.3225069. URL http://dx.doi.org/10.1145/3225058.
3225069.

Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating
convolution designs into visual transformers. arXiv preprint arXiv:2103.11816, 2021a.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via
label smoothing regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3903–3911, 2020.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi Feng, and
Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv
preprint arXiv:2101.11986, 2021b.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. In NeurIPS, 2020.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
arXiv preprint arXiv:2106.04560, 2021.

13

http://dx.doi.org/10.1145/3225058.3225069
http://dx.doi.org/10.1145/3225058.3225069

Published as a conference paper at ICLR 2022

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jianfeng Gao.
Multi-scale vision longformer: A new vision transformer for high-resolution image encoding.
arXiv preprint arXiv:2103.15358, 2021.

Minghang Zheng, Peng Gao, Xiaogang Wang, Hongsheng Li, and Hao Dong. End-to-end object
detection with adaptive clustering transformer. arXiv preprint arXiv:2011.09315, 2020.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou, and
Jiashi Feng. Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.

Zhengguang Zhou, Wengang Zhou, Xutao Lv, Xuan Huang, Xiaoyu Wang, and Houqiang Li.
Progressive learning of low-precision networks. arXiv preprint arXiv:1905.11781, 2019.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

A IMPLEMENTATIONS

Training-free Topology Search and Scaling. We calculate LE by uniformly sampling 10 θs in
[0, 2π). For one architecture, the calculation of LE is repeated five times with different (random)
network initializations, and LE is set as their mean.

Image Classification. We use 20 epochs of linear warm-up, a batch size of 1,024, an initial learning
rate of 0.001, and a weight decay of 0.05. Augmentations including stochastic depth (Huang et al.,
2016), Mixup (Zhang et al., 2017), Cutmix (Yun et al., 2019), RandAug (Cubuk et al., 2020),
Exponential Moving Average (EMA) are also applied.

Object Detection. Our training adopts a batch size of 256 for 36 epochs, with also stochastic
depth. We do not use any stronger techniques like HTC (Chen et al., 2019), multi-scale testing,
sotf-NMS (Bodla et al., 2017), etc.

B CONVERGENCE OF TRAINING-FREE SEARCH

Figure 5: Entropy of policy during our search (Section 3.3).

To demonstrate the convergence of the pol-
icy learned by our RL search, we show the
entropy during learning the policy in Fig-
ure 5. We can see that a training of 500
steps is enough for the policy to converge
to low entropy (high confidence).

14

	Introduction
	Why we need automated design and scaling principle for ViT?
	Auto-design & scaling of ViTs with network complexity
	Expanded Topology Space for ViTs
	Assessing ViT complexity at initialization via manifold propagation
	LE as reward for searching ViT Topologies
	Automatic and principled scaling of ViTs

	Efficient ViT training via progressive elastic re-tokenization
	Experiments
	As-ViT: Auto-Scaling ViT
	Image Classification
	Object Detection on COCO

	Related works
	Vision Transformer
	Neural Architecture Design and Scale
	Efficient Training

	Conclusions
	Implementations
	Convergence of Training-free Search

