
Published in Transactions on Machine Learning Research (10/2024)

Learning Sub-Second Routing Optimization in Computer
Networks requires Packet-Level Dynamics

Andreas Boltres andreas.boltres@partner.kit.edu
Autonomous Learning Robots,
Karlsruhe Institute of Technology
SAP SE

Niklas Freymuth niklas.freymuth@kit.edu
Autonomous Learning Robots,
Karlsruhe Institute of Technology

Patrick Jahnke pj@turba.ai
Turba AI

Holger Karl holger.karl@hpi.de
Internet-Technology and Softwarization,
Hasso-Plattner-Institut Potsdam

Gerhard Neumann gerhard.neumann@kit.edu
Autonomous Learning Robots,
Karlsruhe Institute of Technology

Reviewed on OpenReview: https: // openreview. net/ forum? id= H95g8UpYKY

Abstract

Finding efficient routes for data packets is an essential task in computer networking. The
optimal routes depend greatly on the current network topology, state and traffic demand,
and they can change within milliseconds. Reinforcement Learning can help to learn network
representations that provide routing decisions for possibly novel situations. So far, this
has commonly been done using fluid network models. We investigate their suitability for
millisecond-scale adaptations with a range of traffic mixes and find that packet-level network
models are necessary to capture true dynamics, in particular in the presence of TCP traffic. To
this end, we present PackeRL, the first packet-level Reinforcement Learning environment for
routing in generic network topologies. Our experiments confirm that learning-based strategies
that have been trained in fluid environments do not generalize well to this more realistic, but
more challenging setup. Hence, we also introduce two new algorithms for learning sub-second
Routing Optimization. We present M-Slim, a dynamic shortest-path algorithm that excels
at high traffic volumes but is computationally hard to scale to large network topologies,
and FieldLines, a novel next-hop policy design that re-optimizes routing for any network
topology within milliseconds without requiring any re-training. Both algorithms outperform
current learning-based approaches as well as commonly used static baseline protocols in
scenarios with high-traffic volumes. All findings are backed by extensive experiments in
realistic network conditions in our fast and versatile training and evaluation framework.1

1 Introduction

Routing data packets efficiently is an essential task in computer networks. A well-working routing mechanism
maximizes service quality and minimizes operational cost. Several conditions make network traffic routing a

1Code available via project webpage: https://alrhub.github.io/packerl-website/

1

https://openreview.net/forum?id=H95g8UpYKY
https://alrhub.github.io/packerl-website/

Published in Transactions on Machine Learning Research (10/2024)

Figure 1: Re-optimizing packet routes based on the network topology and current utilization and load values
can minimize congestion, delay and packet drops: Here, the longer but higher-capacity path (thicker edges) is
preferred to the shorter path when traffic spikes for the orange (top) and purple (bottom) node, causing the
algorithm to re-route traffic over the blue (left) node instead of the green (right) one.

complex problem: i) It can be optimized with respect to various performance metrics, like packet delay or loss
of data (Wang et al., 2008). ii) Traffic demands are often highly volatile and unpredictable, e.g. in datacenter
or content delivery networks (Alizadeh et al., 2014; Wendell & Freedman, 2011). iii) Network topologies are
often subject to unexpected changes like link and switch failures (Gill et al., 2011; Markopoulou et al., 2008;
Turner et al., 2010). iv) The space of possible routing decisions grows exponentially with network size. Traffic
Engineering (TE) is a highly active research area that tackles this problem (Farrel, 2024) by means of regular
monitoring and control. Within TE, a core problem is Routing Optimization (RO). In various network setups,
TE algorithms claim to produce optimal or near-optimal routing at sensible cost (Mendiola et al., 2016).
Yet finding optimal routes given a network configuration and traffic information is often computationally
intractable (Xu et al., 2011). Also, to deal with the uncertainty about future traffic conditions, conventional
TE methods are limited to optimize for previously observed or speculated future traffic. They may perform
poorly even when the observed traffic is only slightly off (Valadarsky et al., 2017). As a remedy, researchers
have turned to data-driven optimization via deep Reinforcement Learning (RL) (Xiao et al., 2021).

With deep RL, routing policies can use learned representations of network states to provide routing decisions
for possibly novel situations. These states are conditioned on the encountered network scenario, i.e., the
network topology and configuration and their changes over time, as well as traffic demands. Contributors of
RL for TE have presented performance improvements in widely varying experiment settings. They range
from a handful of experiments on real or emulated testbed networks (Guo et al., 2022; Huang et al., 2022;
Pinyoanuntapong et al., 2019) to small ranges of network scenarios evaluated in simulations with more
abstract network models (Bernárdez et al., 2023; Xu et al., 2023). Covering the variety of network scenarios
that is required to thoroughly evaluate RL-based RO approaches (Zhang et al., 2018) can become prohibitively
expensive when using real testbed networks (Sherwood et al., 2010). Consequently, building realistic yet
versatile simulation environments is particularly important.

Out of the publicly available environments, only the one by Bernárdez et al. (2023) supports arbitrary network
topologies and traffic patterns. But it uses a fluid-based network model, i.e., a model that treats traffic as
flows in a flow network. Such models abstract away from packet-level interactions as encountered in the real
world, e.g. in TCP traffic, where sending and forwarding dynamics are very different from flow distributions
in flow networks. Hence, it is unclear how models trained in such environments perform in more realistic
scenarios, where the traffic patterns are shaped by the dynamics of transport protocols like TCP. Besides the
increased realism, including packet-level interactions in the environment also permits routing control on a
finer temporal scale. Related work has indeed recognized the importance of sub-second RO in an increasing
number of network scenarios (Gay et al., 2017a), stressing the need for such packet-level environments. To
address these shortcomings of fluid-based simulation, we hence introduce a new packet-level training and

2

Published in Transactions on Machine Learning Research (10/2024)

evaluation environment PackeRL that is tailored to learning sub-second RO. It realistically simulates network
scenarios with versatile network topologies, traffic data, and various transport protocols.

Current RL-powered RO approaches either need to compute shortest paths multiple times for every re-
optimization step (Bernárdez et al., 2023), which does not scale to sub-second RO for large network
architectures, or select next-hop neighbors separately at each routing node (Valadarsky et al., 2017; Pinyoa-
nuntapong et al., 2019; You et al., 2022; Guo et al., 2022; Bhavanasi et al., 2022), which does not generalize
to arbitrary network topologies without the need for re-training or adjusting the policy architecture. This
paper presents two new RL-powered approaches for sub-second RO: M-Slim and FieldLines. M-Slim is a
scalable RO policy that only requires, per update, a single All Pairs Shortest Paths (APSP) calculation for
obtaining a new routing strategy, unlike existing methods that require many optimizations (Bernárdez et al.,
2023). While this reduces the time required to re-optimize routing significantly, the computation time still
grows cubically with the number of network nodes when using the Floyd-Warshall algorithm (Cormen et al.,
2022). FieldLines is a novel next-hop selection RO approach that leverages the permutation equivariance
properties of its Graph Neural Network (GNN) architecture (Bronstein et al., 2021) to generalize to unseen
network topologies. It is the first next-hop selection design that provides competitive RO performance in
packet-level environments on any kind and scale of network topology, while only requiring training on small
networks with up to 10 nodes.

In summary, our contributions are as follows: i) PackeRL is the first packet-level simulation environment
RL-powered RO that supports arbitrary yet realistic network topologies and traffic data, including UDP
and TCP traffic. ii) Using PackeRL, we show that an existing RL-based RO policy trained in a fluid-based
environment like MAGNNETO (Bernárdez et al., 2023) cannot cope with packet-level network dynamics
and performs significantly worse than common static shortest-paths routing strategies. This motivates the
need for packet-level training environments like PackeRL. iii) We present M-Slim, a novel RL-based shortest
path RO method that scales to sub-second RO and is trainable in our packet-level environment PackeRL.
It outperforms static shortest-path routing strategies by a significant margin. iv) We present FieldLines, a
novel next-hop routing policy that provides competitive performance for traffic-intense scenarios and does
not suffer from the computational limitations of shortest-path based policies.

2 Related Work

Researchers working on conventional TE approaches have recognized the need for standardized evaluation
environments: REPETITA (Gay et al., 2017b) aims at fostering reproducibility in TE optimization research,
and the goal of YATES (Kumar et al., 2018) is to facilitate rapid prototyping of TE systems. While they are
not deliberately designed with RL in mind, it is possible to extend them to support training and evaluating
RL-based routing policies. These frameworks are limited by their abstract network model which does not
model packet-level interactions. Our experiments demonstrate that RL routing policies trained in such
environments perform significantly worse when tasked to route in more realistic packet-level environments.

The simulation frameworks RL4Net (Xiao et al., 2022), its successor RL4NET++ (Chen et al., 2023) and
PRISMA (Alliche et al., 2022) are perhaps the closest relatives to PackeRL. They provide the same kind of
closed interaction loop between RL models and algorithms in Python and packet-level network simulation in
ns-3. However, in contrast to PackeRL, out-of-the-box support for arbitrary network topologies including link
datarates and delays is left to the user, and simulation is limited to constant bit-rate traffic between all pairs of
nodes. The latter does not apply to PRISMA, which however only simulates UDP traffic. Moreover, Figure 7
shows that PackeRL runs simulation steps several times faster than the numbers reported in Chen et al.
(2023). This may be due to PackeRL leveraging the shared-memory interface of ns3-ai for communication
between learning and simulation components, instead of inter-process communication via ZeroMQ (Hintjens,
2013). As the authors of ns3-ai noted in Yin et al. (2020), this drastically cuts communication times between
learning and simulation components.

A common approach to learn RO with deep RL is to infer link weights that are used to compute routing
paths (Stampa et al., 2017; Pham et al., 2019; Sun et al., 2021; Bernárdez et al., 2023). Out of the existing
approaches, only MAGNNETO (Bernárdez et al., 2023) can generalize to unseen topologies by using GNNs in
their policy designs. The caveat of MAGNNETO is the iterative process of ΘpEq steps required to optimize

3

Published in Transactions on Machine Learning Research (10/2024)

routing for a single Traffic Matrix (TM)2. Each iteration step, its actions denote a set of links whose weight
shall be incremented for the upcoming optimization iteration. These actions don’t lend to paths directly.
Instead, the link weights for path computation are obtained only after finishing the optimization process of
ΘpEq steps. Each step requires an APSP computation with a computational complexity of OpV 3q when using
Floyd-Warshall or OpV 2 log V ` EV q when using Johnson-Dijkstra (Cormen et al., 2022). Consequently,
MAGNNETO is not able to provide sub-second RO in most networks, as the results in Figure 7 show.

Instead of computing shortest paths for RO, some deep RL approaches are trained to select next-hop
neighbors directly (Valadarsky et al., 2017; Pinyoanuntapong et al., 2019; You et al., 2022; Guo et al., 2022;
Bhavanasi et al., 2022). However, these policies are not designed to generalize to arbitrary topologies and
to handle topology changes, either because their GNN architectures require a (re-)training process for each
topology (Bhavanasi et al., 2022; Mai et al., 2021; You et al., 2022), or because their non-GNN architecture
ties them to specific topologies (Valadarsky et al., 2017; Pinyoanuntapong et al., 2019; Guo et al., 2022).

A small portion of the existing RL-powered RO approaches has open-sourced their training and evaluation
environments (Stampa et al., 2017; Bernárdez et al., 2023; Xu et al., 2023). These environments either employ
the same limiting model abstractions as REPETITA and YATES (Bernárdez et al., 2023; Xu et al., 2023), or,
if they leverage network simulator backends, they only support a limited subset of network scenarios (Stampa
et al., 2017). Therefore, they are not suited to become reference frameworks for training and evaluation.

Finally, recent related work has proposed learned network models as replacements for packet-based network
simulation (Zhang et al., 2021; Yang et al., 2022; Wang et al., 2022; Ferriol-Galmés et al., 2023). In general,
such models receive network topologies, traffic and routing as input, and consult a trained model to predict
performance metrics like packet delay and link utilization. While these models promise smilar accuracy at
lower computational cost, the reported gaps in accuracy (Ferriol-Galmés et al., 2023) suggest that these
frameworks cannot fully replace the packet-level simulation offered by PackeRL.

In summary, there exists no framework for RL-powered RO approaches that offers both a realistic simulation
backend, and a comprehensive toolset for training and evaluation on wide ranges of realistic network scenarios.
Besides, there is no experimental evidence for why such packet-level frameworks are even needed, for instance
by exposing the limits of routing policies trained in more abstract environments. Finally, none of the
existing next-hop selection RO approaches work on arbitrary and changing topologies without re-training or
architectural adjustments, and the shortest-path based algorithms that do generalize across topologies are
computationally too expensive to provide sub-second routing. We believe that PackeRL, our experimental
results obtained for our shortest-path routing policy M-Slim in PackeRL, and our new next-hop policy design
FieldLines close these gaps.

3 Preliminaries and Problem Formulation

We consider wired Internet Protocol (IP) networks using the connection-less User Datagram Protocol
(UDP) (Postel, 1980) and the connection-based Transmission Control Protocol (TCP) (Eddy, 2022). TCP in
particular is responsible for the majority of today’s internet traffic (Schumann et al., 2022).

Routing selects paths in a network along which data packets are forwarded. To determine the best paths, the
Routing Protocol (RP)’s algorithm uses the network topology as input. For example, Open Shortest-Path
First (OSPF) (Moy, 1997) propagates each link’s data rate such that every router knows the entire network
graph, annotated by data rate. Then, every router uses Dijkstra to compute shortest paths, where by default
the path cost is the sum of the inverse of link data rates (Section B.5 explains the path cost calculation
process). Several network performance indicators exist, such as goodput (i.e. the bitrate of traffic received
at the destination), latency/delay (the time it takes for data to travel from the source to the destination),
packet loss (the percentage of data that is lost during transmission), or packet jitter (the variability in
packet arrival times, which can affect the quality of real-time applications or lead to out-of-order data arrival).
Achieving a favorable trade-off between these performance metrics is non-trivial, not least because their
importance may vary depending on the type/use case of network and the traffic characteristics.

2A TM contains average traffic flows between pairs of nodes i, j P V ˆ V in a square matrix representation.

4

Published in Transactions on Machine Learning Research (10/2024)

3.1 Routing Optimization as an RL Problem

We formalize RO as a Markov Decision Process with the tuple xS,A, T , ry, splitting the continuous-time
network operation into time slices of length τsim. The space of network states S consists of attributed graphs
with global, node- and edge-level performance and load values, as well as topology characteristics like link
datarate and packet buffer size. We model network states as directed graphs St “ pVt, Et,XVt,t,XEt,t,xu,tq
with nodes Vt and edges Et at step t. Node and edge features are given by XVt,t “ txv,t P RdVt | v P Vtu and
XEt,t “ txe,t P RdEt | e P Etu respectively, and xu,t P RdU denotes global features that are shared between
all nodes. Sections A.4 and B.4 contain details on how network states are obtained in our framework. The
action at P A consists of a next-hop neighbor selection v P Nu per routing node u P Vt for each possible
destination node z P Vt, or formally: at “ tpu, zq ÞÑ v | u, v, z P Vt, v P Nuu. These destination-based routing
actions are valid for all packets processed in the upcoming timestep, i.e. the actions are taken in the control
plane (Mestres et al., 2017). The transition function T : S ˆ A Ñ S evolves the current network state using
the induced routing actions to obtain a new network state. Its transition probabilities are unknown because
it depends on the upcoming traffic demands, which are often unpredictable in practice (Wendell & Freedman,
2011). Finally, r : S ˆ A Ñ R is a global reward function which assesses the fit of a routing action in the
given network topology and state. Here, we use the global goodput, measured as MB received per step, as
our reward function. Our goal is to find a policy π : S ˆ A Ñ r0, 1s that maximizes the return, i.e., the
expected discounted cumulative future reward Jt :“ Eπpa|sq

“
ř8

k“0 γ
krpst`k,at`kq

‰

. Thus, in our default
setting, an optimal policy maximizes the long-term global goodput. Despite its simplicity, this optimization
objective provides competitive results. Section C.3 shows that optimizing for different objectives, including
multi-component objectives, does not improve results consistently.

Next, we introduce our packet-level simulation framework PackeRL which builds upon the above formalism.

4 PackeRL: An Overview

PackeRL is a framework for training and evaluating deep RL approaches that route packets in IP computer
networks. It interfaces the discrete-event network simulator ns-3 (Henderson et al., 2008) for repeatable
and highly configurable RO experiments with realistic network models. It provides a Gymnasium-like
interface (Towers et al., 2023) to the learning algorithm and provides near-instantaneous communication
between learning algorithm and simulation backend by using the shared memory extension ns3-ai (Yin et al.,
2020). PackeRL advances RL research for RO in the following ways:

• It supports optimization for several common objectives that can be combined with adjustable
weightings. Nonetheless, both RL and non-RL approaches alike can be evaluated with respect to
a range of performance metrics. While we optimize our approach for goodput by default, we show
results for alternative optimization objectives in Section C.3.

• It provides access to an extensive range of network scenarios. Section 4.1 provides further information.

• It implements a closed interaction loop between RL policy and network simulation, using In-Band
Network Telemetry (Kim et al., 2015) to monitor the network state and provide state snapshots St.
The time period simulated per environment step can be arbitrarily large or small, and thus, unlike
most existing frameworks, it supports online RO experiments with or without RL.

• It can be used to train RL routing policies within a few hours and evaluate them within a few
minutes. Thus we dispel the concerns raised by related work that packet-based environments are too
slow (Ferriol-Galmés et al., 2023) or too complex to implement (Kumar et al., 2018).

We provide a detailed explanation of PackeRL in Section A. Section A.1 explains the structure of computer
networks in ns-3, Section A.2 expands on the interaction loop between RL policy and environment, Section A.3
clarifies how the actions at are installed in the simulated network, and Section A.4 provides details on how
network states St are obtained from the network simulation. Finally, general simulation parameters are
explained in Section B.1.

5

Published in Transactions on Machine Learning Research (10/2024)

Figure 2: Example of how the learnable policies M-Slim and FieldLines obtain routing actions at P A from
network states St. The red edges denote highly loaded data pathways, e.g. due to full packet buffers. The
actor of M-Slim outputs link weights that are used to calculate routing paths. These routing paths are then
broken down into individual next-hop neighbor selections per destination node v P V and routing node u P V
to fit the definition of the action space A. FieldLines uses its actor module ϕ to obtain next-hop ratings per
edge and destination node, illustrated by the respective colors of the rating values. The selector module ψ
then uses these ratings to select next-hop neighbors per destination and routing node.

4.1 Network Scenario Generation with synnet

PackeRL offers versatile simulation conditions via synnet, a standalone module for network scenario generation.
In synnet, network scenarios consist of the network topology and a set of events. The network topology
consists of the graph of routing nodes, links between them, as well as parameters like link data rate or delay
and packet buffer size. For generating the topologies, we use random graph models commonly found in the
literature (Barabási, 2009; Erdős et al., 1960; Watts & Strogatz, 1998). Events can be of two types: Traffic
demand events contain an arrival time, demand size and type (UDP vs. TCP). We use random models
to generate demand arrival times and volumes, such that the generated network traffic resembles observed
real-world traffic patterns (Benson et al., 2010). Link failure events consist of a failure time and the edge that
is going to fail. Here, too, we use random models for link failure times that resemble the patterns found in
operative networks (Bogle et al., 2019). Sections A.5 and A.6 provide more details on the scenario generation
process as well as examples, while Sections B.2 and B.3 contain the parameters used for the random models.

5 Policy Designs for Routing in Packet-Level Environments

This section introduces two RL policy designs for RO trainable in PackeRL, namely our next-hop selection
policy FieldLines and our adaptation of MAGNNETO which we call M-Slim (short for MAGNNETO-Slim).
Our results in Section 7 show that both M-Slim and FieldLines clearly outperform MAGNNETO, underlining
the benefit of learning to route in PackeRL. Nevertheless, they use different approaches to obtain routing
actions at from the given network state St. As illustrated in Figure 2, M-Slim adopts MAGNNETO’s
approach of computing routing paths from inferred link weights, while FieldLines directly selects next-hop

6

Published in Transactions on Machine Learning Research (10/2024)

Figure 3: Results on the nx–XS topology preset, displayed per approach and performance metric. Cells show
the mean values over 100 evaluation episodes in the first line, and min and max values across random seeds
in the second line. Values are relative to Enhanced Interior Gateway Routing Protocol (EIGRP). The stark
contrast between random and learned routing shows that efficient routing is not a trivial task, and using
RL to learn it is very beneficial. Both our approaches outperform the shortest-path baselines in high-traffic
scenarios, and the difference in performance to MAGNNETO shows that learning to route in packet-based
environments is important.

neighbors per destination node v P V and routing node u P V . Section 5.2 explains how this circumvents the
need for computing shortest paths on every re-optimization.

The information available in the RO problem can be represented as graphs with node, edge and global features.
Thus, GNNs are highly suitable models because their permutation equivariance enables generalization to
arbitrary network topologies. While MAGNNETO uses Message Passing Neural Networks (MPNNs) (Gilmer
et al., 2017) for its actor module, we use a variant valled Message Passing Networks (MPNs) (Sanchez-
Gonzalez et al., 2020; Freymuth et al., 2024) that supports node, edge, and global features. Using Multilayer
Perceptrons (MLPs) f l, initial features x0

v and x0
e with e “ pv, uq P E, the l-th step is given as

xl`1
e “ f lEpxlv,xleq, xl`1

v “ f lV pxlv,
à

e“pv,uq

xl`1
e q

For the permutation-invariant aggregation ‘, we use a concatenation of the features’ mean and minimum.
We provide implementation details on the MPNN architecture of MAGNNETO and the MPN architecture
used by M-Slim and FieldLines in Appendix B.8.

5.1 M-Slim: Learning Link-Weight Optimization in Packet-Level Simulation

Section 2 states that MAGNNETO’s iterative process for obtaining routing paths is too slow to warrant
sub-second RO. In fact, the inference times reported in Figure 7 are too high even to follow our training
protocol in PackeRL because it involves a larger number of temporally fine-grained interaction steps. Reducing
inference time is required to enable training in PackeRL, and to this end we present our MAGNNETO
adaptation called M-Slim. While the output of MAGNNETO’s actor architecture specifies a set of links
whose weights shall be incremented, in M-Slim we interpret this output as link weights directly. This reduces
the amount of model inference steps and APSP computations per routing update from ΘpEq to 1 and enables
sub-second routing re-optimization in larger network topologies.

The change in interpretation of the actor’s output requires further design adjustments. To account for
exploration during training rollouts, we treat the actor output as the mean µt for a diagonal Gaussian
N pµt, σM-Slimq from which we then sample the actual link weights. σM-Slim is a learnable parameter. During
evaluation, the values of µt are used as link weights directly. Finally, we apply the Softplus function (Zheng
et al., 2015) to the output of the actor module to ensure the values are positive and thus usable as link weights.
Concerning the architecture of the actor module, we replace the MPNN design used by MAGNNETO by an
MPN-based design with L “ 2 steps and parameters as detailed in Appendix B.8 to reduce model complexity.
As Figure 17 of Appendix C.2 shows, compared to when using MAGNNETO’s MPNN architecture for M-Slim,
the MPN design further decreases inference time without compromising on performance. Otherwise, M-Slim
uses the same input and output representations as MAGNNETO: They receive the latest Link Utilization

7

Published in Transactions on Machine Learning Research (10/2024)

(LU) values and past link weights as input and operate on the Line Digraph representation to obtain link
weights as node features. Section B.6 further explains Line Digraphs.

5.2 FieldLines: Fast Next-Hop Routing in any Network Topology

M-Slim greatly reduces computation time per re-optimization step, but it still requires one APSP pass
per routing update as illustrated in Figure 2. A single such computation overshadows the computational
complexity term OpV Dq of GNN inference (Alkin et al., 2024) for a maximum node degree D as the network
grows in scale, making the shortest-paths computation the computational bottleneck. We thus turn to our
next-hop selection RO approach FieldLines to further reduce inference times: It utilizes the results of one
initial APSP computation and only requires re-computing APSP when the network topology changes.

FieldLines consists of an actor module ϕ and a selection module ψ: The actor module ϕ : S Ñ R|V |ˆ|E| first
creates an embedding of the network state that it then uses to provide numerical values ϕz,e for each possible
combination of network edge e P E and destination node z P V . We implement ϕ as an MPN with L “ 2 steps
and parameters as described in Appendix B.8. Intuitively, the output values ϕz,e describe how well e “ pv, uq

is suited as a next-hop edge from node v for packets destined for z. Producing such an output requires
the network features to contain some form of positional embedding. However, by default, a GNN cannot
spatially identify nodes and edges of the input topology in relation to each other due to its permutation
equivariance property (Bronstein et al., 2021). Therefore, we provide auxiliary positional information as node
input features by calculating APSP once, and then supplying the resulting path distances between nodes.
For the path computation, we use the link weights calculated by EIGRP as described in Section B.5. For
high-frequency RO, removing the need for APSP on every re-optimization reduces the overall computational
complexity. Importantly, the actor module is still topology-agnostic because the topology and positional
information is supplied as input, allowing FieldLines to generalize to novel topologies during inference.

The selection module ψ : S ˆ R|V |ˆ|E| Ñ A treats the next-hop edge rating supplied by ϕ as logits over
outgoing edges per node v P V and destination z. During training rollouts, ψ uses Boltzmann exploration
by sampling a next-hop edge from these distributions, using a learnable temparature parameter τψ. During
evaluation, it simply chooses the maximum probability edges for each pair of routing node v and destination
node z. In both cases, the resulting next-hop choices correspond to rules in destination-based routing.
Importantly, this policy design is able to form non-coalescent routing paths (i.e routing loops) because we do
not force coalescence. Our results show that constraining our routing to coalescent paths is not necessary,
and there is evidence that, in certain network situations, routing loops can even be beneficial to routing
performance (Brundiers et al., 2021)3.

6 Experiment Setup

In our experiments, we consider an episodic RL setting in which every training and evaluation episode comes
with its own network scenario. This includes the network topology as well as traffic demands and link failure
events for the entire length of simulation T . To account for packet-level dynamics in PackeRL, we simulate
H “ 100 steps per episode and set τsim, the time simulated per environment step, to 5 ms, which yields
T “ 500 ms. This implies that, as opposed to existing fluid-based environments, training and evaluation in
PackeRL involves a larger number of temporally fine-grained inference steps. Furthermore, our training and
evaluation protocols cover varying network topologies, traffic situations, and the presence of link failures.
Since such a setting requires routing algorithms to provide quick updates for arbitrary topologies without the
need for re-training, we do not evaluate approaches that are hand-crafted or fine-tuned to a specific network
topology. Instead, as Bernárdez et al. (2023) have shown that learning useful general-purpose representations
for RO is possible, we design our evaluation to shed light on the importance of packet-level dynamics for
learning more suitable representations.

3We are aware that the examples presented in (Brundiers et al., 2021) use Equal-Cost Multipath (ECMP) routing (Chiesa
et al., 2016), which at the moment is not supported by PackeRL.

8

Published in Transactions on Machine Learning Research (10/2024)

Figure 4: Results for our approaches FieldLines and M-Slim on the nx–XS topology preset, displayed for
varying traffic kinds and intensities. Cells show the mean value over 100 episodes relative to EIGRP’s
performance in the first line, and the absolute mean value in the second line. Both approaches consistently
improve the average packet delay. Moreover, for more intense traffic, they outperform EIGRP in goodput
and drop ratio. The sending rate dynamics of TCP-dominated traffic amplify the reported difference.

6.1 Evaluated Routing Approaches

We compare MAGNNETO, which is trained in a fluid-based environment, to M-Slim and FieldLines, which
are trained in PackeRL. To evaluate MAGNNETO in PackeRL, at each timestep, we feed it the latest TM
of sent bytes. Beginning with zero LU and randomly initialized integer link weights, it uses current LU
and link weights as edge features and increments one or more link weights. Its fluid-based environment
then distributes the TM’s traffic volumes across the flow network using the paths obtained from an APSP
computation and obtains new LU values for the next iteration. This way, MAGNNETO uses the initial
TM for ΘpEq optimization steps in which it iteratively adjusts the link weights for path computation. The
final link weights are used to obtain the actual routing paths communicated to PackeRL. On the contrary,
M-Slim and FieldLines are evaluated by doing one deterministic inference pass on the respective policy
architecture, which directly yields shortest path weights in the case of M-Slim, and node-centric next-hop
selections per packet destination in the case of FieldLines. In addition to the learned approaches, we consider
two shortest-path baselines: OSPF is introduced in Section 3.1, and EIGRP (Savage et al., 2016) also
involves link delays in its link weight calculation. These two routing protocols are widely adopted because
their topology discovery mechanisms allow for routing in any network topology, and the heuristics used for
computing shortest paths work well in most practical situations. Yet, by default, these protocols are oblivious
to varying traffic conditions and network utilization. Therefore, for evaluating the two baselines it is sufficient
to compute shortest paths once at the start of the episode and every time the network topology changes. We
use standard reference values for the path computation process, which is explained in Section B.5. Lastly, we
include results of two random policies for reference: Random (NH) chooses random next-hop edges for each
possible destination z P V at each routing node v P V , and Random (LW) uses shortest-path routing with
randomly generated link weights. While Random (LW) corresponds to an untrained MAGNNETO/M-Slim
policy, Random (NH) corresponds to an untrained FieldLines policy.

6.2 Network Scenarios

We consider five groups of randomly generated topologies of varying scale, generated as described in
Appendix A.5. We call these groups the nx family and work with nx–XS (6–10 nodes), nx–S (11–25 nodes),
nx–M (26–50 nodes), nx–L (51–100 nodes) and nx–XL (101–250 nodes). Figures 10 and 11 visualize example
topologies. We train and evaluate on a grid of combinations of traffic scaling values mtraffic and TCP fractions

9

Published in Transactions on Machine Learning Research (10/2024)

Figure 5: Results for the nx–S (11–25 nodes), nx–M (26–50 nodes) and nx–XL (101–250 nodes) presets. Cells
show the mean values over 100 evaluation episodes (30 for nx–XL) in the first line, and min and max values
across seeds in the second line. Values and colors are relative to EIGRP. Our approaches generalize to larger
topologies, but the routing of FieldLines becomes more and more similar to that of EIGRP. We did not
evaluate MAGNNETO on the nx–XL preset due to excessive inference times.

pTCP. Specifically, we use mtraffic P t0.25, 0.75, 1.5, 3.0u, which we denote as "low", "medium", "high", and
"very high" traffic in the following, and pTCP P t0%, 50%, 100%u, which we denote as "UDP", "TCP/UDP"
and "TCP". Finally, while we do not include link failure events in our experiments by default, in Section 7.2
we also provide an evaluation on the nx–S topology set that includes randomly generated link failures as
described in Section A.6. This amounts to an average of 2.38 link failures per episode, distributed as shown
in Figure 9 on the left side. Importantly, we do not work with pre-generated datasets of network scenarios.
Instead, using synnet and controllable random seeds for training and evaluation, we generate a new network
topology, traffic demands and link failures for all timesteps at the start of every episode.

6.3 Training and Evaluation Details

We train M-Slim and FieldLines on 16 random seeds for 100 iterations of 16 episodes each. We train FieldLines
on the nx–XS topologies while restricting the training of M-Slim to the two well-known network topologies
NSFNet and GEANT2, with link datarate values taken from Bernárdez et al. (2023), for better comparability
to MAGNNETO. For both approaches, we use PPO (Schulman et al., 2017) and refer to Section B.7 for
hyperparameter details. Given the episode length H “ 100, this results in a total of 160 000 training steps per
training run which, depending on TCP ratio and amount of traffic, take between 3 and 14 hours of training on
4 cores of an Intel Xeon Gold 6230 CPU. For FieldLines, the first five iterations are warm-start iterations. In
these iterations, we replace the actions sampled during rollout by the ones suggested by the EIGRP baseline.
We train MAGNNETO on 8 random link weight initialization seeds as per their protocol (Bernárdez et al.,
2023), using their fluid-based environment and PPO implementation. The performance values presented in
this work are obtained by taking the mean over 100 evaluation episodes, except for nx–XL for which we
use 30 evaluation episodes. For the learned approaches, we exclude non-convergent runs by showing the
performance of the better-performing half of the used random seeds.

7 Results

We describe the results of our experiments in Sections 7.1 to 7.3 and discuss their implications in Section 7.4.

10

Published in Transactions on Machine Learning Research (10/2024)

Figure 6: Results on the nx–S topology preset with link failures. Cells show the mean values over 100
evaluation episodes in the first line, and min and max values across random seeds in the second line. Values
and colors are relative to EIGRP. While all learned approaches can adapt to link failures, only our approaches
stay above EIGRP. When dealing with link failures, FieldLines favors lower-delay paths over higher goodput.

7.1 Learning to Route in PackeRL

In Figure 3, we report results of all evaluated approaches on the nx–XS topology preset. EIGRP slightly
outperforms OSPF in all evaluated scenarios, which is the reason why we do not include OSPF in the
remaining results. Furthermore, the two random policies perform significantly worse than all other approaches.
Concerning the learned approaches, for MAGNNETO, unlike the results reported in Bernárdez et al. (2023),
even the best run does not beat static shortest-paths routing. On the other hand, our policies M-Slim and
FieldLines provide routing performance that rivals EIGRP, with consistently lower average packet delays.
Also, as further illustrated by Figure 4, both our policy designs improve goodput and packet drop ratio for
network scenarios with high-intensity and TCP-dominated traffic. Unlike Figure 3, each matrix of Figure 4
displays the values of a single metric and a single approach, but over a grid of traffic setups of varying
intensity and TCP ratio. This way, it becomes evident that the performance FieldLines and M-Slim relative
to EIGRP improves for scenarios with intense and TCP-heavy traffic, and that learned high-frequency RO is
particularly beneficial for such kinds of traffic. On the other hand, for scenarios with low traffic intensity,
EIGRP is able to maintain a slightly higher goodput.

7.2 Generalizing to Unseen Network Topologies

Figure 5 shows the results of evaluating above section’s policies on the larger topology presets nx–S, nx–M,
and nx–XL. Relative to EIGRP, MAGNNETO’s performance stays inferior yet stable, but due to the
excessive inference times depicted in Section 7.3, we did not evaluate it on topology presets larger than nx–M.
Interestingly, M-Slim is able to increase its goodput advantage over EIGRP with increasing network scale
while maintaining solid values for other metrics. On the other hand, FieldLines’s performance becomes more
and more similar to that of the EIGRP baseline as the network scale increases.

New network topologies can also arise due to failure events. Figure 6 shows results on the nx–S topology
preset with randomly generated link failures as described in Section A.6. All learned approaches are able
to adapt in the face of one or more link failures. However, FieldLines and M-Slim seem to behave slightly
differently upon registering a link failure: While FieldLines favorizes a lower average packet delay, M-Slim
maintains goodput and instead gives away its delay advantage. In any case, both our policy designs drop less
data after link failures in traffic-intense situations.

7.3 Simulation and Inference Speed

The left side of Figure 7 reports the mean inference time of the evaluated policies on the various network
scales of the nx topology preset. MAGNNETO’s optimization loop quickly leads to inference times of several
seconds. The single-pass inference of M-Slim and FieldLines brings down inference time considerably, but for
large networks the inference time of M-Slim exceeds one second because it requires an APSP pass every step.
FieldLines, which only requires that when the topology changes, keeps its inference times in the millisecond

11

Published in Transactions on Machine Learning Research (10/2024)

Figure 7: Left side: Mean inference times per PackeRL step on different network sizes. Our policies reduce
the inference time required by MAGNNETO, which was not evaluated on larger topologies due to excessive
inference times, by multiple orders of magnitude. Right side: Simulation steps per hour, including shared
memory communication but excluding inference and learning times. Simulating TCP traffic in PackeRL is
more costly than UDP traffic, and simulation speed depends on traffic intensity and network scale.

range for all evaluated graph scales. The right side of Figure 7 shows that simulating TCP traffic in PackeRL
is more costly than UDP traffic, and that simulation speed depends on traffic intensity and network scale.

7.4 Discussion

The results shown in earlier parts of this section suggest several findings, which we will discuss in the following.

Firstly, the two random policies shown in Figure 3 perform notably worse than all other approaches. The
performance of Random (NH) in particular is far off, since it does not check for routing path coalescence
and thus frequently includes routing loops and detours in its actions. This shows that obtaining high-quality
routing actions is not a trivial task, and that using RL to learn to route is beneficial. Next, we note a contrast
between the performance of MAGNNETO and M-Slim. While MAGNNETO performs worse than the static
shortest-path baselines (EIGRP), M-Slim outperforms them in all scenarios except those with low-volume
traffic. This shows that placing a routing policy trained in a fluid-based environment into a packet-based
one hurts performance, which is avoidable by directly training in a packet-based environment like PackeRL.
In general, both our RL-powered approaches outperform EIGRP in scenarios with more intense traffic. We
assume that congestion events happen more frequently in these scenarios and that the dynamic routing
provided by M-Slim and FieldLines can better deal with this challenge. We also note that the advantage
over EIGRP is slightly more pronounced for TCP-heavy traffic. This may be explained by TCP’s sending
rate adjustment. TCP actively probes for the maximum sending rate maintainable without loss of data. This
likely leads to more congestion events, which in turn may be handled better by an adaptive routing policy.

Section 7.2 suggests that all learned approaches can deal with link failures effortlessly and that they
generalize to large topologies even though they have been trained on much smaller and/or random topologies.
Interestingly, while M-Slim seems to maintain its relative advantage over EIGRP, FieldLines seems to
prioritize maintaining low latency over maximum global goodput when faced with link failures. Also, we note
that the advantage of FieldLines over EIGRP disappears with growing network topology size. A possible
explanation for the generalization behavior of FieldLines is indicated by the “Action Fluctuation” row of
Figure 5. It denotes the average percentage of next-hop decisions over all routing and destination nodes rate
that change between a timestep and the next. Evidently, the action fluctuation is much lower for FieldLines
than for M-Slim, which indicates that FieldLines changes its routing actions much less frequently. Figure 21
of the appendix provides an illustrating example for this difference. Moreover, as the network scale increases,
the routing of FieldLines becomes even more static. We suspect that this is the reason why, with growing
network size, FieldLines’ performance becomes more and more similar to that of EIGRP. The performance
reported for M-Slim in Figures 5 and 6 suggests that re-optimizing routing less conservatively may further
increase the performance of FieldLines. We hypothesize that, in order to increase the dynamicity of FieldLines

12

Published in Transactions on Machine Learning Research (10/2024)

for large network topologies, we will need to adjust the action selection mechanism used during training
and/or evaluation. For now, given the larger inference times of M-Slim on large network topologies, choosing
between M-Slim or FieldLines is currently a matter of trading routing performance for responsiveness.

8 Conclusion

This work highlights the importance of packet-level simulation environments for RL-enabled routing optimiza-
tion, together with policy designs that are trainable in such environments. Firstly, we show that a recently
proposed approach trained in a fluid-based network environment fails to reproduce its training performance
in packet-based simulation. Adapting the approach to the more realistic packet-based simulation setting
negates the decline in performance and shows why packet-based training and evaluation environments are
even needed. Our adaptation called M-Slim also cuts the time needed to re-optimize routing by one to two
orders of magnitude, but still requires more than a second for large network topologies. Our novel next-hop
selection policy design FieldLines is the first of its kind that can optimize routing within milliseconds for any
network topology without the need for re-training. Finally, our evaluation setup demonstrates the versatility
of our new packet-level training and evaluation framework PackeRL. It supports training and evaluating
policies on a wide range of realistic network topologies and traffic setups, provides closed-loop simulation via
its ns-3 network simulator backend, and facilitates a detailed analysis of RL-based approaches with respect
to a handful of well-known performance metrics. With the findings of this work, we hope to inspire future
research on RL-enabled routing optimization, and provide a few pointers in the following final subsection.

8.1 Future Work

We have demonstrated the usefulness of PackeRL only for single-path routing but not for multi-path routing.
This is due to the absence of standard Multipath TCP (MPTCP) implementations for ns-3 or any other
popular packet-level network simulator4. As existing implementations of MPTCP for ns-3 are incomplete
with respect to the official specification (Nadeem & Jadoon, 2019; Ford et al., 2020), we leave the extension
of PackeRL to multipath routing for future work.

In this work, for simplicity, we have evaluated the routing performance when optimizing for a single objective
or a weighted sum of multiple components with fixed weights. But in different network scenarios, the
relative importance of these metrics may vary. Further efforts may investigate the relative importance of the
optimization components in different network scenarios and turn to Multi-Objective RL (Hayes et al., 2022)
to train a family of policies that provides better control over performance.

Despite the strong results of FieldLines, Section 7.4 has shown that its routing becomes increasingly static as
network sizes grow, making it gradually lose its advantage. Figure 16 suggests that adding more message
passing steps to the MPN module does not solve the problem on its own, but revisiting the action-selection
mechanism used during the training of FieldLines may alleviate this issue. Furthermore, despite greatly
reduced inference times, FieldLines still requires several ms to re-optimize routing. This does not influence
routing in our experiments because we pause the environment during action selection as is commonly done in
RL research. Long inference times may however degrade routing quality in the even more realistic setting
where network operation would continue during action inference. Learning sub-second routing optimization
with RL in such a soft real-time setting (Marchand et al., 2004) is an interesting and challenging avenue for
further research, not least because hardware specifications will start to influence the routing results.

Finally, we note that the RL approaches considered in our experiments were trained and evaluated in a fully
centralized manner. This raises the question: How do we account for the delays incurred by communicating
state information across the computer network? High-frequency RO policies may need to respect Age of
Information (AoI) (Yates et al., 2021) when capturing and processing the network state. Here, redistributing
routing control to the nodes could reduce the influence of AoI, as nodes may restrict the topological coverage
of input and output to their neighborhoods. It is an open question whether such systems of networked agents
can achieve efficient routing, and if so, how they should be designed and deployed. We believe that building
on FieldLines’ next-hop routing design can help to answer this question in future work.

4Consequently, other recent RO approaches like TEAL (Xu et al., 2023) can not yet be evaluated in packet-level simulation.

13

Published in Transactions on Machine Learning Research (10/2024)

Broader Impact Statement

Automating computer networks promises to greatly increase operational efficiency and save costs through
over-provisioning or manual configuration. Here, RL-powered RO may become a cornerstone in autonomous
computer networks. Other infrastructures like road networks or power grids may also benefit from this
progress, given their structural similarity. Our work opens the door for future research on automation for such
kinds of systems. Anyhow, as for most RL application domains, misusing RL approaches in computer networks
for malicious intents is conceivable. Specifically, the black-box nature of RL-powered RO approaches can be
abused to infiltrate the network’s decision making, causing disturbances or loss of data if appropriate security
measures are not taken. Furthermore, learned routing approaches may put certain kinds of traffic at an
unnatural disadvantage in order to optimize overall routing performance. In addition to mindful deployment
by the network engineers, RL-powered networking components should therefore include safeguards against
the most common attack vectors.

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https://www.
tensorflow.org/. Software available from tensorflow.org.

Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav, and George Varghese. CONGA:
Distributed congestion-aware load balancing for datacenters. In ACM SIGCOMM Conference 2014, pp.
503–514, New York, NY, USA, August 2014. Association for Computing Machinery. ISBN 978-1-4503-2836-4.
doi: 10.1145/2619239.2626316. URL https://dl.acm.org/doi/10.1145/2619239.2626316.

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes Brandstetter.
Universal physics transformers. arXiv preprint arXiv:2402.12365, 2024.

Redha A Alliche, Tiago Da Silva Barros, Ramon Aparicio-Pardo, and Lucile Sassatelli. PRISMA: A packet
routing simulator for multi-agent reinforcement learning. In 2022 IFIP Networking Conference (IFIP
Networking), pp. 1–6. IEEE, 2022.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier Bachem.
What matters for on-policy deep actor-critic methods? a large-scale study. In 8th International Conference
on Learning Representations (ICLR 2020), October 2020. URL https://openreview.net/forum?id=
nIAxjsniDzg&.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Albert-László Barabási. Scale-free networks: A decade and beyond. Science, 325(5939):412–413, 2009.

Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic characteristics of data centers in the
wild. In ACM SIGCOMM Internet Measurement Conference (IMC’10), pp. 267–280, 2010.

Guillermo Bernárdez, José Suárez-Varela, Albert López, Xiang Shi, Shihan Xiao, Xiangle Cheng, Pere
Barlet-Ros, and Albert Cabellos-Aparicio. MAGNNETO: A graph neural network-based multi-agent
system for traffic engineering. IEEE Transactions on Cognitive Communications and Networking, pp. 1–1,
2023. ISSN 2332-7731. doi: 10.1109/TCCN.2023.3235719. URL https://github.com/BNN-UPC/Papers/
wiki/MAGNNETO-TE.

14

https://www.tensorflow.org/
https://www.tensorflow.org/
https://dl.acm.org/doi/10.1145/2619239.2626316
https://openreview.net/forum?id=nIAxjsniDzg&
https://openreview.net/forum?id=nIAxjsniDzg&
https://github.com/BNN-UPC/Papers/wiki/MAGNNETO-TE
https://github.com/BNN-UPC/Papers/wiki/MAGNNETO-TE

Published in Transactions on Machine Learning Research (10/2024)

Sai Shreyas Bhavanasi, Lorenzo Pappone, and Flavio Esposito. Routing with graph convolutional networks
and multi-agent deep reinforcement learning. In 2022 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), pp. 72–77, November 2022. doi: 10.1109/NFV-SDN56302.
2022.9974607.

Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Nikolaj Bjørner, Asaf Valadarsky, and Michael
Schapira. TEAVAR: Striking the right utilization-availability balance in WAN traffic engineering. In
Proceedings of the ACM Special Interest Group on Data Communication, pp. 29–43. Association for
Computing Machinery, 2019.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Alexander Brundiers, Timmy Schüller, and Nils Aschenbruck. On the benefits of loops for segment routing
traffic engineering. In 2021 IEEE 46th Conference on Local Computer Networks (LCN), pp. 32–40. IEEE,
2021.

Gustavo Carneiro, Pedro Fortuna, and Manuel Ricardo. Flowmonitor: A network monitoring framework
for the network simulator 3 (ns-3). In 4th International ICST Conference on Performance Evaluation
Methodologies and Tools (VALUETOOLS’09), pp. 1–10, 2009.

Bo Chen, Di Zhu, Yuwei Wang, and Peng Zhang. An approach to combine the power of deep reinforcement
learning with a graph neural network for routing optimization. Electronics, 11(3):368, January 2022. ISSN
2079-9292. doi: 10.3390/electronics11030368. URL https://www.mdpi.com/2079-9292/11/3/368.

Jiawei Chen, Yang Xiao, and Guocheng Lin. RL4NET++: A packet-level network simulation framework for
drl-based routing algorithms. In 8th IEEE International Conference on Network Intelligence and Digital
Content (IC-NIDC 2023), pp. 248–253. IEEE, 2023.

Marco Chiesa, Guy Kindler, and Michael Schapira. Traffic engineering with equal-cost-multipath: An
algorithmic perspective. IEEE/ACM Transactions on Networking, 25(2):779–792, 2016.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,
Fourth Edition. MIT Press, 2022. ISBN 9780262046305.

Wesley M. Eddy. RFC 9293: Transmission control protocol (TCP), 2022.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publication of the Mathematical Institute
of the Hungarian Academy of Sciences, 5(1):17–60, 1960.

Aian Farrel. Overview and principles of internet traffic engineering. Request for Comments RFC 9522,
Internet Engineering Task Force, January 2024. URL https://datatracker.ietf.org/doc/rfc9522.

Miquel Ferriol-Galmés, Jordi Paillisse, José Suárez-Varela, Krzysztof Rusek, Shihan Xiao, Xiang Shi, Xiangle
Cheng, Pere Barlet-Ros, and Albert Cabellos-Aparicio. RouteNet-Fermi: Network modeling with graph
neural networks. IEEE/ACM Transactions on Networking, pp. 1–0, 2023. ISSN 1558-2566. doi: 10.1109/
TNET.2023.3269983.

Alan Ford, Costin Raiciu, Mark J. Handley, Olivier Bonaventure, and Christoph Paasch. TCP extensions
for multipath operation with multiple addresses. RFC 8684, 2020. URL https://www.rfc-editor.org/
info/rfc8684.

Niklas Freymuth, Philipp Dahlinger, Tobias Würth, Simon Reisch, Luise Kärger, and Gerhard Neumann.
Swarm reinforcement learning for adaptive mesh refinement. Advances in Neural Information Processing
Systems 2024 (NeurIPS ’24), 36, 2024.

Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed placement. Software:
Practice and Experience, 21(11):1129–1164, November 1991. ISSN 00380644, 1097024X. doi: 10.1002/spe.
4380211102.

15

https://www.mdpi.com/2079-9292/11/3/368
https://datatracker.ietf.org/doc/rfc9522
https://www.rfc-editor.org/info/rfc8684
https://www.rfc-editor.org/info/rfc8684

Published in Transactions on Machine Learning Research (10/2024)

Qiongxiao Fu, Enchang Sun, Kang Meng, Meng Li, and Yanhua Zhang. Deep Q-Learning for routing
schemes in SDN-based data center networks. IEEE Access, 8:103491–103499, 2020. ISSN 2169-3536. doi:
10.1109/ACCESS.2020.2995511.

Steven Gay, Renaud Hartert, and Stefano Vissicchio. Expect the unexpected: Sub-second optimization for
segment routing. In IEEE Conference on Computer Communications (INFOCOM 2017), pp. 1–9, May
2017a. doi: 10.1109/INFOCOM.2017.8056971.

Steven Gay, Pierre Schaus, and Stefano Vissicchio. REPETITA: Repeatable experiments for performance
evaluation of traffic-engineering algorithms. arXiv preprint arXiv:1710.08665, 2017b.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network failures in data centers:
Measurement, analysis, and implications. In ACM SIGCOMM Conference 2011, pp. 350–361, 2011.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message
passing for quantum chemistry. In 34th International Conference on Machine Learning (ICML 2017), pp.
1263–1272. PMLR, 2017.

Yingya Guo, Yulong Ma, Huan Luo, and Jianping Wu. Traffic engineering in a shared Inter-DC WAN via
deep reinforcement learning. IEEE Transactions on Network Science and Engineering, 9(4):2870–2881,
July 2022. ISSN 2327-4697. doi: 10.1109/TNSE.2022.3172283.

Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A new TCP-friendly high-speed TCP variant. ACM
SIGOPS Operating Systems Review, 42(5):64–74, 2008.

Aric Hagberg, Pieter J. Swart, and Daniel A. Schult. Exploring network structure, dynamics, and function
using NetworkX, 1 2008. URL https://www.osti.gov/biblio/960616.

Frank Harary and Robert Z Norman. Some properties of line digraphs. Rendiconti del Circolo Matematico di
Palermo, 9:161–168, 1960.

Conor F. Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane, Mathieu
Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik Heintz, et al. A practical
guide to multi-objective reinforcement learning and planning. 21th Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2022), 36(1):26, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 770–778, 2016.

Thomas R. Henderson, Mathieu Lacage, and George F. Riley. Network simulations with the ns-3 simulator.
SIGCOMM Demonstration, 14(14):527, 2008.

Pieter Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly Media, 2013.

Wanwei Huang, Bo Yuan, Sunan Wang, Jianwei Zhang, Junfei Li, and Xiaohui Zhang. A generic intelligent
routing method using deep reinforcement learning with graph neural networks. IET Communications, 16
(19):2343–2351, 2022. ISSN 1751-8636. doi: 10.1049/cmu2.12487. URL https://onlinelibrary.wiley.
com/doi/abs/10.1049/cmu2.12487.

Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit, Lawrence J. Wobker, et al.
In-band network telemetry via programmable dataplanes. In ACM SIGCOMM Conference 2015, volume 15,
pp. 1–2, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew Roughan. The Internet
Topology Zoo. IEEE Journal on Selected Areas in Communications, 29(9):1765–1775, October 2011. ISSN
1558-0008. doi: 10.1109/JSAC.2011.111002.

16

https://www.osti.gov/biblio/960616
https://onlinelibrary.wiley.com/doi/abs/10.1049/cmu2.12487
https://onlinelibrary.wiley.com/doi/abs/10.1049/cmu2.12487

Published in Transactions on Machine Learning Research (10/2024)

Praveen Kumar, Chris Yu, Yang Yuan, Nate Foster, Robert Kleinberg, and Robert Soulé. YATES: Rapid
prototyping for traffic engineering systems. In ACM Symposium on SDN Research (SOSR), pp. 1–7, 2018.

Xuan Mai, Quanzhi Fu, and Yi Chen. Packet routing with graph attention multi-agent reinforcement
learning. In 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, December 2021. doi:
10.1109/GLOBECOM46510.2021.9685941.

Audrey Marchand, Maryline Silly-Chetto, and Rue Christian Pauc. Dynamic scheduling of soft aperiodic
tasks and periodic tasks with skips. In 25th IEEE Real-Time Systems Symposium Work-In-Progress Session,
2004.

Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee Chuah, Yashar Ganjali,
and Christophe Diot. Characterization of failures in an operational IP backbone network. IEEE/ACM
Transactions on Networking, 16(4):749–762, 2008.

Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. RFC2018: TCP selective acknowledgement
options, 1996.

Alaitz Mendiola, Jasone Astorga, Eduardo Jacob, and Marivi Higuero. A survey on the contributions of
software-defined networking to traffic engineering. IEEE Communications Surveys & Tutorials, 19(2):
918–953, 2016.

Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-Ros, Eduard Alarcón, Marc Solé, Victor
Muntés-Mulero, David Meyer, Sharon Barkai, Mike J Hibbett, et al. Knowledge-defined networking. ACM
SIGCOMM Computer Communication Review, 47(3):2–10, 2017.

John Moy. OSPF Version 2. Request for Comments RFC 2178, Internet Engineering Task Force, July 1997.
URL https://datatracker.ietf.org/doc/rfc2178.

Kashif Nadeem and Tariq M. Jadoon. An ns-3 MPTCP implementation. In 14th EAI International Conference
on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE’18), pp. 48–60.
Springer, 2019.

Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski. SNDlib 1.0—Survivable
Network Design Library. Networks, 55(3):276–286, 2010. ISSN 1097-0037. doi: 10.1002/net.20371. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20371.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems (NeurIPS ’19), 32, 2019.

Tran Anh Quang Pham, Yassine Hadjadj-Aoul, and Abdelkader Outtagarts. Deep reinforcement learning
based QoS-aware routing in knowledge-defined networking. In Trung Q. Duong, Nguyen-Son Vo, and Van Ca
Phan (eds.), Quality, Reliability, Security and Robustness in Heterogeneous Systems, Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 14–26, Cham,
2019. Springer International Publishing. ISBN 978-3-030-14413-5. doi: 10.1007/978-3-030-14413-5_2.

Pinyarash Pinyoanuntapong, Minwoo Lee, and Pu Wang. Distributed multi-hop traffic engineering via
stochastic policy gradient reinforcement learning. In 2019 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, December 2019. doi: 10.1109/GLOBECOM38437.2019.9013134.

Jon Postel. RFC 0768: User datagram protocol (UDP), 1980.

Matthew Roughan. Simplifying the synthesis of internet traffic matrices. SIGCOMM Comput. Commun.
Rev., 35(5):93–96, October 2005. ISSN 0146-4833. doi: 10.1145/1096536.1096551. URL https://doi.org/
10.1145/1096536.1096551.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
Learning to simulate complex physics with graph networks. In 37th International Conference on Machine
Learning (ICML 2020), pp. 8459–8468. PMLR, 2020.

17

https://datatracker.ietf.org/doc/rfc2178
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20371
https://doi.org/10.1145/1096536.1096551
https://doi.org/10.1145/1096536.1096551

Published in Transactions on Machine Learning Research (10/2024)

Donnie Savage, James Ng, Steven Moore, Donald Slice, Peter Paluch, and Russ White. Cisco’s Enhanced
Interior Gateway Routing Protocol (EIGRP). Request for Comments RFC 7868, Internet Engineering Task
Force, May 2016. URL https://datatracker.ietf.org/doc/rfc7868.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation, October 2018. URL http://arxiv.org/abs/
1506.02438.

Luca Schumann, Trinh Viet Doan, Tanya Shreedhar, Ricky Mok, and Vaibhav Bajpai. Impact of evolving
protocols and COVID-19 on internet raffic shares. arXiv preprint arXiv:2201.00142, 2022.

Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Nick Mckeown, and Guru Parulkar. Can
the production network be the testbed? In 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’10), 2010.

Bruce Spang, Serhat Arslan, and Nick McKeown. Updating the theory of buffer sizing. ACM SIGMETRICS
Performance Evaluation Review, 49(3):55–56, 2022.

Neil Spring, Ratul Mahajan, and David Wetherall. Measuring ISP topologies with rocketfuel. SIGCOMM
Comput. Commun. Rev., 32(4):133–145, August 2002. ISSN 0146-4833. doi: 10.1145/964725.633039. URL
https://dl.acm.org/doi/10.1145/964725.633039.

Giorgio Stampa, Marta Arias, David Sanchez-Charles, Victor Muntes-Mulero, and Albert Cabellos. A
deep-reinforcement learning approach for software-defined networking routing optimization, September
2017. URL http://arxiv.org/abs/1709.07080.

Penghao Sun, Zehua Guo, Julong Lan, Junfei Li, Yuxiang Hu, and Thar Baker. ScaleDRL: A scalable deep
reinforcement learning approach for traffic engineering in SDN with pinning control. Computer Networks,
190:107891, May 2021. ISSN 1389-1286. doi: 10.1016/j.comnet.2021.107891.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel
Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, March 2023. URL
https://zenodo.org/record/8127025.

Daniel Turner, Kirill Levchenko, Alex C Snoeren, and Stefan Savage. California fault lines: Understanding
the causes and impact of network failures. In ACM SIGCOMM Conference 2010, pp. 315–326, 2010.

Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. Learning to route. In 16th ACM
Workshop on Hot Topics in Networks (HotNets 2017), pp. 185–191, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 978-1-4503-5569-8. doi: 10.1145/3152434.3152441. URL https://doi.
org/10.1145/3152434.3152441.

Mowei Wang, Linbo Hui, Yong Cui, Ru Liang, and Zhenhua Liu. xNet: Improving expressiveness and granu-
larity for network modeling with graph neural networks. In IEEE Conference on Computer Communications
(INFOCOM 2022), pp. 2028–2037. IEEE, 2022.

Ning Wang, Kin Hon Ho, George Pavlou, and Michael Howarth. An overview of routing optimization
for internet traffic engineering. IEEE Communications Surveys & Tutorials, 10(1):36–56, 2008. ISSN
1553-877X. doi: 10.1109/COMST.2008.4483669.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):
440–442, 1998.

Patrick Wendell and Michael J. Freedman. Going viral: Flash crowds in an open CDN. In ACM SIGCOMM
Internet Measurement Conference (IMC’11), pp. 549–558, 2011.

18

https://datatracker.ietf.org/doc/rfc7868
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://dl.acm.org/doi/10.1145/964725.633039
http://arxiv.org/abs/1709.07080
https://zenodo.org/record/8127025
https://doi.org/10.1145/3152434.3152441
https://doi.org/10.1145/3152434.3152441

Published in Transactions on Machine Learning Research (10/2024)

Yang Xiao, Jun Liu, Jiawei Wu, and Nirwan Ansari. Leveraging deep reinforcement learning for traffic
engineering: A survey. IEEE Communications Surveys & Tutorials, 23(4):2064–2097, 2021. ISSN 1553-877X.
doi: 10.1109/COMST.2021.3102580.

Yang Xiao, Jianxue Li, Jiawei Wu, and Jun Liu. On design and implementation of reinforcement learning
based cognitive routing for autonomous networks. IEEE Communications Letters, 27(1):205–209, 2022.

Dahai Xu, Mung Chiang, and Jennifer Rexford. Link-state routing with hop-by-hop forwarding can achieve
optimal traffic engineering. IEEE/ACM Transactions on Networking, 19(6):1717–1730, December 2011.
ISSN 1558-2566. doi: 10.1109/TNET.2011.2134866.

Zhiying Xu, Francis Y. Yan, Rachee Singh, Justin T. Chiu, Alexander M. Rush, and Minlan Yu. Teal:
Learning-accelerated optimization of WAN traffic engineering. In ACM SIGCOMM Conference 2023, pp.
378–393, New York, NY, USA, September 2023. Association for Computing Machinery. ISBN 9798400702365.
doi: 10.1145/3603269.3604857. URL https://dl.acm.org/doi/10.1145/3603269.3604857.

Qingqing Yang, Xi Peng, Li Chen, Libin Liu, Jingze Zhang, Hong Xu, Baochun Li, and Gong Zhang.
Deepqueuenet: Towards scalable and generalized network performance estimation with packet-level visibility.
In ACM SIGCOMM Conference 2022, pp. 441–457, 2022.

Roy D. Yates, Yin Sun, D. Richard Brown, Sanjit K. Kaul, Eytan Modiano, and Sennur Ulukus. Age of
Information: An introduction and survey. IEEE Journal on Selected Areas in Communications, 39(5):
1183–1210, 2021.

Hao Yin, Pengyu Liu, Keshu Liu, Liu Cao, Lytianyang Zhang, Yayu Gao, and Xiaojun Hei. ns3-ai: Fostering
artificial intelligence algorithms for networking research. In Proceedings of the 2020 Workshop on ns-3
(WNS3), pp. 57–64, 2020.

Xinyu You, Xuanjie Li, Yuedong Xu, Hui Feng, Jin Zhao, and Huaicheng Yan. Toward packet routing
with fully distributed multiagent deep reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 52(2):855–868, February 2022. ISSN 2168-2232. doi: 10.1109/TSMC.2020.3012832.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep reinforcement
learning. arXiv preprint arXiv:1804.06893, 2018.

Qizhen Zhang, Kelvin K. W. Ng, Charles Kazer, Shen Yan, João Sedoc, and Vincent Liu. MimicNet: Fast
performance estimates for data center networks with machine learning. In ACM SIGCOMM Conference
2021, pp. 287–304, 2021.

Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang, and Yanpeng Li. Improving deep neural networks using
softplus units. In 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–4. IEEE, 2015.

Hubert Zimmermann. OSI Reference Model - the ISO model of architecture for open systems interconnection.
IEEE Transactions on Communications, 28(4):425–432, 1980. doi: 10.1109/TCOM.1980.1094702.

19

https://dl.acm.org/doi/10.1145/3603269.3604857

Published in Transactions on Machine Learning Research (10/2024)

A PackeRL: Framework Details

Figure 8: Left: Structural overview of PackeRL. Right: Example 3-node network setup in ns-3 incl. applications
(red boxes) and Internet Stack (blue boxes).

A.1 Network Structure and Simulation in ns-3

Networks in ns-3, by default, consist of nodes and links/connections between nodes, as illustrated in Figure 8.
For modeling simplicity, we limit ourselves to connected network topologies that hold full-duplex Point-
to-Point (P2P) connections transmitting data error-free and at a constant pre-specified datarate. Nodes
themselves do not generate or consume data; Instead, applications are installed on nodes that generate data
destined for other applications, or consume the data that is destined for them (red boxes in example network
nodes in Figure 8). To transport data between nodes we install an Internet Stack on top of each node,
adding IP and TCP/UDP components in a way that mimics the OSI reference model (Zimmermann, 1980).
Also, nodes do not put data on the P2P link themselves, or read data from it. This is done by the network
devices (rectangles attached to the nodes in Figure 8) that belong to a P2P connection, which are installed
as interfaces on the two nodes that are being connected. Upon installation of the Internet Stack, the P2P
connection between two nodes is assigned an IPv4 address space, with concrete IPv4 addresses given to the
incident network devices.

A.2 PackeRL’s Online Interaction Loop

PackeRL uses a two-component Python/C++ environment, with inter-component communication realized
by shared memory module of ns3-ai. The Python component provides a Gymnasium-like interface to the
learning loop, while the C++ component is a wrapper and entry point for simulations in ns-3. Initially, the
Python environment starts an instance of its C++ counterpart in a subprocess, providing general simulation
parameters (c.f. Section B.1) and a network scenario generated with synnet. The C++ environment enters its
simulation loop and first installs the network topology in ns-3 : It configures nodes, links and network devices
accordingly, as well as a TCP and a UDP sink application per node. Then, it starts the ns-3 Simulator that
runs the actual simulation steps. The initial network state S0 is communicated from the C++ component to
the Python environment. Within the episode loop, the Python part provides the current network state St to
learned or baseline policies, and communicates the routing action at to the C++ component alongside the
upcoming traffic and link failure events. Source applications are then created according to the upcoming
traffic demands, with sending start times set to the respective demand arrival times. For TCP traffic demands,
the source application attempts to send its data as quickly as possible, and we use ns-3 ’s default TCP
CUBIC (Ha et al., 2008) to modulate the actual sending rate. Note that we currently do not support
TCP Selective Acknowledgement (SACK) (Mathis et al., 1996) due to a presumed bug in ns-3 that causes
simulation crashes. For UDP traffic demands, we use the sending rate provided by the scenario as explained
in Section A.6. The provided routing actions are installed as described in Section A.3. Next, using the
Simulator, ns-3 simulates the installed network for a duration of τsim: The installed source applications

20

Published in Transactions on Machine Learning Research (10/2024)

(one per traffic demand) send data to the specified destination nodes as configured, which gets wrapped into
IP packets as they enter the routing plane. The RP that has been installed with the Internet Stack fills each
node’s routing table and performs lookups when outgoing or incoming IP packets arrive, forwarding these
packets to the specified next-hop neighbor or locally delivering them to the sink applications. Each node has
a TCP and a UDP packet sink. After having simulated for a duration of τsim, the C++ component pauses
the simulation and obtains the network state St`1 for the completed timestep t. It communicates St`1 to
the Python component that uses it to obtain rt. After H timesteps, the episode is done and the Python
environment component sends a done signal to the C++ subprocess, which in turn ends its simulation loop
and concludes the subprocess.

A.3 Installing and Using Routing Actions in ns-3

Routing in computer network involves two primary tasks: determining the best paths and forwarding the
packets along these paths. For the latter, routers keep a set of routing rules in their memory. Each rule
specifies a next-hop neighbor to which packets with a certain destination are to be forwarded. This rule set -
also known as a routing table - gets populated by the installed RP, and we adopt this mechanism for our
work. Most contemporary IP networks employ destination-based routing, i.e. routers forward packets by
finding the routing table entry that matches the packet’s destination address, and sending the packet to the
next-hop neighbor specified in that entry. As mentioned in Section 3, we adopt the commonly used forwarding
mechanism using routing tables stored in the router’s memory that may get updated by the RP. Therefore,
regardless of the routing action’s representation, we need to convert it into a set of routing table rules for
each concerned routing node, where each rule contains a next-hop neighbor preference for a given destination
node. We do the conversion prior to placing the actions into the shared memory module on the Python side.
On the C++ side, the OddRouting module serves as a drop-in replacement for other routing protocols like
OSPF that allows the installation of the provided routing next-hop preferences onto the network nodes. Since
not all node pairs in a network necessarily communicate with each other, the OddRouting module stores the
received routing preferences in a separate location on the routing node, and only fills the nodes’ routing
tables on-demand once a packet arrives at a node for which no suitable routing rule exists in its routing table.
All subsequent packets destined for the same target node will have access to the newly installed table entry
until the start of a new timestep, when new routing preferences will be stored in the node and its routing
table will be flushed. Otherwise, OddRouting resembles the other IPv4 RPs implemented in ns-3, leveraging
the line-speed capability of the forwarding plane.

A.4 Network Monitoring in ns-3

In order to efficiently obtain the state of the computer network, we utilize the In-Band Network Telemetry
capabilities provided by ns-3 ’s FlowMonitor module (Carneiro et al., 2009). It utilizes probes installed on
packets to track per-flow statistics such as traffic volume, average and maximum packet delay, and node-level
routing events down to the IP level. We use this information to obtain TMs of packets/bytes sent and received
(for visualization and the MAGNNETO baseline), as well as global average/maximum packet delay and
node-level traffic statistics that form part of the monitored network state S. Moreover, our network topology
is modeled as a graph with edges that consist of physical connections between network devices installed on
nodes. FlowMonitor does not capture queueing and drop events happening on the network device level, and
we therefore also report events happening in network devices and channels to obtain edge-level information
on link utilization, packet buffer fill, and bytes/packets sent/received/dropped. Since the P2P connections
are full-duplex, we model the network monitoring as a directed graph where an edge of the original network
topology is replaced with one edge in each direction. These directed edges contain the state of the respective
sender device, i.e. edge pu, vq contains packet buffer load, link utilization and traffic statistics for traffic
buffered in u flowing to v. At the end of a timestep t, St holds global, node and edge features that reflect the
overall network performance and utilization during timestep t, as well as its load state at the end of timestep
t. For the edges, we add their datarate, delay and packet buffer capacities to the list of features. For the
initial state S0, all utilization and traffic values are set to zero.

21

Published in Transactions on Machine Learning Research (10/2024)

Figure 9: Visualizations of graph scenarios. Left: Link failure distribution across episodes for nx-s with link
failures. Center: NSFNet as used by MAGNNETO. Right: GEANT2 as used by MAGNNETO. Note that
node positions for visualization are not provided by MAGNNETO for NSFNet2 and GEANT2, and therefore
the visualizations shown here may differ from related work.

A.5 synnet: Generating Network Topologies

Network topologies vary greatly depending on the scope and use case of the network. For this work, we
orientate our scenario generation towards the topologies spanned by the edge routers that connect datacenters
in typical Inter-Datacenter Wide Area Networks (Inter-DC WANs). These are usually characterized by
loosely meshed powerful edge routers and high-datarate medium-latency links that connect two such routers
each. While we also employ link delay values in the low ms range, we scale down typical datarate values
for Inter-DC WANs to lie in the high Mbps range, to speed up simulation times under stress situations
without loss of generality of the simulation results. For simplicity, we set the packet buffer sizes of network
devices incident to P2P connections to the product of link datarate and round-trip delay, which is common
throughout the networking literature (Spang et al., 2022).

To generate random network topology graphs, we use the ER model (Erdős et al., 1960) and the WS
model (Watts & Strogatz, 1998), and, up to 50 nodes, the BA (Barabási, 2009) model. All models are
available via NetworkX graph analysis package (Hagberg et al., 2008). Figures 10 and 11 show examples for
such random topology graphs. In any case, nodes and edges are assigned unique integer IDs for identification
purposes. To add the missing datarate and delay values to the links, we follow the following steps:

1. We first embed the random graph into a two-dimensional plane using the Fruchterman-Reingold
force-directed algorithm (Fruchterman & Reingold, 1991) to create synthetic positional information
for the random graph’s nodes, similar to the position information provided for nodes in related
network datasets (Orlowski et al., 2010; Knight et al., 2011; Spring et al., 2002).

2. The resulting positional layout is centered around the two-dimensional point of origin, which we use
to obtain location weights per node that are inversely proportional to its distance to the origin. We
scale the location weights wp to lie in r1, wpmax s.

3. We obtain degree weights wd from the array of node degrees scaled to lie in r1, wdmax s.

4. We obtain node traffic potentials c1 “ λcwd ` p1 ´ λcqwp by using a weight tradeoff parameter λc,
and normalize them by dividing by the max value to obtain normalized node traffic potentials c.

22

Published in Transactions on Machine Learning Research (10/2024)

Figure 10: Examples of 10-node network topologies generated with NetworkX. Bigger nodes indicate higher
node weights, thicker edges indicate higher edge weights. Columns from left to right (2 examples each):
Barabási-Albert (BA), Erdős-Rényi (ER), Watts-Strogatz (WS).

Figure 11: Examples of 25-node network topologies generated with NetworkX. Bigger nodes indicate higher
node weights, thicker edges indicate higher edge weights. Columns from left to right (2 examples each): BA,
ER, WS.

23

Published in Transactions on Machine Learning Research (10/2024)

5. The edge delay values are obtained by calculating the euclidean distance between the adjacent nodes,
randomly perturbing them by δrand and rescaling them to average mdelay with a minimum delay
value of 1 ms.

6. The datarate values per edge pi, jq are obtained by taking the greater of the incident nodes’ traffic
potentials ci and cj , randomly perturbing it by δrand and rescaling it to lie in the pre-specified interval
of minimum and maximum datarates rvmin, vmaxs.

A.6 synnet: Generating Traffic and Link Failure Events

Our process to generate flow-level traffic is inspired by reported traffic characteristics of real-world data
centers (Benson et al., 2010):

1. Inspired by gravity TMs (Roughan, 2005), we generate a "traffic potential matrix" B “ ccT and
randomly perturb its values by δrand. Its values bij describe the expected (not actually measured)
relative traffic intensity between each source-destination node pair i, j and will be used for the
upcoming demand generation. Diagonal entries are set to 0 to exclude self-traffic, meaning that
traffic demand generation is skipped.

2. We use a flow size tradeoff parameter λflow P r0, 1s to balance the frequency and size of arriving flows.
Smaller values lead to more but smaller traffic demands, larger values lead to fewer but larger traffic
demands.

3. In order to sample inter-arrival times between demands for each pair of nodes i, j, we use a log-logistic
distribution with a fixed shape parameter βt ą 0 and a scale αt “

λflow` 1
5

mtraffic
that uses a traffic scaling

parameter mtraffic depending on the evaluated task and class of graph topology. Starting from τ “ 0,
we sample inter-arrival times for each node pair until we have reached the total simulated time scaled
by traffic intensity τ “ bijHτsim (with H being the episode length, τsim being the simulated time per
episode step, and arrival times obtained via cumulative summation of inter-arrival times). Finally,
we obtain the actual demand arrival times τ ă Hτsim per node pair i, j by dividing the generated
arrival times by bi,j , capping at 50 ms.

4. For each generated traffic demand, we sample a demand size using a Pareto distribution. It uses
a fixed scale parameter αs that also specifies the minimum demand size in bytes, and a shape
βs “ βsbase ` logpλ

´ 1
37

flow q depending on a shape base parameter βsbase that determines the tail weight
of the demand size distribution. We cap the demand sizes at 1 TB.

5. A fraction pTCP P r0, 1s of the generated traffic demands is marked as TCP traffic demands, with the
rest being marked as UDP demands. While the simulation will try to finish TCP demands as quickly
as possible and under the sending rate moderation of TCP, we assign a constant sending rate of 1
Gbps for UDP demands of less than 100 KB, and a constant sending rate drawn uniformly from
r1, 5s Mbps for all other UDP demands.

For creating link failure events, for each step of the episode, we obtain link failure probabilities from a Weibull
distribution as explained in Section B.3 and draw a boolean sample for each edge that determines whether it
will fail in the upcoming step. In order to maintain the connected-ness of the network topology, we then
restrict the creation of link failure events to edges that are non-cut at the time of event.

24

Published in Transactions on Machine Learning Research (10/2024)

B Hyperparameters, Configuration And Defaults

The listed default hyperparameters and settings are used in all our experiments unless mentioned otherwise.

B.1 Simulation in ns-3

We set up the applications to send data packets of up to 1472 bytes, which accounts for the commonly used
IP packet maximum transmission unit of 1500 bytes and the sizes for the IP (20 bytes) and ICMP (8 bytes)
packet header. UDP packets thus are 1500 bytes large, whereas TCP may split up data units received from
the upper layer as required. We set the simulation step duration τsim to 5 ms and make each episode last
H “ 100 steps, simulating a total of T “ 500 ms per episode.

B.2 synnet: Topology Generation

For the BA model we use an attachment count of 2, and stop using the BA model altogether for networks
above 50 nodes as kurtosis of the node degree distribution becomes too high at that point. For the ER model
we set the average node degree to 3, and for the WS we choose a rewiring probability of 30% and an attachment
count of 4. For a deterministic positional embedding of the graphs’ nodes via the Fruchterman-Reingold
force-directed algorithm, we set its random seed to 9001. We set the maximum node location weight wpmax

and the maximum node degree weight wdmax to 10, and use a weight tradeoff parameter of λc “ 0.6. We use
a base average edge delay value mdelay of 5 ms, minimum and maximum edge datarate values of vmin “ 50e6
and vmax “ 200e6, and a random perturbation of δrand “ 0.1 (i.e. random perturbation by up to ˘10%).

B.3 synnet: Traffic and Link Failure Event Generation

For random perturbation, we again use δrand “ 0.1 (i.e. random perturbation by up to ˘10%). The flow size
tradeoff parameter λflow is set to 0.5, the demand interarrival time distribution shape parameter βt is set to
1.5, the demand size distribution scale parameter αs is set to 10 (i.e. demands are at least 10 bytes), and the
distribution shape base parameter is set to βsbase “ 0.4. As per Bogle et al. (2019), we model link failure
probabilities per simulated step as a Weibull distribution W pλ, kq, using a shape parameter λ “ 0.8 and a
scale parameter k “ 0.001. Figure 12 illustrates the resulting probability distributions for traffic demands
and link failures.

Figure 12: Cumulative probabilities for demand interarrival times (left, log-logistic distribution) and demand
sizes in bytes (right, Pareto distribution). The red points at the end of the curves denote the cumulative
probability at 50 ms and 1 GB.

25

Published in Transactions on Machine Learning Research (10/2024)

B.4 Monitoring Features

The following features are monitored in our ns-3 simulation:

• global: maximum link utilization (maxLU P r0, 1s), average datarate utilization avgTDU P r0, 1s,
average packet delay avgPacketDelay P R`, maximum packet delay maxPacketDelay P R`, average
packet jitter avgPacketJitter P R`, globally sent/received/dropped/retransmitted bytes in N0.

• edge: link utilization LU P r0, 1s, maximum relative packet buffer fill txQueueMaxLoad P r0, 1s,
relative packet buffer fill at end of simulation step txQueueLastLoad P r0, 1s, packet buffer capacity
in N`, channel datarate and delay in N`, sent/received/dropped bytes in N0.

• node: sent/received/retransmitted bytes in N0.

By default, we do not use the node features in our experiments. This is because our feature ablation in
Section C.5 shows that including this information globally and on an edge level is enough and leads to the
best performance. Consequently, for our experiments we have dU “ 9, dE “ 10 and dV “ 0 for the monitored
network state Gt. Also, we normalize all input features akin to Schulman et al. (2017). Finally, we stack the
four latest observations pSt´3, St´2, St´1, Stq, using zero-value padding.

B.5 OSPF and EIGRP Weight Calculation

The default calculation formula for OSPF link weights is

weightpeq “
vOSPF

ref
vpeq

where vpeq denotes the datarate value of link e and the reference datarate value vOSPF
ref is set to 108 (Moy,

1997). For EIGRP link weights, we use the classic formulation with default K-values, which yields

weightpeq “ 256 ¨

ˆ

vEIGRP
ref
vpeq

`
dpeq

dEIGRP
ref

˙

where dpeq denote the delay value of link e, the reference datarate value vEIGRP
ref is set to 107 and the reference

delay value dEIGRP
ref is set to 10 (Savage et al., 2016). The two routing protocols use the link weights to

compute routing paths using the Dijkstra algorithm.

B.6 Line Digraphs

For a directed graph G “ pV,Eq, its Line Digraph (Harary & Norman, 1960) G1 “ pE,P q is obtained by
taking the original edge set E as node set, and connecting all those new nodes that, as edges in G, form a
directed path of length two: P “ tppu, vq, pw, xqq|pu, vq, pw, xq P E, v “ wu.

Both MAGNNETO and our adaptation M-Slim operate on the Line Digraph of the network state St. This
means that edge input features like LU and past link weight are provided as node features in S1

t and that
M-Slim outputs link weight values as node features.

B.7 PPO

Given the episode length H “ 100, each training iteration of 16 episodes by default uses 1600 sampled
environment transitions to do 10 update epochs with a minibatch size of 400. We multiply the value loss
function with a factor of 0.5, clip the gradient norm to 0.5 and use policy and value clip ratios of 0.2 as
per Schulman et al. (2018). We use a discount factor of γ “ 0.99 and use λGAE “ 0.95 for Generalized
Advantage Estimation (Andrychowicz et al., 2020). We model the value function baseline that Proximal
Policy Optimization (PPO) uses for variance reduction as separate network that is defined analogous to the
respective policy, but uses a mean over all outputs to provide a single value estimate of the global observation.
While MAGNNETO is implemented and trained in Tensorflow (Abadi et al., 2015), its PPO algorithm uses
the same scaling and clipping parameters except for an additional entropy loss mixin of 0.001.

26

Published in Transactions on Machine Learning Research (10/2024)

B.8 Policy Architectures and Implementation

The original implementation of MAGNNETO uses an MPNN design (Gilmer et al., 2017) implemented in
Tensorflow that consists of L “ 8 message passing layers as described in Bernárdez et al. (2023). Each layer
uses a 2-layer MLP with a hidden size 128 and an output size of 16 for the message processing function mp¨q,
a concatenation of min and max for the message aggregation operation ‘, and a final node feature update hp¨q

that is realized by a 3-layer MLP with hidden dimensions 128 and 64. The base dimensionality of the feature
vectors hi is 16, meaning that every input and output of the MLP is of that size. At the start of inference,
MAGNNETO uses zero-value padding to reach 16 dimensions since the input consists of only two features
(LU and past link weights). After L message passing steps, a final readout function yields the actions per
edge. They specify which link weights should be incremented by one. The readout function is implemented
as a 3-layer MLP with latent dimensions 128 and 64 and dropout layers with a rate of 50% after the first
two MLP layers. Except for the final readout layer, the weights for all MLP layers are initialized with an
orthogonal matrix with a gain of

?
2, and they are followed by a tanhp¨q activation function.

Figure 13: Illustration of the MPN architecture used in our routing approaches M-Slim and FieldLines.

For M-Slim and FieldLines, we use a more compact policy architecture leveraging the MPN structure
visualized in Figure 13. We use 2 message passing steps, the mean and min aggregation function in parallel for
‘, and LeakyReLU for all activation functions. Moreover, we apply layer normalization (Ba et al., 2016) and
residual connections (He et al., 2016) to node and edge features independently after each message passing.
For all feature update blocks, we use MLPs with 2 layers and a hidden layer size of 12. In our experiments,
the auxiliary distance measure provided to the readout of the FieldLines’ actor module is the sum of EIGRP
link weights for the shortest path from i to j. Finally, for the learnable softmax temperature τψ used during
exploration by FieldLines’s selector module ψ, we use an initial value of 4. For the learnable standard
deviation σM-Slim, we use an initial value of 1. We implement our policy modules in PyTorch (Paszke et al.,
2019) and use the Adam optimizer with a learning rate of α “ 5e-5 (Kingma & Ba, 2014) for FieldLines, and
3e-3 for M-Slim.

C Ablation Studies

In this section we report results for additional experiments that represent ablation studies on our policy
design FieldLines. Except for Section C.4, all experiments are run on the nx–XS topology preset. Default
hyperparameter values are mentioned and explained in Section B. We do the ablations on 8 random seeds
each, and report results on the better half of them.

C.1 Learning Settings

Figure 14 shows results for learning hyperparameter ablations. The first two columns per matrix show results
for different starting values for the learnable temperature parameter τψ. While a higher starting temperature
does not significantly change performance, a lower starting temperature leads to inconsistent improvements
and deteriorations across the metrics. The third and fourth columns per matrix show that a notably higher
learning rate leads to a collapse in performance, but also that an even lower learning rate is not needed
because it does not improve performance. The last two columns show that a lower discount factor does not
improve performance, while a higher discount factor incurs minimal performance losses in intense UDP traffic.

27

Published in Transactions on Machine Learning Research (10/2024)

Figure 14: Results for FieldLines on the nx–XS topology preset when training with different learning
hyperparameters as noted in the x-axis labels. The first row of each cell text displays results relative to the
base setting, i.e., a FieldLines model using α “ 5e-5, γ “ 0.99, and τψ initially set to 4. The second row of
the cell text displays absolute numbers. Results show the mean values over 100 evaluation episodes.

C.2 Architecture Ablations

Figures 15 and16 shows results for architectural ablations on the FieldLines policy design. The first two
columns of Figure 15 show variations on the latent dimension used by the MLPs within the MPN, which in
our main experiments is set to 12. The numbers do not show a clear benefit of either a smaller or a larger
latent dimension, but given the worse average delay for UDP traffic of lesser intensity, we keep the latent
dimension of 12 even though for the evaluated scenarios a latent dimension of 6 may be enough. The last
two columns show results when using either one of the minimum or mean aggregation functions for the
permutation-invariant aggregation ‘ of the MPN’s node feature update. The overall performances are very
similar, such that using e.g. only the mean function for ‘ to reduce complexity is conceivable. Concerning the
depth of the used MPN architecture, Figure 16 shows that using L “ 2 message passing layers provides the
best overall results, but the best performing random seeds are very close across all MPN depths. Interestingly,
for small graphs and high-volume UDP traffic as well as for larger graphs and medium-volume TCP traffic,
average performance across multiple random seeds decreases for MPNs with more layers, because a growing
number of seeds fails to converge properly. Also, as the action fluctuation numbers show, adding more
message passing layers does not solve FieldLines’s problem of increasingly static routing for larger graph
topologies.

The M-Slim architecture used in this work is considerably smaller than the original MPNN architecture
used for MAGNNETO (which is detailed in Section B.8), since this further improves performance while
further decreasing inference time. Figure 17 shows results for architectural ablations on M-Slim’s policy
architecture. The figure’s M-Like column displays results of an M-Slim policy that uses the original MPNN-
based policy architecture of MAGNNETO. While being worse than the default architecture for M-Slim, it
still outperforms MAGNNETO clearly, particularly for TCP traffic. This demonstrates that most of the
improvement is achieved by leveraging PackeRL’s packet-level dynamics during training. Figure 17 also shows
that reducing the number of message passing layers or the latent dimensionality further reduces inference
times but compromises routing performance in some traffic settings. On the other hand, increasing the latent
dimensionality or layer count increases inference time but does not improve routing performance.

C.3 Optimizing for Different Objectives

Recent deep RL-powered RO approaches optimize for varying objectives. For example, they have maximized
throughput (Fu et al., 2020), or minimized maximum LU (Bernárdez et al., 2023; Chen et al., 2022), packet
delay/latency Guo et al. (2022); Sun et al. (2021) or drop counts (Fu et al., 2020). Therefore, to assess the
validity of our chosen reward function, Figure 18 presents results for FieldLines on the nx–XS preset with

28

Published in Transactions on Machine Learning Research (10/2024)

Figure 15: Results for FieldLines on the nx–XS topology preset when training with policy architecture
ablations as noted in the x-axis labels. The first row of each cell text displays results relative to the base
setting, i.e., a FieldLines model using a concatenation of min and mean aggregation and a latent dimension
of 12. The second row of the cell text displays absolute numbers. Results show the mean values over 100
evaluation episodes.

varying optimization objectives. We denote our default reward function describing global goodput in MB
by r. Let the step-wise penalty function a describe the average packet delay in ms, function d the ratio of
dropped bytes to dropped and received bytes, and function l the maximum LU observed in the past step. We
can obtain multi-component reward functions by combining these functions. When combined with r, we scale
the penalty functions a by 5 and d by 0.25. We found these scaling factors by ensuring that the values lie in
the same order of magnitude, meaning that each objective is weighted roughly equally. Figure 18 shows the
results per optimization objective, where rd, ra and rda denote the corresponding combinations. Optimizing
for the drop ratio (d) decreases the drop ratio slightly but may lead to compromises in the other metrics. In
turn, optimizing for packet delay (a) yields lower delay values, but at the expense of goodput. Interestingly,
optimizing solely for LU (l) works well in UDP-only traffic, but collapses when dealing with TCP traffic.
Finally, the results show large improvements in average delay and drop ratio for the composite optimization
objectives in traffic-intense TCP situations, but otherwise show equal or minimally worse performance. All
in all, we conclude that optimizing for global goodput alone is a viable objective for our setup. While
composite optimization objectives can improve packet delay and drop ratio in some settings, they do not do so
consistently and thus do not warrant the additional complexity introduced by multi-component optimization.

C.4 Training on Different Topologies

Furthermore, we investigate how the choice of training topologies affects FieldLines’ routing performance.
For this, we evaluate three models on the nx–S topology preset that have been trained on different topologies.
In addition to the default model which is trained on nx–XS, we train a model on nx–S and another on
just the two topologies NSFNet and GEANT2, configured in the same way as in Bernárdez et al. (2023).
Figure 19 shows that training on just NSFNet and GEANT2 yields minimally worse results, implying that
covering a wide range of different network topologies in the training procedure may be beneficial. On the
other hand, training on larger topologies does not improve performance and is therefore not preferred due to
longer training times (up to 37 hours to simulate the same amount of training steps).

29

Published in Transactions on Machine Learning Research (10/2024)

Figure 16: Results for FieldLines with different MPN depths, trained on the nx–XS topology preset and
evaluated on the nx–XS, nx–S and nx–L presets. Results show the mean values over 100 evaluation episodes.
Overall, using L “ 2 steps yields the best results, but the best performing random seeds are very close across
all MPN depths. Also, adding more message passing layers does not solve FieldLines’s problem of increasingly
static routing for larger graph topologies.

30

Published in Transactions on Machine Learning Research (10/2024)

Figure 17: Results for M-Slim on the nx–XS topology preset with policy architecture ablations as noted in
the x-axis labels. Results show the mean values over 100 evaluation episodes. Overall, the MPN design with
default parameters that we use for M-Slim slightly improves performance and inference time over using the
original MPNN policy architecture of MAGNNETO (column M-Like) as explained in Section B.8. Reducing
the number of MPN layers or the latent dimensionality further reduces inference times but compromises
routing performance in some traffic settings. In any case, the M-Slim designs clearly outperform MAGNNETO
especially for TCP traffic, showing the importance of packet-level dynamics in training.

Figure 18: Results for FieldLines optimized for different objectives. Results show the mean values over 100
evaluation episodes. Values and colors are relative to the default optimization objective r (optimizing for
goodput). Letters d, a and l denote optimization for drop ratio, average delay or maximum LU respectively,
and concatenated letters denote composite objectives. Optimizing for different objectives influences routing
behavior, but no alternative for r improves performance consistently.

C.5 Feature Importance

Finally, Figure 20 shows results for FieldLines when restricting or adjusting the policy’s access to some
features. Overall, while the individual interactions between available features and policy performance are
complex, the results generally show that all monitored global and edge features are relevant to some extent,
and that removing global or edge features generally decreases performance in some of the evaluated settings.
Adding node-level sent/received/retransmitted features (first two columns of the plot) does not improve
performance, and in conjunction with a larger latent dimension leads to notable deterioration. Removing
edge features, in general, decreases performance in most settings. Interestingly, some edge feature removals
can come with improvements in the average delay, and discarding edge features altogether is the next best
approach. Concerning global features, all features are relevant to some extent, but the combined removal of

31

Published in Transactions on Machine Learning Research (10/2024)

Figure 19: Results for FieldLines on the nx–S topology preset when training on different topologies as noted
in the x-axis labels. The first row of each cell text displays results relative to the base setting, i.e., a FieldLines
model that is trained on nx–XS. The second row of the cell text displays absolute numbers. Results show the
mean values over 100 evaluation episodes.

sent/received/dropped/retransmitted bytes and average delay and jitter, or the removal of global load features
(link utilization and average datarate utilization) lead to the largest performance penalties. Interestingly,
again, removing all global features mitigates a portion of the performance penalties observed when removing
parts of the global features. Finally, removing both edge-level and global information about network load
(LU and datarate utilization) results in severe performance penalties for UDP traffic, which is also the case
when restricting both edge and global features to sent/received/dropped/retransmitted information.

Figure 20: Results for FieldLines trained with different available features. Results show the mean val-
ues over 100 evaluation episodes. Values and colors are relative to the default feature setting explained
in Section B.4. In the column names, SRD abbreviates sent/received/dropped bytes, SRDR abbreviates
sent/received/dropped/retransmitted bytes, and DJ abbreviates average packet delay and jitter. The interac-
tions between the policy’s access to features and its routing performance are very complex, as the combination
of some missing features may result in severe performance issues while others may not have a strong effect.
Adding node features and thus using the full set of monitored features does not improve performance, and
even leads to large penalties when increasing the latent dimensionality of the policy’s MPN.

32

Published in Transactions on Machine Learning Research (10/2024)

Figure 21: Illustration of network monitoring graphs (left column) and corresponding routing actions (right
column) in two consecutive timesteps, taken from the evaluation on the nx–XS topology preset of Section 7.1.
The dark red color on the monitoring graph’s edge illustrations denote the maximum packet buffer fill of
the incident network device in the past timestep, the light red color denotes the packet buffer fill at the end
of the past timestep (e.g. 50% red = 50% filled). In the action visualization, routing nodes hold distinct
colors, and the small colored arrows placed on the edges show where packets destined for the correspondingly
colored destination node are sent next. The two upper rows of the figure show network states seen and actions
taken by M-Slim, the two lower rows show network states seen and actions taken by FieldLines). M-Slim
adjusts a few routing selections as relevant edges of the monitoring graph become less congested (e.g. edges
7 Ñ 5, 3 Ñ 0 and 0 Ñ 2) from the first to the second timestep. On the other hand, FieldLines is much more
conservative and only changes the next-hop selection for nodes 0 and 8 at routing node 5, even though e.g.
the edges between nodes 0 and 7 have considerably changed in state.

33

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Routing Optimization as an RL Problem

	PackeRL: An Overview
	Network Scenario Generation with synnet

	Policy Designs for Routing in Packet-Level Environments
	M-Slim: Learning Link-Weight Optimization in Packet-Level Simulation
	FieldLines: Fast Next-Hop Routing in any Network Topology

	Experiment Setup
	Evaluated Routing Approaches
	Network Scenarios
	Training and Evaluation Details

	Results
	Learning to Route in PackeRL
	Generalizing to Unseen Network Topologies
	Simulation and Inference Speed
	Discussion

	Conclusion
	Future Work

	PackeRL: Framework Details
	Network Structure and Simulation in ns-3
	PackeRL's Online Interaction Loop
	Installing and Using Routing Actions in ns-3
	Network Monitoring in ns-3
	synnet: Generating Network Topologies
	synnet: Generating Traffic and Link Failure Events

	Hyperparameters, Configuration And Defaults
	Simulation in ns-3
	synnet: Topology Generation
	synnet: Traffic and Link Failure Event Generation
	Monitoring Features
	OSPF and EIGRP Weight Calculation
	Line Digraphs
	PPO
	Policy Architectures and Implementation

	Ablation Studies
	Learning Settings
	Architecture Ablations
	Optimizing for Different Objectives
	Training on Different Topologies
	Feature Importance

