FedIGL: Federated Invariant Graph Learning for
Non-IID Graphs

Lingren Wang! Wenxuan Tu?* Jiaxin Wang® Xiong Wang?
Jieren Cheng?* Jingxin Liu3
1School of Information and Communication Engineering, Hainan University
2School of Computer Science and Technology, Hainan University
3School of Cyberspace Security, Hainan University
{twx,992730}@hainanu.edu.cn

Abstract

Federated Graph Learning (FGL) effectively facilitates cross-domain graph model
training by enabling decentralized learning across multiple domains, while ensur-
ing data privacy through local data storage and communication of model updates
instead of raw data. Existing approaches usually assume shared generic knowledge
(e.g., prototypes, spectral features) via aggregating local structures statistically to al-
leviate structural heterogeneity. However, imposing overly strict assumptions about
the presumed correlation between structural features and the global objective often
fails in generalizing to local tasks, leading to suboptimal performance. To tackle
this issue, we propose a Federated Invariant Graph Learning (FedIGL) framework
based on invariant learning, which effectively disrupts spurious correlations and
further mines the invariant factors across different distributions. Specifically, a
server-side global model is trained to capture client-agnostic subgraph patterns
shared across clients, whereas client-side models specialize in client-specific sub-
graph patterns. Subsequently, without compromising privacy, we propose a novel
Bi-Gradient Regularization strategy that introduces gradient constraints to guide
the model in identifying client-agnostic and client-specific subgraph patterns for
better graph representations. Extensive experiments on graph-level clustering and
classification tasks demonstrate the superiority of FedIGL against its competitors.

1 Introduction

Graph Neural Networks (GNNs) research [50} 133) 9L [11} 138} 136 18] is rapidly growing due to the
ability of GNNss to learn representations from graph-structured data. In practice, centralizing large
amounts of real-world graph data for training is prohibitive due to privacy concerns and regulatory
restrictions [26} 147, [35]. Federated Graph Learning (FGL), a growing distributed learning paradigm,
offers a potential solution to this challenge while preserving data privacy [24, 23]. Nonetheless, the
non-IID problem remains a major challenge in FGL, as graph data from different distributions usually
vary significantly [40].

Existing approaches typically rely on the assumption that generic knowledge learned from training
on non-IID clients can be effectively reconstructed across clients to enable collaborative training
[S3]]. The shared knowledge includes consensus prototypes [22, 48], generic spectral knowledge [32],
and structure encoder parameters [31]], which are introduced as shared knowledge representations
to facilitate the execution of graph-level learning tasks. Despite the enormous success, existing
methods overly rely on statistical correlation, misleadingly assuming that the robust representations
learned from prior knowledge are widely applicable. The correlation between generic knowledge

*Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



and the target is not necessarily task-related, and such spurious correlations embedded in the learned
representations often fail to generalize in real-world scenarios. Furthermore, these approaches
typically upload the learned knowledge or prototypes to the server, which may lead to potential data
leakage. Therefore, it is critical to promote inter-client negotiation in the framework of federated
graph learning without compromising data privacy.

An intuitive solution is to exploit factors that remain con-
sistently stable and effective across clients to mitigate the
impact of spurious correlations that merely reflect statisti-

cal commonality. In other words, the global model should |@ ® ° —0®
be capable of identifying invariant factors across clients. | g ° . -
Empirical observations indicate that graphs with differ- @ ® ) AR e
ent distributions often share common subgraph patterns B - @9

[54], even when their distributions differ significantly, as

shown in Fig.[I} This observation inspires the following MUTAG _coLLAB

idea: if we can identify subgraph patterns that are shared ° .. .AIDS SNV o
across different distributions, these common patterns can ® ) ®
serve as a foundation for inter-client collaboration and im- ® g °® o ® 4
prove the generalization of the global model. In contrast, ® ‘

distribution-specific patterns should be retained locally on . pd
each client to prevent them from negatively impacting the
global representation. This insight prompts us to consider
two fundamental questions:. (1) How to Qiscqver i.nvariant Figure 1: Illustration of shared sub-
subgraph patterns across.dlffe.rent distributions in FGL? graphs in different distributions in TU-
(2} How can one extract invariant sqbgraph patterns ina o cotg [30], where the red nodes high-
privacy-preserving manner, considering that FL prohibits
data sharing across clients? To the best of our knowledge,
both questions remain largely unexplored.

light the common structure.

To tackle these challenges, we propose a Federated Invariant Graph Learning (FedIGL) , which
aims to identify invariant subgraph patterns shared across clients while preserving local privacy. To
address the first question, inspired by invariant graph learning [20, 47], which focuses on improving
generalization to out-of-distribution graphs, we design a Federated Subgraph Generator (FSG)
to extract client-agnostic and client-specific subgraphs. The generated client-agnostic and client-
specific subgraphs are used to promote negotiation among clients and maintain the heterogeneity
inherent to each client, respectively. To address the second question, we introduce a novel Bi-
Gradient Regularization strategy that imposes consistency and diversity constraints on gradients. It is
effectively guides the generator to learn disentangled subgraph patterns while ensuring data privacy
is not compromised. After obtaining the client-specific subgraphs, we design a local model for each
client that is excluded from collaborative training and is trained solely on these subgraphs. FedIGL is
encouraged to discover invariant subgraph patterns across data distributions, thereby mitigating client
drift caused by graph heterogeneity.

* To the best of our knowledge, this is the first work leveraging invariant learning in federated graph
learning to enhance generalization under non-IID client settings.

* We propose the Bi-Gradient Regularization strategy, which can coordinate the clients to learn
disentangled subgraph patterns without compromising data privacy.

* We conduct extensive experiments to verify both our theoretical results and the superiority of
FedIGL, which consistently outperforms existing approaches on graph-level classification and
clustering tasks.

2 Related Work

Federated Graph Learning. FGL enables distributed training of GNNs across multiple parties,
facilitating collaborative learning on graph-structured data without compromising data privacy
[43L 1411 [10} 14} 146, 1491 [19] 18, 137, [12]]. Due to significant differences in client distribution and
graph structure across domains, low inter-graph similarity hinders unified processing [44} 7, [13} 4, |5]].
Existing methods mitigate structural heterogeneity by leveraging shared, pre-trained representations
from cross-domain client models [42]]. Examples include prototype-based structures [40} 53], spectral



feature alignment [32]], and shared structural encoder parameters [31]]. FedSSP [32]] shares gener-
alized spectral knowledge with a personalized module to adapt to client-specific graph structures,
while FedGCN [22]] leverages multi-source clustering to generate global consensus representations,
enhancing its ability to handle complex graph structures. Despite their success, most methods rely
heavily on assumed shared knowledge, which limits adaptability to diverse distributions. Since this
knowledge is learned via pre-trained shared parameters unrelated to task causality, distribution shifts
can degrade representation quality and harm model performance [45} 39, [17, [11].

Invariant Graph Learning (IGL). Invariant Learning is a class of learning methods focused on
distribution generalization or robust modeling [2, [1]. Its main idea is to learn representations or
predictive functions that remain stable and effective across different environments or data distributions.
As previously discussed, although graphs from different distributions are heterogeneous, they share
certain common subgraph patterns. Building upon these findings, IGL has emerged as a prominent
research direction in recent years [[20}47,29]]. The main idea of IGL is designing a subgraph generator
to partition a graph into two components: the invariant subgraph, which captures structures that are
consistent across different distributions, and the environment-specific subgraph, which represents
structures that are present only in particular distributions. In this paper, we extend invariant graph
learning to federated learning, where each client with a distinct distribution is treated as a separate
environment.

3 Preliminaries

Federated Learning (FL). Given a local dataset (z,y) ~ Py for each client k, where Py denotes
a client-specific data distribution, the goal of standard FL approaches [27 21] is to learn a global
model that minimizes the empirical risk across all client distributions, defined as:

K

0 = arg;ninZE(,,,y)Npk U(fo(2), ), M
k=1

where £(-) is a task-specific loss function and fy(-) is the global model parameterized by 6. In practice,
FL methods typically decompose this global objective into a weighted sum of local empirical losses
and perform independent optimization on each client. However, independently optimizing local
objectives often leads to suboptimal convergence [6} 41]], particularly when client distributions exhibit
significant heterogeneity. This is because, under non-IID conditions, the local updates from different
clients may follow divergent optimization directions [44, 25,128, 16, |3].

4 Methodology

In this section, we introduce our proposed method in detail, whose framework is shown in Fig.[2] First,
we define our optimization objective. Then, we present the FSG identifying client-invariant subgraph
patterns. Finally, we propose the Bi-Gradient Regularization strategy for objective optimization and
provide its theoretical analysis. Algorithmic details can be found in Appendix [A]

4.1 Problem Formulation

In the federated optimization objective in Eq. (I)), when client data are not identically distributed,
each client’s optimization direction tends to push the global model along different update trajectories
[40]. This leads to gradient conflicts, hindering convergence to a globally optimal solution. To
mitigate this, our goal is to guide the global model to focus on features that are shared across all
client distributions, while excluding distribution-specific features from global optimization [27} |6].
This strategy helps prevent conflicting updates and promotes more stable convergence. We therefore
aim to incorporate client-agnostic subgraphs, namely invariant subgraphs, into global model training
to better accommodate distributional shifts [20]]. In contrast, client-specific subgraphs, which capture
environment-specific patterns, are processed by dedicated local models that remain discrepancies to
each client. In this paper, we decouple the model into two distinct components: a global model f,(-),
which participates in federated aggregation, and a local model f.(-), which remains client-specific.
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(a) Federated Invariant Graph Learning Framework (b) Bi-Gradient Regularization strategy

Figure 2: Architecture illustration of FedIGL. The left box (a) represents the process by which clients
obtain client-agnostic and client-specific subgraphs through the federated subgraph generator (FSG).
The yellow and blue boxes denote parameters that are globally shared and not shared, respectively.
The right box (b) shows that diversity regularization penalizes overly similar gradients in the variant
encoder. Consistency regularization encourages stability and agreement in the optimization trajectory
of the invariant encoder across rounds.

Based on this formulation, the optimization objective of FedIGL is defined as follows:

K

min ZE(x,y)NPk [5 (h (fg($§9g)> fC(37§6§))7 y)} ) @)

0, {65},

where 0% denotes the local model parameters of client k, (-, -) is the loss function, and h(-,-) is
a fusion function, such as concatenation or addition, used to integrate the outputs of the global
and local models for downstream tasks. We decompose the overall optimization objective into two
stages: global model optimization and local model optimization, which will be elaborated upon in
the following sections.

4.2 Discovering Invariant and Variant Subgraphs

For the global model, we first employ a FSG to decompose each graph into client-agnostic and client-
specific subgraphs. These subgraphs are then encoded separately, and their resulting representations
are combined and fed into the downstream task for training.

Similar to prior work [15] 54]], we implement the FSG using a graph neural network (GNN). Given
graph G with n nodes and its adjacency matrix A = {0,1}"*", where A, ; = 1 represents that there
exists an edge between node 7 and j, and A, ; = 0 otherwise. The FSG first generates a mask matrix
M € R™*™ for A

M,; = MLP(CONCAT(Z;, Z;)), Z = GNN(G), 3)

where MLP(-) is a multilayer perceptron and CONCATY(, ) is the concatenation operation, Z;
denotes the representation of the i-th node in graph G. We use MLP instead of the inner product to
generate the matrix M, since in federated learning, the inner product may leak structural information
by enabling edge reconstruction [22]]. Then, we can obtain the adjacency A and Ay corresponding
to the client-agnostic subgraph G; and the client-specific subgraph Gy :

A= Topt(M @A), Ay =A—A;, “)
where Top,(-) select the elements in M whose size is the top percent ¢, and ¢ is a hyperparameter.

After obtaining G and Gy, we adopt two branches, invariant and variant encode branch, to encode
the obtained client-agnostic and client-specific subgraphs representation, respectively:

W™ = R(f1(Gri0imn))s B = R(fv(Gvi0uar)), )



where R(-) is used to obtain the graph-level representation, and f(-) is the graph encoder. Then, we
use the sum of h**and h"*" as the representation of graph G to train the global model. The global
model loss in client & is then defined as:

‘C_];lobal(eFSG7 Oinv, QUGT) = E(h“w + hvar, y)7 (6)
where 0 g¢ is the parameters of the FSG.

For the client model, we define a private encoder f(-) for each client to encode the client-specific
subgraph. Then, we take Gy from the subgraph generator as the input of the local model, and we can
get the client-specific subgraph representation in client k:

b7 = R(fE(Gv)). 7

It should be emphasized that h*?°¢ and h"*", though derived from the same client-specific subgraph,
are encoded using distinct encoders. After obtaining the client-specific subgraph representation, we
use the sum of h'™” and h*P°¢ as the overall graph representation to train the local model in client k.
The local model loss is defined as:

Ek ;= g(hinv + hspec’y). (8)

loca

Note that we fix the global model when training the local model. That is, h?"¥ obtained from the
global model does not participate in gradient calculation and only optimizes the local model in
minimizing Liocqi-

4.3 Bi-Gradient Regularization strategy

After introducing the overall FedIGL framework, we now provide detailed insights into the optimiza-
tion strategies for the global and local models. In this section, we focus on how to optimize the global
model to achieve disentangled and effective feature learning across distributed clients. We begin with
the global optimization objective for a specific client k:

min £§lobal(9FSG7 Oinv, evar)- ©)

In this objective, directly minimizing Lglobal for each client k independently would degenerate to
conventional federated learning objectives. This approach fails to enforce collaboration among clients
for learning client-invariant and client-specific representations. Accordingly, we delve deeper into
optimizing the global model with respect to this objective.

Assume the invariant subgraph generator is ideal, such that it can extract the same semantic subgraph
pattern from different distributed graphs. Then, the feature representations of such subgraphs should
be consistent across all clients. Structural and feature differences can be reflected by GNN gradients,
as proved in [48]]. Consequently, if the encoder f; is applied uniformly across clients, the optimization
gradients with respect to 6;,,,, should also align across any clients k, k'

k K
V0,0 L global = Va,,, L7 global, (10)

where Vg, . ck global Tepresents the gradient of invariant branch encoder f; when optimizing the
global loss Eq.(|6) for client k. Similarly, each client-specific subgraph captures features unique to
each distribution. Therefore, the feature difference should drive different optimization directions for
the variant branch encoder fy, with the same parameters. More precisely, the gradient between any
clients should satisfy:

| Vo, LF =V, LF ||> e, (11)

where ¢ is a predefined margin enforcing gradient diversity across clients for the variant branch. This
inequality indicates that the optimization direction of heterogeneous features from different clients
on the same encoder should have significant differences.

Building upon these observations, we design a novel Bi-Gradient Regularization strategy. The
central idea is to regulate the update directions of the invariant and variant encoders, such that 1)
the invariant branch encoder gradients across clients are encouraged to be consistent; 2) the variant
branch encoder gradients are enforced to be diverse (repulsion beyond margin €).



We achieve this by using the global aggregated gradients from the previous round as reference
directions. In each round ¢, all clients’ current gradients are compared with the previous global
aggregation gradients, and regularization is applied accordingly. The total loss for the global model is
then defined as:

Etotal - L:global +A H Vanv Eglobal *vgz;} ||2 + ﬂ maX(Oa €— H v@fm ‘Cglobal - 69527} ||2)7 (12)

where A and § are hyperparameters controlling the strength of alignment and diversity regularization,
ve’;—l and V(ﬁ -1 is the aggregated gradients with the FedAvg [27] method. The second term, consis-
tEI{g;’ regularization, encourages stability and agreement in the invariant encoder’s optimization
trajectory across rounds. The third term, diversity regularization, penalizes overly similar gradients
in the variant encoder, ensuring meaningful divergence between client-specific representations.

4.4 Theoretical Analysis

We provide a theoretical analysis of the FedIGL framework with invariant and variant branch encoders
with bi-gradient regularization. Our objective is to demonstrate that (i) the invariant encoder achieves
convergence with gradient alignment regularization; (ii) the variant encoder yields distinguishable
representations across clients due to repulsive regularization.

Let C = {1,..., K} be the set of clients, and D}, denote the local dataset of client k. Let § =
(6iny s Ovar, ) denote the parameters of fr, fiy and FSG, respectively. Define the task loss of client k
as L1(0). We denote the gradients as:

9 = Vo, Lu(0"),  hj =V, Li(0°),

1 & 1 &
—t—1 __ t—1 7t—1 __ t—1

The total optimization objective at round ¢ is:

K
mgm;z:k(o) 4 Riny + Roars (13)

where Riny and R, are the consistency and diversity regularization, respectively. In the federated
setting, clients do not have access to the current global mean gradients g, k' at round ¢ when
performing local updates. Therefore, we compute the regularization terms using the previous round’s
statistics g*~', h*~!, which are broadcast to clients at the start of each communication round.
Nevertheless, the theoretical analysis below evaluates the variance and convergence behavior with
respect to the true global means g* and h!, as is standard in federated optimization literature.

Proposition 4.1 (Convergence of Invariant Encoder). Assume each Ly (0) is convex and L-smooth,
and the learning rate n < 1/L. Under the FEDAVG scheme with gradient alignment R, the global
invariant parameters 0%, satisfy:

T 1
min [||v9,-m£glohal<0t>||2} <0 (T> : (14)

Proposition 4.2 (Representation Separation for Variant Encoder). Let h}, denote the gradient of the
variant encoder for client k. When R, is minimized, then for all k # k', the representations remain
sufficiently separated:

1Ry, = hiu || = €. (15)
This guarantees per-client distinguishability in the variant branch.

Theorem 4.1 (Global Objective Convergence with Gradient Regularization). Let the total loss be
Leiobal(0) + Riny + Ruar. If each Li,(8) is convex and L-smooth, and 1 = O(l/\/T) then:

T 1
. t 2
min E [|\VEglobaz<9 ) ] <0 <ﬁ> : (16)
Indicating convergence. Furthermore, the learned representation satisfies: (i) invariant alignment
across clients in 0;,,, and (ii) per-client diversity in 0,,,.



Based on the above formulation, we provide a theoretical justification for the effectiveness of our
Bi-gradient regularization strategy. Specifically, Proposition shows that the gradient alignment
regularization term Rj,, reduces the variance of client gradients in the invariant encoder, thus
promoting convergence in federated optimization. Proposition {.2]demonstrates that the repulsive
regularization R, enforces diversity among the variant gradients, enabling the model to capture
client-specific characteristics. Together, these results support the disentanglement of invariant and
variant subgraph patterns in a federated setting. Theorem [.T]further establishes the convergence
guarantee of our overall optimization procedure under bi-gradient regularization, quantifying the
trade-off between alignment and diversity in gradient space. The proof of the above proposition and
theorem see Appendix

S Experiments

In this section, we conduct extensive experiments on graph-level classification and clustering tasks in
various cross-dataset and cross-domain scenarios to validate the superiority of FedIGL. The following
research questions need to be validated. (RQ1) Can FedIGL achieve better performance compared to
SOTA baselines? (RQ2) Does FedIGL converge under the constraints of bi-gradient optimization?
(RQ3) How does each of the strategies we propose contribute to the final performance? (RQ4) How
about the hyperparameter sensitivity of FedIGL?

5.1 Experiment Setup

Benchmark Datasets. We employed a total of 19 diverse datasets across multiple domains to
conduct comprehensive evaluations on both classification and clustering tasks. These domains
include Small Molecules (e.g., MUTAG, BZR, COX2, DHFR, PTC_MR, AIDS, BZR_MD, and
NCI1), Bioinformatics (e.g., DD, PROTEINS, OHSU, and Peking_1), Synthetic (SYNTHETIC),
Social Networks (e.g., COLLAB, IMDBMULTI, and IMDB-BINARY), and Computer Vision (e.g.,
Letter-high, Letter-low, and Letter-med). Regarding classification tasks, We follow the settings
in [32]], which include six distinct experimental designs: (1) cross-dataset setting utilizing seven
small molecule datasets (SM), and (2)-(6) settings that incorporate both cross-dataset and cross-
domain aspects, based on datasets from two different domains (BIO-SM, SM-CV) and three different
domains (BIO-SM-SN, BIO-SN-CV, SM-SN-CV). For clustering tasks, we adopt the protocols in
[22]], including five types of non-1ID settings: (1) 2 clusters within the same domain (SM), (2) 3
clusters within the same domain (SN), (3) 15 clusters within the same domain (CV), (4) 2 clusters
across two domains (SM-BIO), and (5) 2 clusters across three domains (SM-BIO-SY). The dataset
and experimental implementation details are provided in Appendix [C.T]

Baseline Methods. In both classification and clustering tasks, we compare FedIGL with two classical
federated learning methods, FedAvg [27] and FedProx [21]. Additionally, we include four state-of-
the-art federated graph learning methods: FedSage [52], GCFL [48]], FedStar [31]], and FedSSP [32].
For clustering tasks specifically, we also compare with FedGCN [22].

Implementation Details. To ensure fair comparisons, all methods, including FedIGL and baselines,
were implemented in PyTorch and executed on the same NVIDIA GeForce RTX 3090 GPU. For
graph-level structure embeddings, we use a three-layer Graph Isomorphism Network (GIN) [51]
with a hidden dimension of 64 and batch size of 128 [34]. Model optimization is performed using
the Adam optimizer with a learning rate of 1e-3. Dropout is set to 0.5 and weight decay to Se-4 to
improve generalization.

5.2 Experimental Results

Performance Comparison (RQ1) . Tab. [I|and Tab. [2]present a comparison of the performance of
FedIGL against SOTA methods on graph-level classification and clustering tasks. In the classification
task, FedIGL achieves the best results in 5 out of 6 classification settings and ranks second in the
remaining one, demonstrating the most robust overall performance. Notably, under the single-domain
SM setting, FedIGL improves over the FedSSP about a 4.3% relative gain. Moreover, although
FedSSP slightly outperforms FedIGL on SM-CV, FedIGL shows more pronounced advantages in the
more challenging multi-domain scenarios, indicating better generalization under stronger distribution
shifts. In the clustering task, FedIGL ranks among the top methods across the five clustering settings,



demonstrating more stable clustering quality under non-IID setting. Notably, on SN and CV, FedGCN
achieves a slight success on specific tasks but remains suggesting that the two methods emphasize
cluster alignment consistency and clustering decision correctness, respectively. Existing methods
often perform well on specific tasks but remain vulnerable to spurious correlations, which limits their
generalization.

Table 1: Comparison with state-of-the-art methods on one cross-dataset and five cross-domain settings
for classification tasks. The best is marked with boldface and the second best is with underline.

Single-domain Double-domain Multi-Domain
SM BIO-SM SM-CV BIO-SM-SN  BIO-SN-CV  SM-SN-CV

Methods

FedAvg (ASTAT17) 74.12 £2.10 67.82 +1.63 81.21 +£1.00 | 67.31 £2.56 7093 +£291 7533 £1.06
FedProx (arXiv18) 69.35 +3.36 67.27 +£4.17 70.02 £2.27 | 63.89 +£4.33 69.32 +1.75  67.15+£225

FedSage (NeurIPS21) 75.61 £ 1.16 72.60 £3.18  76.23 £049 | 70.84 +0.88 69.69 £ 1.11  73.36 £0.86
GCFL (NeurIPS21) 77.71 +1.53 72.05 +220 72.64 +0.71 | 70.43 £1.39 6791 +£2.15  71.79 £0.21
FedStar (AAAI23) 78.63 +2.11 7271 £1.22  78.84+1.07 | 72.60 +245 69.51 £084  75.94 £0.40

FedSSP (NeurIPS24) 79.62 £2.23 73.66 +2.34 84.29+068 | 72.37 +2.18 75.07+270  79.12 £1.23

FedIGL(ours) 83.07 £ 1.76 77.02+132 83.14+028 | 7525+1.13 78.50 £ 044  79.23 £1.28

Table 2: Comparison with state-of-the-art methods on three cross-dataset and two cross-domain
settings for clustering tasks. Please note that the FGL methods marked with the symbol * have been
adapted from classification to clustering tasks, as was done in previous studies. The best is marked
with boldface and the second best is with underline.

FedAvg FedProx FedSage® GCFL® FedStar® FedSSP* FedGCN FedIGL
ASTAT17 arXivl8 NeurIPS21 NeurIPS21 AAAI23 NeurIPS24 AAAI25 Ours

ACC 353+1.1 694+34 556%+14 61.1+x18 589+24 76405 759+08 77.0+1.1
NMI 102+15 84+29 122+13 87+24 120%12 129+30 249430 25.7+15

Domain Metric

SM ARI 84+09 9521 7.6+06 94+24 0.1x08 34.1+23 31.1%+34 36.3+14
F1 527+13 482+25 502+10 433+16 49.7+28 682+25 67.1+15 69.4%25

ACC 61.5+22 71.4+28 533+19 52.1+23 51.7+27 73.6+23 66.6+23 73.7+03

SN NMI 156+17 11.6x20 148+14 125+23 13.7+28 11.8+34 304+6.6 23.1+12
ARI 103 %12 123+27 11.6+x28 13.2+23 124+19 319%17 341+53 32.6+2.1

F1 58.1+£28 53.7+22 493%20 52316 50.7+£23 649*26 50.7+24 62.7+27

ACC 338+07 38.6+£21 10.1x14 137x20 124+27 342+26 34.6+28 39.2+1.1

cv NMI 159+23 12.1+x27 30.5+17 17.7+24 224+25 120+24 342+14 273%138
ARI 105%20 127+21 13.6+x18 143+27 153+21 33.1+33 193+18 38.1 %26

F1 497+15 545+25 104+17 132+14 11.6+19 353+15 31.6+3.1 36.2+24

ACC 543+29 67.1%x19 574+22 60.1+18 595+16 723+21 69.2+06 73.6 1.0

SM-BIO NMI 11.8+21 79+23 52%21 47+24 53+16 113%x12 14.0+27 23.0+1.6
ARI 72+30 8716 42+27 32+23 38+20 324+21 175%31 30725

F1 487 +24 443 %25 499+05 473+15 51.7+£22 63.7+18 59.1+09 594+38

ACC 56.1 %28 683+1.1 57.6%x19 59.1+20 579+26 75904 68.6%13 76.7 +2.2
SM-BIO-SY NMI 125+14 80+22 20.6+19 144+22 157+24 139+14 135+21 22.7+18

ARI 78%+09 8921 17.6+x24 13.7+£28 16.1+x30 348+26 17.2+36 34.6+1.6
F1 52117 46.7+20 494+17 523+19 523+22 69.7+23 594+38 67.5+19

Convergence Analysis (RQ2) . We visualize
the graph classification testing loss with re- O s e ML
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Ablation Study (RQ3) . We per- Table 3: The ablation study covers both classification and
form ablation studies to assess how clustering tasks. A checkmark (v) indicates inclusion of
the proposed Bi-Gradient Regulariza- the strategy, while a cross (X) indicates its exclusion. Our
tion strategy contributes to the over- non-IID settings include single-domain, double-domain, and
all performance. Tab. [3 reports re- multi-domain scenarios, corresponding to the SM, SM-BIO,
sults of FedIGL and its variants under SM-BIO-SN for the classification task and SM-BIO-SY for
non-1ID settings: (i) removing both the clustering task, respectively.

consistency regularization (CR) and

: 3 : : i _ | SM | SM-BIO | SM-BIO-SN (SY)
le.er51ty regularlzatlon (DR)’ (11) en CR DR | Classification Clustering | Classification Clustering | Classification Clustering
abling only one of them (CR or DR), 7821 7245 74.67 69.73 7066 6833
and (iii) enabling both. An intuitive v 79.84 73.04 75.83 70.34 71.24 68.36

b ion is that FedIGL f x v 80.55 75.39 76.01 71.28 72.61 70.87
observation 1s that ke pertorms 83.07 77.04 77.02 7371 75.25 7671

best when CR and DR are enabled si-
multaneously. Each component on its
own still delivers consistent gains across most datasets. On the SM-BIO-SY clustering bench-
mark, introducing CR alone leads to negligible gains over the baseline. In contrast, enabling
DR alone yields a noticeable improvement of 2.54%. This indicates that under multi-domain
shift, encouraging representation diversity better mitigates domain bias and leads to more sta-
ble clustering. Overall, the empirical trends align with our theoretical analysis, supporting
the design of jointly integrating CR and DR. Additional results are provided in Appendix

Hyper-Parameter Study (RQ4) . We investi-
gate the sensitivity of several hyper-parameters SM sM
‘go.ns —— Classification

in our method, including the invariance regu- §;°-“5 7% Fos 0.765
larization strength )\, variance regularization §**° %0 7 e 0.750
strength 3, divergence parameter ¢, and invari- g, custeing 78| —— Clustering \ 0735
ant subgraph ratio 7. Under the SM dataset set- ~ ** ** 2> °¢ oroer g3 0d

ting, we evaluate the performance of FedIGL

across various hyperparameter combinations on SM SM 0750
classification and clustering tasks, as shown in : 0,765
Fig. [l The results indicate that the optimal val- 8100 A assiticat\, 0750
ues of \, 3, and ¢ differ by task. For classifica- e loss 0T *0‘2"““:’3‘"‘—‘ o7
tion, A = 0.05, 8 = 0.2, and € = 0.1 provide € .

the best performance balance; for clustering,
A= 02,8 = 0.25, and ¢ = 0.15 perform
best. This likely reflects distinct requirements
for graph representations, suggesting that client
subgraph invariance and variability are influ-
enced by downstream tasks. The parameter 7
governs the proportion of invariant subgraphs;
a large 7 may include excessive variant struc-
tures, while a small 7 may limit structural capture. In our experiments, 7 = 0.25 balances shared and
client-specific structures effectively in both tasks. Additionally, we conduct further hyper-parameter
sensitivity analyses under non-IID settings in Appendix [C.3]
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Figure 4: Hyperparameter Sensitivity analysis on
SM setting. The x-axis represents the four hyper-
parameters: A\, (3, €, and 7, with the left and right
y-axis representing the classification and clustering
accuracy, respectively.

6 Conclusion

In this work, we present a novel Federated Invariant Graph Learning framework from a fresh perspec-
tive, aimed at capturing invariant subgraph structures to mitigate client distribution shifts. We propose
a Bi-Gradient Regularization strategy applying consistency regularization to the invariant subgraph
encoder and diversity regularization to the variant one, which enhances graph representation quality,
stability and model performance. Overall, as a pioneering study, FedIGL provides valuable insights
for addressing the graph structural differences associated with client distributional heterogeneity
and is supported by extensive experimental and theoretical analysis. While our approach intuitively
protects client privacy by avoiding the sharing of prototype structures, future work will further explore
stringent measures for model privacy preservation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main contributions include: (i) We pioneer the application of invariant
learning within federated graph learning to effectively mitigate spurious relational knowl-
edge shared; (ii)) We introduce a novel Bi-Gradient Regularization strategy that facilitates
collaborative learning of disentangled subgraph representations while ensuring data privacy;
(iii) We rigorously validate the effectiveness of our framework through comprehensive
empirical evaluations and theoretical analyses. These contributions are clearly articulated in
both the abstract and introduction sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: : We discuss the limitations of our work in terms of computational efficiency
in Sectiorl6l

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We analyze the issue of structural heterogeneity in federated graph learning
from the perspective of invariant learning. The assumptions of the federated generator are
introduced in Section4.2] and the theoretical analysis of the optimization strategies in the
federated graph learning framework is presented in Section [4.4]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the details of our method in Section.1]and present the necessary
hyper-parameters in Section2]to ensure the reproducibility of our method. Furthermore,we
provide the code of our proposed method in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the code of our proposed method in the supplementary material.
The necessary environments and data preparation procedures are provided in the GitHub
repository of our method.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommen

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all the necessary hyper-parameters in Sectionf2]and Appendix C.2.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We don’t report the error bar in our experimental results because the previous
works do not report the error bar and we follow them. All of our experimental results are
averaged over 5 runs of 5 different seeds.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the compute workers in Sectior2] and list the params and time of
execution in @ and 3

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conduct the research with the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer: [Yes]
Justification: We provide the broader impacts of our work in Section [6]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: Our work does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets, models, and code involved in our paper are open source.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: Our paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: We do not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: We do not involve LLMs as any important, original, or non-standard compo-
nents.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20


https://neurips.cc/Conferences/2025/LLM

A Algorithm

Algorithm 1 Optimization process of FedIGL

Input: Maximum epoch 7T'; Number of clients K; The distributed Non-IID datasets {Dk}szl;
hyper-parameters ¢, A, 3, €.
Output: Model trained with FedIGL.
Initialize {Orsca, Oinvs Ovar }-
fort =1toT do
for k = 1to K do
Obtain G, Gy for each graph G € Dy, with ¢ by Eq. (@).
Obtain subgraph representation h?”*, h*®" for G, Gy .
Calculate L}, .., for client k with \, 3, & by Eq. (T2).
Update {0rsc, Oinv, Bvar} by Stochastic Gradient Descent.
Fix the parameters of {0rsa, Oinv, Ovar }-
Obtain client-specific subgraph representation h*?°¢ with G'y.
Calculate £f ., for client k by Eq. (8).
Update local model f& for client k by Stochastic Gradient Descent.
end for
Aggregate {HFSG’ einv» 9var}~
end for

B Proofs in Section 4.4

Lemma B.1 (Gradient Variance Reduction for Invariant Branch). Suppose each Ly (0) is L-smooth
and the initial variance of local invariant gradients satisfies E||gi — g*||> < 0. Then, applying the
regularization R, leads to exponential decay in gradient variance:

Ellgi — 3'lI* < (1 = An)'o?,
assuming 0 <n < 1/L and A\; > 0.

Proof. Using L-smoothness, we apply the standard gradient descent update:
gk =91 — 0V, Le(0h) +O().
1

Applying the regularization Riy, effectively forces each g! to align with the global average '~ ',
thereby reducing the variance. The gradient variance evolves as:

Ellgi — 3'lI* < (1 = Am)'o™.

B.1 Proofs of Proposition 4.1

Proof. With convexity and smoothness, we apply standard convergence results for Stochastic Gradient
Descent (SGD) with variance reduction. By Lemma the variance of g}, decreases over time,
which helps stabilize the FedAvg updates. Using the descent lemma and unbiased gradients, we have:

2
Eglobal(0t+1) S Eg]obal(et) —-n ||V95mv£global(9t) || + 7]2£02~
Averaging over T rounds gives the O(1/T) rate. O

B.2 Proofs of Proposition 4.2

Proof. The penalty max(0, e — ||h*~1 — hl||)? pushes each A to be at least ¢ away from the mean.
If |k~ — Rt || < e, the penalty is active, increasing the loss. At the optimum, this penalty is zero,
implying that ||h'~1 — h!|| > €, assuming that the mean of all clients’ gradients remains close to
the previous gradients. And thus pairwise ||h}, — k!, | > e. Consequently, the absolute difference
between the gradients of any two clients exceeds the penalty term. O
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B.3 Proofs of Theorem 4.1

Proof. The total loss includes smooth convex functions and squared penalties. Using standard
convergence bounds for smooth objectives with gradient regularization and a diminishing step size
n = O(1/V/T), we get the convergence rate of O(1/+/T) for gradient norms. The variance reduction
and margin-enforcing terms ensure stable updates for both branches. O

Response: On Computational Complexity. The per-round per-client computation in FedIGL
mainly involves two parts: 1. The Federated Subgraph Generator (FSG), which consists of a
Ly-layer GNN with complexity O (L (|E|d + |V'|d?)) to encode node features, and an edge-wise
MLP scorer with complexity O(|E|d?) for selecting invariant edges; 2. The dual-branch GNN
encoder, each branch having L, layers, resulting in a total complexity of O(Ls(|E|d + |V|d?)).
Here |V| and | F| denote the number of nodes and edges in the client’s local graph, respectively; d
is the feature dimensionality of each node; and L, L, represent the number of GNN layers in the
Federated Subgraph Generator and dual-branch encoder, respectively. Hence, the overall per-client
cost per round is: O((L1 + L2)(|E|d + |V'|d?) + | E|d?), which remains linear in the graph size and
thus comparable to standard GNN-based federated learning methods. The extra overhead from edge
scoring is lightweight and only applied once per round.

C Additional Experiments

C.1 Experiment Dataset

Evaluation Metrics In classification tasks, we employ Accuracy (ACC) to assess the performance of
the method. Regarding clustering tasks, we utilize widely-adopted clustering result evaluation metrics,
namely Accuracy (ACC), Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and
F1 Score (F1). These metrics provide multi-faceted evaluations of the clustering results. Specifically,
larger values of these metrics correspond to better performance. They imply more efficient data
partitioning and a more accurate capture of the underlying data structure, thereby demonstrating the
superiority of the clustering method in organizing data and uncovering its inherent characteristics.

Table 4: A superscript "1" in the upper-right corner indicates that the dataset is only used for
classification tasks, "2" indicates that the dataset is only used for clustering tasks, and the absence of
a superscript indicates that the dataset is used for both classification and clustering tasks.

Datasets Domain Classes Graphs A.Nodes A.Edges

MUTAG 2 188 17.93 19.79
BZR 2 405 35.75 38.36
cOox2 2 467 41.22 43.45
DHFR SM 2 756 42.43 44.54
PTC_MR 2 344 14.29 14.69
AIDS 2 2000 15.69 16.20
NCI1! 2 4110 29.87 32.30
BZR_MD? 2 306 21.30 225.06
DD? 2 1178 284.32 715.66
PROTEINS BIO 2 1113 39.06 72.82
OHSU! 2 79 82.01 199.66
Peking_1' 2 85 39.31 77.35
SYNTHETIC? SY 2 300 100.00 196.00
COLLAB? 3 5000 74.49 2457.78
IMDB-MULTI SN 3 1500 13.00 65.94
IMDB-BINARY 2 1000 19.77 96.53
Letter-high 15 2250 4.67 430
Letter-low CcVv 15 2250 4.68 3.13
Letter-med 15 2250 4.67 3.21
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C.2 Ablation Study

We present additional ablation experiments across multiple non-IID settings, as shown in Tab5] The
results demonstrate that the combination of two optimization strategies significantly outperforms
the use of individual strategies, thereby validating the effectiveness of our proposed optimization
framework. Notably, our method not only excels in specific settings but also exhibits consistent
performance across a wide range of scenarios, highlighting its robustness and adaptability to varying
conditions. The proposed approach effectively handles diverse datasets and domain configurations,
yielding high-quality graph representations that deliver superior performance in the classification
tasks.

Table 5: Ablation study of key components, namely Consistency Regularization (CR) and Diversity
Regularization (DR), of FedIGL on double-domain and multi-domain settings (SM-CV, BIO-SN-CV
and SM-SN-CV) in the classification.

CR DR || SM-CV | BIO-SN-CV | SM-SN-CV

X X 78.35 73.89 69.82
v X 79.76 74.95 72.31
X 4 80.43 75.11 71.69
v v 83.14 78.50 79.23

C.3 Hyper-Parameter Study

We investigate the sensitivity of several hyperparameters in our method, including the invariance
regularization strength )\, the variance regularization strength 3, the divergence parameter ¢, and
the invariant subgraph ratio 7. The hyperparameter tuning results across the non-IID settings are
presented in Fig[5] with the following key observations:(1) The value of 7 is primarily influenced
by cross-domain distribution shifts, rather than downstream tasks, with the optimal range identified
between [0.2, 0.3]. (2) The value of A is notably task-dependent. For clustering tasks, the optimal
range lies within [0.2, 0.3], while for classification tasks, it is within [0.1, 0.2]. (3) The optimal values
for 8 and € are found within the ranges of [0.2, 0.3] and [0.1, 0.2], respectively. These results provide
crucial theoretical insights into hyperparameter optimization and serve as a strong foundation for
adapting our model to heterogeneous data distributions in real-world applications.
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Figure 5: Hyperparameter Sensitivity analysis. The x-axis represents the four hyperparameters: A,
B, €, and 7, with the left and right y-axis representing the classification and clustering accuracy,
respectively. The dashed lines in the figure represent the highest test accuracy of the baseline method
under the settings of the SM-BIO.

C.4 Convergence Analysis

Fig. [6] provides additional information on the relationship between graph classification loss and
communication rounds in three non-IID settings. The experimental results indicate that, as the commu-
nication rounds progress, each client’s loss curve exhibits a smooth, consistent decline, substantiating
the effectiveness of our method in promoting model convergence. Further convergence experiments
under the non-IID setting reinforce the superiority of the proposed bi-gradient regularization strategy
in cross-dataset and cross-domain scenarios, demonstrating enhanced training stability and stronger
generalization capability.
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Figure 6: Loss trends of individual clients under three dataset settings: BIO-SN-CV, SM-BIO-SN,

and SM-SN-CV.
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