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Abstract
Transformer models encounter inefficiency when
scaling hidden dimensions due to the uniform ex-
pansion of parameters. When delving into the
sparsity of hidden dimensions, we observe that
only a small subset of dimensions are highly ac-
tivated, where some dimensions are commonly
activated across tokens, and some others uniquely
activated for individual tokens. To leverage this,
we propose MOHD (Mixture of Hidden Dimen-
sions), a sparse architecture that combines shared
sub-dimensions for common features and dynam-
ically routes specialized sub-dimensions per to-
ken. To address the potential information loss
from sparsity, we introduce activation scaling
and group fusion mechanisms. MOHD effi-
ciently expands hidden dimensions with minimal
computational increases, outperforming vanilla
Transformers in both parameter efficiency and
task performance across 10 NLP tasks. MOHD
achieves 1.7% higher performance with 50%
fewer activated parameters and 3.7% higher per-
formance with 3× total parameters expansion at
constant activated parameters cost. MOHD offers
a new perspective for scaling the model, showcas-
ing the potential of hidden dimension sparsity.

1. Introduction
Large Language Models (LLMs) (Anthropic, 2023; Ope-
nAI, 2023; Touvron et al., 2023a) have achieved impressive
performance in various natural language processing tasks.
Recent study (Kaplan et al., 2020) suggests that scaling mod-
els by increasing parameters and computational resources
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Figure 1. We observe that Transformer hidden states have both
token-shared and token-specific activated dimensions. Based on
this, we propose MOHD, which combines shared and specialized
sub-dimensions for mixed activation. Compared to Transformers,
MOHD offers significantly higher parameter efficiency.

can enhance their capabilities with sufficient data. However,
the large number of parameters in LLMs often results in high
training and inference costs. To address this, flexible model
architectures (Jiang et al., 2024b; Cai et al., 2024b;c) are
sought to enable parameter scaling while maintaining com-
putational efficiency. In Transformers, the parameters are
determined by hidden and intermediate dimensions. Some
studies (Qiu et al., 2024; Liu et al., 2024) identify the spar-
sity of intermediate-dimensional activations, and use them
to design adaptive networks, such as MoE (Cai et al., 2024c;
Dai et al., 2024; Xue et al., 2024a), or apply pruning (Xia
et al., 2023; Chen et al., 2023; Ma et al., 2023b) and local
activation mechanisms (Liu et al., 2023a) to boost efficiency.

Although elastic scaling of the intermediate dimension has
been studied, scaling hidden dimensions with controllable
computational costs remains underexplored (Figure 9). In
general, the hidden dimension reflects the embedding size of
all tokens, and expanding it can increase the model capacity
to capture intricate patterns. However, existing Transform-
ers (Vaswani et al., 2023) treat all token dimensions equally,
resulting in significant computational and memory overhead
as the hidden dimensions scale.
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Considering to limited understanding of hidden dimensions
in LLMs, we study the activation magnitudes and find a
significant sparsity, where 50% of the dimensions con-
tribute 92.54% of the activation magnitudes (Figure 2 left).
Among highly activated dimensions, we identify shared
dimensions consistently activated across tokens, modeling
common features, and specialized dimensions uniquely ac-
tivated for individual tokens, capturing higher-level seman-
tics (Figure 3). This inspires an efficient design selectively
activating shared and specialized sub-dimensions (Figure 1).
Furthermore, we observe a consistent Activation Flow Pat-
tern across different blocks (Figure 2 middle, Figure 5),
where Attention outputs vary while FFN outputs remain
stable, guiding us to design unique and separate sparsity
architectures to maintain activation flow integrity.

In this paper, we propose MOHD (Mixture of Hidden-
Dimensions), a novel approach that greatly expands hid-
den dimension capacity through sparse conditional acti-
vation, while keeping the activated parameters nearly un-
changed. Specifically, MOHD introduces two types of sub-
dimensions in each layer of the model’s Attention and FFN
components: shared sub-dimensions that are always acti-
vated to capture common dimensional information across
different tokens, and specialized sub-dimensions that are
selectively activated to capture token-specific specialized
dimensions. To ensure load balancing, we apply a balanc-
ing loss to the specialized sub-dimensions. An activation
scaling mechanism and a grouped fusion mechanism are
introduced to mitigate information loss from dimensional
downsampling and maintain the activation flow. In this way,
MOHD can be used to scale the model’s hidden dimension
without increasing the number of parameters, or to signif-
icantly reduce the active hidden dimension to lower the
computational cost.

To demonstrate the effectiveness of MOHD, we pretrain
Vanilla Transformers with 355M, 495M, and 1.13B parame-
ters based on LLaMA’s architecture (Touvron et al., 2023b),
and their MOHD versions in both hidden dimension com-
pression and expansion settings with scaling factors: 50%,
75%, 2×, 3×, and 4×. We evaluated these models on 10
NLP tasks, showing the advantages of the MOHD architec-
ture. Results indicate that MOHD consistently outperforms
Vanilla and Mixture of Experts Transformers with the same
activated parameters across all model sizes. In the com-
pression setting, MOHD reduces activated parameters by
50%, retaining 99% of original performance. In the expan-
sion setting, MOHD keeps activated parameters constant
while expanding hidden dimensions 4×, achieving up to an
8.37% relative performance improvement. Notably, MOHD-
355M outperformed LLaMA2-355M and even matched
LLaMA2-1.13B’s performance, while reducing activated
parameters to 28.9% of LLaMA’s. To explore the impact
of increasing hidden dimensions, we conducted detailed

analyses on MOHD’s routing mechanism and sparsifica-
tion phenomenon. MOHD is the first method to introduce
sparse mixture activation for expanding hidden dimensions,
offering a new approach to designing efficient architectures.

2. Observation
This section presents key findings for the design of MOHD.
In Section 2.1, we observe long-tail sparsity in hidden di-
mension activations. Section 2.2 examines activation flow in
Transformers. In Section 2.3, we identify shared continuous
and unique discrete high activation behaviors across tokens,
guiding the design of hidden dimension sparsification.

2.1. Sparsity in Tokens’ Hidden Dimension

We analyze activation magnitudes of 4096 hidden dimen-
sions in LLaMA2-7B (Figure 2). The left panel reveals
the long-tail sparsity, consistent with observations in Liu
et al. (2024): in the 16th layer Attention input, the top 1000
dimensions account for 71.96% of total magnitude. The
middle panel highlights functional divergence between
Transformer’s components: Attention shows higher, fluc-
tuating activations, whereas FFN maintains lower, stable
activations. This contrast underscores the need for differen-
tiated activation designs. For details, see the Appendix F.1.

2.2. Activation Flow in Transformer

We also investigate activation magnitude variations within a
single Transformer block, as shown in Figure 10. Consistent
Activation Flow patterns were observed across blocks. The
activation magnitude variations in each layer follow a simi-
lar flow pattern: The Attention module compresses input
activations to 58% through projections, demonstrating its
ability to suppress irrelevant information. FFN selects and
maintains the stability of the activation flow magnitude
based on the Attention’s output. Residual connections
regulate activation changes by restoring compressed magni-
tudes. This observation inspires us to maintain the activation
flow to reduce information loss. More in Appendix F.2.

2.3. Continuous High Activation

We investigate the temporal correlation of activation sparsity
ratio by analyzing high activation values across consecu-
tive tokens and identifying indices repeatedly activated by
multiple tokens. A clear correlation in activations is ob-
served over consecutive tokens. Figure 2 right shows the
number of commonly activated dimensions across 2 to 9
consecutive tokens, with the x-axis representing the thresh-
old for high activation. Using the top 20% activation values
as the threshold, 2672 dimensions are commonly activated
across 2 tokens, and 673 dimensions remain active across
9 tokens. Figure 3 further illustrates correlated activation
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Figure 2. Left: Activation magnitudes sorted in descending order with the percentage representing the cumulative activation sum. Middle:
Sparsity of hidden dimension activations in Attention and FFN outputs across layers. Right: Number of shared activation dimensions at
varying activation magnitude thresholds, with curves showing the count for consecutive tokens ranges from 2 (blue) to 20 (red).
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Figure 3. Activation patterns of 4,096 hidden dimensions, clustered
and reordered across five tokens in the 16th layer of LLaMA2-7B.

patterns over 5 tokens, where 4096 hidden dimensions are
clustered based on their activation patterns. About 400 di-
mensions are commonly activated across all 5 tokens, while
roughly 200 dimensions are uniquely activated in each to-
ken. This indicates that each token’s activations contain
both shared sub-dimensions activated across tokens and
token-specific sub-dimensions. Shared activations cap-
ture similarities, while unique activations reflect differences.
These observations inspire the shared-specialized activation
mechanism in MOHD’s design.

3. Mixture of Hidden Dimensions (MOHD)
In this section, we propose the Mixture of Hidden Dimen-
sions (MOHD) architecture to scale the hidden dimension
without increasing activated parameters. The workflow is
illustrated in Figure 4. Based on observations from Sec-
tion 2.12.3, we introduce the Shared and Specialized Sub-
Dimension Mixed Activation mechanism in Section 3.1.
We also apply sparsified components to Attention and FFN
blocks (Appendix A) and address information degradation
with activation scaling and grouped fusion mechanisms in
Section 3.2. In Section 3.4, we discuss a balance loss and
present the implementation in Section 3.5.

3.1. Mixture of Sub-Dimensions Activation

Let X ∈ Rn×d denote embeddings of n tokens and
x ∈ R1×d denote a single token embedding. Given ac-

tivation sparsity ratio δ, MOHD dynamically activates
subset S ⊆ [d] of parameters in the weight matrix
W ∈ Rd×d′

through hidden dimension sparsity. Inspired
by observation in Section 2.1, We partition W into N sub-
dimensions of size de such that Nde = d, structured as
W = [W1,W2, ...,WN] where Wi = W[(i − 1)de : ide].
The routing gate g = Gate(x, δ,N) selects top-K sub-
dimensions via:

si = Softmaxi

(
x⊤ϕl

i

)
, gi =

{
si, si ∈ Topk({sj}Nj=1,K),

0, otherwise,
(1)

where si denotes token-to-subspace affinity, ϕl
i is the cen-

troid of i -th sub-dimension at layer l, and K = ⌊δN⌋. The
routing weights gi enable dynamic amplification/suppres-
sion of sub-dimension representations during optimization.
Activated sub-dimension outputs {ys} are concatenated to
produce the final d-dimensional output.

ys =
∥∥N
i=1

gi Dimi(xs) = WSxs. (2)

The gated concatenation operator
∥∥N
i=1

giDimi(xs) dynami-
cally selects sub-dimensions through sparse activation (spar-
sity δ). Only K = ⌊δN⌋ sub-dimensions receive non-zero
weights gi, inducing sparsity in both the token embedding x
and weight matrix W. This produces output ys ∈ Rd while
reducing activated parameters in WS to δ · ∥W∥0.

3.2. Activation Flow Maintenance

In Section 3.1, our sparse activation mechanism gener-
ates dimension-sparsified outputs ys to reduce computa-
tion, but risks information degradation due to softmax-
induced weight skewing and suppression of low-weight di-
mensions during parallel concatenation. To preserve consis-
tent Activation Flow (Section 2.2), we first introduce Sub-
dimension Scaling with α =

∑
giN , ensuring stable acti-

vation magnitudes across dimensions. A Grouped Fusion
Layer then projects ys back to the original d-dimensional
space using Monarch matrices (Dao et al., 2022; Chen et al.,
2024a), structured as M =

∑d/r
i,j mi,j with a receptive field
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Figure 5. Maintaining Activation Flow: Sparse activations can
result in information loss. The scaling factor adjusts the activations
to restore the original magnitude, and the grouping and fusion
mechanism restores activations to their original dimensionality.

r, reducing the mapping complexity to O(d/r). Resid-
ual Connections further preserve critical signal flow by
bypassing suppressed dimensions. As shown in Figure 5,
these components maintain δ-level parameter sparsity while
mitigating information loss and computational overhead:

Mys =

 m1,1 · · · m1,d/r

...
. . .

...
md/r,1 · · · md/r,d/r

⊗ ys, (3)

where the Monarch matrix M enables efficient grouping and
transformation, reconstructing information across the orig-
inal hidden dimensions while maintaining computational
efficiency. In summary, the forwarding process for a single
MOHD module can be formally represented as follows:

y = Mα
∥∥N
i=1

gi Dimi(xs), g, xs = Gate(x, δ,N). (4)

3.3. Mixed Activated Sub-Dimensions

As discussed in Section 2.3, a portion of the hidden dimen-
sions is consistently activated, capturing shared features,

while another portion is selectively activated, likely encod-
ing token-specific features. Motivated by this, we propose
a structured routing mechanism that decouples shared and
specialized feature encoding. Specifically, we partition each
layer’s hidden space into two complementary subspaces
(Fig. 4): Shared Sub-Dimensions (φ portion) maintain
constant activation to capture cross-token common features.
Specialized Sub-Dimensions (δ − φ portion) employs dy-
namic routing via Topk((δ − φ)N) selection, encoding
fine-grained contextual patterns.

si = Softmaxi

(
x⊤ϕl

i

)
,

gi =


si, si ∈ {sj | 1 ⩽ j ⩽ φN} ,
si, si ∈ Topk ({sj | φN ⩽ j ⩽ N} , (δ − φ)N) ,

0, otherwise.
(5)

The routing mechanism ensures that Shared Sub-
Dimensions are consistently activated for all tokens,
consolidating common information, while Specialized
Sub-Dimensions are encouraged to diversify. All sub-
dimensions are weighted to allow selective amplification/-
suppression of representations during optimization.

3.4. Sub-Dimension Load Balance

Research on conditional computation (Zhou et al., 2022;
Jiang et al., 2024b; Dai et al., 2024) has shown that auto-
matically learned routing strategies can often lead to load
imbalance issues, where the model tends to select only a
few sub-dimensions, leaving others underutilized and insuf-
ficiently trained. To distribute tokens more evenly among
different sub-dimensions and smooth out the router score
distribution, we incorporate Sub-Dimension Load Bal-
ance Loss (Dai et al., 2024): Define β is a scaling factor
and ⊮{argmax(gs)=i} is an indicator function that returns 1 if
the i-th sub-dimension has the highest gating score for the
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s-th sequence position and 0 otherwise.

LB = β

N∑
i=1

gi∑N
j=1 gj

·
∑

s∈S ⊮{argmax(gs)=i}

N
. (6)

The term gi∑N
j=1 gj

represents the normalized gating score

for sub-dimension i, ensuring that the contributions of each
sub-dimension are proportional to their selection frequency.

3.5. Implementation

MOHD sparsifies hidden dimensions in Transformer blocks
by synchronizing sparsification across up-projection and
down-projection matrices, as well as the input x. We define
Hidden dimension sparsity and formulate sparsely FFN and
Attention mechanisms in Appendix A. Based on these mech-
anisms, we construct MOHD BLOCK using MOHD MHA
and MOHD FFN components (Details in Appendix. G).
Residual connections are applied to mitigate information
loss, and LayerNorm layers are placed before both MHA
and FFN inputs. The forward of the block is defined as:

BLOCKMOHD(x) = FFNMOHD(MHAMOHD(x) + x) + x. (7)

The final training objective combines the cross-entropy loss
LCE for language modeling with the load balance loss LB:

L = LCE + LB. (8)

4. Experiments
4.1. Experimental Setup

Data. To pretrain MOHD models and baseline models, we
employ the RedPajama (TogetherAI, 2023), which parallels
the LLaMA training data across seven domains: Common-
Crawl, C4, GitHub, Wikipedia, Books, ArXiv, and Stack-
Exchange. This dataset comprises a validation set with 2
million tokens, a training set containing 50 billion tokens.

Training. Our experimental framework utilizes the Sheared-
LLaMA codebase (Xia et al., 2023) implemented on the
Composer package (Team, 2021), and is executed on 8
NVIDIA A100 GPUs (80GB). The models are trained with
a sequence length of 4096, employing a global batch size
of 256. MOHD models are trained for 50000 steps (50B
token budget). The learning rates were set at 3e-4 for all
parameters. The baselines and all MOHD models follow
the same training setup, starting from random initialization
and training on the same amount of data.

Evaluation. We employed the lm-evaluation-harness (Gao
et al., 2021) to evaluate our models. For common sense
and reading comprehension tasks, we report 0-shot accuracy
results for SciQ (Welbl et al., 2017), PIQA (Bisk et al.,
2020), WinoGrande (WG) (Sakaguchi et al., 2020), ARC

Easy(ARC-E) (Clark et al., 2018b), and 10-shot HellaSwag
(Hella.) (Zellers et al., 2019), alongside 25-shot accuracy
for ARC Challenge (ARC-C) (Clark et al., 2018a). In the
assessments of continued QA and text understanding, we
report 0-shot accuracy for LogiQA (Liu et al., 2020), 32-shot
BoolQ (Clark et al., 2019), and 0-shot LAMBADA (Lam.)
(Paperno et al., 2016). All reported results are calculated
with the mean and stderr of multiple experiments.

Baseline. Following the architecture of LLaMA2, we con-
structed models at three parameter scales: 355M, 495M, and
1.13B, with hidden dimensions of 1024, 1536, and 2048,
as shown in Table 7. For each parameter scale, we develop
three variants: Vanilla Transformers (LLaMA architecture)
and MOHD-based models. The flexible MOHD architec-
ture allows for compressing activated parameters without
changing the total parameter count or expanding the model
parameters while retaining the activation size. We exper-
iment with five hidden dimension scaling factors—0.5×,
0.75×, 2×, 3×, and 4×—to showcase MOHD’s ability to
reduce activation and enhance model capacity. All models
are the same initialized and pre-trained on 50 billion tokens.

4.2. Result

Capability in Compression. Table 1 (blue rows) demon-
strates the capabilities of MOHD on the 355M, 495M, and
1B versions of LLaMA2 with 50% and 75% hidden dimen-
sions activated. Results show that MOHD maintains or even
improves performance with partial activation. At 355M,
MOHD with 50% activation incurs only a 0.4% perfor-
mance loss compared to the baseline, highlighting hidden
dimension sparsity. Furthermore, MOHD with 75% acti-
vation outperforms the fully activated baseline, achieving
gains of 0.5%, 1%, and 1.8% for the 355M, 495M, and 1B
models, respectively. Performance gains increase with
model size: MOHD 50% achieves relative improvements
of -0.4%, +0.3%, and +1.7% for the 355M, 495M, and
1B models, showing potential for larger-scale applications.
Although compressing activations to 50% slightly reduces
Commonsense metric scores, MOHD retains strong lan-
guage modeling capabilities under low activation settings.

Capability in Expansion. Table 1 (pink rows) shows
MOHD’s scalability with 2×, 3×, and 4× hidden dimension
expansion. MOHD achieves performance comparable
to models with equivalent parameters while using fewer
activated parameters. For instance, MOHD 2× (355M) ex-
ceeds the baseline by 2.2%, outperforming LLaMA2-495M
and LLaMA2-1.13B. As the scale increases, the benefits
of MOHD become more pronounced, yielding improve-
ments of 2.2%, 0.7%, and 3% for the 355M, 495M, and
1.13M parameter models, respectively. Tripling the hid-
den dimension yields optimal results: MOHD ×3-1.48B
achieves a 2.2% improvement over the baseline and 1.5%
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Table 1. Comprehensively evaluate the basic capabilities of models with different activated parameters. In particular, MOHD 50%-355M
represents a model with 355M total parameters using MOHD to compress 50% hidden dimensions. Green and Red values indicate metrics
that exceed or fall below the baseline, respectively. # Activate refers to all activated parameters excluding the Embedding layers.

Model-Params # Activate
Commonsense & Reading Comprehension Continued LM Knowledge

Avg.
SciQ PIQA WG ARC-E ARC-C Hella. LogiQA BoolQ Lam. MMLU

LLaMA2-355M 289M 74.0 65.2 50.5 44.7 20.1 31.1 19.5 59.7 36.6 25.2 42.7

MOHD 50%-355M 145M 74.0 65.6 50.4 43.9 19.7 30.7 20.6 54.7 37.7 25.6 42.3
MOHD 75%-355M 217M 75.3 65.6 50.9 44.7 20.9 31.1 22.3 55.8 38.9 26.2 43.2
MOHD ×2 -710M 289M 76.6 67.5 49.8 47.7 23.0 33.4 20.7 60.5 43.3 26.5 44.9
MOHD ×3 -1.06B 289M 77.1 67.8 51.1 47.6 21.8 33.9 20.6 55.8 43.6 25.6 44.5
MOHD ×4 -1.42B 289M 77.6 67.9 49.1 47.0 23.3 33.9 22.1 57.5 44.3 24.7 44.7

LLaMA2-495M 396M 75.4 66.5 51.3 45.5 19.9 32.0 21.7 60.5 38.9 25.8 43.8

MOHD 50%-495M 198M 76.9 67.1 52.7 46.4 20.1 32.3 21.5 57.0 40.7 26.2 44.1
MOHD 75%-495M 297M 76.4 67.3 50.6 45.8 21.1 33.0 23.7 61.8 41.7 26.2 44.8
MOHD ×2 -989M 396M 77.1 67.8 51.1 47.6 21.8 33.9 20.6 55.8 43.6 25.6 44.5
MOHD ×3 -1.48B 396M 77.0 69.0 51.1 48.8 23.6 35.6 22.0 58.6 48.2 26.1 46.0
MOHD ×4 -1.98B 396M 79.1 67.4 49.8 49.1 22.0 35.2 20.7 60.9 47.4 26.1 45.8

LLaMA2-1.13B 1B 81.0 68.1 51.8 49.3 23.2 35.0 21.7 47.0 38.9 26.4 44.2

MOHD 50%-1.13B 503M 78.9 67.8 50.1 48.7 21.2 35.2 21.5 61.1 48.8 25.5 45.9
MOHD 75%-1.13B 755M 80.3 69.3 52.3 50.8 24.5 36.1 22.3 51.2 48.4 25.0 46.0
MOHD ×2 -2.27B 1B 81.2 70.9 54.1 53.0 24.6 38.3 22.4 50.5 52.1 25.5 47.2
MOHD ×3 -3.41B 1B 83.6 69.8 53.1 51.9 25.4 38.3 21.0 56.5 53.0 26.6 47.9
MOHD ×4 -4.55B 1B 82.4 70.0 52.8 51.6 23.4 38.0 23.4 54.9 50.7 26.6 47.4

LLaMA2-2.7B 2.54B 82.5 70.8 56.3 54.4 27.8 39.3 23.5 44.4 37.7 25.3 46.2

Figure 6. Left: Average score with activated parameters, with point size representing total parameters. Middle: Average score with total
parameters, with point size representing activated parameters. Right: Perplexity curves for models pre-trained on 50B tokens.

over MOHD ×2. MOHD effectively expands hidden dimen-
sions and leverages sparsity to boost performance.

Parameters Efficiency. Figure 6 (Left) shows that MOHD
achieves a high parameter efficiency. On the 400M and
1B scales, MOHD delivers 2.2% and 3% improvements,
respectively, over the baseline with less than 50% activa-
tion. Performance gains grow with activated parameters,
underscoring MOHD’s scalability at larger scales. Figure 6
Middle highlights MOHD’s advantage with increasing to-
tal parameters: at smaller scales, MOHD matches baseline
performance with fewer activations, while at larger scales,
MOHD achieves greater gains under the same total parame-
ter count by leveraging hidden dimension redundancy.

Training Stability. Figure 6 (Right) visualizes evaluation
perplexity during pretraining on 50B tokens for LLaMA2-

495M, MOHD ×3-1.48B, MOHD 75%-495M, and MOHD
50%-495M. MOHD shows training stability and btter
efficiency, with smoother and lower perplexity curves com-
pared to LLaMA2-495M. MOHD ×3-1.48B shows the great-
est improvements, while MOHD 75%-495M and MOHD
50%-495M maintain strong training performance, demon-
strating robust learning even with partial parameter activa-
tion. Overall, MOHD effectively expands hidden dimen-
sions, improving learning capabilities during training.

Compare to MoE. As Sparsely-activated Transformer
in a different dimension, we compare MOHD and MoE.
DeepSeek MoE (Dai et al., 2024) models are trained from
scratch at 355M as the baseline 1. Even with 75% sparsity,
MOHD outperform the baseline while MoE casue perfor-

1using Multi-head Attention for fairness. Settings in Table 6.
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Table 2. Performance comparison of DeepSeek-V2 MoE (Dai et al.,
2024) and MOHD at 355M scale (50B training budgets).

Method SciQ PIQA Hella. ARC-E LogiQA Lam. Avg. ↑
L.-355M 74.0 65.2 31.1 44.7 19.5 36.6 45.2

MoE 75% 73.7 64.4 30.6 43.1 19.1 35.0 44.3 (-0.9)
MOHD 75% 75.3 65.5 31.1 44.7 22.3 38.9 46.3 (+1.1)

MoE ×2 75.1 65.2 31.9 45.2 20.7 38.0 46.0 (+0.8)
MOHD ×2 76.6 67.5 33.4 47.7 20.7 43.3 48.2 (+3.0)

MoE ×3 76.2 65.8 32.2 46.2 20.1 38.8 46.5 (+1.3)
MOHD ×3 77.1 67.8 33.9 47.6 20.6 43.6 48.4 (+3.2)

mance loss. MoHD outperforms MoE by an average of 2%
in both compression and expansion settings. By expanding
the hidden dimension, MoHD enhances the representa-
tion ability of each token, demonstrating higher parame-
ter efficiency than MoE. More details in Appendix D.

4.3. Ablation Studies

To evaluate the importance of each method in Section 3
within MOHD, we conducted detailed ablation experiments.
In Table 3, we compare the ablation results of MOHD ×2
with 710M parameters to the baseline with the same activa-
tion under zero-shot pretraining on 10B tokens, based on
Eval PPL. The specific analysis is as follows:

Mixed Activation Sub-Dimension Ablation. We ablated
the Mixed Activation Sub-Dimension method by using fully
specialized sub-dimensions without shared ones, leading
to a 0.83 increase in PPL, indicating a negative impact on
performance. As discussed in Section 2.3, shared activation
dimensions should be activated together in a mixed activa-
tion mode. Figure 8a shows that this mode significantly
outperforms fully sparse activation, highlighting its suitabil-
ity for hidden dimensions patterns of the Transformer.

Balance Loss Ablation. The balanced loss effectively en-
hances MOHD (0.16 improvement). It mitigates the risk
of routing collapse, ensuring that most sub-dimensions are
utilized more evenly. This increases the efficiency of sub-
dimension utilization and improves the overall efficiency.

Flow Maintenance Ablation. Ablation experiments high-
light that maintaining activation flow is crucial for MOHD.
As shown in Table 3, removing Sub-dimension Scaling re-
sults in a 1.16 performance drop, as the model loses critical
information after sparsifying the hidden dimension. The
Group Fusion Layer offers an additional 0.22 performance
gain without significantly increasing parameters, improving
dimension utilization while preserving information integrity.

4.4. Analysis

Decoupled MOHD Setting. To explore MOHD, we built
three models: one sparsifying Attention, one for FFN, and

Table 3. Eval Perplexity with ablation on MOHD (10B training
budgets). "w.o." indicates the method was ablated.

Method Perplexity ↓
MOHD ×2 -710M 10.25

w/o Mixed Activated Sub-Dimensions 11.08 (+0.83)
w/o Balance Loss 10.41 (+0.16)
w/o Group Fusion Layer 10.47 (+0.22)
w/o Sub-Dimension Scaling 11.41 (+1.16)

LLaMA2-355M 11.61(+1.36)

Table 4. Eval Perplexity in the MOHD setting is performed for the
Attention or FFN of LLaMA2-355M (10B training budgets).

Method # Activate Perplexity ↓
LLaMA2-355M 289M 11.61

MOHD-100%ATTN-100%FFN 289M 11.43 (-0.18)

MOHD-100%ATTN-50%FFN 195M 11.31 (-0.30)
MOHD-50%ATTN-100%FFN 239M 12.25 (+0.64)
MOHD-50%ATTN-50%FFN 145M 12.05 (+0.44)

MOHD-100%ATTN-25%FFN 147M 12.24 (+0.63)
MOHD-25%ATTN-100%FFN 213M 14.31 (+2.70)
MOHD-25%ATTN-25%FFN 72M 13.20 (+1.59)

one for both, as shown in Table 4 and Figure 11. All
models were trained on 10B tokens. Sparsifying FFN
showed more redundancy, leading to a minimal or even
improved performance. We observe a -0.30 PPL reduction
at 50% sparsity, likely due to the reduced redundant ac-
tivations that mitigate overfitting. Sparsifying Attention
resulted in a greater performance drop, with a +1.04
PPL increase at 50% sparsity, indicating its sensitivity to
sparsification. Finally, joint sparsification of Attention
and FFN achieved the best parameter efficiency, with
the 50%ATTN-50%FFN model reaching a PPL of 12.05
using only 145M activated parameters, outperforming both
50%FFN and 50%ATTN configurations. More detailed
analysis in Appendix H.1.

Router Probability. To observe sub-dimension selection in
MOHD, we visualize the attention and FFN router weight
distributions at the 5th layer across five data domains in
Figure 7. Each weight represents the average selection prob-
ability across 4096 tokens. The sub-dimensions show spe-
cialization across domains: for example, Attention Subdim
5 is crucial for code-related data, with higher probabili-
ties in GitHub and StackExchange. In contrast, Subdim 3
is more relevant to commonsense knowledge, with higher
probabilities in Wiki, CC, and ArXiv. In the FFN router,
Subdim 4 specializes in code tasks, while Subdim 3 focuses
on commonsense knowledge. This specialization validates
MOHD’s effectiveness in allocating sub-dimensions based
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Figure 8. Performance of MOHD ×2-710M with varying sub-
dimension allocation ratios and finer-grained sub-dimension set-
tings. All models are pre-trained from scratch on 10B tokens.

on data domains, enhancing parameter efficiency. Addi-
tionally, sub-dimension probabilities generally stay within
0.2-0.3, ensuring all sub-dimensions are actively chosen.

Shared Activation v.s. Specialized Activation. Figure 8a
shows the PPL values of MOHD ×2-710M trained on 10B
data with varying Shared Sub-dimensions and Specialized-
dimensions proportions. The Baseline and MOHD models
have identical total parameters. Specialized sub-dimensions
effectively increases the hidden dimensions of the model,
improving performance in the 0/4 setting. The best perfor-
mance is achieved with a 3/4 Shared activation ratio, proving
that a number of sub-dimensions are still needed to model
cross-token activation patterns.

Fine Gain Sub-dim Dimension. Figure 8b shows the test
PPL values of MOHD ×2 -710M after pre-training on 10B
data with varying sub-dimensions. The best performance
is achieved with 16 sub-dimensions (256 size). Increasing
the sub-dimensions to 128 (32 size) and 256 (16 size) yields
only marginal improvements. This indicates that more sub-
dimensions do not enhance performance but increase com-
putational costs. The results validate the effectiveness of
the grouping fusion layer, showing that a small number of
parameters suffice to maintain an efficient activation flow.

5. Related Work
5.1. Activation Sparsity

Activation sparsity refers to the large proportion of zero-
valued hidden states in models, naturally occurring in ReLU-

based MLPs (You et al., 2022; Li et al., 2023). This sparsity
has been leveraged to improve LLM efficiency during in-
ference. Liu et al. (2023b) accelerated LLM inference by
omitting zero-valued weight channels from GPU registers,
while Song et al. (2023) and Alizadeh et al. (2024) extend
this to CPU offloading, reducing memory transfer overhead.
Recent works Mirzadeh et al. (2023); Zhang et al. (2024);
So et al. (2022); Song et al. (2024a;b); Wang et al. (2024b)
have integrated activation sparsity into LLMs to boost effi-
ciency. Lee et al. (2024) introduce CATS for training-free
sparsity in SwiGLU-based LLMs, and Liu et al. (2024) ex-
tend training-free sparsity to large models. Building on
these studies, we focus on hidden dimension sparsity and
continuous activation across tokens, leading to a sparse acti-
vation architecture that enhances parameter efficiency and
hidden dimension scalability.

5.2. Sparsely-activated Transformer

Sparse Transformer models, like Sparse Mixture-of-Expert
(MoE) architectures, utilize input adaptivity to reduce com-
putational overhead by activating only a subset of subnet-
works, or "experts," for each input token (Fedus et al., 2022;
Riquelme et al., 2021; Zhou et al., 2022; Jiang et al., 2024a;
Xue et al., 2024b; Gu et al., 2024; 2025). Recent develop-
ments have introduced heterogeneous experts, integrating
experts with varying capacities and specializations (Wu
et al., 2024; He, 2024; Dean, 2021; Zhou et al., 2022; Dai
et al., 2024). Some studies (Qiu et al., 2024) have explored
sparsely-activated architectures based on FFN intermediate
activations. However, no Transformer model has specifi-
cally implemented sparse activation in hidden dimensions.
Inspired by (Qiu et al., 2024; Dai et al., 2024), we ana-
lyzed hidden dimensions and proposed a novel architecture,
opening a new research direction. Extend related works in
Appendix C.

6. Conclusion
In this paper, we presented MOHD, a sparse conditional acti-
vation architecture designed to address inefficiencies in scal-
ing Transformer hidden dimensions. By integrating shared
sub-dimensions for common token features and dynami-
cally activating specialized sub-dimensions through a rout-
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ing mechanism, MOHD achieves improved efficiency and
flexibility while preserving activation flow through activa-
tion scaling and group fusion mechanisms. Our evaluations
demonstrate that MOHD outperforms standard Transform-
ers across multiple NLP tasks, achieving superior parameter
efficiency. These results underscore that MOHD provides a
new direction for efficiently expanding model parameters.

Impact Statement
In our study, we leverage open and online accessible data
and techniques, mitigating privacy concerns. Our method
emphasizes enhancing model parameter efficiency and re-
ducing size to create powerful, compact, and openly ac-
cessible models, thereby promoting the open dissemina-
tion and democratization of NLP technologies. MOHD
offer a scalable solution for resource-constrained environ-
ments, reducing computational and memory costs without
sacrificing capability. Its ability to match or surpass larger
models highlights its potential to democratize access to
high-performance language models, particularly in edge
computing and low-resource settings. By redefining how
hidden dimensions are utilized, this work paves the way for
efficient large language model architectures, aligning with
sustainability goals in AI development. Our work is commit-
ted to advancing accessible and efficient NLP technologies,
fostering a more inclusive and automated future for AI.
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A. Definition
In this Section, we define the activation sparsity present in
the hidden dimension of LLMs and use this to formulate
sparsely activated FFN and Attention mechanisms.

Let X ∈ Rn×d denote the embeddings of n tokens, and
x ∈ R1×d represent the embedding of a single input token.
The activation sparsity δ of a hidden state x is defined as the
proportion of zero-valued entries within the vector (Liu et al.,
2024). We then define a function S : d → δd that selectively
activates a subset of dimensions in x. The sparsely activated
representation is denoted as xs = S(x, δ), where xs ∈
R1×δd, representing the selective activation of θ-proportion
of the dimensions in x.

A.1. Hidden Dimension Sparsity

Considering the model’s semantic modeling in Euclidean
space, we define the magnitude mi of each dimension i as
the square of its activation value:

mi = x2
i , m = x⊙ x, (9)

We define hidden dimension sparsity as:

Sparsity =
1

d

d∑
i=1

1(xi < ϵ), (10)

where d is the total number of hidden dimensions, xi repre-
sents the squared activation value of the i-th dimension, and
ϵ is a small threshold used to identify near-zero activation
values. The indicator function 1(xi < ϵ) is equal to 1 if the
activation value is below the threshold and 0 otherwise.

A.2. Hidden Sparsified FFN

Define Wup,Wgate ∈ Rd×d′
,Wdown ∈ Rd′×d as the up,

gate, down matrix in one FFN block, where d′ is the in-
termediate size. In this context, the i-th row of the up,
gate matrix is defined as Wup

i ,Wgate
i ∈ R1×d′

, and the i-th
column of the down matrix is defined as Wdown

i ∈ Rd′×1.
Specifically, the sparsely activated hidden state xs under
activation sparsity δ only activates a subset of rows in the
up, gate matrix and a corresponding subset of columns in
the down matrix, denoted as SM ⊆ [d]. Thus, the sparsified
FFN computation can be described as follows:

FFNSH (xs) = Wdown
SM

(
σ
(
xsW

up
SM

⊙ xsW
gate
SM

))
, (11)

where σ is the activation function. ⊙ is the element-wise
production. Due to the sparsification of the hidden state,
the up and gate matrices share the same activation subset.
To ensure the output remains sparsified, the down matrix is
also sparsified, though its activation subset can differ from
that of the up and gate matrix.

A.3. Hidden Sparsified Attention

For a h-head Multi-Head-Attention (MHA), we define
WQ

i ,W
K
i ,W

V
i ∈ Rd×dh ,WO

i ∈ Rdh×d as key, query, value
and output projections for the i-th head, where dh denotes
as the head dim, i ⊆ [h]. With sparsely activated hidden
state xs, a small parameter subset SA represents a sparsely
activated selection of rows from WQ

i ,W
K
i ,W

V
i and columns

from WO
i .

MHASA(xs) =

h∑
i=1

HeadiW
O
i,SA

, (12)

Headi = σ

((
xsW

Q
i,SH

(xsW
K
i,SH

)⊤
) 1√

dh

)
xsW

V
i,SH

, (13)

where σ is the softmax function. Since x is sparse in the
hidden dimension, we can find an approximation xs of x,
such that, under the activation of the corresponding subset
of parameters SH , the outputs of the sparsified FFN and
sparsified attention closely approximate the outputs of the
dense model.

B. Theoretical Proof for Mixed Sparse
Activation Superiority

In this section, we show that a mixed sparse activation
scheme—where some hidden dimensions are shared across
tokens and others are token-specific—yields strictly better
risk bounds than a purely token-only activation. We proceed
in three steps:

1. Show that applying random sparsification to an n-
dimensional hidden vector is, in expectation with re-
spect to second moments, equivalent to training a wider
network of dimension n/p, where p is the retention
probability. (“Width Expansion”)

2. Use classical Barron-space approximation results to
argue that a network of larger width has smaller ap-
proximation error. Then compare a purely token-level
network (width nu) to a mixed network (width ns+nu).
(“Approximation Error Decay”)

3. Show that parameter-tying in the shared dimensions
reduces the Rademacher complexity compared to hold-
ing all parameters token-specific. (“Complexity Reduc-
tion”)

Combining these facts under explicit quantitative conditions,
we obtain a strictly lower risk bound for the mixed activation
scheme.

B.1. Notation and Definitions

• Let n be the total number of hidden units in a given
layer. We index them by j ∈ {1, . . . , n}.
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• Denote by h ∈ Rn a deterministic hidden-layer repre-
sentation. Its j-th coordinate is hj .

• We apply a random mask r ∈ {0, 1}n whose coordi-
nates rj are i.i.d. Bernoulli(p), i.e.

Pr(rj = 1) = p, Pr(rj = 0) = 1− p,

independently for j = 1, . . . , n.

• Define the sparsely activated version of h by

ĥj :=


hj

p
, if rj = 1,

0, if rj = 0,

so that ĥ := 1
p (r ⊙ h) and in particular (r ⊙ h)j =

rj hj .

• In what follows, we write expectations E over the ran-
domness of r. We note that r2j = rj for each Bernoulli
variable, and E[rj ] = p.

• We let ∥ · ∥2 denote the Euclidean norm on Rn.

• For a function class H and a sample size m, Radm(H)
denotes its (empirical) Rademacher complexity, under
the same norm-and-Lipschitz constraints on parameters
as detailed below.

• We use ϵ(n) to denote the approximation error of an
n-width network when approximating a target f∗. In
particular, if f∗ belongs to a Barron space with Bar-
ron norm Cf (i.e., its hidden-layer weight ℓ1 norm is
bounded by Cf ) (Barron, 1993), then a classical result
yields

ϵ(n) ≤ Cf

n
,

where the L2 norm is taken with respect to the data
distribution on the input domain.

• We will compare:

– A token-only network of width nu (all hidden
units are token-specific). Its approximation error
is denoted ϵB = ϵ(nu).

– A mixed network of width ns + nu, where ns

dimensions are shared across all tokens and nu

dimensions remain token-specific. Its approxima-
tion error is ϵA = ϵ(ns + nu).

• Finally, for a network h(·), we denote its population
risk as

R(h) = E(h) + C Radm(H),

where E(h) is the approximation (Bayes) error under
the data distribution, and C > 0 is a constant depend-
ing on the Lipschitz constant of the loss. We use
subscripts A or B to indicate mixed vs. token-only,
respectively.

B.2. Step 1: Sparse Activation ≡ Effective Width
Expansion (Lemma 1)

Lemma B.1 (Unbiased Sparse Forward Pass). Let h ∈ Rn

be any deterministic vector. Let r ∈ {0, 1}n be an i.i.d.
Bernoulli(p) mask, and define

ĥj :=


hj

p
, if rj = 1,

0, if rj = 0.

Then:
E
[
ĥ
]
= h, E

[
∥ĥ∥22

]
=

1

p
∥h∥22,

where E[rj ] = p and r2j = rj for each Bernoulli(p) vari-
able.

Proof. For each coordinate j = 1, . . . , n, since rj ∼
Bernoulli(p),

ĥj =


hj

p
, with probability p,

0, with probability 1− p.

Hence

E[ĥj ] = p · hj

p
+ (1− p) · 0 = hj , for all j,

so E[ĥ] = h. Next, since ĥj = (rj/p)hj and r2j = rj ,

E
[
∥ĥ∥22

]
=

n∑
j=1

E
[( rj

p hj

)2]

=

n∑
j=1

1

p2
h2
j E[r2j ] =

n∑
j=1

1

p2
h2
j

(
p
)
=

1

p
∥h∥22.

This completes the proof.

Corollary B.2 (Effective Width Expansion). Fix a hidden-
layer dimension n and sparsity p = k

n (so that k = pn is
the expected number of nonzero coordinates). Then, noting
that E[∥ĥ∥22] = p−1∥h∥22, one sees that in terms of second-
moment (Euclidean norm) statistics, a network of physical
width n with per-step sparsity p and rescaling by 1/p be-
haves analogously to a full (dense) network of effective
width

n′ =
n

p
=

n

k/n
=

n2

k
.

In particular, if k < n (so p < 1), then n′ = n/p > n, im-
plying that sparse activation in expectation with respect to
second moments expands the hidden-layer norm as though
the network were wider. (This equivalence refers only to
those two Euclidean norm properties and does not assert
full functional equivalence under arbitrary nonlinearities.)
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Proof. By Lemma B.1, each hidden vector h ∈ Rn is re-
placed by ĥ satisfying E[ĥ] = h and E[∥ĥ∥22] = (1/p)∥h∥22.
A dense network of width n/p whose hidden vector is scaled
by

√
p would satisfy E[∥√p h′∥22] = p ∥h′∥22. Thus, in terms

of those two second-moment statistics, the sparse-activated
width-n network simulates a dense width-(n/p) network.
Since n/p > n whenever p < 1, this establishes the corol-
lary.

B.3. Step 2: Width Expansion Reduces Approximation
Error (Lemma 2)

We now invoke a classical result for Barron-type function
spaces.

Lemma B.3 (Approximation Error Decay with Width).
(Barron, 1993) Let F be a Barron function class on the data
domain, and suppose f∗ ∈ F has Barron norm Cf . Then
any two-layer ReLU network of width n can approximate
f∗ with uniform L2 error

ϵ(n) = inf
f∈Hn

∥ f − f∗ ∥L2(D) ≤ Cf

n
,

where Hn denotes the class of two-layer ReLU networks of
width n, and the L2 norm is taken with respect to the data
distribution D.

Corollary B.4 (Mixed Activation Lowers Approximation
Error). Suppose the target function can be decomposed as

f∗(x) = g
(
s(x)

)
+

T∑
i=1

u
(
xi

)
,

where

• x = (x1, . . . , xT ) contains T tokens,

• s(x) ∈ Rd is a shared summary representation of all
tokens,

• g : Rd → R is a nonconstant “shared-dimension”
function with Barron norm Cg ,

• u : R(token-dim) → R is a “token-specific” function with
Barron norm Cu (applied to each xi).

Let:

• A token-only network allocate all width to modeling
u(·) over each token, i.e. width nu in each token’s
subnetwork. Its total width is n = nu; hence its ap-
proximation error satisfies (conservatively)

ϵB = ϵ(nu) ≥ T Cg

nu
,

since in the worst case one must dedicate at most nu/T
units per token to approximate g(s(x)).

• A mixed network allocate ns units to g(s(x)) (shared)
and nu units to

∑
i u(xi) (token-specific), for a total

width n = ns + T nu. By Lemma B.3, one obtains

inf
fs∈Hns

∥fs − g∥L2︸ ︷︷ ︸
ϵg

≤ Cg

ns
,

inf
fu

T∑
i=1

∥fu(xi)− u(xi)∥L2︸ ︷︷ ︸
ϵu

≤ T Cu

nu
.

Therefore, the mixed network’s overall approximation
error satisfies

ϵA = inf
f∈Hns+T nu

∥f − f∗∥L2

≤ Cg

ns
+

T Cu

nu
.

In particular, if we set ns = αnu for some α > 0, then

ϵA ≤ Cg

αnu
+

T Cu

nu
=

Cg

αnu
+

T Cu

nu
.

Meanwhile,

ϵB ≥ T Cg

nu
.

Hence

ϵB − ϵA ≥ T Cg

nu
−

( Cg

αnu
+

T Cu

nu

)
=

Cg

nu

(
T − 1

α − T Cu

Cg

)
.

Thus, provided

T − 1

α
> T

Cu

Cg
, i.e. α >

1

T (1− Cu/Cg)
,

there exists a strictly positive gap

δ = ϵB − ϵA = Ω
(

1
nu

)
.

Proof. By definition, a token-only network of width nu

cannot directly allocate any units to the shared term g(s(x))
unless it replicates subnetwork parameters across T tokens,
which yields an effective width for g of at most nu/T .
Hence

ϵB = ϵ(nu) ≥ T Cg

nu
.

Meanwhile, a mixed network of width ns + T nu can dedi-
cate ns units to approximate g(s(x)) and nu units per token
to approximate each u(xi). By Lemma B.3,

ϵg ≤ Cg

ns
, ϵu ≤

T∑
i=1

Cu

nu
=

T Cu

nu
.
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Thus

ϵA ≤ Cg

ns
+

T Cu

nu
.

Setting ns = αnu yields the claimed expression for δ. The
stated condition T − (1/α) > T (Cu/Cg) ensures δ > 0.

B.4. Step 3: Mixed Activation Reduces Rademacher
Complexity (Lemma 3)

Next, we argue that tying ns shared units across all T tokens
lowers the Rademacher complexity compared to keeping
each of the T tokens’ hidden units disjoint in a token-only
network.

Lemma B.5 (Rademacher Complexity Reduction via Param-
eter Tying). Let HB be the hypothesis class corresponding
to token-only networks of total width n = T nu, where each
token subnetwork has width nu. Let HA be the class of
mixed networks with total width n = ns + T nu, in which
ns shared units are tied across all T tokens and the remain-
ing T nu units remain token-specific. Suppose both classes
impose the same ℓ2 norm bound B on their parameters,
and both use activation functions with the same Lipschitz
constant L. Then, for any sample size m,

Radm
(
HA

)
≤ Radm

(
HB

)
− ∆, ∆ = Θ

(√ns√
m

)
.

Proof. Under a uniform ℓ2 norm bound B on weights and
Lipschitz activation constant L, standard covering-number
arguments (see, e.g., (Bartlett & Mendelson, 2003)) yield

Radm(HB) = O
(
B L

√
T ns

m

)
,

Radm(HA) = O
(
B L

√
ns + T nu − (T − 1)ns

m

)
= O

(
B L

√
T nu

m

)
.

Therefore,

∆ = Radm(HB) − Radm(HA)

= O
(
B L

√
T ns −

√
T nu√

m

)
= Θ

(√ns√
m

)
,

since T nu and T ns differ by T (ns − nu) and n =
ns + T nu is held fixed. Hence parameter tying reduces
the Rademacher complexity by an amount on the order of√

ns/m.

B.5. Putting It All Together: Risk Bound Comparison

Theorem B.6 (Mixed Activation Yields Strictly Lower
Risk). Assume all networks in HA (mixed) and HB (token-
only) have the same total number of parameters and impose
identical ℓ2 norm bounds B on their weights. Suppose the
target function decomposes as in Corollary B.4, and that
activation functions share the same Lipschitz constant L.
Fix any sample size m.

If the following two conditions hold:

T Cg

nu
−

(Cg

ns
+

T Cu

nu

)
︸ ︷︷ ︸

δ>0

> 0,

C
[
Radm(HB)− Radm(HA)

]︸ ︷︷ ︸
C ∆>0

> 0,

then
RA = ϵA + C Radm(HA)

< ϵB + C Radm(HB) = RB ,

i.e. the mixed sparse activation network has strictly lower
population risk than the token-only network.

Proof. By Corollary B.4, under the stated condition we
have δ = ϵB − ϵA > 0. By Lemma B.5, under the norm-
and-Lipschitz constraints,

Radm(HA) ≤ Radm(HB)−∆, ∆ = Θ
(√ns√

m

)
> 0.

Hence, for the same constant C > 0 in the risk decomposi-
tion,

RA = ϵA + C Radm(HA)

≤ (ϵB − δ) + C
(
Radm(HB)−∆

)
= (ϵB + C Radm(HB)) − (δ + C∆).

Since both δ > 0 and ∆ > 0, it follows that

RA < RB .

B.6. Discussion

• Width Expansion (Lemma B.1 & Corollary B.2). By
randomly dropping coordinates with retention prob-
ability p = k/n and rescaling by 1/p, a network
of “physical width” n behaves, in expectation with
respect to second-moment statistics, like a full net-
work of width n/p. Therefore, applying sparsity to
a fixed-width network implicitly trains a wider net-
work in that sense, which by Barron’s theorem (Lemma
B.3) lowers the approximation error from O(1/n) to
O(p/n) = O(k/n2), provided the target indeed lies in
a Barron space.
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• Approximation Error Gap (Corollary B.4). A purely
token-only network of width nu cannot efficiently
capture any shared global mapping g(s(x)) without
replicating the same parameters for each of the T to-
kens, leading to an approximation error lower bound
ϵB ≳ T Cg/nu. In contrast, a mixed network of
total width n = ns + T nu can devote ns units
to model g(s(x)) and nu units per token to model∑

i u(xi), yielding ϵA ≤ Cg/ns + T Cu/nu. When-
ever T Cg/nu > (Cg/ns + T Cu/nu), there is a
strictly positive gap δ = Ω(1/nu).

• Complexity Reduction (Lemma B.5). Tying ns

shared units across all T tokens reduces the effective
hypothesis-class size: instead of having T ns inde-
pendent parameters to model g(s(x)) per token, there
are only ns global parameters. Under a uniform ℓ2
norm bound and Lipschitz activations, this reduces the
Rademacher complexity by ∆ = Θ(

√
ns/m), which

further lowers the generalization term in the risk.

• Conclusion (Theorem B.6). Combining the strictly
smaller approximation error ϵA < ϵB with strictly
smaller complexity term Radm(HA) < Radm(HB),
the mixed activation scheme achieves strictly smaller
population risk than the token-only activation, provided
the explicit conditions on α, Cg, Cu, T, ns, nu, m
are satisfied.

B.7. Discussion

• Width Expansion (Lemma B.1 & Corollary B.2). By
randomly dropping coordinates with retention probabil-
ity p = k/n and rescaling by 1/p, a network of “physi-
cal width” n behaves in expectation like a full network
of width n/p. Therefore, applying sparsity to a fixed-
width network implicitly trains a wider network, which
by Barron’s theorem (Lemma B.3) lowers the approxi-
mation error from O(1/n) to O(p/n) = O(k/n2).

• Approximation Error Gap (Corollary B.4). A purely
token-only network of width nu cannot efficiently cap-
ture any shared global mapping g(s(x)) without repli-
cating the same parameters for each token—this yields
a larger approximation error ϵB ≥ Cg/nu. In contrast,
a mixed network of width n = ns + nu can dedi-
cate ns units to model g(s(x)) and nu units to model∑

i u(xi), giving ϵA ≤ Cg/ns + Cu/nu. Choosing
ns = Θ(nu) ensures ϵA < ϵB .

• Complexity Reduction (Lemma B.5). Tying ns

shared units across all T tokens reduces the effective
hypothesis-class size: instead of T ns independent pa-
rameters to model g(s(x)) per token, there are only
ns global parameters. This reduces the Rademacher

complexity by ∆ = Ω(m/ns), which further lowers
the generalization term in the risk.

• Conclusion (Theorem B.6). Combining the strictly
smaller approximation error with strictly smaller com-
plexity term, the mixed activation scheme achieves
strictly smaller population risk than token-only activa-
tion, even when the two networks are constrained to
have the same total number of parameters.

C. Extended Related Work
The design of the MOHD is indeed inspired by prior re-
search (Fedus et al., 2022; Riquelme et al., 2021; Zhou
et al., 2022; Liu et al., 2024; Chen et al., 2024b;c). In addi-
tion to some related work given in the article, we compared
more research work related to this article and express our
sincere thanks.

C.1. Activation Sparsity

Activation sparsity (xiao Li et al., 2022; Ma et al., 2023a;
Dong et al., 2024; Wang et al., 2024a) refers to the phe-
nomenon where a significant proportion of a model’s hidden
states are zero-valued. This property naturally arises in the
intermediate states of ReLU-based MLPs, as demonstrated
in prior work (You et al., 2022; Li et al., 2023). Some studies
have leveraged activation sparsity to improve the efficiency
of LLMs during inference. Liu et al. (2023b) utilized activa-
tion sparsity to accelerate LLM inference by omitting the
transfer of weight channels corresponding to zero-valued
entries to GPU registers. Additionally, Song et al. (2023)
and Alizadeh et al. (2024) extended this concept to CPU
offloading, significantly reducing memory transfer overhead
between CPUs and GPUs. Recent works has reintroduced
activation sparsity into LLM architectures to enhance effi-
ciency. Mirzadeh et al. (2023) replaced SiLU and GeLU
with ReLU, achieving sparsity through extended pretraining.
Zhang et al. (2024) identified Squared ReLU (So et al., 2022)
as a superior alternative for sparse activations. Song et al.
(2024a;b) proposed regularization techniques to increase
sparsity, while Wang et al. (2024b) combined pruning and
quantized activations to establish scaling laws. Lee et al.
(2024) introduced CATS, achieving training-free sparsity
in SwiGLU-based LLMs. Liu et al. (2024) extended these
concepts to training-free activation sparsity for large-scale
language models. Recent approaches, such as Test-Time
Scaling ("Slow-Thinking") (Muennighoff et al., 2025; Snell
et al., 2024; Zhang et al., 2025b;a), aim to enhance perfor-
mance by allocating more computation during the inference
search process, but it also further increases the need for com-
putational optimization during model inference. Building
on prior studies, we investigate hidden dimension sparsity,
focusing on continuous activation across tokens. Leveraging
this, we design a sparse activation architecture that improves
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parameter efficiency and enhances hidden dimension scala-
bility.

C.2. Sparsely-activated Transformer

Sparsely-activated Transformer models, such as Sparse
Mixture-of-Expert (MoE) architectures, leverage input adap-
tivity to achieve scalable and efficient computation. These
models dynamically activate only a subset of specialized
subnetworks, or "experts," for processing each input token,
significantly reducing computational overhead (Fedus et al.,
2022; Riquelme et al., 2021; Zhou et al., 2022; Jiang et al.,
2024a; Xue et al., 2024b). This mechanism enables ef-
fective handling of diverse data domains (Li et al., 2022;
Jain et al., 2024) while maintaining high performance. Re-
cent advancements in sparsely-activated Transformers have
extended their capabilities by introducing heterogeneous
experts (Wu et al., 2024; He, 2024), allowing networks to
integrate experts with varying capacities and specializations
(Dean, 2021; Zhou et al., 2022; Dai et al., 2024). Some
recent studies(Qiu et al., 2024) have observed the activa-
tion patterns in the intermediate dimensions of FFNs and
explored sparsely-activated architectures based on these
observations. However, no existing Transformer architec-
ture has implemented sparse activation specifically in the
hidden dimensions. Inspired by the work of (Qiu et al.,
2024; Dai et al., 2024; Cai et al., 2024a), we conducted an
in-depth analysis of the hidden dimensions and designed
a novel sparse activation strategy. This innovation opens
a new research avenue for sparsely-activated Transformer
architectures.

D. Connection With Other Methods
Connection with MoE: MoHD and MoE enhance model
efficiency through distinct dimensions. While MoE im-
proves memory capacity by sparsely activating experts in
the intermediate dimension (Cai et al., 2024c; Dai et al.,
2024; Xue et al., 2024a), MoHD optimizes parameter uti-
lization by leveraging hidden dimension sparsity, directly
strengthening representational capabilities through hidden
dimension expansion, as shown in Figure 9. Experiments (in
Table 2) demonstrate that MoHD achieves superior parame-
ter efficiency under identical activation budgets compared
to MoE, though it faces unique challenges like activation
collapse and information degradation, necessitating tailored
design solutions. The two mechanisms are complemen-
tary—MoHD focuses on dynamic feature extraction in the
hidden dimension, whereas MoE specializes in parallel com-
putation expansion in the intermediate dimension. Their
theoretical compatibility enables synergistic integration, of-
fering a hybrid architecture that balances representational
depth with computational resource optimization.

Input Intermediate
ActivationSparse Matrix Sparse Matrix Output

𝑥 𝑥!" 𝑦𝐖#!
$% 𝐖#!

&'()

Hidden Sparsification (MoHD)

Intermediate Sparsification (MoE)
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×
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Figure 9. Using FFN as an example, the traditional method (MoE)
exploits the sparsity of the intermediate dimension. Our method
(MOHD) selectively activates only a subset of hidden dimension
parameters across all matrices to enhance efficiency.

Table 5. Theoretical Forward-Pass FLOPS for MoHD Models
across Different Configurations (E+12 denotes ×1012)

Model Size MoHD 50% MoHD 75% Baseline 100% 2× Width 3× Width 4× Width

355M 2.70E+12 3.63E+12 4.56E+12 5.40E+12 6.24E+12 7.07E+12
495M 4.19E+12 5.59E+12 7.00E+12 8.40E+12 9.73E+12 1.11E+13
1.13B 6.93E+12 9.80E+12 1.26E+13 1.40E+13 1.55E+13 1.69E+13

Connection with Activation Compression: Some works
also prune or quantize hidden dimension activations during
inference. However, MOHD reduces training costs signif-
icantly by activating only a small portion of parameters
during training. This provides scalability that these opti-
mization methods lack. Since MOHD maintains the same
architecture for both training and inference, it avoids perfor-
mance degradation. Additionally, MOHD can be combined
with these methods for further optimization.

E. Computational Cost Analysis of MoHD
Models

We provides a detailed analysis of the training and inference
computational costs for various MoHD model scales, en-
compassing both compression and expansion settings. We
quantify these costs primarily through theoretical forward-
pass Floating Point Operations (FLOPS), comparing them
against baseline models, MoE architectures, and other preva-
lent sparsification methodologies.

As delineated in Table 5, an increase in model width,
while leading to a proportional rise in WTE-related
FLOPS, only exerts a modest relative impact on total
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computational cost. This characteristic is particularly pro-
nounced in deeper MoHD models, where the ratio of ac-
tivated parameters to total parameters becomes more effi-
cient during scaling. We assert that MoHD’s performance
enhancements are not merely a consequence of increased
WTE size or a broader parameter count. For instance, the
4x-width model exhibits significantly higher FLOPS than its
3x-width counterpart, yet its performance improvement is
marginal. Conversely, the 1.13B model reaps greater perfor-
mance benefits from MoHD than the 495M model, despite
its FLOPS-to-baseline ratio being lower. These findings
substantiate the claim that MoHD achieves its efficiency
predominantly through structural sparsity and expert spe-
cialization, rather than through brute-force scaling. Further-
more, the computational overhead introduced by MoHD’s
routing and group fusion layers is minimal.

In comparing MoHD with MoE architectures, it is cru-
cial to recognize that these methodologies enhance model
efficiency along distinct dimensions. MoE typically im-
proves memory capacity by sparsely activating experts in
the intermediate dimension, whereas MoHD optimizes pa-
rameter utilization by leveraging sparsity in the hidden di-
mension, thereby directly augmenting representational capa-
bilities through hidden dimension expansion. Their routing
granularities also differ: MoHD routes at the hidden dimen-
sion level, enabling the tailoring of token-specific subspace
activations, while MoE routes at the expert (subnetwork)
level, primarily within the FFN. Moreover, MoHD’s ap-
plicability spans both Attention and FFN components, in
contrast to MoE’s conventional confinement to FFN pro-
jections. Empirical evidence indicates that MoHD attains
superior parameter efficiency under identical activation bud-
gets when compared to MoE. Despite inherent challenges
in MoHD’s routing across hidden dimensions, which ne-
cessitate novel optimization and implementation strategies,
MoHD demonstrates notable improvements over MoE when
trained from scratch. We suggest that MoHD and MoE are
complementary, with MoHD focusing on dynamic feature
extraction in the hidden dimension and MoE on parallel
computation expansion in the intermediate dimension, im-
plying potential for synergistic integration into more robust
and efficient language models.

When juxtaposed with other sparsification techniques
such as pruning and quantization, MoHD presents dis-
tinct advantages in terms of training costs and architec-
tural consistency. MoHD significantly reduces training
expenses by intrinsically learning sparse activations during
the training phase, thereby eliminating the need for itera-
tive pruning cycles or post-training fine-tuning procedures
characteristic of traditional methods. A key benefit is that
MoHD maintains a consistent architecture across both train-
ing and inference stages, which inherently mitigates the
performance degradation often observed in post-hoc spar-
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Figure 10. Visualization of activation magnitude in LLaMA2-7B
layer 30. In the Transformer, multiple layers show a consistent
pattern of activation flow.

sification techniques due to training-inference mismatches.
While these optimization methods can be combined with
MoHD for further improvements, MoHD, by focusing on
activation sparsity in the hidden dimension, achieves better
generalization and stability at inference costs comparable to
those of activation sparsification approaches.

F. Extended Observations
In this section, we present several key findings that serve
as the foundation for the design of the MOHD approach.
In Section F.1, we observe the long-tail effect of hidden
dimension activation values and define activation sparsity
accordingly. We analyze the sparsity distribution and dif-
ferences between attention and FFN across different layers.
In Section F.2, we analyze activation flow in Transformers,
highlighting compression patterns, stabilization by resid-
uals and normalization, and functional layer differences.
In Section F.3, we further identify the existence of shared
continuous high activation behaviors and unique discrete
high activation behaviors across tokens. Finally, we analyze
these phenomena and propose motivations for designing
feasible hidden dimension sparsification methods.

F.1. Sparsity in Tokens’ Hidden Dimension

For a more comprehensive understanding, we observe the ac-
tivation magnitudes of 4096 hidden dimensions in LLaMA2-
7B. As shown in the left panel of Figure 2, we visualize the
relationship between dimension magnitudes and reordered
dimension indices based on magnitude size.

Similar to previous observations (Liu et al., 2024), the ac-
tivation of hidden dimensions exhibits a long-tail sparsity
phenomenon. For instance, in the input Attention activations
of LLaMA2-7B’s 16th layer, the cumulative magnitude of
the top 1000 dimensions accounts for 71.96% of the total
magnitude. In contrast, most dimensions have low activation
values, indicating that the model does not utilize informa-
tion from the majority of hidden dimensions, leading to
substantial sparsity in activations.

We also visualized the sparsity of activations in the input
and output of Attention and FFN components. Our obser-
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vations reveal significant differences in the magnitude of
hidden activations across positions. Attention exhibits
higher activation magnitudes, while FFN activations are
comparatively lower. At the input stage, activation mag-
nitudes are relatively high (median > 1), whereas at the
output stage, activation magnitudes drop significantly (me-
dian < 0.5). The sparsity of hidden dimensions in the input
components is consistent across different modules, likely
due to the influence of residual connections. However, at
the output stage, the sparsity patterns of Attention and
FFN differ markedly. As shown in the middle panel of
Figure 2, Attention demonstrates significant fluctuations in
sparsity, with alternating high and low sparsity distributions.
In contrast, FFN sparsity remains relatively stable. These
differences highlight the distinct functional roles and in-
formation processing characteristics of Attention and FFN,
prompting us to consider differentiated activation designs
for these components.

F.2. Activation Flow in Transformer

We also investigate the variations in activation magnitudes
within a single Transformer block, as illustrated in Figure 10.
Consistent activation flow patterns were observed across
different Transformer blocks. The Attention module com-
presses input activations normalized to 100% through pro-
jections (WQ, WK , WV ) and weighted averaging, reducing
activation magnitudes to 6.7% at WO. This highlights its
ability to suppress irrelevant information through weighted
aggregation, while also showcasing significant functional
differences between layers, as the output activation mag-
nitudes vary to accommodate layer-specific roles. In con-
trast,the FFN module demonstrates stable activation pat-
terns, with compression arising from high-dimensional pro-
jections, nonlinearity that sparsifies activations, and dimen-
sionality reduction through linear weighted summation, col-
lectively reducing activation magnitudes.

F.3. Continuous High Activation

We further investigate the temporal correlation of activation
sparsity by observing high activation values across different
tokens and analyzing the indices that are repeatedly acti-
vated by multiple tokens. A clear correlation in activations
is observed over consecutive tokens. Figure 2 Right shows
the number of commonly highly activated dimensions across
2 to 9 consecutive tokens, with the x-axis representing the
threshold for defining high activation. When using the top
20% of activation values as the threshold, 2672 dimensions
are commonly activated across 2 consecutive tokens, and
673 dimensions remain commonly activated across 9 con-
secutive tokens.

Figure 3 further illustrates the correlated activation patterns
over 5 tokens, where the 4096 hidden dimensions are clus-

tered and reordered based on their activation patterns. Ap-
proximately 400 dimensions are commonly highly activated
across all 5 tokens, while about 200 dimensions are uniquely
highly activated within each token. This indicates that
each token’s activations contain shared sub-dimensions
that are commonly activated and token-specific sub-
dimensions that are independently activated. Shared high
activations model the similarity information shared across
tokens in hidden dimensions, while specialized unique acti-
vations capture differences. These observations inspired the
shared-specialized activation mechanism in the subsequent
design of MOHD.

G. More Implementation Details
G.1. MOHD Block Implementation

In Sections 2.1 and 2.2, we observed activation differ-
ences across components in various layers, prompting us
to design separate routing mechanisms for the Attention
and FFN components. Specifically, in one Transformer
Block, Gateattn(x, δ,N, φ) and Gateffn(x, δ,N, φ) produc-
ing scores that determine the activation of dimension-
specific sub-dimensions for the output:

a, xs = Gateattn(x, δ,N, φ),m, xs = Gateffn(x, δ,N, φ).

In practice, different components may employ distinct spar-
sification settings. However, for simplicity, we use the same
notation throughout this section to represent these settings
in a unified manner. Based on the scores from the Router,
MOHD applies synchronized sparsification to the hidden
dimensions of all up-projection and down-projection ma-
trices, as well as the input x. From Equation 4, we trans-
form WQ,WK,WV,WO,Wup,Wgate,Wdown into MOHD
’s sub-dimensions

∥∥N
i=1

Qi,
∥∥N
i=1

Ki,
∥∥N
i=1

Vi,
∥∥N
i=1

Oi and∥∥N
i=1

UPi,
∥∥N
i=1

GATEji,
∥∥N
i=1

DOWNi. We substitute these
into the sparsified Attention and FFN defined in Equation 13
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Table 6. Parameter configurations of MoE under compression and
expansion experiments. We use the same settings for only FFN.

MoH 50% 75% ×2 ×3 ×4

n shared experts 1 1 1 1 1
n routed experts 7 7 7 11 16
num experts per tok 3 5 3 3 3
expert interdemiate ratio 12.5% 12.5% 25% 25% 25%

255075100
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Figure 11. The model’s Eval PPL under different sparsity settings
applied to Attention and FFN components at varying ratios.

We construct a MOHD BLOCK based on MOHD spec-
ified MHA and FFN components. Residual connections
are designed to further mitigate information loss during
the specified forward pass. Following the configuration of
LLAMA, we apply LayerNorm layers before the input to
both MHA and FFN; however, for simplicity, these are omit-
ted in the formal equations. This process can be formalized
as follows:

BLOCKMOHD(x) = FFNMOHD(MHAMOHD(x)+x)+x. (17)

To train the model effectively, we combine cross-entropy
loss LCE for language model pre-training and the load bal-
ance loss LB, resulting in the final training objective:

L = LCE + LB. (18)

H. Extended Experiment Details
H.1. Decoupled MOHD Components Setting

To investigate MOHD sparsification, we built three models
based on LLaMA2-355M: one with sparsification applied
to Attention, one to the FFN, and one to both, as shown in
Figure 11. All models were trained on 10B tokens. # Acti-
vate refers to activated parameters with the total parameter
remaining constan. Table 4 presents the effects of decoupled
MOHD at 100%, 50%, and 25% sparsity.

MOHD Architecture Advantages. Even with 100% spar-
sity (where activated parameters match the original model),
MOHD outperformed the baseline. This is likely due to
its optimized activation dimension allocation and grouped

fusion, which suppresses noise from redundant activations
and enhances performance.

FFN Exhibits Greater Redundancy. The FFN layer shows
more redundancy in hidden dimensions, causing minimal
performance loss (and sometimes improvement) when spar-
sified. In contrast, sparsifying Attention results in a more
substantial performance drop. For the 50% sparsity setting,
the FFN uses only 195M activated parameters compared to
239M for Attention. This suggests the FFN is better suited
for MOHD transformation. The FFN achieved a -0.30 PPL
reduction at 50% sparsity, likely due to a decrease in redun-
dant activations that reduces overfitting, whereas Attention
sparsification led to a +1.04 PPL increase.

Combining MOHD Attention and FFN Leads to En-
hanced Performance. Joint sparsification of Attention and
FFN yields the best parameter efficiency. The 50%ATTN-
50%FFN model achieved a PPL of 12.05 with only
145M activated parameters—lower than both 50%FFN and
50%ATTN configurations. This joint sparsification outper-
forms the 25% FFN configuration by 0.19 PPL, because it
enhances the consistency of activated hidden dimensions,
preserving better learning capacity.

I. Discussion
I.1. Connection with Mixture of Experts Methods

Mixture of Hidden-Dimensions (MOHD) and Mixture of
Experts (MoE) are both sparse activation architectures de-
signed to enhance Transformer efficiency, but they operate
on fundamentally different dimensions of the model archi-
tecture. MOHD focuses on improving the efficiency of
scaling the hidden dimension, which represents the embed-
ding size of tokens and is related to the model’s width or
representational capacity per token. In contrast, MoE targets
the efficiency of scaling the intermediate dimension within
the Feed-Forward Networks (FFNs), effectively increasing
the model’s depth or memory capacity by activating a subset
of specialized "experts" or subnetworks.

MOHD achieves efficiency by observing and exploiting the
sparsity within the hidden dimension activations. It posits
that not all hidden dimensions are equally important for
every token, identifying both shared sub-dimensions ac-
tive across multiple tokens and specialized sub-dimensions
unique to individual tokens. By introducing a routing mech-
anism that dynamically selects and activates only a subset of
these hidden sub-dimensions, MOHD reduces the number of
activated parameters across all relevant matrices (including
those in Attention and FFN layers). This approach allows
for the expansion of the total hidden dimension, thereby
enhancing the representational power of each token, without
a proportional increase in computational cost.
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Conversely, MoE architectures enhance efficiency by intro-
ducing multiple expert networks in the intermediate dimen-
sion of FFN layers. For each token, a gating mechanism
selects and activates only a sparse subset of these experts.
This effectively expands the total parameter count and mem-
ory capacity available to the model by adding more paral-
lel subnetworks, but the activation remains sparse across
these experts, reducing the computational cost compared to
activating all experts. MoE’s primary mechanism is token-
conditional routing to different intermediate pathways, typi-
cally confined to the FFN module, rather than sparsifying
the core hidden dimension across all components.

Thus, the core distinction lies in their dimensionality of fo-
cus: MOHD addresses the efficiency of the model’s width
by sparsely activating hidden dimensions to improve token
representation, while MoE addresses the efficiency of the
model’s depth or intermediate capacity by sparsely activat-
ing experts to enhance computational and memory scalabil-
ity. Although they operate on different dimensions, these
two approaches are complementary and can be considered
for synergistic integration to potentially leverage sparsity in
both hidden and intermediate spaces.

I.2. Design Principles of Sub-Dimension Routing

The design of the Mixture of Hidden Dimensions (MOHD)
architecture, particularly its sub-dimension routing mech-
anism, is fundamentally driven by empirical observations
regarding the activation patterns within Transformer hidden
states. Analysis of trained Transformers reveals signifi-
cant sparsity in the hidden dimensions, where a substantial
portion of dimensions exhibit low activation values and con-
tribute minimally to the overall activation magnitude. This
long-tail distribution of activation magnitudes indicates that
the model does not fully leverage all available dimensions
uniformly across all tokens. Consequently, the traditional
Transformer approach of treating all hidden dimensions
equally results in considerable computational and memory
overhead, especially as models scale. This observed sparsity
motivates the necessity of a dynamic mechanism that can
selectively activate only a relevant subset of hidden dimen-
sions for each input token, thereby improving efficiency by
concentrating computational resources on the most infor-
mative subspaces rather than processing the entire, often re-
dundant, dimensionality. The dynamic routing mechanism
in MOHD serves this purpose by allowing the model to
adaptively determine which dimensions are activated based
on the specific characteristics of the input, avoiding the com-
putational burden associated with full hidden dimension
activation.

Further investigation into the highly activated dimensions
across multiple tokens reveals a more nuanced structure
than simple universal sparsity. We observe that some dimen-

sions are consistently highly activated across a sequence
of tokens, termed shared sub-dimensions, while others
are uniquely activated for individual tokens, referred to
as specialized sub-dimensions. This distinction suggests
a functional divergence within the hidden space: shared
dimensions likely capture common features and representa-
tional similarities that are relevant across different tokens,
facilitating the processing of general linguistic patterns. In
contrast, specialized dimensions appear to be crucial for
encoding fine-grained, token-specific semantic differences
and higher-level contextual information. This empirical
finding directly inspires the structured routing approach in
MOHD, which decouples the handling of these two types
of dimensions. By partitioning the hidden space into shared
and specialized subspaces and employing a routing mech-
anism that guarantees consistent activation for the shared
portion while dynamically selecting from the specialized
portion based on token input, MOHD aims to effectively
model both the commonalities and unique characteristics
of tokens. This mixed activation strategy, balancing univer-
sally relevant features with token-specific details, is central
to MoHD’s ability to enhance representational capacity and
parameter efficiency simultaneously.

I.3. Activation Flow Maintenance and Load Balancing

The design of Activation Flow Maintenance in MOHD is
motivated by empirical observations of consistent activation
flow patterns within Transformer blocks. Specifically, it was
noted that Attention modules compress input activations,
while FFNs maintain stable activation patterns. However,
applying sparse activation to hidden dimensions, as done in
MOHD, can lead to information degradation. This degrada-
tion arises from the router’s softmax-normalized weights,
which may cause some dimensions to receive disproportion-
ately high weights while others are neglected. Furthermore,
the parallel concatenation of activated sub-dimension out-
puts can suppress information in low-weighted dimensions
without compensation. To counteract these issues and main-
tain robust activation flow despite sparse activation, MOHD
employs several strategies.

One key strategy is Sub-dimension Scaling. This mecha-
nism addresses the suppression of sub-dimension activa-
tions caused by softmax weight normalization. A scaling
factor, α, is introduced to ensure that the sum of activation
weights across all dimensions remains consistent with the
input magnitude, allowing activated dimensions to retain
their proportional influence and preserving stable activation
magnitudes across dimensions.

Additionally, the Grouped Fusion Layer is introduced to
mitigate information loss from the sparse output. This layer
projects the sparsified hidden-dimension output, ys, back
to the original dimension d. To reduce computational over-
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head, a Monarch matrix is used for efficient grouped fusion
mapping. Given a receptive field r, this mapping matrix M
is structured to perform grouped filling and mapping after
sparse activation. This process reconstructs information
across the original hidden dimensions while maintaining
computational efficiency, preserving information integrity,
and improving dimension utilization without significantly
increasing parameters.

Beyond maintaining the activation flow within the com-
ponents, it is crucial to ensure that the learned routing
strategy effectively utilizes all available specialized sub-
dimensions. Research on conditional computation architec-
tures has shown that automatically learned routing can suffer
from load imbalance, where only a few sub-dimensions are
frequently selected, leaving others underutilized. To ad-
dress this and encourage a more even distribution of tokens
among different sub-dimensions, the Sub-Dimension Load
Balance Loss is incorporated. This loss penalizes imbal-
ances in sub-dimension assignments. By encouraging the
gating mechanism to distribute assignments more uniformly
across sub-dimensions, the balance loss helps prevent router
collapse, where the router consistently selects only a small
subset of sub-dimensions, and ultimately leads to improved
utilization and overall model efficiency.

I.4. Limitations and Future Research Directions

Despite its demonstrated effectiveness in improving param-
eter efficiency and task performance, the Mixture of Hid-
den Dimensions (MOHD) architecture has several existing
limitations that present opportunities for future research.
A primary challenge lies in the sensitivity of MOHD to
hyperparameters, specifically the sparsity ratio δ, the pro-
portion of shared sub-dimensions φ, and the total number of
sub-dimensions N . Achieving the optimal balance between
shared and specialized sub-dimensions is crucial for maxi-
mizing generalization and specialization, requiring careful
tuning. Furthermore, optimizing the routing mechanism
poses a significant challenge. Unlike the routing in Mixture
of Experts (MoE) models which activate experts in the inter-
mediate dimension, MOHD activates sub-dimensions within
a single matrix, which is inherently more complex. While
effective, the current routing loss stability decreases as the
number of sub-dimensions increases, potentially limiting the
scalability of the routing design itself. Another limitation
arises from the growth of the Word Token Embedding
(WTE) layer. As MOHD expands the effective hidden
dimension (model width), the WTE layer scales proportion-
ally, contributing a non-negligible portion of total param-
eters and potentially offsetting some efficiency gains, par-
ticularly at very large scales. Finally, despite the inclusion
of activation scaling and group fusion mechanisms, there is
a risk of information degradation under extreme spar-
sity. Large-scale downsampling and the softmax weighting

in the routing can lead to skewed distributions, potentially
suppressing useful but low-weighted sub-dimensions and
reducing representational fidelity. Addressing these lim-
itations is vital for the broader applicability and further
enhancement of MOHD.

Exploring the application of MOHD to larger-scale Large
Language Models (LLMs) presents significant potential
despite associated challenges. Larger models typically ex-
hibit higher parameter redundancy, making MOHD’s sparse
activation mechanism potentially more effective in reducing
inefficiencies without sacrificing expressive power. Experi-
ments on smaller scales indicate that MOHD’s performance
improvement over baselines increases with total parame-
ter count, suggesting that the benefits may scale positively
with model size. By combining shared and specialized sub-
dimensions, MOHD enhances the model’s capacity to cap-
ture both general and fine-grained, token-specific patterns.
Scaling up could increase the size of each sub-dimension,
improving its ability to model complex language phenomena
and potentially enhancing generalization across tasks. How-
ever, pretraining larger LLMs is computationally expensive,
hindering immediate full-scale experiments. Future work
should aim to validate these potential benefits and navigate
the associated training complexities.

The core principles of MOHD may also extend beyond
Natural Language Processing (NLP) tasks, particularly to
other domains that utilize Transformer architectures, such
as Vision-Language Models (VLMs). Vision Transformers
(ViTs), for instance, process image patches as tokens, simi-
lar to text tokens. These visual patches exhibit both global
patterns shared across the image and local unique features,
analogous to linguistic semantics. If the hidden dimensions
in ViTs also demonstrate shared and token-specific acti-
vation patterns, the principle of selectively activating sub-
dimensions could enhance efficiency and expressiveness
in vision tasks. However, such application would require
architectural adaptation as visual representations differ
significantly from language. Tuning routing and partitioning
strategies to align with visual characteristics is necessary.
Furthermore, in multimodal settings like VLMs, incorporat-
ing sparsity-aware mechanisms is crucial to avoid harming
the alignment across modalities. Direct transfer is not triv-
ial, but the generalizability of MOHD’s principles warrants
exploration in vision and multimodal settings.

Future research directions for MOHD should focus on en-
hancing the robustness and applicability of the architec-
ture. Improving the stability and scalability of the rout-
ing mechanism is a critical area, particularly as the num-
ber of sub-dimensions increases. Investigating alternative
routing strategies or loss functions could help address load
imbalance issues and prevent router collapse, ensuring all
sub-dimensions are actively utilized. Further analysis and
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Table 7. Detailed configuration, activation parameters, and total pa-
rameters of the models included in our study. L.2-355M represents
the LaMMA-2 architecture model with 355M total parameters.

Model Setting L.2-355M L.2-495M L.2-1.13B

hidden size 1024 1536 2048
intermediate size 2560 2560 4096
attention heads 32 32 32
num kv heads 32 16 32
layers 24 24 24

# Activate 289M 396M 1B
# Params 355M 495M 1.13B

Table 8. Parameter configurations of MoHD under compression
and expansion experiments. We use the same settings for both
Attention and FFN. For detailed reasoning behind these configura-
tions, please refer to Analysis.

MoH 50% 75% ×2 ×3 ×4

attn top k 4 4 4 4 4
attn sub-dim num 8 12 8 12 16
ffn top k 4 4 4 4 4
ffn sub-dim num 8 12 8 12 16
shared sub-dim num 3 3 3 3 3
group fusion dim 8 12 8 12 16

optimization of the WTE layer’s growth relative to total
computational cost are needed to maximize efficiency gains
at very large scales. Exploring the potential for synergistic
integration with other sparsity methods, such as Mix-
ture of Experts (MoE), could unlock sparsity benefits across
multiple dimensions, combining MOHD’s focus on hidden
dimension dynamism with MoE’s intermediate dimension
expansion. Additionally, conducting more extensive abla-
tion studies on the interaction between shared and special-
ized sub-dimensions and analyzing the impact of different
routing parameters (e.g., K-value selection) would provide
deeper insights into MOHD’s mechanisms and guide fur-
ther design improvements. Finally, empirical validation on
larger-scale models and diverse non-NLP tasks is essen-
tial to demonstrate the broader potential and identify specific
challenges in different domains.
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