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ABSTRACT

Two popular alternatives for graph isomorphism testing that offer a good trade-off
between expressive power and computational efficiency are combinatorial (i.e.,
obtained via the Weisfeiler-Leman (WL) test) and spectral invariants. While
the exact power of the latter is still an open question, the former is regularly
criticized for its limited power, when a standard configuration of uniform pre-
coloring is used. This drawback hinders the applicability of Message Passing
Graph Neural Networks (MPGNNs), whose expressive power is upper bounded
by the WL test. Relaxing the assumption of uniform pre-coloring, we show that
one can increase the expressive power of the WL test ad infinitum. Following
that, we propose an efficient pre-coloring based on spectral features that prov-
ably increases the expressive power of the vanilla WL test. The code to re-
produce our experiments is available at https://github.com/TPFI22/
Spectral-and-Combinatorial.

1 INTRODUCTION

Despite their success, Message Passing Graph Neural Networks (MPGNNs) are bounded in their
expressive power (i.e., two different graphs may be encoded to the same descriptor by the same
MPGNN). In fact, it is known that any two graphs that pass the WL test (described in detail in
section 2) will be encoded by the same descriptor Xu et al. [2018]. For example, MPGNNs can-
not distinguish between the Decalin and Bicyclopentyl molecules graphs (Figure 2) although their
graphs are non-isomorphic Sato [2020]. Attempts have been made to improve the expressive power
of MPGNNs by suggesting new and arguably complicated GNN architectures that are not bounded
by the Weisfeiler-Leman (WL) test, e.g., by using high order networks, generalizing graphs to sim-
plicial complexes, etc.

We propose a new and general approach to improve the expressivity of MPGNNs. This approach is
based on the traditional and relatively simple MPGNN architectures and does not require them to be
changed at all. To that end, we suggest pre-coloring the nodes of a graph with an informative equiv-
ariant coloring, i.e., equivariant node features that are precomputed before the MPGNNs’ learning
process. We present a rigorous proof that this method can be used to improve the expressiveness
of the WL test an infinite number of times. In addition, we present an instance of an equivariant
coloring based on the spectral decomposition of the graph Laplacian that is also efficient to com-
pute, explainable, and generates constant size features with respect to the graph size. Figure 1 shows
an example of the coloring of the Decalin and Bicyclopentyl molecules graphs with our suggested
spectral pre-coloring, and the relatively simple degree pre-coloring. The example shows that the
pair of graphs can be distinguished easily when using the spectral coloring compared to the degree
coloring.

Contributions.

• We prove that the expressive power of WL can be improved ad infinitum by a sequence of
equivariant pre-colorings and that each of the latter can be computed in polynomial time.
Thus, the upper bound of the existing MPGNNs can be improved accordingly.

• We suggest expressive and informative pre-coloring based on the spectral decomposition
of the graph Laplacian, and explicitly prove that it improves the expressivity of the vanilla
WL.
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2 PRELIMINARIES

Graph coloring. Graph coloring is a mapping from a vertex and its graph to a label (color), from
a known set of labels. We say that coloring C refines coloring D if for any two graphs G1 and G2,
and for any two vertices v1 ∈ V1, v2 ∈ V2 s.t. C(v1) = C(v2), D(v1) = D(v2). Ideally, we would
like to find the following coloring: for each v1 ∈ V1,v2 ∈ V2, C(v1) = C(v2) ⇐⇒ there exists
isomorphism σ : G1 → G2 s.t., σ(v1) = v2.

K-WL test. The WL test of isomorphism is an algorithm for testing a necessary but insuffi-
cient condition for graph isomorphism. Two graphs that do not pass the test are necessarily non-
isomorphic. First, the algorithm assigns to each node the same color using the constant coloring
C0

WL(v) = CONST. Then the algorithm continues with iterations. At each iteration i, each node
receives its neighbors’ colors and together with its own color, it generates a new color for the next
iteration, i.e., Ci

WL(v) = (Ci−1
WL(v), {{C

i−1
WL(x)|x ∈ N (v)}}), where ‘{{}}‘ denotes a multi-set,

and N (v) denotes the set of neighbors of v. This process continues until convergence whereupon the
colors are collected into a histogram. If the two graphs have different histograms, they failed the test
and are called distinguishable. If after the convergence, the two histograms are the same, the graphs
did not fail. Having thus passed the test, they are called indistinguishable. It was proved in Bevilac-
qua et al. [2021] that Ci+1

WL always refines Ci
WL. The WL test can be extended to K-tuple coloring

instead of vertex (1-tuple) coloring. This extension is called the K-WL test. It was proved in Cai et al.
[1992] that any pair of graphs that are indistinguishable by k+1-WL are also indistinguishable by
K-WL. Moreover, for any K≥2, there exists a pair of graphs s.t. they are distinguishable by k+1-WL
but indistinguishable by k-WL, i.e., k+1-WL is strictly more expressive than k-WL, for K≥2. The
diagonal k-WL coloring on the graph vertices is defined to be ∆(k −WL)(v) = Ck−WL(v, ..., v)
where Ck−WL is the coloring after k-WL converges. It was proven in Rattan & Seppelt [2021] that
∆(k+1-WL) refines ∆(k-WL).

Heat kernel. The heat kernel matrix describes the process of heat diffusion on the graph through
time. The heat kernel at time t for graph G = (V,E) is a |V | × |V | matrix where the element at the
index (u, v) is defined to be Ht(u, v) = Σ

|V |
i=1e

−λitϕi(u)ϕi(v) where λi is the i-th eigenvalue of the
graph Laplacian and ϕi is its corresponding eigenvector. Ht(u, v) is the amount of heat transferred
from node u to node v until time t. When the observed point in time t tends to zero, the kernel
is affected mostly by the local structures of the graphs. When the observed time point is relatively
large, the global structure of the graphs becomes the dominant structure.

3 EXPRESSIVE POWER OF 1-WL WITH PRE-COLORINGS

In section 2 we noted that the expressive power of 1-WL is limited. In particular, it is strictly limited
by the expressive power of 3-WL. In this section we present a method to improve the expressive
power of 1-WL using pre-coloring, i.e., coloring the graph before the iteration phase of 1-WL. If we
pre-color 1-WL with coloring C, we mark the new algorithm as 1-CWL.
Theorem 1. Let R1, R2 be two colorings s.t. R2 refines R1 and R2 is permutation equivariant.
Accordingly, 1-R2WL is at least as expressive as 1-R1WL.

For R1 and R2 that satisfy Theorem 1, it is enough to find a single pair of graphs that are indis-
tinguishable by 1-R1WL but distinguishable by 1-R2WL in order to prove strictness in expressive
power.
Theorem 2. Let G1,G2 be any two graphs. Their ∆(k-WL) histograms are equal ⇐⇒ their Ck−WL

histograms are equal.

Theorem 3. For any K ≥ 2, 1-∆(k+1-WL)WL is strictly more expressive than 1 -∆(k-WL)WL.

The meaning of this theorem is that the expressive power of MPGNNs, which is provingly bounded
by the expressive power of 1-WL, can be improved ad infinitium in the WL hierarchy using the right
permutation equivariant pre-coloring as a pre-process before the MPGNN learning phase. According
to Theorem 3, the coloring can be obtained via the computation of ∆(k-WL).

In section 4 we give another example of such pre-coloring based on spectral features.
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Not every permutation equivariant coloring C makes 1-CWL strictly more expressive than 1-WL.

Example 3.1. If D(u) = |N (u)|, i.e., the degree coloring, then 1-DWL is equal to 1-WL in terms
of expressive power.

4 SPECTRAL PRE-COLORING

Spectral WL. We propose an expressive pre-coloring based on the graph spectrum, which can be
used to color the nodes instead of the constant coloring of the 1-WL algorithm. We will call this
variant the spectral WL algorithm. To calculate the pre-coloring, we first compute m heat kernel
matrices for evenly spaced points in time on the logarithmic scale. Then for each node u, we give
the following color: (Ht1(u, u), ...,Htm(u, u)). Finally, we choose a constant amount of quantiles
r from the row of u (ignoring the element on the diagonal) and append them in ascending order,
e.g., ((qt11u ...q

t1
ru), ...(q

tm
1u

...qtmru )), to the existing color of the node, to create the final coloring. In the
example of the spectral coloring in Figure 1, nodes that have the same color have the same spectral
features with m = 1, t = 1 and no quantiles. This simple setting is sufficient in order to compute
the ideal equivariant coloring of the graphs.

Theorem 4. Spectral WL is strictly more expressive than 1-WL.

Spectral features for GNNs. This pre-coloring can be used to create initial node features for
MPGNNs as a pre-process before the learning phase. Instead of applying the coloring we can
append it to the existing node features of any graph. As hinted by Theorem 4, in section 5 we will
see that it is enough to add a relatively small feature vector, e.g., with 10 entries, to achieve great
expressivity even for real world graphs with hundreds and thousands of nodes. One can, however,
refine the pre-processing by adding more quantiles and time samples. The features that we added to
each node have the desirable property of being explainable, and they have the following meaning:
For node u, the feature at entry i ≤ m is the amount of heat left at u at time ti from the beginning
of a diffusion process where all the nodes had 0 heat and u had exactly 1. The features at entries
i > m represent the distribution of the heat diffusion through time on the other nodes.

5 EXPERIMENTAL STUDY ON SYNTHETIC BENCHMARKS

To demonstrate the improvement in expressivity that the spectral features add, we built two bench-
marks, each of which is based on a single pair of graphs. The first pair of graphs is the Decalin and
Bicyclopentyl molecule graphs that have the same 1-WL histogram Sato [2020], but their spectrum
is different. The second pair of graphs are distinguishable by 1-WL but cospectral with respect to
the Laplacian. Figures of the graphs can be found in the appendix. For each benchmark, we cre-
ated 1000 examples by adding or removing a single edge at random from the original graphs and
reordering their node indices randomly. For each benchmark, we split all the instances into training
and test sets with ratio at a 9:1. The goal of a classifier for the benchmark is: Given a graph from the
test set, identify the original graph from which it was perturbed. We trained GIN Xu et al. [2018],
GCN Kipf & Welling [2016], GraphSAGE Hamilton et al. [2017] and GAT Veličković et al. [2017]
and their appropriate Spectral Pre-processed (SP) classifiers with the same settings of five message
passing layers, a hidden dimension of 64, a learning rate of 0.01 and spectral features from 10 points
in time using only the maximum quantile, for 100 epochs. We repeated the experiment 100 times
and report in subsection C.1 the average accuracy and standard deviation of each classifier.

As expected, for the 1-WL indistinguishable pair of graphs, the MGNNs struggle to identify the
source of each graph, because 1-WL cannot differentiate between the sources. The spectral features
help them to overcome this issue easily. GIN, which has the most expressive aggregation operation
among all the MPGNNs, achieves great accuracy on the cospectral graphs; the other MPGNNs,
however, do not. These results make sense, since cospectral graphs have common structural proper-
ties. In Figure 4 and Figure 5 we can see the spectral coloring of the cospectral graphs introduced
by the spectral pre-prossessing – nodes with the same color have the same spectral features. In Fig-
ure 4 the pre-processing does not use any quantiles and in Figure 5 the pre-processing uses only the
maximum quantile. We can see that not only do both colorings strictly refine the constant coloring,
but that the coloring that uses the maximum quantile strictly refines the one that does not.
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6 EVALUATION ON REAL BENCHMARKS

We evaluate our pre-processing method on two graph learning tasks: graph classification and node
classification. For each task we used four types of GNNs (GIN, GCN, GraphSAGE and GAT) from
the Pytorch Geometric framework Fey & Lenssen [2019] to compare the standard use of the network
to our SP method.

6.1 GRAPH CLASSIFICATION

We used nine graph classification benchmarks for this task: five social network datasets (COLLAB,
IMDB-BINARY, IMDB-MULTI, REDDITBINARY and REDDIT-MULTI5K), three molecule
datasets (MUTAG, PTC, NCI1) and a dataset from the field of bioinformatics (PROTEINS) Ya-
nardag & Vishwanathan [2015]. The task of the benchmarks here is to achieve the highest average
validation accuracy with 10-fold cross-validation. We used GNNs with five layers where in each
layer’s MLP a single hidden layer was used. We used concatenation to create the final graph de-
scriptor and a linear layer to create the final output. We fine-tuned the dropout of the linear layer to
be one of {0,0.5}. For the bioinformatics and molecule datasets, we fine-tuned the hidden dimen-
sion of all the MLPs to be one of {16,32}, while for the social network benchmarks we consistently
used a hidden dimension of size 64. The number of epochs that achieved the best cross-validation
accuracy, averaged over the 10 folds, was selected. We examined 700 epochs for each configuration.
For the SP-MPGNNs we chose the best out of the following two: 1. Sampling 10 points in time
and not using quantiles at all; 2. Sampling 5 points in time and using the maximum quantile. We
reported in subsection C.2 the average validation accuracy and standard deviation over 10 folds.

In general, the SP-MPGNNs performed better than the MPGNNs, especially on the social network
benchmarks that contains no initial features for the nodes.

6.2 NODE CLASSIFICATION

We used four node classification benchmarks for this task: three citation network datasets (Cora,
CiteSeer and PubMed) Yang et al. [2016] and a biochemistry dataset (PPI) Zitnik & Leskovec
[2017]. The task of the benchmarks here is to achieve the highest average test accuracy upon 100
random initializations of the GNNs. For the citation networks, only the number of message passing
layers, the hidden dimension of the MLPs and the number of training epochs, were fine-tuned, using
the validation set. The number of the layers was one of {2, 3, 4}, the hidden dimension was one
of {128, 256, 384, 512} and each model was trained for at most 200 epochs. Specifically for PPI,
there were two layers, the hidden dimension was 512 and the models were trained for 800 epochs.
The spectral pre-process was calibrated exactly as in the graph classification evaluation. We re-
peated each training-testing session 100 times and report in subsection C.3 the average accuracy and
standard deviation of the test set.

Even though each node in the benchmark contains a feature vector with hundreds of entries, ap-
pending to it a relatively small number of spectral features usually improved the accuracy of the
MPGNNs. This can be explained by the fact that the spectral features also contain global informa-
tion about the graph and the node’s position according to it. This information cannot be learned
using a small amount of message passing iterations.

7 DISCUSSION

In this work we demonstrated how one can strictly improve the expressive power of the WL test an
infinite number of times in the WL hierarchy using the diagonal coloring of the k-WL algorithm, and
simultaneously improve the upper bound for MPGNNs, without any change in their architecture. We
also proposed spectral pre-processing for MPGNNs that is based on the diagonal and quantiles of the
heat kernel matrix. From the results of the graph classification and node classification benchmarks,
we conclude that our method of pre-processing improves the performance of MPGNNs on real world
graph-structured data.

4



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

REFERENCES

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. arXiv preprint arXiv:2110.02910, 2021.
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A PROOFS

In the following proofs we assume the definition of the k-WL as defined in Morris et al.
[2019]. C0

k−WL is defined to be equal between any two tuples of vertices from G1 and G2,
if and only if the two subgraphs of G1 and G2 comprising all the vertcies in each tuple are
isomorphic. We first define the multiset for iteration i at index j to be ci,jk−WL(v1, ...vk) =

{{Ci−1
k−WL(v1, ...vj−1, w, vj+1, ...vk)|w ∈ V }}. Finally, we define the k-WL coloring at iteration i

on tuple s to be Ci
k−WL(s) = (ci,1k−WL(s), ...c

i,K
k−WL(s)).

A.1 THEOREM 1 PROOF

Proof. 1. Let G1 and G2 be two isomorphic graphs where σ : V1 → V2 is the isomorphism.
We will prove by induction that after n message passing iterations of 1-WL initilized with
permutation equivariant coloring, R2, the coloring of every pair v ∈ V1 and u ∈ V2 s.t.
σ(v) = u is the same.

Base (n=0): R2 is permutation equivarinat and hence by its definition R2(v) = R2(u) for
each v ∈ V1 and u ∈ V2 s.t. σ(v) = u.

Step: From the induction assumption we know that every two nodes v ∈ V1 and
u = σ(v) ∈ V2 have the same color after n message passing iterations of 1-WL. For each
such v and u we will look at the coloring after the n+1 iteration of 1-WL. These are equal
to (Cn

1−R2WL(v), {{Cn
1−R2WL(x)|x ∈ N (v)}}) and (Cn

1−R2WL(u), {{Cn
1−R2WL(x)|x ∈

N (u)}}), respectively. Cn
1−R2WL(u) and Cn

1−R2WL(v) are equal from the induction as-
sumption. σ is an isomorphism and hence x ∈ N (v) ⇐⇒ σ(x) ∈ N(u) and, therefore,
{{Cn

1−R2WL(x)|x ∈ N (v)}} and {{Cn
1−R2WL(x)|x ∈ N (u)}} are equal. Since σ is a

bijection, we get that the coloring histogram of G1 and G2 is the same for each n.

2. Let G1 and G2 be any two graphs and let R1, R2 be two initial colorings for 1-WL
s.t. R2 refines R1. We will prove by induction that for each v ∈ V1 and u ∈ V2,
s.t. Cn

1−R2WL(v) = Cn
1−R2WL(u), u, v also satisfy Cn

1−R1WL(v) = Cn
1−R1WL(u)

for any number n of 1-WL message passing iterations. Therefore, if Cn
1−R1WL(v) ̸=

Cn
1−R1WL(u) then Cn

1−R2WL(v) ̸= Cn
1−R2WL(u).

Base (n=0): For any v ∈ V1 and u ∈ V2, if C0
1−R2WL(v) = C0

1−R2WL(u) then
C0

1−R1WL(v) = C0
1−R1WL(u) since R2 refines R1.

Step: Let v ∈ V1 and u ∈ V2 be any two vertices s.t. Cn+1
1−R2WL(v) = Cn+1

1−R2WL(u). Their
coloring in the n + 1 iteration is equal to (Cn

1−R2WL(v), {{Cn
1−R2WL(x)|x ∈ N (v)}})

and (Cn
1−R2WL(u), {{Cn

1−R2WL(x)|x ∈ N (u)}}), respectively. From the induction as-
sumption we find that Cn

1−R1WL(v) = Cn
1−R1WL(u). In addition, we know that the two

multisets in the second part of the tuples are equal, this means that there exists an injec-
tive mapping µ : N (u) → N (v) s.t. Cn

1−R2WL(x) = Cn
1−R2WL(µ(x)) and hence by the

induction assumption {{Cn
1−R1WL(x)|x ∈ N (v)}} = {{Cn

1−R1WL(x)|x ∈ N (u)}} and
therefore Cn+1

1−R1WL(v) = Cn+1
1−R1WL(u).

If G1 and G2 are 1-R1WL distinguishable they have different 1-R1WL histograms af-
ter some iteration n. Hence, there does not exist an injective mapping µ : V1 → V2

s.t. C1−R1WL(x) = C1−R1WL(µ(x)) for any x ∈ V1. From the claim proved by in-
duction there does not exist an injective mapping µ : V1 → V2 s.t. C1−R2WL(x) =
C1−R2WL(µ(x)) for any x ∈ V1. Therefore G1 and G2 have different 1 − R2WL his-
tograms and are distinguishable by 1-R2WL.

A.2 THEOREM 2 PROOF

Proof. Given G1 and G2 s.t. {{∆(3-WL)(v)|v ∈ V1}} = {{∆(3-WL)(v)|v ∈ V2}} we will prove
that {{C3−WL(x, y, z)|x, y, z ∈ V1}} = {{C3−WL(x, y, z)|x, y, z ∈ V2}}.
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From the equality of the diagonal colorings histogram we know that there is an injective map-
ping µ : V1 → V2 s.t. for any v ∈ V1, ∆(3-WL)(v) = ∆(3-WL)(µ(v)). From structure of
C3−WL we know that {{Cn−1

3−WL(v, v, z)|z ∈ V1}} = {{Cn−1
3−WL(µ(v), µ(v), z)|z ∈ V2}} for any

v ∈ V1. Hence, there is an injective mapping µ2 : V1 × V1 → V2 × V2 s.t. for any u, v ∈ V1,
Cn−1

3−WL(v, v, u) = Cn−1
3−WL(µ2(v, u)1, µ2(v, u)), and again from the structure of C3−WL, the fol-

lowing exists {{Cn−2
3−WL(v, y, u)|y ∈ V1}} = {{Cn−2

3−WL(µ2(v, u)1, y, µ2(v, u)2)|y ∈ V2}} for any
u, v ∈ V1. Hence {{C3−WL(x, y, z)|x, y, z ∈ V1}} = {{C3−WL(x, y, z)|x, y, z ∈ V2}}, since
the 3-WL algorithm converges and we assume it converges after n-2 iterations. The proof can be
generalized easily to any K.

Given G1 and G2 s.t. {{Ck−WL(v1, ...vk)|v1, ...vk ∈ V1}} = {{Ck−WL(v1, ...vk)|v1, ...vk ∈ V2}},
we will prove that {{∆(k-WL)(v)|v ∈ V1}} = {{∆(k-WL)(v)|v ∈ V2}}. From the initialization
of k-WL we know that the color of each tuple of the form (v, .., v) is equal only to other tuples
of this form since they are the only ones that represents a graph with a single vertex. Hence, for
any v ∈ V1 and u1, u2, ...uk ∈ V2 if Ck−WL(v, ..., v) = Ck−WL(u1, ..., uk); then necessarily
u1 = u2 = ... = uk. Since any v ∈ V1 is injectively mapped to u ∈ V2 with the same diagonal
coloring, we get that {{∆(k-WL)(v)|v ∈ V1}} = {{∆(k-WL)(v)|v ∈ V2}}.

A.3 THEOREM 3 PROOF

From Theorem 1 it immediately is derived that 1-∆(k+1-WL)WL is as expressive at least as 1-∆(k-
WL)WL. To show that this inequality is strict, we will find a pair of graphs for each K ≥ 2 s.t. they
are indistinguishable by 1-∆(k-WL)WL but distinguishable by 1-∆(k+1-WL)WL. For any K ≥ 2
we know there exists G1 and G2 s.t. they are distinguishable by k+1-WL and indistinguishable by
k-WL. From Theorem 2 we know that this pair of graphs is also distinguishable by the 1-∆(k+1-
WL)WL algorithm. We also know from Theorem 2 that the ∆(k-WL) histograms of the graphs are
equal. We will prove that the 1-∆(k-WL)WL histograms of the graphs are also equal by showing
that the message passing iterations of 1-WL does not change the nodes colors except for the mark-
ing/representation of the colors, i.e., the message passing iterations of the 1-WL does not add any
new information to the coloring. After a single iteration of 1-∆(k-WL)WL, the new coloring of any
vertex v is (∆(k − WL)(v), {{∆(k − WL)(u)|u ∈ N (v)}}), i.e., the new information added to
the coloring is the coloring histogram of the neighbors. We will show that this information can be
derived from ∆(k − WL)(v) for any v. From the initialization of k-WL we can find any color of
a tuple (v, v, ...u) such that u ∈ N (v) since their representing graphs are isomorphic and different
from the representing graphs for (v, v, ...x) where x ̸∈ N (v). In this way we can find any color of a
tuple (v, u, ...u) s.t. u ∈ N (v). Again from the initialization of k-WL we can find the color of any
(u, u, ...u) s.t. u ∈ N (v).

Since the coloring of 1-∆(k-WL)WL does not change in any iteration and because the coloring
histograms are equal from the beginning, 1-∆(k-WL)WL cannot distinguish between the pair of
graphs.

A.4 EXAMPLE 1 PROOF

Proof. We will prove that C1
1−WL ≡ D, i.e., the coloring generated after a sin-

gle iteration of 1-WL initialized with constant coloring equals D. For any vertex v,
it is colored with the following coloring: (C0

1−WL(v), {{C0
1−WL(x)|x ∈ N (v)}}) =

(CONST, {{CONST,CONST, ...CONST}}) where the multiset size is equal to the size of
N (v). Hence C1

1−WL ≡ D.

A.5 THEOREM 4 PROOF

Proof. From Theorem 1 it is immediately derived that Spectral WL is as expressive at least as 1-WL
since the spectral pre-coloring is permutation equivariant and any coloring refines the constant color-
ing. We will show that there exist two graphs that are indistinguishable by 1-WL but distinguishable
by Spectral WL and hence Spectral WL is strictly more expressive than 1-WL.
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Coloring Histogram

Graph
Color 0.1914 0.1929 0.2891 0.291 0.3078 0.3098

G1 2 0 4 0 4 0
G2 0 2 0 4 0 4

Table 1: Coloring histograms after initialization of Spectral WL

Let G1 and G2 be the graphs representing the Decalin and Bicyclopentyl molecules (Figure 2). It
was previously shown that G1 and G2 are not isomorphic but cannot be distinguished by the 1-WL
test Sato [2020] . Their Spectral WL histograms using m = 1 with t = 1 and r = 0 after the
initialization phase are shown in Table 1. Since these histograms are different, Spectral WL will
determine that these graphs are not isomorphic.

8



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

B GRAPHS FIGURES

Figure 1: The pair of graphs as colored by the degree coloring (upper) and the spectral coloring
(lower).

Figure 2: First pair of the original graphs. 1-WL indistinguishable but not cospectral.

Figure 3: Second pair of the original graphs. 1-WL distinguishable but cospectral with respect to
the Laplacian.
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Figure 4: Cospectral graph coloring based only on the diagonal of the heat kernel.

Figure 5: Cospectral graph coloring based on the diagonal of the heat kernel and the maximum
quantile.
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C RESULTS

C.1 EXPERIMENTAL STUDY RESULTS

Table 2: Experimental study results

GNN / Test set 1-WL indistinguishable Cospectral

GIN 64±4 93±2

SP-GIN 99±5 93±4

GCN 51±4 73±16

SP-GCN 98±6 92±5

GAT 50±0 49±0

SP-GAT 97±11 77±16

GraphSAGE 49±0 49±0

SP-GraphSAGE 95±12 91±6
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C.2 GRAPH CLASSIFICATION RESULTS

Table 3: Graph classification results – Molecules and bioinformatics

Method MUTAG PTC PROTEINS NCI1

GIN 88±7 66±8 75±3 82±1

SP-GIN 91±6 66±7 76±3 82±1

GCN 83±6 67±6 75±3 82±1

SP-GCN 91±6 68±8 75±3 81±1

GAT 80±9 66±9 75±3 81±1

SP-GAT 90±5 68±6 75±4 81±1

GraphSAGE 83±8 65±7 73±4 82±1

SP-GraphSAGE 91±7 65±6 73±4 82±1

Table 4: Graph classification results – Social networks

Method COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-M

GIN 70±1 73±3 50±3 78±2 54±1

SP-GIN 77±1 73±4 51±4 86±2 57±2

GCN 76±1 65±3 41±3 90±1 55±1

SP-GCN 77±2 74±4 50±4 91±1 56±1

GAT 42±10 52±3 36±2 71±4 32±5

SP-GAT 74±2 73±4 50±4 91±2 56±1

GraphSAGE 40±9 52±3 36±2 73±3 35±2

SP-GraphSAGE 77±2 73±3 50±4 91±1 57±2

C.3 NODE CLASSIFICATION RESULTS

Table 5: Node classification results

Method CiteSeer Cora PubMed PPI

GIN 71.9±0.6 81.8±0.5 79.6±0.5 91.1±0.2

SP-GIN 71.3±0.6 81.9±1.8 78.8±0.7 91.4±0.2

GCN 63.5±4.4 78.1±2.6 80.4±0.5 88.8±0.1

SP-GCN 72.1±0.8 82.3±1.4 80.8±0.4 89.2±0.1

GAT 64.1±4.5 81.6±1.0 79.9±1.3 79.6±0.2

SP-GAT 72.3±1.5 79.2±1.9 80.4±0.7 80.7±0.3

GraphSAGE 72.8±0.6 82.9±0.9 80.2±0.6 95.8±0.1

SP-GraphSAGE 72.9±0.6 81.9±2.3 80.8±0.5 96.0±0.1

12


	Introduction
	Preliminaries
	Expressive power of 1-WL with pre-colorings
	Spectral pre-coloring
	Experimental study on synthetic benchmarks
	Evaluation on real benchmarks
	Graph classification
	Node classification

	Discussion
	Proofs
	Theorem 1 proof
	Theorem 2 proof
	Theorem 3 proof
	Example 1 proof
	Theorem 4 proof

	Graphs Figures
	Results
	experimental study results
	Graph classification results
	Node classification results


