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Abstract

Denoising diffusion models have recently emerged
as a powerful class of generative models. They
provide state-of-the-art results, not only for un-
conditional simulation, but also when used to
solve conditional simulation problems arising in
a wide range of inverse problems. A limitation
of these models is that they are computationally
intensive at generation time as they require sim-
ulating a diffusion process over a long time hori-
zon. When performing unconditional simulation,
a Schrödinger bridge formulation of generative
modeling leads to a theoretically grounded algo-
rithm shortening generation time which is com-
plementary to other proposed acceleration tech-
niques. We extend the Schrödinger bridge frame-
work to conditional simulation. We demonstrate
this novel methodology on various applications
including image super-resolution, optimal filter-
ing for state-space models and the refinement of
pre-trained networks. Our code can be found at
https://github.com/vdeborto/cdsb.

1 INTRODUCTION

Score-Based Generative Models (SGMs), also known as
denoising diffusion models, are a class of generative mod-
els that have become recently very popular as they provide
state-of-the-art performance; see e.g. Chen et al. [2021a],
Ho et al. [2020], Song et al. [2021b], Saharia et al. [2021],
Dhariwal and Nichol [2021]. Existing SGMs proceed as
follows. First, noise is gradually added to the data using a
time-discretized diffusion so as to provide a sequence of
perturbed data distributions eventually approximating an
easy-to-sample reference distribution, typically a multivari-
ate Gaussian. Second, one approximates the corresponding
time-reversed denoising diffusion using neural network ap-

proximations of the logarithmic derivatives of the perturbed
data distributions known as scores; these approximations are
obtained using denoising score matching techniques [Vin-
cent, 2011, Hyvärinen, 2005]. Finally, the generative model
is obtained by initializing this reverse-time process using
samples from the reference distribution [Ho et al., 2020,
Song et al., 2021b].

In many applications, one is not interested in uncondi-
tional simulation but the generative model is used as an
implicit prior pdata(x) on some parameter X (e.g. image)
in a Bayesian inference problem with a likelihood function
g(yobs|x) for observation Y = yobs. SGMs have been ex-
tended to address such tasks, see e.g. Song et al. [2021b],
Saharia et al. [2021], Batzolis et al. [2021], Tashiro et al.
[2021]. In this conditional simulation case, one only requires
being able to simulate from the joint distribution of data and
synthetic observations (X,Y ) ∼ pdata(x)g(y|x). As in the
unconditional case, the time-reversal of the noising diffu-
sion is approximated using neural network estimates of its
scores, the key difference being that this network admits not
only x but also y as an input. Sampling from the posterior
p(x|yobs) ∝ pdata(x)g(y

obs|x) is achieved by simulating the
time-reversal using the scores evaluated at Y = yobs.

However, performing unconditional or conditional simula-
tion using SGMs is computationally expensive as, to obtain
a good approximation of the time-reversed diffusion, one
needs to run the forward noising diffusion long enough to
converge to the reference distribution. Many techniques have
been proposed to accelerate simulation including e.g. knowl-
edge distillation [Luhman and Luhman, 2021, Salimans and
Ho, 2022], non-Markovian forward process and subsam-
pling [Song et al., 2021a], optimized noising diffusions
and improved numerical solvers [Jolicoeur-Martineau et al.,
2021, Dockhorn et al., 2022, Kingma et al., 2021, Watson
et al., 2022]. In the unconditional scenario, reformulating
generative modeling as a Schrödinger bridge (SB) problem
provides a principled theoretical framework to accelerate
simulation time complementary to most other acceleration
techniques [De Bortoli et al., 2021]. The SB solution is the
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finite time process which is the closest in terms of Kullback–
Leibler (KL) discrepancy to the forward noising process
used by SGMs but admits as marginals the data distribution
at time t = 0 and the reference distribution at time t = T .
The time-reversal of the SB thus enables unconditional gen-
eration from the data distribution. However, the use of the
SB formulation has not yet been developed in the context of
conditional simulation.

The contributions of this paper are as follows.

• We develop conditional SB (CSB), an original SB for-
mulation for conditional simulation.

• By adapting the Diffusion SB algorithm of De Bortoli
et al. [2021] to our setting, we propose an iterative
algorithm, Conditional Diffusion SB (CDSB), to ap-
proximate the solution to the CSB problem.

• CDSB performance is demonstrated on various exam-
ples. In particular, we propose the first application of
score-based techniques to optimal filtering in state-
space models.

2 SCORE-BASED GENERATIVE
MODELING

2.1 UNCONDITIONAL SIMULATION

Assume we are given samples from some data distribution
with positive density1 pdata on Rd. Our aim is to provide
a generative model to sample new data from pdata. SGMs
achieve this as follows. We gradually add noise to data sam-
ples, i.e. we consider a Markov chain x0:N = {xk}Nk=0 ∈
X = (Rd)N+1 of joint density

p(x0:N ) = p0(x0)
∏N−1

k=0 pk+1|k(xk+1|xk), (1)

where p0 = pdata and pk+1|k are Markov transition densities
inducing the following marginal densities pk+1(xk+1) =∫
pk+1|k(xk+1|xk)pk(xk)dxk. These transition densities

are selected such that pN (xN ) ≈ pref(xN ) for large N ,
where pref is an easy-to-sample reference density. In practice
we set pref(xN ) = N (xN ; 0, Id), while pk+1|k(xk+1|xk) =
N (xk+1;xk − γk+1xk; 2γk+1 Id) for γk > 0, γk ≪ 1 so
x0:N is a time-discretized Ornstein–Uhlenbeck diffusion
(see supplementary for details).

The main idea behind SGMs is to obtain samples from p0
by exploiting the backward decomposition of (1)

p(x0:N ) = pN (xN )
∏N−1

k=0 pk|k+1(xk|xk+1),

i.e. by sampling XN ∼ pN (xN ) then sampling Xk ∼
pk|k+1(xk|Xk+1) for k ∈ {N − 1, . . . , 0}, we obtain
X0 ∼ p0(x0). In practice, we know neither pN nor the

1We assume here that all distributions admit a positive density
w.r.t. Lebesgue measure.

backward transition densities pk|k+1 for k ∈ {0, ..., N − 1}
and therefore this ancestral sampling procedure cannot be
implemented exactly. We thus approximate pN by pref and
pk|k+1 using a Taylor expansion approximation

pk|k+1(xk|xk+1) ≈ N (xk;Bk+1(xk+1), 2γk+1 Id),

where Bk+1(x) = x + γk+1{x + 2∇ log pk+1(x)}. Fi-
nally, we approximate the score terms ∇ log pk using
denoising score matching methods [Hyvärinen, 2005,
Vincent, 2011, Song et al., 2021b]. Since pk(xk) =∫
p0(x0)pk|0(xk|x0)dx0, it follows that ∇ log pk(xk) =

E[∇xk
log pk|0(xk|X0)], where the expectation is w.r.t. to

the distribution of X0 given xk. We learn a neural network
approximation sθ⋆(k, xk) ≈ ∇ log pk(xk) by minimizing
w.r.t. θ the loss

E[
∑N

k=1 λk||sθ(k,Xk)−∇xk
log pk|0(Xk|X0)||2],

where λk > 0 is a weighting coefficient [Ho et al., 2020,
Song et al., 2021b] and the expectation is w.r.t. p(x0:N ).
Once we have estimated θ⋆ from noisy data, we start
by first sampling XN ∼ pref(xN ) and then sampling
Xk ∼ p̂k|k+1(xk|Xk+1) for p̂k|k+1 as in pk|k+1 but with
∇ log pk+1(Xk+1) replaced by sθ⋆(k + 1, Xk+1). Under
regularity assumptions, the resulting X0 can be shown to
be approximately distributed according to p0 = pdata if
pN ≈ pref [De Bortoli et al., 2021, Theorem 1].

2.2 CONDITIONAL SIMULATION

We now consider the scenario where we have samples from
p0 = pdata and are interested in generating samples from the
posterior p(x|yobs) ∝ p0(x)g(y

obs|x) for some observation
Y = yobs ∈ Y . Here it is assumed that it is possible to
sample synthetic observations from Y |(X = x) ∼ g(y|x)
but the expression of g(y|x) might not be available.

In this case, conditional SGMs (CSGMs) proceed as fol-
lows; see e.g. Saharia et al. [2021], Batzolis et al. [2021],
Li et al. [2022], Tashiro et al. [2021]. For any realiza-
tion Y = y, we consider a Markov chain of the form
(1) but initialized using X0 ∼ p(x|y) instead of p0(x).
Obviously it is not possible to simulate this chain but
this will not prove necessary. This chain induces for
k ≥ 0 the marginals denoted pk+1(xk+1|y) which sat-
isfy pk+1(xk+1|y) =

∫
pk+1|k(xk+1|xk)pk(xk|y)dxk for

p0(x0|y) = p(x0|y). Similarly to the unconditional case, to
perform approximate ancestral sampling from this Markov
chain, we need to sample from pk|k+1(xk|xk+1, y) ≈
N (xk;Bk+1(xk+1, y), 2γk+1 Id) where Bk+1(x, y) = x+
γk+1{x+ 2∇ log pk+1(x|y)}. We can again estimate these
score terms using

∇ log pk(xk|y) = E[∇xk
log pk|0(xk|X0)],

where the expectation is w.r.t. to the distribution of X0 given
(Xk, Y ) = (xk, y). In this case, we learn again a neural



network approximation sθ⋆(k, xk, y) ≈ ∇ log pk(xk|y) by
minimizing w.r.t. θ the loss

E[
∑N

k=1 λk||sθ(k,Xk, Y )−∇xk
log pk|0(Xk|X0)||2],

where the expectation is w.r.t. p(x0:N )g(y|x0) which we
can sample from. Once the neural network is trained, we
simulate from the posterior p(x|yobs) ∝ p0(x)g(y

obs|x) for
any observation Y = yobs as follows: sample first XN ∼
pref(xN ) and then Xk ∼ p̂k|k+1(xk|Xk+1, y

obs) where
this density is similar to pk|k+1(xk|Xk+1, y

obs) but with
∇ log pk+1(Xk+1|yobs) replaced by sθ⋆(k+1, Xk+1, y

obs).
The resulting sample X0 will be approximately distributed
according to p(x|yobs). This scheme can be seen as an amor-
tized variational inference procedure.

3 SCHRÖDINGER BRIDGES AND
GENERATIVE MODELING

For SGMs to work well, we must diffuse the process long
enough so that pN ≈ pref. The SB methodology introduced
in [De Bortoli et al., 2021] allows us to mitigate this problem.
We refer to Chen et al. [2021b] for recent reviews on the SB
problem. We first recall how the SB problem can be applied
to perform unconditional simulation.

Consider the forward density p(x0:N ) given by (1), describ-
ing the process adding noise to the data. We want to find the
joint density π⋆(x0:N ) such that

π⋆ = argminπ {KL(π|p) : π0 = pdata, πN = pref}, (2)

where π0, resp. πN , is the marginal of X0, resp. XN , under
π. A visualization of the SB problem (2) is provided in
Figure 1a. Were π⋆ available, we would obtain a generative
model by ancestral sampling: sample XN ∼ pref(xN ), then
Xk ∼ π⋆

k|k+1(xk|Xk+1) for k ∈ {N − 1, . . . , 0}.

The SB problem does not admit a closed-form solution but
it can be solved numerically using Iterative Proportional
Fitting (IPF) [Kullback, 1968]. This algorithm defines the
following recursion initialized at π0 = p given in (1):

π2n+1 = argminπ
{
KL(π|π2n) : πN = pref

}
,

π2n+2 = argminπ
{
KL(π|π2n+1) : π0 = pdata

}
.

De Bortoli et al. [2021], Vargas et al. [2021] showed that
the IPF iterates admit a representation suited to numerical
approximation. Indeed, if we denote pn = π2n and qn =
π2n+1, then p0(x0:N ) = p(x0:N ) and

qn(x0:N ) = pref(xN )
∏N−1

k=0 qnk|k+1(xk|xk+1),

pn+1(x0:N ) = pdata(x0)
∏N−1

k=0 pn+1
k+1|k(xk+1|xk),

where qnk|k+1 = pnk|k+1 and pn+1
k+1|k = qnk+1|k. To summa-

rize, at step n = 0, q0 is the backward process obtained

by reversing the dynamics of p0 initialized at time N from
pref. The forward process p1 is then obtained from the re-
versed dynamics of q0 initialized at time 0 from pdata, and
so on. Note that q0 corresponds to the unconditional SGM
described in Section 2.1.

3.1 DIFFUSION SCHRÖDINGER BRIDGE

Similarly to SGMs, one can approximate the time-reversals
appearing in the IPF iterates using score matching ideas.
If pnk+1|k(x

′|x) = N (x′;x + γk+1f
n
k (x), 2γk+1 Id), with

f0
k (x) = −x, we approximate the reverse-time transitions

by qnk|k+1(x|x
′) ≈ N (x;x′ + γk+1b

n
k+1(x

′), 2γk+1 Id),
where bnk+1(x

′) = −fn
k (x

′) + 2∇ log pnk+1(x
′); and

next pn+1
k+1|k(x

′|x) ≈ N (x′;x + γk+1f
n+1
k (x), 2γk+1 Id),

where fn+1
k (x) = −bnk+1(x) + 2∇ log qnk (x). The

drifts bnk+1, f
n+1
k could be estimated by approximating

{∇ log pik+1(x)}ni=0, {∇ log qik(x)}ni=0 using score match-
ing. However this is too expensive both in terms of compute
and memory. De Bortoli et al. [2021] instead directly ap-
proximate the mean of the Gaussians using neural networks,
Bθ and Fϕ, by generalizing the score matching approach,
i.e. qnk|k+1(x|x

′) = N (x;Bθn(k + 1, x′), 2γk+1 Id) and
pnk+1|k(x

′|x) = N (x′;Fϕn(k, x), 2γk+1 Id), where θn is
obtained by minimizing

ℓbn(θ) = Epn [
∑

k ∥Bθ(k + 1, Xk+1)−Gn,k(Xk, Xk+1)∥2],

for Gn,k(x, x
′) = x′ + Fϕn(k, x)− Fϕn(k, x′), and ϕn+1

by minimizing

ℓfn+1(ϕ) = Eqn [
∑

k ∥Fϕ(k,Xk)−Hn,k(Xk, Xk+1)∥2],

for Hn,k(x, x
′) = x+Bθn(k+1, x′)−Bθn(k+1, x). This

implementation of IPF, referred to as Diffusion SB (DSB),
is presented in the supplementary; see Vargas et al. [2021],
Chen et al. [2022] for alternative numerical schemes. Af-
ter we have learned θL using L DSB iterations, we sample
XN ∼ pref(xN ) and then set Xk = BθL(k + 1, Xk+1) +√
2γk+1Zk+1 with Zk

i.i.d.∼ N (0, Id) to obtain X0 approxi-
mately distributed from pdata.

3.2 LINK WITH OPTIMAL TRANSPORT

It can be shown that the solution π⋆ of the SB prob-
lem (2), π⋆(x0:N ) = πs,⋆(x0, xN )p|0,N (x1:N−1|x0, xN )
where πs,⋆(x0, xN ) is the marginal of π⋆(x0:N ) at times 0
and N . In this case, (2) reduces to the static SB problem

πs,⋆ = argminπs {KL(πs|p0,N ) : πs
0 = pdata, π

s
N = pref}.

The static SB problem can be interpreted as an
entropy-regularized optimal transport problem between
pdata and pref, with regularized transportation cost
Eπs [− log pN |0(XN |X0)]−H(πs). When pN |0(xN |x0) =



pdata(x) pref(x)

(a)

pjoin(x, y)

p(x|y)

pobs(y)
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pref(x|y)
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Figure 1: (a) An unconditional Schrödinger bridge (SB) between pdata(x) and pref(x); (b) our proposed conditional
Schrödinger bridge (CSB) on the extended space between pjoin(x, y) and pjref(x, y). The blue arrows denote the direction of
the generative procedure at simulation time.

N (xN ;x0, σ
2) as in Song and Ermon [2019], the transporta-

tion cost − log pN |0(xN |x0) reduces to the quadratic cost
1

2σ2 ∥x0 − xn∥2 up to a constant. In other words, the static
SB solution πs,⋆ not only transports samples XN ∼ pref
into samples from the data distribution pdata, but also seeks
to minimize an entropy-regularized Wasserstein distance
of order 2. The regularization strength is controlled by the
variance σ2. Similar properties hold for the time-discretized
Ornstein–Uhlenbeck diffusion defined by (1) in Section 2.1.

4 CONDITIONAL DIFFUSION
SCHRÖDINGER BRIDGE

We now want to use SBs for conditional simulation, i.e. to
be able sample from a posterior distribution p(x|yobs) ∝
pdata(x)g(y

obs|x) assuming only that it is possible to sample
(X,Y ) ∼ pdata(x)g(y|x). In this case, an obvious approach
would be to consider the SB problem where we replace
pdata(x) by the posterior p(x|yobs), i.e.

π⋆ = argminπ
{
KL(π|pyobs):π0 = p(·|yobs), πN = pref

}
,

(3)
where pyobs(x0:n) := p(x0|yobs)

∏N−1
k=0 pk+1|k(xk+1|xk) is

the forward noising process. However, DSB is not applicable
here as it requires sampling from p(x0|yobs) at step 0.

We propose instead to solve an amortized problem. Let
us introduce pjoin(x, y) = pdata(x)g(y|x) = p(x|y)pobs(y)
and pjref(x, y) = pref(x)pobs(y) where pobs(y) =∫
pdata(x)g(y|x)dx. We are interested in finding the tran-

sition kernel πc,⋆ = (πc,⋆
y )y∈Y , where πc,⋆

y defines a distri-
bution on X = (Rd)N+1 for each y ∈ Y , satisfying

πc,⋆ = argminπc{EY∼pobs [KL(πc
Y ||pY )] :

πc
0 ⊗ pobs = pjoin, π

c
N ⊗ pobs = pjref}. (4)

This corresponds to an averaged version of (3) over the distri-
bution pobs(y) of Y . The first constraint πc,⋆

y,0(x0)pobs(y) =

pjoin(x0, y) = p(x0|y)pobs(y) ensures that πc,⋆
y,0(x0) =

p(x0|y), pobs-almost surely. Similarly πc,⋆
y,N (xN ) =

pref(xN ), pobs-almost surely. Hence, to obtain a sample
from p(x|yobs) for a given Y = yobs, we can sample
XN ∼ pref(xN ) then Xk|Xk+1 ∼ πc,⋆

yobs,k|k+1
(xk|Xk+1)

for k = N − 1, ..., 0 and X0 is a sample from p(x|yobs).

We show here that (4) can be reformulated as a SB on an
extended space, which we will refer to as Conditional SB
(CSB), so the theoretical results for existence and unique-
ness of the solution to the SB problem apply.

Proposition 1. Consider the following SB problem

π̄⋆ = argminπ̄{KL(π̄|p̄) : s.t. π̄0 = pjoin, π̄N = pjref}, (5)

where we define p̄(x0:N , y0:N ) := py0(x0:N )p̄obs(y0:N )

with p̄obs(y0:N ) := pobs(y0)
∏N−1

k=0 δyk
(yk+1) and py0

is
the forward process defined below (3). If KL(π̄⋆|p̄) < +∞
then π̄⋆ = πc,⋆ ⊗ p̄obs where πc,⋆ solves (4).

We provide an illustration of the CSB problem (5) in Figure
1b. Under p̄, the Y -component is sampled at time 0 accord-
ing to pobs and then is kept constant until time N while
the X-component is initialized at p(x|y0) and then diffuses
according to pk+1|k(xk+1|xk).

Contrary to (3), we can adapt DSB to solve numerically the
CSB problem (5) as both the distributions pjoin and pjref can
be sampled. The resulting algorithm is called Conditional
DSB (CDSB). It approximates the following IPF recursion

π̄2n+1 = argminπ̄
{
KL(π̄|π̄2n) : π̄N = pjref

}
,

π̄2n+2 = argminπ̄
{
KL(π̄|π̄2n+1) : π̄0 = pjoin

}
initialized at π̄0 = p̄. For p̄n = π̄2n and q̄n = π̄2n+1, we
have the following representation of the IPF iterates.

Proposition 2. Assume that KL(pjoin ⊗ pjref|p̄0,N ) < +∞.
Then we have p̄0(x0:N , y0:N ) = p̄(x0:N , y0:N ) and for
any n > 0, q̄n(x0:N , y0:N ) = p̄obs(y0:N )q̄n(x0:N |yN ),
p̄n+1(x0:N , y0:N ) = p̄obs(y0:N )p̄n+1(x0:N |y0) with

q̄n(x0:N |yN ) = pref(xN )
∏N−1

k=0 p̄nk|k+1(xk|xk+1, yN ),

p̄n+1(x0:N |y0) = p(x0|y0)
∏N−1

k=0 q̄nk+1|k(xk+1|xk, y0).



Here we simplify notation and write Y for all the ran-
dom variables Y0, Y1, ..., YN as they are all equal almost
surely under p̄n and q̄n. We approximate the transition
kernels as in DSB and refer to the supplementary for
more details. In particular, the transition kernels satisfy
q̄nk|k+1(x|x

′, y) = N (x;By
θn(k + 1, x′), 2γk+1 Id) and

p̄nk+1|k(x
′|x, y) = N (x′;Fy

ϕn(k, x), 2γk+1 Id), where θn

is obtained by minimizing

ℓbn(θ) = Ep̄n [
∑

k ∥BY
θ (k + 1, Xk+1)−GY

n,k(Xk, Xk+1)∥2]
(6)

for Gy
n,k(x, x

′) = x′ + Fy
ϕn(k, x) − Fy

ϕn(k, x′) and ϕn+1

by minimizing

ℓfn+1(ϕ) = Eq̄n [
∑

k ∥FY
ϕ (k,Xk)−HY

n,k(Xk, Xk+1)∥2],
(7)

Hy
n,k(x, x

′) = x+By
θn(k + 1, x′)−By

θn(k + 1, x).

The resulting CDSB scheme is summarized in Algorithm 1
where Zj

k, Z̃
j
k

i.i.d.∼ N (0, Id). After L iterations of CDSB,
we have learned θL. For any observation Y = yobs, we
can then sample XN ∼ pref(xN ) and then compute Xk =

Byobs

θL (k + 1, Xk+1) +
√
2γk+1Zk+1 with Zk

i.i.d.∼ N (0, Id)
for k = N − 1, ..., 0. The resulting sample X0 will be
approximately distributed from p(x|yobs).

Algorithm 1 Conditional Diffusion Schrödinger Bridge

1: for n ∈ {0, . . . , L} do
2: while not converged do
3: Sample {Xj

k}
N,M
k,j=0, {Y j}Mj=0 where

Xj
0 ∼ pdata, Y

j ∼ g(·|Xj
0), and

Xj
k+1 = FY j

ϕn (k,X
j
k) +

√
2γk+1Z

j
k+1

4: Compute ℓ̂bn(θ
n) approximating (6)

5: θn ← Gradient Step(ℓ̂bn(θ
n))

6: end while
7: while not converged do
8: Sample {Xj

k}
N,M
k,j=0, {Y j}Mj=0 where

Xj
N ∼ pref, Y

j ∼ pobs, and
Xj

k = BY j

θn (k + 1, Xj
k+1) +

√
2γk+1Z̃

j
k+1

9: Compute ℓ̂fn+1(ϕ
n+1) approximating (7)

10: ϕn+1 ← Gradient Step(ℓ̂fn+1(ϕ
n+1))

11: end while
12: end for
13: Output: (θL, ϕL+1)

5 CDSB IMPROVEMENTS

5.1 CONDITIONAL REFERENCE MEASURE

In standard SGMs and for the unconditional SB, we typi-
cally select pref(x) = N (x; 0, σ2

ref Id). However, initializing
ancestral sampling from random noise to eventually obtain

samples from p(x|y) can be inefficient as y already con-
tains useful information about X . Fortunately, it is easy
to use a joint reference measure of the form pjref(x, y) =
pref(x|y)pobs(y) instead of pjref(x, y) = pref(x)pobs(y) in
CSB and CDSB. The only modification in Algorithm 1 is
that line 8 becomes Y j ∼ pobs(y), X

j
N ∼ pref(x|Y j). In

some interesting scenarios, we can select pref(x|y) as an
approximation to p(x|y) in order to accelerate the sampling
process. This means we construct a CSB between p(x|y)
and its approximation pref(x|y), instead of between p(x|y)
and noise. We refer to this extension of CDSB as CDSB-C.

As a simple example, consider obtaining super-resolution
(SR) image samples from a low-resolution image Y = y.
Assume that y has been suitably upsampled to have the
same dimensionality as X . In this case, y itself can serve
as an approximate initialization for sampling XN . A simple
model is to take pref(x|y) = N (x; y, σ2

ref Id) with σ2
ref =

ρσ2
x|y, where ρ is a variance inflation parameter and σ2

x|y
is an estimate of the conditional variance of X given Y .
See Figure 1b for an illustration. In our experiments, we
also explore other pref(x|y) obtained using the Ensemble
Kalman Filter (EnKF) as well as neural network models.

5.2 CONDITIONAL FORWARD PROCESS

To accelerate the convergence of IPF, we also have
the flexibility to make the initial forward noising pro-
cess dynamics dependent on Y = y, i.e. py(x0:N ) =

p(x0|y)
∏N−1

k=0 pk+1|k(xk+1|xk, y). As shown below, it is
beneficial to initialize py close to the CSB solution πc,⋆

y .

Proposition 3. For any n ∈ N with n ≥ 1, we have

E[KL(πc,n
Y,0|p(·|Y ))] ≤ 2

nE[KL(πc,⋆
Y |pY )],

where for any n ∈ N, π̄n = p̄obs⊗πc,n is the nth IPF iterate
and the expectations are w.r.t. Y ∼ pobs.

As a result, we should choose the initial forward noising pro-
cess py such that its terminal marginal py,N targets pref(·|y).
However, contrary to diffusion models, we recall that our
framework does not strictly require py,N ≈ pref(·|y) to pro-
vide approximate samples from the posterior of interest.

For tractable pref(x|y), we can define py(x0:N ) using an
unadjusted Langevin dynamics; i.e. pk+1|k(x

′|x, y) =
N (x′;x + γk+1∇ log pref(x|y), 2γk+1 Id). In the case
pref(x|y) = N (x;µ(y), σ2(y) Id), this reduces to a dis-
cretized Ornstein–Uhlenbeck process admitting pref(x|y)
as limiting distribution as γ → 0 and N →∞ [Durmus and
Moulines, 2017].

5.3 FORWARD-BACKWARD SAMPLING

When we use an unconditional pref(x), our proposed method
also shares connections with the conditional transport



methodology developed by Marzouk et al. [2016], Spantini
et al. [2022]. They propose methods to learn a deterministic
invertible transport map S(x, y) : X ×Y → X which maps
samples from p(x|y) to pref(x). To sample from p(x|yobs),
one samples X ref ∼ pref(x), then transports back the sample
through the inverse map Xpos = S(·, yobs)−1(X ref).

As noted by Spantini et al. [2022], an alternative method to
sample from p(x|yobs) consists of first sampling (X,Y ) ∼
pjoin, then following the two-step transformation X̂ ref =

S(X,Y ), X̂pos = S(·, yobs)−1(X̂ ref). By definition of S,
X̂ ref is also distributed according to pref. However, since the
transport map S may be imperfect in practice, this sampling
strategy provides the advantage of cancellation of errors
between S and S(·, yobs)−1.

We also explore an analogous forward-backward sampling
scheme in our framework, which first samples (X,Y ) ∼
pjoin, followed by sampling X̂N ∼ p̄LN |0(xN |X,Y ) through

the forward half-bridge, then X̂0 ∼ q̄L0|N (x0|X̂N , yobs)

through the backward half-bridge. Since q̄L is the approx-
imate time-reversal of p̄L, this strategy shares similar ad-
vantages as the method of Spantini et al. [2022] when the
half-bridge q̄L(x0:N |yobs) does not solve the CSB problem
exactly. We call this extension CDSB-FB.

6 RELATED WORK

Approximate Bayesian computation (ABC), also known
as likelihood-free inference, has been developed to approx-
imate the posterior when the likelihood is intractable but
one can simulate synthetic data from it; see e.g.[Beaumont,
2019]. However, these methods typically require knowing
the prior, while CDSB only needs to have access to joint
samples and learns about the posterior directly. For tasks
such as image inpainting, the prior is indeed implicit.

Schrödinger bridges techniques to perform both static and
sequential Bayesian inference for state-space models have
been developed by Bernton et al. [2019] and Reich [2019].
However, these methods require being able to evaluate point-
wise an unnormalized version of the target posterior distribu-
tion contrary to the CDSB-based methods developed here.

Conditional transport. Performing conditional simulation
by learning a transport map between joint distributions on
X,Y having the same Y -marginals (as pjoin and pref) has
been first proposed by Marzouk et al. [2016]. Various tech-
niques have been subsequently developed to approximate
such maps such as polynomial or radial basis representations
[Marzouk et al., 2016, Baptista et al., 2020], Generative Ad-
versarial Networks [Kovachki et al., 2021, Zhou et al., 2022]
or normalizing flows [Kruse et al., 2021]. CDSB also fits
into this framework, but instead utilizes stochastic transport
maps. Recently, Taghvaei and Hosseini [2022] have also
proposed independently using conditional transport ideas to

perform optimal filtering for state-space models.

Conditional SGMs. SGMs have been applied to perform
posterior simulation, primarily for images, as described in
Section 2.2 and references therein. An alternative line of
work for image editing [Song and Ermon, 2019, Choi et al.,
2021, Chung et al., 2021, Meng et al., 2022] utilizes the
denoising property of SGMs to iteratively denoise noisy
versions of a reference image y while restricted to retain
particular features of y. However, pref(x) = N (x; 0, σ2

ref Id)
so image generation is started from noise and typically hun-
dreds or thousands of refinement steps are required. Our
framework can incorporate in a principled way information
given by y in the reverse process’s initialization (see Section
5.1). Recently Zheng et al. [2022], Lu et al. [2022] have also
proposed suitable choices for pref(x) or pref(x|y) to shorten
the diffusion process. In comparison, the CDSB framework
is more flexible and allows for general pref(x|y) which can
be non-Gaussian and different from the initial forward dif-
fusion’s terminal distribution pN (xN |y). For instance, we
explore using noiseless pre-trained super-resolution models
as pref(x|y) in Section 7.3.2, where CDSB further improves
the SR samples closer to the data distribution. Finally, for
linear Gaussian inverse problems, Kadkhodaie and Simon-
celli [2021], Kawar et al. [2021, 2022] develop efficient
methodologies using unconditional SGMs when the linear
degradation model and the Gaussian noise level are known.

SGM acceleration techniques. Many techniques have been
proposed to accelerate SGMs and CSGMs. For example,
Luhman and Luhman [2021], Salimans and Ho [2022] pro-
pose to learn a distillation network on top of SGM models,
while Song et al. [2021a] perform a subsampling of the
timesteps in a variational setting. Watson et al. [2022] op-
timize the timesteps with a fixed budget using dynamic
programming. Xiao et al. [2021] perform multi-steps de-
noising using GANs while Dockhorn et al. [2022] consider
underdamped Langevin dynamics as forward process. We
emphasize that many of these techniques are complementary
to and can be readily applied in the SB setting; e.g.one could
distill the last CDSB network By

θL . Additionally, SB and
CSB provide a framework to perform few-step sampling.

7 EXPERIMENTS

7.1 2D SYNTHETIC EXAMPLES

We first demonstrate the validity and accuracy of our method
using the two-dimensional examples of Kovachki et al.
[2021]. We consider three nonlinear, non-Gaussian exam-
ples for pjoin(x, y): define pobs(y) = Unif(y; [−3, 3]) for all
examples and p(x|y) is defined through

Example 1: X = tanh(Y ) + Z, Z ∼ Γ(1, 0.3),

Example 2: X = tanh(Y + Z), Z ∼ N (0, 0.05),

Example 3: X = Z tanh(Y ), Z ∼ Γ(1, 0.3).
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Figure 2: True posterior p(x|yobs) for yobs ∈ {−1.2, 0, 1.2}
(solid lines) and approximations for the 2D examples.

MCMC CDSB CDSB-FB CDSB-C MGAN IT

Mean
x1 .075 .066 .068 .072 .048 .034
x2 .875 .897 .897 .891 .918 .902

Var
x1 .190 .184 .190 .188 .177 .206
x2 .397 .387 .391 .393 .419 .457

Skew
x1 1.94 1.90 2.01 1.90 1.83 1.63
x2 .681 .591 .628 .596 .630 .872

Kurt
x1 8.54 7.85 8.54 8.00 7.64 7.57
x2 3.44 3.33 3.51 3.27 3.19 3.88

Table 1: Estimated posterior moments for the BOD example.
The closest estimates to MCMC are highlighted in bold.

We run CDSB on each of the examples with 50,000 train-
ing points and compare with the Monotone GAN (MGAN)
algorithm [Kovachki et al., 2021]. CDSB uses a neural net-
work model with 32k parameters (approximately 6x less
parameters than MGAN) with N = 50 diffusion steps. Fig-
ure 2 shows the resulting histogram of the learned p(x|yobs)
and the true posterior for yobs ∈ {−1.2, 0, 1.2}. As can be
observed, the empirical density of CDSB samples is sharper
and aligns more closely with the ground truth density. We
also observe that using more CDSB iterations corrects the
sampling bias compared to using only one CDSB iteration
(which corresponds to CSGM). Using forward-backward
sampling (CDSB-FB) further improves the sample quality.

7.2 BIOCHEMICAL OXYGEN DEMAND MODEL

We now consider a Bayesian inference problem on biochem-
ical oxygen demand (BOD) from Marzouk et al. [2016].

Let X1, X2
i.i.d.∼ N (0, 1), A = 0.8 + 0.4 erf(X1/

√
2),

B = 0.16 + 0.15 erf(X2/
√
2) and Y = {Y (t)}5t=1 sat-

isfy Y (t) = A(1− exp(−Bt)) +Z with Z ∼ N (0, 10−3).
Table 1 displays moment statistics of the estimated posterior
p(x|y) (standard deviations are reported in the supplemen-
tary), in comparison with the “ground truth” statistics com-
puted using 6× 106 MCMC steps as reported in Marzouk
et al. [2016]. To match the evaluation in Kovachki et al.
[2021], the reported statistics are computed using 30,000
samples and averaged across the last 10 CDSB iterations.
The resulting posterior displays high skewness and high kur-
tosis, but all CDSB-based methods achieve more accurate
posterior estimation than MGAN and the inverse transport
(IT) method in Marzouk et al. [2016].

7.3 IMAGE EXPERIMENTS

7.3.1 Gaussian Reference Measure

We now apply CDSB to a range of inverse problems on
image datasets. We consider the following tasks: (a) MNIST
4x SR (7x7 to 28x28), (b) MNIST center 14x14 inpaint-
ing, (c) CelebA 4x SR (16x16 to 64x64) with Gaussian
noise of σy = 0.1, (d) CelebA center 32x32 inpainting. For
CSGM-C and CDSB-C, we consider the following choices
for conditional pref(x|y): for tasks (a) and (c), we use the
upsampled y directly as described in Section 5.1; for inpaint-
ing tasks (b) and (d), we use a separate neural network with
the same architecture as F,B to output the initialization
mean. In Table 2 we report PSNR and SSIM (the higher the
better), as well as FID scores (the lower the better) for RGB
images only. We display a visual comparison between the
methods in Figures 3 and 4, and additional image samples
in the supplementary. CDSB and CDSB-C both provide
significant improvement in terms of quantitative metrics as
well as visual evaluations, and high-quality images can be
generated quickly under few iterations N .

7.3.2 Pre-trained SR Model for Reference Measure

We further explore here the possibility of using a non-
Gaussian pref(x|y) to further bridge the gap towards the
true posterior p(x|y). We utilize the super-resolution model
SRFlow [Lugmayr et al., 2020], which produces a probabil-
ity distribution over possible SR images using a conditional
normalizing flow. We use their pre-trained model check-
points for the 8x SR task for CelebA (160x160). We then
train a short CDSB model with SRFlow as pref(x|y), in
order to take advantage of the high sampling quality of dif-
fusion models. As can be seen from Figure 5, with only
N = 10 steps the CDSB model is able to make meaning-
ful improvements to the SRFlow samples, especially in the
finer details such as facial features and hair texture. Quan-
titatively, CDSB-C produces significant improvement over



N = 5 N = 10

CSGM 17.22/0.672 20.03/0.795

CDSB 18.55/0.746 20.69/0.792

CSGM-C 18.61/0.749 20.83/0.838

CDSB-C 19.67/0.753 20.95/0.840

(a)

N = 10 N = 20

14.77/0.599 16.31/0.706

16.24/0.618 16.61/0.657

16.38/0.701 16.53/0.730

16.60/0.700 16.65/0.747

(b)

N = 20 N = 50

19.52/0.471/92.02 20.52/0.567/48.68

19.72/0.504/57.22 20.70/0.590/40.08

20.44/0.566/44.44 20.84/0.592/22.89

21.11/0.614/28.41 21.46/0.646/13.71

(c)

N = 20 N = 50

24.22/0.844/17.62 25.29/0.878/7.18

24.88/0.850/19.85 26.61/0.894/3.87

28.26/0.914/3.63 28.14/0.913/1.31

28.19/0.915/2.28 28.06/0.914/1.14

(d)

Table 2: Results for (a) MNIST 4x SR; (b) MNIST 14x14 inpainting; (c) CelebA 4x SR with Gaussian noise; (d) CelebA
32x32 inpainting. Reported results are denoted in the format PSNR↑/SSIM↑(/FID↓).

(a) yobs (b) Ground truth

(c) CSGM (d) CDSB-C

Figure 3: Uncurated samples for the MNIST 4x SR task
with N = 5.

(a) yobs (b) Ground truth

(c) CSGM (d) CDSB-C

Figure 4: Uncurated samples for the CelebA 4x SR with
Gaussian noise task with N = 20.

the FID score at the cost of a decrease in PSNR; see Table 3.
Note that this choice of non-Gaussian pref(x|y) is not com-
patible with CSGM. Interestingly CSGM-C still improves
the PSNR compared to SRFlow, but produces worse FID
scores than CDSB-C and blurry samples.

7.4 FILTERING IN STATE-SPACE MODELS

Consider a state-space model defined by a bivariate Markov
chain (Xt, Yt)t≥1 of initial density µ(x1)g(y1|x1) and tran-
sition density f(xt+1|xt)g(yt+1|xt+1) where Xt is latent
while Yt is observed. We are interested in estimating se-
quentially in time the filtering distribution p(xt|yobs

1:t ), that is
the posterior of Xt given the observations Y1:t = yobs

1:t . We
show here how CDSB can be used at each time t to obtain a
sample approximation of these filtering distributions. This

CDSB-based algorithm only requires us being able to sam-
ple from the transition density f(xt+1|xt)g(yt+1|xt+1) and
is thus more generally applicable than standard techniques
such as particle filters [Doucet and Johansen, 2009].

Assume at time t, one has a collection of sam-
ples {Xi

t}Mi=1 distributed (approximately) according to
p(xt|yobs

1:t ). We sample Xi
t+1 ∼ f(xt+1|Xi

t) and Y i
t+1 ∼

g(yt+1|Xi
t+1). The resulting samples {Xi

t+1, Y
i
t+1}Mi=1

are thus distributed according to pjoin(xt+1, yt+1) :=
p(xt+1, yt+1|yobs

1:t ). We can also easily obtain samples
from pjref(xt+1, yt+1) := pref(xt+1|yt+1, y

obs
1:t )p(yt+1|yobs

1:t )
where pref(xt+1|yt+1, y

obs
1:t ) is an easy-to-sample distribu-

tion designed by the user. Thus we can use CDSB to obtain
a (stochastic) transport map between pjoin(xt+1, yt+1) and
pjref(xt+1, yt+1) and applying it to Yt+1 = yobs

t+1, we can
obtain new samples from p(xt+1|yobs

1:t+1). A similar strat-



pref(x|y) CSGM-C CDSB-C

Gaussian 22.21/0.521/87.02 23.86/0.628/31.65

SRFlow τ = 0.8 24.97/0.701/26.83 24.34/0.674/15.00

SRFlow τ = 0.8 24.83/0.702/30.92

Table 3: Results for CelebA 8x SR. Reported results are
denoted in the format PSNR↑/SSIM↑/FID↓. The final
row reports our evaluated results of the SRFlow model.

(a) yobs (b) Ground truth

(c) SRFlow (d) CDSB-C

Figure 5: Paired samples for CelebA 8x SR. The SRFlow
samples (c) are inputted as conditional initialization into
CDSB-C (d), which produces fine modifications over
N = 10 steps (Best viewed when zoomed in).

egy for filtering based on deterministic transport maps was
recently proposed by Spantini et al. [2022].

We apply CSGM and CDSB to the Lorenz-63 model [Law
et al., 2015] following the procedure above for a time series
of length 2000. We consider a short diffusion process with
N = 20 steps, as well as a long one with N = 100. To
accelerate the sequential inference process, in this example
we use analytic basis regression instead of neural networks
for all methods, and we only run 5 iterations of CDSB. As
the EnKF is applicable to this model, we can use the result-
ing approximate Gaussian filtering distribution it outputs for
pref(xt+1|yt+1, y

obs
1:t ) in CSGM-C and CDSB-C.

Table 4 shows that for N = 20 both CDSB and CDSB-C
successfully perform filtering and outperform the EnKF,
whereas both CSGM and CSGM-C fail to track the state
accurately and diverge after a few hundred times steps.

CDSB-C achieves the lowest error consistently. When us-
ing N = 100, CSGM can achieve RMSE comparable with
CDSB-C using N = 20, but CDSB still provides advantages
compared to CSGM. CSGM-C achieves comparable RMSE
as CDSB-C with suitably long diffusion process in this case.
For lower ensemble size, e.g. M = 200, occasional large
errors occur for some of the runs; see supplementary for
details. We conjecture that this is due to overfitting.

M 500 1000 2000
EnKF .354±0.006 .355±.005 .354±.003

CSGM(-C) (short) Diverges
CDSB (short) .251±.011 .218±.008 .196±.005

CDSB-C (short) .236±.012 .207±.014 .178±.007
CSGM (long) .232±.008 .203±.009 .182±.009
CDSB (long) .220±.012 .195±.007 .166±.004

CSGM-C (long) .210±.009 .185±.005 .162±.004
CDSB-C (long) .218±.014 .185±.008 .160±.003

Table 4: RMSEs over 10 runs between each algorithm’s
filtering means and the ground truth filtering means for
N = 20 (short) and N = 100 (long).

8 DISCUSSION

We have proposed a SB formulation of conditional simula-
tion and an algorithm, CDSB, to approximate its solution.
The first iteration of CDSB coincides with CSGM while
subsequent ones can be thought of as refining it. This theo-
retically grounded approach is complementary to the many
other techniques that have been recently proposed to accel-
erate SGMs and could be used in conjunction with them.
However, it also suffers from limitations. As CDSB approxi-
mates numerically the diffusion processes output by IPF, the
minimum N one can pick to obtain reliable approximations
is related to the steepness of the drift of these iterates which
is practically unknown. Additionally CSGM and CDSB are
only using yobs when we want to sample from p(x|yobs) but
not at the training stage. Hence if yobs is not an observation
“typical” under pobs(y), the approximation of the posterior
can be unreliable. In the ABC context, the best available
methods rely on procedures which sample synthetic obser-
vations in the neighbourhood of yobs. It would be interesting
but challenging to extend such ideas to CSGM and CDSB.
Other interesting potential extensions include developing an
amortized version of CDSB for filtering that would avoid
having to solve a SB problem at each time step, and a con-
ditional version of the multimarginal SB problem.
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