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Abstract

In Bayesian Deep Learning, distributions over the
output of classification neural networks are often
approximated by first constructing a Gaussian dis-
tribution over the weights, then sampling from it
to receive a distribution over the softmax outputs.
This is costly. We reconsider old work (Laplace
Bridge) to construct a Dirichlet approximation of
this softmax output distribution, which yields an
analytic map between Gaussian distributions in
logit space and Dirichlet distributions (the conju-
gate prior to the Categorical distribution) in the out-
put space. Importantly, the vanilla Laplace Bridge
comes with certain limitations. We analyze those
and suggest a simple solution that compares fa-
vorably to other commonly used estimates of the
softmax-Gaussian integral. We demonstrate that
the resulting Dirichlet distribution has multiple
advantages, in particular, more efficient compu-
tation of the uncertainty estimate and scaling to
large datasets and networks like ImageNet and
DenseNet. We further demonstrate the usefulness
of this Dirichlet approximation by using it to con-
struct a lightweight uncertainty-aware output rank-
ing for ImageNet.

1 INTRODUCTION

Quantifying the uncertainty of Neural Networks’ (NNs) pre-
dictions is important in safety-critical applications such as
medical-diagnosis [Begoli et al., 2019] and self-driving vehi-
cles [McAllister et al., 2017, Michelmore et al., 2018], but it
is often limited by computational constraints. Architectures
for classification tasks produce a probability distribution
as their output, constructed by applying the softmax to the
point-estimate output of the penultimate layer. However,
it has been shown that this distribution is overconfident
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Figure 1: High-level sketch of the Laplace Bridge for BNNs.
p(y|x,D) denotes the marginalized softmax output, i.e. the
mean of the Dirichlet.

[Nguyen et al., 2015, Hein et al., 2019] and thus cannot be
used for predictive uncertainty quantification. Approximate
Bayesian methods provide quantified uncertainty over the
NN’s parameters in a tractable fashion. The commonly used
Gaussian approximate posterior [MacKay, 1992a, Graves,
2011, Blundell et al., 2015, Ritter et al., 2018] approxi-
mately induces a Gaussian distribution over the logits of a
NN [Mackay, 1995], but the associated predictive distribu-
tion is not analytic. It is typically approximated by Monte
Carlo (MC) integration. This requires multiple samples,
making prediction in Bayesian Neural Networks (BNNs) a
comparably expensive operation.

Here we reconsider an old but largely overlooked idea orig-
inally proposed by David JC MacKay [1998] in a differ-
ent setting (arguably the inverse of the Deep Learning set-
ting), which transforms a Dirichlet distribution into a Gaus-
sian. When Dirichlet distributions are transformed with the
inverse-softmax function, its shape effectively approximates
a Gaussian. The inverse of this approximation, which will be
called the Laplace Bridge (LB) here [Hennig et al., 2012],
can also in principle analytically map the parameters of
a Gaussian distribution onto those of a Dirichlet distribu-
tion. Given a Gaussian distribution over the logits of a NN,
one can thus efficiently obtain an approximate Dirichlet
distribution over the softmax outputs. However, the bridge
was previously used to map in the Gaussian to Dirichlet
direction. The inverse direction of the vanilla LB has some
limitations, arguably caused by the larger state-space of
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Gaussian relative to the Dirichlet exponential family.

Our contributions are a) We analyze these limits and suggest
a solution that allows for the practical application of the LB.
b) We show how the result can be used in the context of
BNNs (see Figure 1 and 3). c) We empirically evaluate the
quality of this approximation, its speed-up, and its perfor-
mance for out-of-data distribution tasks. d) Finally, we show
a use case on ImageNet, leveraging the analytic properties
of Dirichlets to improve the popular top-k metric through
uncertainties.

2 THE LAPLACE BRIDGE

Laplace approximations1[MacKay, 1992a, Daxberger et al.,
2021] are a popular and lightweight method to approxi-
mate general probability distributions q(x) with a Gaussian
N (x|µ,Σ) when q(x) is twice differentiable and the Hes-
sian at the mode is positive definite. They set µ to a mode
of q, and Σ = −(∇2 log q(x)|µ)−1, the inverse Hessian
of log q at that mode. This scheme can work well if the
true distribution is unimodal and defined on the real vector
space.

The Dirichlet distribution, which has the density function

Dir(π|α) :=
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

παk−1
k , (1)

is defined on the probability simplex and can be “multi-
modal” in the sense that the distribution diverges in the
k-corner of the simplex when αk < 1. This precludes a
Laplace approximation, at least in the naïve form described
above. However, MacKay [1998] noted that both can be
fixed elegantly by a change of variable (Figure 2). Details
of the following argument can be found in Appendices B
and D. Consider the K-dimensional variable π ∼ Dir(π|α)
defined as the softmax of z ∈ RK :

πk(z) :=
exp(zk)∑K
l=1 exp(zl)

, (2)

for all k = 1, . . . ,K. We will call z the logit of π. When
expressed as a function of z, the density of the Dirichlet in π
has to be multiplied by the absolute value of the determinant
of the Jacobian

det
∂π

∂z
=
∏
k

πk(zk), (3)

1For clarity: Laplace approximations are also one out of sev-
eral possible ways to construct a Gaussian approximation to the
weight posterior of a NN, by constructing a second-order Taylor
approximation of the empirical risk at the trained weights. This is
not the way they are used in this section. The LB is agnostic to how
the input Gaussian distribution is constructed as it maps parameters.
It could, e.g., also be constructed as a variational approximation,
or the moments of Monte Carlo samples.

thus removing the “−1” terms in the exponent:

Dirz(π(z)|α) :=
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

πk(z)
αk (4)

This density of z, the Dirichlet distribution in the softmax
basis, can now be accurately approximated by a Gaussian
through a Laplace approximation (see Figure 2), yielding an
analytic map from the parameter α ∈ RK

+ to the parameters
of the Gaussian (µ ∈ RK and symmetric positive definite
Σ ∈ RK×K), given by

µk = logαk − 1

K

K∑
l=1

logαl , (5)

Σkℓ = δkℓ
1

αk
− 1

K

[
1

αk
+

1

αℓ
− 1

K

K∑
u=1

1

αu

]
. (6)

The corresponding derivations require care because the
Gaussian parameter space is evidently larger than that of
the Dirichlet and not fully identified by the transformation.
A pseudo-inverse of this map was provided as a side result
in Hennig et al. [2012]. It maps the Gaussian parameters to
those of the Dirichlet as

αk =
1

Σkk

(
1− 2

K
+

eµk

K2

K∑
l=1

e−µl

)
(7)

(this equation ignores off-diagonal elements of Σ, more
discussion in Appendix C. Together, Eqs. (5), (6) and (7)
will be called the Laplace Bridge. For Bayesian Deep Learn-
ing, we only use Equation (7) which maps from µ,Σ to α.
Even though the LB implies a reduction of the distribution’s
expressiveness, we show in Section 3 that this map is still
sufficiently accurate.

3 THE LAPLACE BRIDGE FOR BNNS

The Laplace Bridge can be applied to any NN setup that
maps from a Gaussian to probabilities by using the softmax.
Throughout this paper, we use a last-layer Laplace approx-
imation of the network as successfully used e.g. by Snoek
et al. [2015], Kristiadi et al. [2020]. It is given by

q(z|x) ≈ N (z|µW(L)ϕ(x), ϕ(x)TΣW(L)ϕ(x)) , (8)

where ϕ(x) denotes the output of the first L − 1 layers,
µW(l) is the maximum a posteriori (MAP) estimate for the
weights of the last layer, and ΣW(l) is the inverse of the neg-
ative loss Hessian w.r.t. W(l), ΣW(L) = −(∇2

W(L)L)−1

around the MAP estimate W(L). Even though last-layer
Laplace approximations only use uncertainty from the last
linear layer, they empirically perform as well as full Laplace
approximations [Kristiadi et al., 2020]. Furthermore, they
allow for very fast inference, thus being a good match for
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Figure 2: (Adapted from Hennig et al. [2012]). Visualization of the Laplace Bridge for the Beta distribution (1D special case
of the Dirichlet) for three sets of parameters. Left: “Generic” Laplace approximations of standard Beta distributions by
Gaussians. Note that the Beta Distribution (red) does not have a valid approximation because its Hessian is not positive
semi-definite. Middle: Laplace approximation to the same distributions after basis transformation through the softmax (4).
The transformation makes the distributions “more Gaussian” (i.e. uni-modal, bell-shaped, with support on the real line), thus
making the Laplace approximation more accurate. Right: The same Beta distributions, with the back-transformation of the
Laplace approximations from the middle figure to the simplex, yielding an improved approximate distribution. In contrast to
the left-most image, the dashed lines now actually are probability densities (they integrate to 1 on the simplex).

the LB. We use diagonal and Kronecker approximations to
the Hessian (see Appendix D).

Using the LB we can analytically approximate the density
of the softmax-Gaussian random variable that is the output
of the BNN as a Dirichlet rather than using many sam-
ples. As shown in Eq. (7), it requires O(K) computations
to construct the K parameters αk of the Dirichlet. In con-
trast, MC-integration has computational costs of O(MJ),
where M is the number of samples and J is the cost of
sampling from q(z|x) (typically J is of order K2 after an
initial O(K3) operation for a matrix decomposition of the
covariance). The MC approximation has the usual sampling
error of O(1/

√
M), while the LB has a fixed but small error

(empirical comparison in Section 6.4). This means that com-
puting the LB is faster than drawing a single MC sample
while yielding a full distribution.

Further benefits of this approximation arise from the con-
venient analytical properties of the Dirichlet exponential
family. For example, a point estimate of the posterior pre-
dictive distribution is directly given by the Dirichlet’s mean,

E[π] =

(
α1∑K
l=1 αl

, . . . ,
αK∑K
l=1 αl

)⊤

. (9)

This removes the necessity for MC integration and can be
computed analytically. Additionally, Dirichlets have Dirich-
let marginals: If p(π) = Dir(π|α), then

p

π1, . . . , πj ,
∑
k>j

πk

 = Dir

α1, . . . , αj ,
∑
k>j

αk

 .

(10)
Thus marginal distributions of arbitrary subsets of outputs
(including binary marginals) can be computed in closed-

form.

An additional benefit of the LB for BNNs is that
it is more flexible than an MC-integral. If we let
p(π) be the distribution over π := softmax(z) :=
[ez1/

∑
l e

zl , . . . , ezK/
∑

l e
zl ]⊤, then the MC-integral can

be seen as a “point-estimate” of this distribution since it
approximates E[π]. In contrast, the Dirichlet distribution
Dir(π|α) approximates the distribution p(π). Thus, the LB
enables tasks that can be done only with a distribution but
not a point estimate. For instance, one could ask “what is
the distribution of the softmax output of the first L classes?”
when one is dealing with K-class (L < K) classification.
Since the marginal distribution can be computed analytically
with Eq. (10), the LB provides a convenient yet cheap way
of answering this question.

4 LIMITATIONS OF THE LAPLACE
BRIDGE

There are two limitations to applying the LB as presented in
Equation (7). First, the LB assumes that the random variable
of the Gaussian sums to zero due to the difference in degrees
of freedom between Dirichlet and Gaussian (see Appendix
C). Thus, we have to add a correction that projects from any
arbitrary Gaussian to one that fulfills this constraint. The
resulting Gaussian (see Appendix A) is

N
(
x|µ− Σ11⊤µ

1⊤Σ1
,Σ− Σ11⊤Σ

1⊤Σ1

)
(11)

where 1 is the one-vector of size K.

Second, the softmax-Dirichlet distribution is asymmetric
for extremely sparse cases (see Figure 4). These arise in
regions where the logistic transform (the 1D special case
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Figure 3: Left column: vanilla MAP estimate which is overconfident. Top row: mean of softmax applied to Gaussian
samples. Middle row: mean of the vanilla LB. Bottom row: mean of the corrected LB. The vanilla LB yields overconfident
prediction far from the data. Our proposed correction fixes this issue, making the LB’s approximation close to MC.
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Figure 4: In most scenarios (upper row) the LB provides a
good fit. However, in some high-variance scenarios (lower
row) the softmax-Dirichlet becomes asymmetric and thus
the Gaussian is a suboptimal fit. We propose a correction
(right column) that projects the Gaussian into a lower-
variance region before applying the LB. This can be un-
derstood as “pulling back” the Dirichlet to the dynamic of
the logistic function (indicated here by its derivative ∂σ)
and thus yields a better approximation.

of the softmax) is nearly flat (as indicated by its derivative
in Figure 4). Therefore, the LA is suboptimal in these high-
variance cases.

This limitation can also be explained by looking at Equa-
tion (7). We observe that Σ contributes linearly to α with

1
Σkk

while µ contributes exponentially with exp(µk). For
settings where Σ is small, this doesn’t have a large effect.
However, when Σkk and µk grow the LB results differ from
softmax Gaussian samples. In the LB, the resulting α is
dominated by the mean and the linear influence of the vari-
ance cannot correct sufficiently. For Monte Carlo sampling,
on the other hand, the result is mostly determined by the
large variance and then amplified through the softmax. Our
proposed normalization to the LB reduces this effect (see
Figure 3).

In BNNs, we often encounter such cases, especially far away
from the data (see Figure 3 top). Therefore, we propose an
additional correction for practical purposes:

c = vmean(Σ) ·
1√
K/2

(12)

µ′ =
µ√
c

(13)

Σ′ =
Σ

c
(14)

where vmean(Σ) denotes the mean variance of Σ, vmean(Σ) =∑
i Σii. The factor of 1√

K/2
is added because we found that

higher dimensionalities require less correction. Since our
correction is just a rescaling, the zero-sum constrained is
still fulfilled. This normalization that can be understood
as “pulling back” the distribution into a space where it is
symmetric has higher approximation quality. This correction
is applied after the zero-sum constraint correction.

We want to point out that our correction is motivated by
experimentation and the theoretical insights detailed above.



There is no theoretical derivation from first principles for the
correction. We provide additional explanations and figures
in Appendix A.

Throughout the paper, we will call this normalizing correc-
tion LB-norm and explicitly state when we use it. Otherwise,
we will use the vanilla version with zero-sum correction.

5 RELATED WORK

In BNNs, analytic approximations of posterior predictive
distributions have attracted a great deal of research. In the
binary classification case, for example, the probit approx-
imation [Gibbs, 1997, Lu et al., 2020] has been proposed
already in the 1990s [Spiegelhalter and Lauritzen, 1990,
MacKay, 1992b]. However, while there exist some bounds
[Titsias, 2016] and approximations of the expected log-
sum-exponent function [Ahmed and Xing, 2007, Braun and
McAuliffe, 2010], in the multi-class case, obtaining a good
analytic approximation of the expected softmax function
under a Gaussian measure is an open problem. Our LB can
be used to produce a close analytical approximation of this
integral. It thus furthers the trend of sampling-free solutions
within Bayesian Deep Learning [Wu et al., 2018, Hauss-
mann et al., 2019, etc.]. The crucial difference is that, unlike
these methods, the LB approximates the full distribution
over the softmax outputs of a deep network.

Previous approaches proposed to model the distribution of
softmax outputs of a network directly. Similar to the LB,
Malinin and Gales [2018, 2019], Sensoy et al. [2018] pro-
posed to use the Dirichlet distribution to model the posterior
predictive for non-Bayesian networks. They further pro-
posed novel training techniques in order to directly learn
the Dirichlet. Additionally, different work on Distillation
[Malinin et al., 2019, Vadera et al., 2020] takes larger mod-
els and distills them into a smaller one. The result of some
distillation methods is a Dirichlet similar to the LB. We
compare against prior nets in the experiments.

In contrast, the LB tackles the problem of approximating
the distribution over the softmax outputs of the ubiqui-
tous Gaussian-approximated BNNs [Graves, 2011, Blundell
et al., 2015, Louizos and Welling, 2016, Sun et al., 2017,
etc] without any additional training procedure. Therefore the
LB can, for example, be used with pre-trained weights on
large datasets while prior networks and distillation usually
require training from scratch.

6 EXPERIMENTS

We conduct multiple experiments. Firstly, we compare
the LB to the MC-integral on a 2D toy example (Sec-
tion 6.1). Secondly, we apply the same comparison to out-of-
distribution (OOD) detection in many settings (Section 6.2).
Thirdly, we compare the commonly used probit approxima-

tion to the LB in section 6.3 Fourthly, we compare their
computational cost and contextualize the speed-up for the
prediction process in Section 6.4. Finally, in Section 6.5, we
present analysis on ImageNet [Russakovsky et al., 2014] to
demonstrate the scalability of the LB and the advantage of
having a full Dirichlet distribution over softmax outputs. We
extended Laplace torch [Daxberger et al., 2021] for the ex-
periments. Code can be found in the accompanying GitHub
repository.2

For all experiments, a last-layer Laplace approximation has
been applied. This scheme has been successfully used by
Snoek et al. [2015], Kristiadi et al. [2020]. We use diago-
nal and Kronecker-factorized (KFAC)[Ritter et al., 2018,
Martens and Grosse, 2015] approximations of the Hessian,
since inverting the exact Hessian is too costly. A detailed
mathematical explanation and setup of the experiments can
be found in Appendix D. While the LB could also be applied
to different approximations of a Gaussian posterior predic-
tive such as Variational Inference [Graves, 2011, Blundell
et al., 2015], we used a Laplace approximation in our exper-
iments to construct such an approximation. This is for two
reasons: (i) it is one of the fastest ways to get a Gaussian
posterior predictive and (ii) it can be applied to pre-trained
networks which is especially useful for large problems such
as ImageNet. Nevertheless, we want to emphasize again
that the LB can be applied to any Gaussian over the outputs
independent of the way it was generated.

6.1 2D TOY EXAMPLE

We train a simple ReLU network on the 2D half-moon prob-
lems from scikit-learn [Pedregosa et al., 2011]. As can be
seen in Figure 3 the MAP estimate and vanilla LB are over-
confident for the reasons discussed in 4 but the normalized
version yields a near-perfect fit.

6.2 OOD DETECTION

We compare the performance of the LB to the MC-integral
(Diagonal and KFAC) on a standard OOD detection bench-
mark suite, to test whether the LB gives similar results to
the MC sampling methods. Following prior literature, we
use the standard expected calibration error (ECE) and area
under the ROC-curve (AUROC) metrics [Hendrycks and
Gimpel, 2016].

For the exact setup, we refer the reader to Appendix D.
We use the mean of the Dirichlet to obtain a comparable
approximation to the MC-integral. The results are presented
in Table 1.

We find that the results of the LB or its normalized version
are comparable throughout the entire benchmark suite. Since

2https://github.com/mariushobbhahn/LB_
for_BNNs_official

https://github.com/mariushobbhahn/LB_for_BNNs_official
https://github.com/mariushobbhahn/LB_for_BNNs_official


Table 1: OOD detection results. In all scenarios, the Laplace Bridge (LB) or its normalized version yield comparable results
to the MC estimate while being much faster. For MC experiments, we draw 100 samples.

Diag.-LA + MC Diag.-LA + LB Diag.-LA + LB-norm Kron.-LA + MC Kron.-LA + LB Kron.-LA + LB-norm
Train Test ECE ↓ AUROC ↑ ECE ↓ AUROC ↑ ECE ↓ AUROC ↑ ECE↓ AUROC ↑ ECE ↓ AUROC ↑ ECE ↓ AUROC ↑
MNIST FMNIST 0.464 0.975 0.478 0.981 0.498 0.951 0.390 0.987 0.553 0.977 0.364 0.990
MNIST notMNIST 0.396 0.965 0.600 0.930 0.360 0.955 0.366 0.974 0.634 0.912 0.294 0.986
MNIST KMNIST 0.429 0.974 0.617 0.949 0.391 0.970 0.374 0.985 0.619 0.956 0.328 0.991

CIFAR10 CIFAR100 0.379 0.887 0.691 0.859 0.220 0.883 0.577 0.878 0.670 0.855 0.558 0.866
CIFAR10 SVHN 0.309 0.948 0.652 0.928 0.155 0.948 0.447 0.955 0.635 0.924 0.327 0.965

SVHN CIFAR100 0.615 0.957 0.667 0.962 0.679 0.944 0.583 0.959 0.659 0.962 0.575 0.953
SVHN CIFAR10 0.600 0.958 0.659 0.960 0.662 0.947 0.567 0.960 0.651 0.959 0.556 0.955

CIFAR100 CIFAR10 0.474 0.788 0.239 0.791 0.834 0.757 0.479 0.787 0.202 0.790 0.855 0.749
CIFAR100 SVHN 0.470 0.795 0.207 0.815 0.842 0.748 0.469 0.798 0.183 0.807 0.849 0.761

Table 2: Comparison of the extended probit approximation with the normalized version of the LB norm. While the probit
approximation performs well on in-dist problems, the LB norm is better on out-of-distribution tasks.

Diag Probit Diag LB norm
Train Test MMC ↓ AUROC ↑ NLL ↓ ECE ↓ Brier ↓ MMC ↓ AUROC ↑ NLL ↓ ECE ↓ Brier ↓
MNIST MNIST 0.967 - 0.050 0.024 0.002 0.944 - 0.078 0.045 0.003
MNIST FMNIST 0.597 0.971 3.827 0.523 0.128 0.589 0.951 3.538 0.498 0.124
MNIST notMNIST 0.616 0.958 3.839 0.488 0.123 0.492 0.955 3.070 0.360 0.111
MNIST KMNIST 0.580 0.969 4.276 0.489 0.126 0.484 0.970 3.288 0.391 0.115

CIFAR10 CIFAR10 0.869 - 0.237 0.083 0.009 0.517 - 0.727 0.433 0.029
CIFAR10 CIFAR100 0.589 0.882 3.334 0.485 0.123 0.319 0.883 2.590 0.220 0.099
CIFAR10 SVHN 0.510 0.946 3.097 0.394 0.114 0.273 0.948 2.457 0.155 0.094

Table 3: Comparison of last-layer vs. full-layer Laplace approximation. Last-layer results are in the upper half and full-
layer results are in the bottom half. We find that, as expected, full-layer results are slightly better than for the last-layer
approximation.

Diag.-LA + MC Diag.-LA + LB Diag.-LA + LB-norm Kron.-LA + MC Kron.-LA + LB Kron.-LA + LB-norm
Train Test ECE ↓ AUROC ↑ ECE ↓ AUROC ↑ ECE ↓ AUROC ↑ ECE↓ AUROC ↑ ECE ↓ AUROC ↑ ECE ↓ AUROC ↑

MNIST FMNIST 0.464 0.975 0.478 0.981 0.498 0.951 0.390 0.987 0.553 0.977 0.364 0.990
MNIST notMNIST 0.396 0.965 0.600 0.930 0.360 0.955 0.366 0.974 0.634 0.912 0.294 0.986
MNIST KMNIST 0.429 0.974 0.617 0.949 0.391 0.970 0.374 0.985 0.619 0.956 0.328 0.991

MNIST FMNIST 0.317 0.980 0.322 0.990 0.123 0.986 0.288 0.985 0.528 0.980 0.135 0.991
MNIST notMNIST 0.280 0.960 0.566 0.924 0.126 0.952 0.282 0.958 0.629 0.915 0.171 0.973
MNIST KMNIST 0.309 0.976 0.557 0.955 0.112 0.972 0.279 0.981 0.615 0.958 0.152 0.986

Table 4: Comparison of Prior Networks with the normalized version of the LB norm. PNs consistently outperform the LB.
For discussion see main text.

Prior Network Diag LB norm
Train Test MMC ↓ AUROC ↑ ECE ↓ NLL ↓ Brier ↓ MMC ↓ AUROC ↑ ECE ↓ NLL ↓ Brier ↓
MNIST MNIST 0.802 - 0.184 0.246 0.008 0.944 - 0.045 0.078 0.003
MNIST FMNIST 0.273 0.995 0.212 2.659 0.098 0.589 0.951 0.498 3.538 0.124
MNIST notMNIST 0.447 0.938 0.314 2.962 0.105 0.492 0.955 0.360 3.070 0.111
MNIST KMNIST 0.372 0.976 0.261 3.142 0.104 0.484 0.970 0.391 3.288 0.115

the LB is much faster it can be a good replacement for MC
in time-sensitive applications.

Furthermore, we compare the LB to prior networks (PNs)
in Table 4 since PNs also yield a Dirichlet distribution as
an output on classification tasks. We find that PNs outper-
form the LB in most cases. However, we don’t think this
is a major problem since they have different aims and use

cases. The LB creates a Dirichlet distribution on top of an
already existing Gaussian model while PNs describe a train-
ing procedure and have to be trained from scratch. Thus, the
primary comparison for the LB should be against sampling
and other integral approximations like in Table 2.

Lastly, we compare the LB for a full-layer vs. last-layer
Laplace approximation of the network in Table 3. We find
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Figure 5: KL-divergence plotted against the number of samples (left) and wall-clock time (right). The Monte Carlo density
estimation becomes as good as the LB after around 750 to 10k samples and takes at least 100 times longer. The three lines
(blue, yellow, green) represent three different sets of parameters. The short vertical bars indicate where the KL divergence of
the samples overtake that of the LB.

that, as expected, the full-layer setting yield slightly better
results. However, since the primary advantage of the LB
is its speed, we think the natural fit for it is a last-layer
approximation.

6.3 COMPARISON TO THE PROBIT
APPROXIMATION

The multi-class probit approximation [Gibbs, 1997, Lu et al.,
2020] is a commonly used approximation for the softmax-
Gaussian integral. We compare it to the diagonal normalized
LB in Table 2. We find that the LB norm outperforms the
probit approximation in most OOD tasks. When we use a
KFAC approximation of the Hessian, this trend still holds
(see Appendix D).

6.4 TIME COMPARISON

We compare the computational cost of the density-estimated
psample distribution via sampling and the Dirichlet obtained
from the LB pLB for approximating the true ptrue over MC-
sampling. Different numbers of samples are drawn from
the Gaussian, the softmax is applied and the KL-divergence
between the histogram of the samples with the true distribu-
tion is computed. We use KL-divergences DKL(ptrue∥psample)
and DKL(ptrue∥pLB), respectively, to measure similarity be-
tween approximations and ground truth while the number of
samples for psample is increased exponentially. The true dis-
tribution ptrue is constructed via MC with 100k samples. The
experiment is conducted for three different Gaussian distri-
butions over R3. Since the softmax applied to a Gaussian
does not have an analytic form, the algebraic calculation
of the approximation error is not possible and an empirical
evaluation via sampling is the best option. The fact that there
is no analytic solution is part of the justification for using
the LB in the first place.

Figure 5 suggests that the number of samples required such

that the distribution psample approximates the true distribu-
tion ptrue as good as the Dirichlet distribution obtained via
the LB is large, i.e. somewhere between 750 and 10k. This
translates to a wall-clock time advantage of at least a factor
of 100 before sampling becomes competitive in quality with
the LB.

To further demonstrate the low compute cost of the LB, we
timed different parts of the process for our setup. On our
hardware and setup, training a ResNet-18 on CIFAR10 over
130 epochs takes 71 minutes and 30 seconds. Computing a
Hessian for the network from the training data can be done
with BACKPACK [Dangel et al., 2020] at the cost of one
backward pass over the training data or around 29 seconds.
This one additional backward pass is the only change to the
training procedure compared to conventional training. Since
the LB only applies to the last step of the prediction pipeline,
it is important to compare it to a forward pass through the
rest of the network. Re-using the ResNet-18 and CIFAR10
setup we measure the time in seconds for a forward pass, for
the application of the LB, and for the sampling procedure
with 10, 100, and 1000 samples. The resulting sum total
time for the entire test set is given in Table 5. We find that
sampling takes up between 94% (for 1000 samples) and 17%
(for 10 samples) of the entire prediction while the LB is only
4%. Thus, the acceleration through the LB is a significant
improvement for the prediction process as a whole, not only
for a part of the pipeline.

6.5 UNCERTAINTY-AWARE OUTPUT RANKING
ON IMAGENET

Due to the cost of sampling-based inference, classification
on large datasets with many classes, like ImageNet, is rarely
done in a Bayesian fashion. Instead, models for such tasks
are often compared along a top-k metric (e.g. k = 5).

Although widely accepted, this metric has some pathologies:
Depending on how close the point predictions are relative



Table 5: Contextualization of the timings for the entire predictive process of a ResNet-18 on CIFAR-10. We see that with
1000 samples the forward pass only uses 6% of the time whereas the sampling uses 94%. In contrast the split for the LB is
96% and 4% respectively. We conclude that the LB provides a significant speed-up of the process as a whole.

# samples in brackets Forward pass +MC(1000) +MC(100) +MC(10) +Laplace Bridge

Time in seconds 0.300 ± 0.003 4.712 ± 0.063 0.488 ± 0.009 0.059 ± 0.001 0.013 ± 0.000
Fraction of overall time 0.06/0.38/0.83/0.96 0.94 0.62 0.17 0.04
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Figure 6: Upper row: images from the “laptop” class of ImageNet. Bottom row: Beta marginals of the top-k predictions for
the respective image. In the first column, the overlap between the marginal of all classes is large, signifying high uncertainty,
i.e. the prediction is “do not know”. In the second column, “notebook” and “laptop” have confident, yet overlapping marginal
densities and therefore yield a top-2 prediction: “either notebook or laptop”. In the third column “desktop computer”,
“screen” and “monitor” have overlapping marginal densities, yielding a top-3 estimate. The last case shows a top-1 estimate:
the network is confident that “laptop” is the only correct label.

to their uncertainty, the total number of likely class labels
should be allowed to vary from case to case. Figure 6 shows
examples: In some cases (panel 2) the classifier is quite
confident that the image in question belongs to one out
of only two classes and all others are highly unlikely. In
others (e.g. panel 1), a larger set of hypotheses are all nearly
equally probable.

The Laplace Bridge, in conjunction with the last-layer
Laplace approximations, can be used to address this issue.
To this end, the analytic properties of its Dirichlet prediction
are particularly useful: Recall that the marginal distribution
p(πi,

∑
j ̸=i πj) over each component of a Dirichlet relative

to all other components is Beta(αi,
∑

j ̸=i αj).

We leverage this property to propose a simple uncertainty-
aware top-k decision rule inspired by statistical tests. In-
stead of keeping k fixed, it uses the model’s confidence to
adapt k (pseudo-code in Algorithm 1).

We begin by sorting the class predictions in order of their ex-
pected probability αi. Then we compute the Beta marginal

of the most likely class. Now, we compute the overlap of
the next marginal and add that class to the list iff the overlap
is more than some threshold (e.g. 0.05). Continuing in this
fashion, the algorithm terminates with a finite value k ≤ K
of “non-separated” top classes.

The intuition behind this rule is that, if any Beta density
overlaps with the most likely one more than the threshold of,
say, 5%, the classifier cannot confidently predict one class
over the other. Thus, all classes sufficiently overlapping with
the top contender should be returned as the top estimates.

We evaluate this decision rule on the test set of ImageNet.
The overlap is calculated through the inverse CDF3 of the
respective Beta marginals. The original top-1 accuracy of
DenseNet on ImageNet is 0.744. In contrast, the uncertainty-
aware top-k method yields accuracies of over 0.85 while
average list lengths stay below 3 (see Figure 7). Further-
more, we find that most of the predictions given by the
uncertainty-aware metric still yielded a top-1 prediction.

3Also known as the quantile function or percent point function
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Figure 7: A histogram of ImageNet predictions’ length using
the proposed uncertainty-aware top-k. Results with more
than 10 proposed classes have been put into the 10-bin for
visibility.

This means that using uncertainty does not imply adding
meaningless classes to the prediction. Furthermore, there
are non-negligibly many cases where k equals to 2, 3, or 10
(all values larger than 10 are in the 10 bin).

Thus, using the uncertainty-aware prediction rule above,
the classifier can use its uncertainty to adaptively return a
longer or shorter list of predictions. This not only allows it
to improve accuracy over a hard top-1 threshold. Arguably,
the ability to vary the size of the predicted set of classes
is a practically useful functionality in itself. As Figure 6
shows anecdotally, some of the labels (like “notebook” and
“laptop”) are semantically so similar to each other that it
would seem only natural for the classifier to use them syn-
onymously.

7 CONCLUSION

We have adapted a previously developed approximation
scheme for new use in Bayesian Deep Learning. Given a
Gaussian approximation to the weight-space posterior of a
NN (which can be constructed by various means, including
another Laplace approximation), and an input, the Laplace
Bridge analytically maps the marginal Gaussian prediction
on the logits onto a Dirichlet distribution over the softmax
vectors. The associated computational cost of O(K) for K-
class prediction compares favorably to that of MC sampling.
The proposed method empirically preserves predictive un-
certainty, offering an attractive, low-cost, high-quality al-
ternative to Monte Carlo sampling. In conjunction with a
low-cost, last-layer Bayesian approximation, it is useful in
real-time applications wherever uncertainty is required—
especially because it drastically reduces the cost of predict-
ing a posterior distribution at test time for a minimal increase

Algorithm 1 Uncertainty-aware top-k

Input: A Dirichlet parameter α ∈ RK obtained by apply-
ing the LB to the Gaussian over the logit of an input, a
percentile threshold T e.g. 0.05, a function class_of that
returns the underlying class of a sorted index.

α̃ = sort_descending(α) // start with the highest confidence

α0 =
∑

i αi

C = {class_of(1)} // initialize top-k, must include at least one class

F1 = Beta(α̃1, α0 − α̃1) // the first marginal CDF

l1 = F−1
1 (T/2) // left T

2 percentile of the first marginal

for i = 2, . . . ,K do
Fi = Beta(α̃i, α0 − α̃i) // the current marginal CDF

ri = F−1
i (1− T/2) // right T

2 percentile of the current marginal

if ri > l1 then
C = C ∪ {class_of(i)} // overlap detected, add the current class

else
break // No more overlap, end the algorithm

end if
end for

Output: C // return the resulting top-k prediction

in cost at training time. The vanilla LB has some limitations,
for which we proposed a simple correction that outperforms
alternative softmax-integral approximations such as the com-
monly used multi-class probit. We demonstrate the utility of
the scheme for large-scale Bayesian inference by using it to
construct an uncertainty-aware top-k ranking on ImageNet.
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