
Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

MODELING STRONG AND HUMAN-LIKE GAMEPLAY
WITH KL-REGULARIZED SEARCH

Athul Paul Jacob ∗

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
apjacob@mit.edu

David J. Wu ∗

Meta AI Research
770 Broadway
New York, NY 10003, USA
dwu@fb.com

Gabriele Farina ∗

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
gfarina@cs.cmu.edu

Adam Lerer & Hengyuan Hu & Anton Bakhtin
Meta AI Research
770 Broadway
New York, NY 10003, USA
{alerer,hengyuan,yolo}@fb.com

Jacob Andreas
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
jda@mit.edu

Noam Brown
Meta AI Research
770 Broadway
New York, NY 10003, USA
noambrown@fb.com

ABSTRACT

We consider the task of building strong but human-like policies in multi-agent
decision-making problems, given examples of human behavior. Imitation learning
is effective at predicting human actions but may not match the strength of expert
humans, while self-play learning and search techniques (e.g. AlphaZero) lead
to strong performance but may produce policies that are difficult for humans to
understand and coordinate with. We show in chess and Go that regularizing search
based on the KL divergence from an imitation-learned policy results in higher
human prediction accuracy and stronger performance than imitation learning alone.
We then introduce a novel regret minimization algorithm that is regularized based
on the KL divergence from an imitation-learned policy, and show that using this
algorithm for search in no-press Diplomacy yields a policy that matches the human
prediction accuracy of imitation learning while being substantially stronger.

1 INTRODUCTION

Self-play AI algorithms have matched or exceeded expert human performance in many games, such as
chess (Campbell et al., 2002; Silver et al., 2018), Go (Silver et al., 2016; 2017), and poker (Moravčík
et al., 2017; Brown & Sandholm, 2017; 2019). However, the resulting policies often differ markedly
from how humans play (McIlroy-Young et al., 2020a). This is a serious problem for human-computer
interactions that involve cooperation rather than purely competition. In such settings, modeling the
other participants accurately is important for success. For example, it is important for a self-driving
car at a four-way stop sign to conform to existing human conventions rather than its own self-play
solution to the problem (Lerer & Peysakhovich, 2019). Even in purely adversarial games, the alien
nature of AI policies makes it difficult for humans to understand and learn from superhuman bots.

The classic approach toward modeling human behavior is imitation learning (IL) on human data. Yet,
evidence in multiple games indicates that IL on expert human data produces policies that are much
weaker than actual expert human play in domains with complex strategic planning. In this paper, we
study the problem of producing policies that are both strong and human-like in games with complex
strategic planning like chess, Go, Hanabi, and Diplomacy. In all four, we find that conducting search

∗Equal Contribution

1

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

with KL-regularization towards an IL policy matches or exceeds the prior state of the art for prediction
accuracy of expert humans while also better matching expert human performance.

In Section 3, we show that Monte Carlo tree search (MCTS) with a human imitation-learned policy
prior and value function surpasses prior state-of-the-art results for human prediction accuracy in
chess and Go. As explained by Grill et al. (2020), standard MCTS with a policy prior can be viewed
as a form of KL-regularized search, optimizing a value function subject to a KL-divergence term with
that prior. Although MCTS has been extensively studied for developing strong agents, it has been
explored much less in the context of developing human-like agents.

Section 4 builds on these findings and shows how to generalize them to a class of imperfect-
information games (in which ordinary MCTS is unsound and cannot be applied) via a new algorithm
for KL-regularized regret minimization. We show that existing regret minimization algorithms
achieve low accuracy in predicting expert human actions in no-press Diplomacy. We then introduce
the first regret minimization algorithm to incorporate a cost term proportional to the KL divergence
between the search policy and a human-imitation learned anchor policy. We call this algorithm
policy-regularized hedge, or piKL-hedge. We prove that piKL-hedge converges to an equilibrium in
which all players’ policies are optimal given the joint policies of the players and the cost of deviating
from the anchor policy. We then present results in no-press Diplomacy showing that piKL-hedge
produces policies that predict human actions as accurately as imitation learning while also improving
head-to-head performance in a population of prior agents.

Appendix M additionally shows that applying KL-regularization toward a human IL policy in the
search algorithm SPARTA Lerer et al. (2020) produces similar or better human prediction accuracy
while greatly improving performance in the benchmark domain of Hanabi Bard et al. (2020).

Our experiments demonstrate the benefits of KL-regularized search in all four of chess, Go, no-press
Diplomacy, and Hanabi to producing agents that are simultaneously more human-like and closer in
strength to actual human experts than purely imitation-learned models.

2 PRELIMINARIES

We study the problem of learning policies for multiplayer games. Here we briefly introduce the
key ingredients of both classes of games we study; Section 3 and Section 4 give a more formal
presentation tailored to individual game types and learning algorithms.

An (N -player) game is defined by a state space S, an action space A, a (deterministic) transition
function T : S × AN → S, and a collection of reward functions ui. We model the behavior
of each player in a game as a policy πi : S → ∆(A) (a distribution over actions given states).
In every round of a game, each player observes a (possibly incomplete) view sti of the current
state. One or more players select actions ati ∼ πi(· | sti), then each player receives a reward
ut
i(s

t,at = at1, . . . , a
t
n), and the game transitions into a new state st+1 = T (st,at). Each player i

aims to maximizes its expected reward, and the optimal policies for doing so may depend on the
policies π−i = {π1, . . . , πi−1, πi+1, . . . , πN} of the other players.

The sequential decision-making problem described above is extremely general, and in this paper we
focus on two special cases. In perfect-information games, players make moves sequentially (e.g.,
u1 and s2 depend only on a1, u2 and s3 depend only on a2, etc.). Many important games, including
chess and Go, fall into this category. Next, we study a more general class of imperfect-information,
simultaneous-action games that make no assumptions about the dependence of different ui and
T on a; here we focus on games with only a single round, also called matrix games. Owing to
the large differences between these two settings, the tools for computing strong policies are quite
different. The remainder of this paper accordingly offers a deeper exploration of each class of games:
perfect-information games in Section 3 and imperfect-information games in Section 4.

3 PERFECT-INFORMATION GAMES: POLICY REGULARIZATION IN MONTE
CARLO TREE SEARCH

In this section, we focus on developing strong human-like agents for perfect-information games.
Monte Carlo tree search (MCTS) has been highly successful for developing strong, but not necessarily
human-like agents in this setting, and is a key component of general learning algorithms such as

2

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

AlphaZero and MuZero capable of achieving superhuman performance in chess, Go, and similar
games (Silver et al., 2018; Schrittwieser et al., 2020). By contrast, for developing human-like agents,
the best prior human move prediction accuracies for chess and Go were all achieved with pure
imitation learning on human data McIlroy-Young et al. (2020a); Cazenave (2017); Silver et al. (2017).

The state of the art for predicting human moves in chess is the Maia engine created by McIlroy-Young
et al. (2020a) via pure imitation learning without any search. However, this approach appears to be of
limited effectiveness for modeling sufficiently strong humans. Although the weakest Maia models
at low temperatures appear to outperform the players they imitate (due to “averaging away” of the
imitated players’ individual idiosyncratic mistakes (Anderson et al., 2021)) each successive model on
data from stronger players improves by much less than the players improve.1 The strongest model,
trained to predict human 1900-1999 rated players, even with low temperature appears to be clearly
below a 1950-average level of performance in all but the minority of bullet-speed games (in which
very little time is available for planning and players are forced to rely more heavily on intuition).
Similarly, in Go, pure imitation-learning agents have not exceeded mid-expert level on various online
servers despite being trained on top-expert and master-level games (Cazenave, 2017).

In contrast, search-based reinforcement learning (RL) agents such as AlphaZero that do not use a
human policy prior play at a superhuman level, but often in non-human ways that humans find difficult
to understand even when given access to interactively query and inspect the agent’s analysis (Silver
et al., 2017; Egri-Nagy & Törmänen, 2020).

However, we show in both chess and Go that if the human-learned model is used in MCTS with appro-
priate parameters, MCTS outperforms those models’ human prediction accuracy while simultaneously
reducing the shortcomings in those models’ strength.

3.1 BACKGROUND

We consider sequential games where each player i alternatively chooses action a from a policy πi

where, a ∼ πi(· | s). Each action deterministically transitions the game into a new state s′ = T (s, a)
and gives rewards ui(s, a). Notationally, we may elide the player i in some places when it is clear
that i is the next player to move in the state being considered.

For this work, following Silver et al. (2016), we implement one of the most common modern
forms of MCTS, which uses a value function V predicting the expected total future reward Vi(s) =
E[
∑

t ui(st, at) | π1, π2, s0 = s] and a policy prior τ (typically both the outputs of a trained deep
neural net) and attempts to produce an improved policy π.

Each turn, MCTS builds a game tree over multiple iterations rooted at the current state. Each iteration
t, MCTS explores a single path down the tree by simulating at each successive state s with player i to
move the action:

argmax
a

Q(s, a) + cpuctτ(s, a)

√∑
b N(s, b)

N(s, a) + 1
(1)

where Q(s, a) is the estimated expected future reward for i from playing action a in state s, the
visit count N(s, a) is the number of times a has been explored from s, τ(s, a) is the prior policy
probability, and cpuct is a tunable parameter trading off exploration versus exploitation.

Upon reaching a state st not yet seen, MCTS queries the value function Vi(st) for each player i,
and based on Vi(st) and any intermediate rewards received, updates all Q(s, a) estimates on the
path traversed. The final agent policy is π(s, a) = N(s, a)/

∑
b N(s, b) where s is the root state, or

optionally we may also have π(s, a) ∼ N(s, a)1/T where T is a temperature parameter. See also
Appendix G for a fuller description of MCTS.

Grill et al. (2020) show that the agent policy π computed by this form of MCTS is an approximate
solution to the optimization problem:

argmax
π

∑
a

Q(s, a)π(s, a)− λDKL(τ ∥π) (2)

where λ ∼ cpuct
√
N and N is the total number of iterations.

1See ratings data at https://lichess.org/@/maia1, https://lichess.org/@/maia5, https://lichess.org/@/maia9

3

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Game Model Predicting Raw
Model

Model + MCTS

cpuct =10 5 2 1 0.5

Chess Maia1100 Rating 1100 51.1 51.2 51.3 50.8 49.5 47.4
Chess Maia1500 Rating 1500 52.4 52.7 52.9 52.8 51.9 50.1
Chess Maia1900 Rating 1900 53.2 53.6 54.0 54.3 53.8 52.4

Go Cazenave GoGoD 54.7
Go Wu (2018) GoGoD 55.3
Go Wang et al. GoGoD 57.7
Go Ours GoGoD 57.8 58.1 58.3 58.5 58.1 57.1

Table 1: % top-1 test accuracy predicting human moves in
chess and Go using MCTS with 50 playouts and various
cpuct, or raw model without MCTS, equivalent to infinite
cpuct. In chess, first 10 ply per game and moves with <
30s time left excluded, similar to McIlroy-Young et al.
(2020a). Standard error is approx 0.1 or less on all values.
MCTS on top of current state-of-the-art models improves
human prediction accuracy significantly.

−0.50% 0.00% 0.50% 1.00%
Top1 Accuracy % Difference vs Raw Model

50%

60%

70%

80%

90%

100%

W
in

%
vs

R
aw

M
od

el

10
5
2
1
0.5

Chess (Maia1900)
Go (Our model)
Raw Model (Chess, Go)

cpuct

Model

Figure 1: Improvement in top-1 accuracy
of Maia1900 in Chess or our GoGoD model
in Go using MCTS, plotted versus winrate
of MCTS against the raw model (tempera-
ture 1). Error bars indicate 1 standard error.
Many cpuct values increase both human pre-
diction accuracy and winrate over the raw
model in both Chess and Go.

In other words, at every node of the tree recursively, MCTS implicitly optimizes its expected future
reward subject to KL regularization of its policy towards the prior policy τ with strength controlled
by λ. For any fixed computational budget N , we can therefore tune cpuct to vary the strength of that
prior, with cpuct = ∞ approximating the prior policy before search, and cpuct → 0 approaching a
greedy argmax of the Q value estimates.

If our goal is a strong human-like agent rather than solely a strong agent, and the KL-regularizing
policy is learned from human data, then that policy serves not just as a prior, but also as an anchor
policy that regularizing towards is desirable in and of itself. With good choice of cpuct, MCTS can
improve that policy while remaining close to human. Our experiments confirm that MCTS improves
on the strength and human prediction accuracy of the best existing models in both chess and Go.

3.2 EXPERIMENTS IN CHESS AND GO

In chess and Go, we ran two main experiments each. First, in chess using the prior state-of-the-art
Maia models from McIlroy-Young et al. (2020a) and in Go using a model trained on professional
games from the GoGoD dataset, we demonstrate that MCTS with that model outperforms the raw
model in human prediction accuracy. Second, we sanity-check that MCTS with the same parameters
greatly improves strength relative to the raw imitation policy of those models in chess and Go.

3.2.1 Data and Model Architecture In chess, for the human-learned anchor policy we use
the pre-trained Maia1100, Maia1500, and Maia1900 models from McIlroy-Young et al. (2020a),
achieving state-of-the-art performance on rating-conditional human move prediction. These models
follow a standard AlphaZero-like residual block architecture, including both a policy and a value
head, and were trained to imitate players in Elo ratings “buckets” 1100, 1500, and 1900 respectively,
based on roughly 10 million games each from the popular Lichess server (each bucket contains games
between players from rating N to N+99) from January 2016 to November 2019. We then test on the
same holdout set of December 2019 games as McIlroy-Young et al. (2020a).

For Go, we trained a deep neural net on the GoGoD professional game dataset2. We match Cazenave
(2017) in using games from 1900 through 2014 for training and 2015-2016 as the test set, with roughly
73000 and 6500 games, respectively. Our architecture matches the 20-block residual net structure
used by some versions of AlphaZero (Silver et al., 2017), except adds squeeze-and-excitation layers
which have been successful in image processing tasks (Hu et al., 2018) and self-play learning in chess
and Go (LC0, 2020; Troisi, 2019). See Appendix F for additional details.

3.2.2 Improved Human Prediction and Strength In Table 1 we show the top-1 accuracy of
MCTS (i.e. frequency with which MCTS’s top move matches the actual human move) at predicting

2https://gogodonline.co.uk/

4

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

players in chess and Go. MCTS on top of each model tested outperforms that model at predicting
human moves.

1100 1300 1500 1700 1900 2100 2300 2500
Rating Bucket Being Predicted

42.5%

45.0%

47.5%

50.0%

52.5%

55.0%

To
p-

1
A

cc
ur

ac
y

Maia1100 Raw
Maia1500 Raw
Maia1900 Raw
Maia1100+MCTS, cpuct=10
Maia1500+MCTS, cpuct=5
Maia1900+MCTS, cpuct=2

Figure 2: Top-1 % test accuracy in chess
for Maia models trained to predict moves
by players in rating buckets 1100, 1500,
1900, applied to predict all rating buckets,
with and without MCTS. The black bolded
outline indicates where the model is pre-
dicting the same rating as it was trained on.
Standard error is very small, the slight thin
shade around each line. MCTS most im-
proves prediction of a model on players of
its target rating and higher.

In chess, the benefit provided increases greatly as the
rating of players predicted increases, while the optimal
choice for cpuct appears to decrease (allowing increas-
ingly small value differences to affect the search). This
is consistent with the intuitive hypothesis that stronger
players plan more deeply, increasing the value of ex-
plicitly modeling planning, and that they are more sen-
sitive to small future value differences. In Go, despite
our baseline model being equal or better than all prior
imitation-learning models on the GoGoD human pro
games dataset, MCTS improves it yet further.

In Figure 2, for chess we see that while KL-regularized
search improves each model’s accuracy on players of
its target rating, surprisingly, the improvement grows
yet larger when each model predicts players of higher
rating than it was trained on. This suggests that as hu-
man players improve, the incremental average change
in their behavior resembles or is correlated with the way
that highly-regularized search improves the strength of
a baseline policy.

Additionally, in Appendix D, we show that if we apply
post-processing to the MCTS policy based on Grill et al.
(2020), MCTS improves cross entropy with human
moves in both chess and Go, not just top-1 accuracy. In other words, not only does policy-regularized
search improve the prediction of the top move, but it also better models the overall distribution of
moves that humans may likely play.

We measure the strength impact of regularized search with 1000 games3 per cpuct setting between
the raw model policy and the MCTS policy, sampling each at temperature 1. Figure 1 shows the
change in human prediction accuracy of MCTS in both chess and Go plotted jointly versus winrate
of MCTS against the raw model. Rather than solely a tradeoff between strength and accuracy, most
cpuct values in the range we tested increase both, some achieving more than 90% winrate while still
improving human prediction. See Appendix E for results at lower temperature and evidence that
accuracy improves further at longer time controls.

Although we did not test against humans directly to calibrate, this gives clear evidence that a well-
tuned human-regularized MCTS agent would be better able to match the 1900-1999-rated chess
players that Maia1900 currently falls hundreds of Elo short of imitating, while simultaneously being
more accurate to their move-by-move behavior, and similarly for human-imitation agents in Go.

4 IMPERFECT-INFORMATION GAMES: POLICY-REGULARIZED REGRET
MINIMIZATION

While MCTS is a popular search algorithm for perfect-information deterministic games, it is not able
to compute optimal policies in imperfect-information games. Instead, iterative algorithms based on
regret minimization are the leading approach to search in imperfect-information games.

Hedge (Littlestone & Warmuth, 1994; Freund & Schapire, 1997) is an iterative regret minimization
algorithm that in general converges to a coarse correlated equilibrium (CCE) (Hannan, 1957). In
the special case of two-player zero-sum games, it also converges to a Nash equilibrium (NE) (Nash,
1951).

3In Go, we also use the open-source KataGo (Wu, 2020) to determine when the game is over and to score the
result. Unlike RL agents, humans which our models imitate universally pass and score the game well before it
becomes mechanically scorable, so we use KataGo as a neutral judge.

5

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Regret Matching (RM) (Blackwell et al., 1956; Hart & Mas-Colell, 2000) is another equilibrium-
finding algorithm similar to Hedge that has historically been more popular and that we compare our
algorithm to in this paper.

The effectiveness of the implicit KL-regularization in MCTS that we study in Section 3 motivates us to
develop an equilibrium-finding algorithm called piKL-Hedge that similarly biases the search towards
an anchor policy. In Section 4.3, we show that piKL-Hedge achieves better empirical performance
against baseline human-imitation models than Hedge and RM in a large imperfect-information game,
as well as much higher human prediction accuracy.

4.1 BACKGROUND

We consider a game with N players where each player i chooses an action a from a set of actions Ai.
We denote the actions of all players other than i as a−i. After all players simultaneously choose an
action, player i receives a reward of ui(a,a−i). Players may also choose a probability distribution
over actions, where the probability of action a is denoted πi(a) and the vector of probabilities is
denoted πi. We also define the fixed policy that we are interested in biasing player i towards as the
anchor policy τi ∈ ∆(Ai).

Each player i maintains a regret for each action. The regret on iteration t is denoted Rt
i(a). Initially,

all regrets are zero. On each iteration t of Hedge, πt
i(a) is set according to

πt
i(a) ∝ exp

(
Rt

i(a)
)

(3)

Next, each player samples an action a∗ from Ai according to πt
i and all regrets are updated such that

Rt+1
i (a) = Rt

i(a) + ui(a,a
∗
−i)−

∑
a′∈Ai

πt
i(a

′)ui(a
′
i,a

∗
−i) (4)

It is proven that the average policy of Hedge over all iterations converges to a NE in two-player
zero-sum games and, more broadly, the players’ joint policy distribution converges to a CCE as
t→∞ (Freund & Schapire, 1997; Cesa-Bianchi & Lugosi, 2006).

We wish to model agents that seek to maximize their expected reward, while at the same time playing
“close” to the anchor policy. The two goals can be reconciled by defining a composite utility function
that adds a penalty based on the “distance” between the player policy and their anchor policy, with
coefficient λi ∈ [0,∞) scaling the penalty.

For each player i, we define i’s utility as a function of the the agent policy πi ∈ ∆(Ai) given policies
π−i of all other agents:

Ui(πi,π−i) := ui(πi,π−i)− λi DKL(πi ∥ τi). (5)

When λ is large, the utility function is dominated by the KL-divergence term λi DKL(πi ∥ τi), and so
the agent will naturally tend to play a policy πi close to the anchor policy τi

4. When λi is small, the
dominating term is the rewards ui(πi,a

t
−i) and so the agent will tend to maximize reward without

as closely matching the anchor policy τi. These statements are made precise in Theorem 1 and
Theorem 2.

4.2 NO-REGRET LEARNING FOR POLICY-REGULARIZED UTILITIES

In this section, we present Algorithm 1, a no-regret algorithm based on Hedge for any player i to learn
strong policies relative to the regularized utilities defined in equation 5. As we show in Proposition 1
in Appendix B, it guarantees that each player i accumulates sublinear regret (of order log T) with
respect to the regularized utility functions:

U t
i (πi) := Ui(πi,a

t
−i) = ui(πi,a

t
−i)− λi DKL(πi ∥ τi),

no matter the opponents’ actions at
−i at each time t.

4The careful reader may observe that the direction of the KL-divergence term, DKL(π ∥ τ) is the opposite of
the direction implicit in MCTS, DKL(τ ∥π). We choose this direction for greater ease of theoretical analysis
and implementation in the context of regret minimization; for our use cases we have not found the exact form of
the loss to be critical so much as simply doing any reasonable regularized search.

6

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Algorithm 1: PIKL-HEDGE (for Player i)
Data: • Ai set of actions for Player i;

• ui reward function for Player i;
• η > 0 learning rate
hyperparameter.

1 function INITIALIZE()
2 t← 0
3 for each action a ∈ Ai do
4 CV0

i (a)← 0

5 function PLAY()
6 t← t+ 1
7 let πt

i be the policy such that

πt
i(a) ∝ exp

{
η CVt−1

i (a) + tλiη log τi(a)

1 + tλiη

}
.

(6)
8 sample an action at ∼ πt

i

9 play at and observe actions at
−i played

by the opponents
10 for each a ∈ Ai do
11 CVt

i(a)← CVt−1
i (a) + ui(a,a

t
−i)

As with many other regret-minimization methods,
we consider the average policy of each player i over
T iterations:

π̄T
i :=

1

T

T∑
t=1

πt
i (7)

where πt
i is defined in equation 6 in Algorithm 1.

We take π̄T
i to be the final agent policy to play in

the real environment. As shown in Appendix B,
the KL-divergence of π̄T

i from the anchor policy τi
converges to be inversely proportional to λi:

Theorem 1. (piKL stays close to the anchor policy)
Upon running Algorithm 1 for T iterations in a
multiplayer general-sum game, the policy π̄T

i is at

a distance DKL(π̄
T
i ∥ τi) ≤ 1

λi

(
RT

i

T +Di

)
, where

Di is any upper bound on possible rewards for
Player i. In particular, if η > 0 is set so that RT

i =
o(T), then DKL(π̄

T
i ∥ τi)→ Di/λi as T → +∞.

We can also show (Appendix B) that in the case of a two-player zero-sum game, π̄T
i approximates a

Nash equilibrium of the original utility functions, with the approximation guarantee controlled by λ:

Theorem 2. Let (π̄1, π̄2) be any limit point of the average policies (π̄T
1 , π̄

T
2) of the players. Almost

surely, (π̄1, π̄2) is a (maxi=1,2{λiβi})-approximate Nash equilibrium policy with respect to the
original utility functions ui, where βi is a constant depending on τi (see equation 21 in Appendix B).

Lastly, we remark that in the special case that τi is the uniform policy for all players i, the above
results imply that Algorithm 1 converges towards a quantal response equilibrium (McKelvey
& Palfrey, 1995a), in which an imperfect agent is modeled as choosing actions with probability
exponentially decaying in the amount that each action is worse than the best action(s), given that all
other agents behave the same way. Our method can be seen as a generalization that takes into account
a human-learned prior for what actions may be more likely.

4.3 DIPLOMACY EXPERIMENTS

Diplomacy is a benchmark 7-player simultaneous-action game featuring both cooperation and
competition. In Appendix H, we summarize the rules of the game. Using piKL-Hedge, we develop
an agent piKL-HedgeBot and show that it improves upon prior approaches.In Appendix C, we also
illustrate the key features of piKL-Hedge in Blotto, a famous 2-player simultaneous action game.

4.3.1 Algorithms and Models In no-press Diplomacy, we compare the different equilibrium
search algorithms (RM, Hedge and piKL-Hedge) using the procedure introduced by Gray et al. (2020).
We perform 1-ply lookahead where on each turn, we sample up to 30 of the most likely actions for
each player from a policy network trained via imitation learning on human data (IL policy). We then
consider the 1-ply subgame consisting of those possible actions where the rewards for a given joint
action are given by querying a value network trained on human game data as in Gray et al. (2020).
We play according to the approximate equilibrium computed for that subgame by that algorithm.
For piKL-Hedge, the anchor policy is simply the same human-trained policy network. Our baseline
policy and value models also contain a few improvements over prior models for no-press Diplomacy,
described in Appendices J and K. In our experiments, we label our RM, Hedge, and piKL-Hedge
agents as RMBot, HedgeBot, and piKL-HedgeBot respectively. We compare also against SearchBot
Gray et al. (2020) (similar to RMBot but using the models from Gray et al. (2020) rather than our
models). See Appendix I for more details about the hyperparameters used.

4.3.2 Strong, human-like play with piKL-Hedge Similar to Chess and Go, we compare the
human prediction accuracy of RMBot, HedgeBot, piKL-HedgeBot (with different λs) to the IL
anchor policy, as well as testing their head-to-head strength. In particular, we test their ability to
predict human moves in 226 no-press Diplomacy games from a validation set, and measure their
score against the IL policy across 700 games each.

7

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

40 42.5 45 47.5 50 52.5
Top1 Accuracy [%]

20

40
A

ve
ra

ge
Sc

or
e

[%
]

800 1000 1200 1400 1600
Pseudo-ELO

30

40

50

60

U
ni

tO
rd

er
To

p-
1

A
cc

ur
ac

y
[%

]

1000 1250 1500
Pseudo-ELO

0.3

0.4

0.5

0.6

U
ni

tO
rd

er
To

p-
1

A
cc

ur
ac

y

Anchor Policy

piKL-Hedge (λ = 10−1)

piKL-Hedge (λ = 10−2)

piKL-Hedge (λ = 10−3)

piKL-Hedge (λ = 10−4)

piKL-Hedge (λ = 10−5)
Hedge
Regret Matching

Figure 3: (Left) Average top-1 accuracy of unit orders in each ac-
tion predicted by the human IL anchor policy, RM, Hedge and piKL-
Hedge, versus head to head score against 6 IL anchor policies. piKL-
HedgeBot (λ = 10−1) predicts human moves as accurately as the anchor
policy while achieving a much higher score. At the same time, piKL-
HedgeBot (λ = 10−3) allows for a stronger and more human-like policy
than unregularized search methods (hedge, RM). Note that equal per-
formance would imply an average score of 1/7 ≈ 14.3%. Error bars
indicate 1 standard error. (Right) Average top-1 accuracy of unit orders
in each action predicted by the human policy, RM, and piKL, as a func-
tion of pseudo-Elo player rating.

Agent Average Score
DipNet† 3.7% ± 0.3%
DipNet RL† 4.7% ± 0.3%

Blueprint‡ 4.9% ± 0.3%
BRBot‡ 16.1% ± 0.6%
SearchBot‡ 13.4% ± 0.5%

IL Policy 7.9% ± 0.4%
RMBot 31.3% ± 0.7%

piKL-HedgeBot 32.9% ± 0.7%
(λ = 10−3)

Table 2: Average score achieved by
agents in a uniformly sampled pool
of other agents. piKL-HedgeBot
(λ = 10−3) outperforms all other
agents in this setting. DipNet agents
from (Paquette et al., 2019) use a
temperature of 0.1, while IL Policy
and blueprint (Gray et al., 2020) use
a temperature of 0.5. The ± shows
one standard error. †(Paquette et al.,
2019); ‡(Gray et al., 2020).

In Figure 3 (Left), we present the average top-1 accuracy of unit orders in each action predicted
by these methods as well as their average scores against 6 IL anchor policies. The raw IL model
(λ = ∞) predicts human moves with high accuracy but is weak and achieves low average score.
Unregularized Hedge and RM (λ = 0) achieve high score but low human prediction accuracy. By
contrast, piKL-HedgeBot with different λ achieves a variety of highly favorable combinations of the
two. λ = 10−1 gives about the same top-1 accuracy as the IL policy but improves score by a factor of
1.4x over the IL anchor policy. λ = 10−3 outperforms unregularized search methods in both score (by
~5%) and human prediction accuracy (by ~6%). Mild regularization improves average score, rather
than harming it. We also tested pure RL agents and found they perform poorly in predicting human
moves. In particular, the recently proposed DORA and HumanDNVI-NPU algorithms Bakhtin et al.
(2021) achieve top-1 accuracy of only 29.1% and 37.8% respectively.

Next, in Figure 3 (Right), we compare the top-1 accuracy of these methods across players of different
pseudo-Elo ratings. The pseudo-Elo (ei) for player i is constructed based on the logit rating si
introduced in Gray et al. (2020), where, ei = si·400

log(10) + 1000. The top-1 accuracy for all the search-
based policies increases with pseudo-Elo, indicating that they are better at modeling stronger players
than weaker players. piKL-Hedge (λ = 10−1) performs just as well as the anchor policy across
pseudo-Elos while being significantly stronger than the anchor, while λ = 10−3 is as strong or
stronger than Hedge and RM but matches human play far better.

4.3.3 piKL-HedgeBot performs well against a varied pool of agents We also develop a new
head-to-head evaluation setting, where rather than testing one agent vs 6x of another agent, all 7
agents per game are sampled uniformly from a pool. The 1v6 head-to-head scores used in prior work
Gray et al. (2020); Bakhtin et al. (2021); Anthony et al. (2020); Paquette et al. (2019) indicate whether
a population of 6x agents can be invaded by a 1x agent, and hence whether the 6 agents constitute an
Evolutionarily Stable Strategy (ESS) (Taylor & Jonker, 1978; Smith, 1982). By contrast, assigning
the 7 agents per game randomly from a pool studies the robustness of an agent to a variety of other
agents.We experiment with a pool of 8 agents. Five are previously published agents: DipNet, DipNet
RL Paquette et al. (2019), Blueprint, BRBot, SearchBot Gray et al. (2020) and three are our agents:
IL policy, RMBot and piKL-HedgeBot. Doing well in this population requires playing well with
both human-like policies (DipNet, Blueprint) and equilibrium policies (SearchBot, RMBot). Each
experiment only compares one lambda value of piKL-HedgeBot for fairness. The results of these
experiment with piKL-HedgeBot (λ = 10−3) is presented in Table 2. piKL-HedgeBot (λ = 10−3)
outperforms all other agents. Overall, unlike Chess and Go, we do not find that piKL-Hedge clearly

8

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

improves human prediction accuracy over the IL model. However, unlike Chess and Go, we observe
that piKL-Hedge does improve playing strength over prior search methods against various past agents.
In general-sum games like Diplomacy, it appears that piKL-hedge with a human anchor policy allows
for slightly better play in a population containing human-like agents while still doing well against
equilibrium-searchers, or alternatively can improve strength over IL to a lesser degree with no cost at
all to prediction accuracy.

5 CONCLUSION

In this paper, we showed across several domains that regularizing search policies according to
a KL-divergence loss with an imitation learned (IL) policy produces policies that maintain high
human prediction accuracy while being far stronger than the original learned policy. In chess and
Go, applying standard MCTS regularized toward a human-learned policy achieves state-of-the-art
prediction accuracy, surpassing imitation learning, while also winning more than 85% of games
against an IL model. We then introduced a novel regret minimization algorithm that is regularized
based on the KL divergence from an IL policy. In no-press Diplomacy, this algorithm yields both a
policy that predicts human play with the same accuracy as imitation learning alone while increasing
win rate against state-of-the-art baselines by a factor of 1.4, or alternately a policy that outperforms
unregularized search while achieving much higher human prediction accuracy. We presented in
Appendix M similar successful results for KL-regularized search in Hanabi.

There are several directions for future work, such as extending piKL-Hedge to handle extensive-form
games. Additionally, there may be better ways to regularize search than KL-divergence. Finally, it
remains to be seen how KL-regularized search performs when combined with RL.

AUTHOR CONTRIBUTIONS

A. P. Jacob was the primary researcher for piKL-hedge and contributed to the direction, experiments,
and writing of the entire paper. D. J. Wu was the primary researcher for MCTS in chess and Go,
and contributed to the direction, experiments, and writing of the entire paper. G. Farina was the
primary formulator of the piKL-hedge algorithm and handled all the theory in the paper. A. Lerer
contributed to the direction of the project, the formulation of piKL-hedge, its experimental evaluation,
and paper writing. H. Hu was the primary researcher for the extension of piKL to Hanabi covered
in Appendix M. A. Bakhtin contributed to the experimental evaluation of piKL-hedge. J. Andreas
contributed to the direction of the project and to paper writing. N. Brown initiated the project and
contributed to the direction of the project, the formulation of piKL-hedge, its experimental evaluation,
and paper writing.

REFERENCES

Jacob Abernethy and Alexander Rakhlin. Beating the adaptive bandit with high probability. Technical
Report UCB/EECS-2009-10, EECS Department, University of California, Berkeley, Jan 2009. URL
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-10.html.

Ashton Anderson, Reid McIlroy-Young, Siddhartha Sen, and Jon Kleinberg. Intro-
ducing maia, a human-like neural network chess engine, 2021. URL https:
//lichess.org/blog/X9PUixUAANCqFRSh/introducing-maia-a-human-
like-neural-network-chess-engine.

Thomas Anthony, Tom Eccles, Andrea Tacchetti, János Kramár, Ian Gemp, Thomas Hudson,
Nicolas Porcel, Marc Lanctot, Julien Perolat, Richard Everett, Satinder Singh, Thore Grae-
pel, and Yoram Bachrach. Learning to play no-press diplomacy with best response policy
iteration. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 17987–18003. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
d1419302db9c022ab1d48681b13d5f8b-Paper.pdf.

Hendrik Baier, Adam Sattaur, Edward Powley, Sam Devlin, Jeff Rollason, and Peter Cowling.
Emulating human play in a leading mobile card game. IEEE Transactions on Games, PP:1–1, 05
2018. doi: 10.1109/TG.2018.2835764.

9

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-10.html
https://lichess.org/blog/X9PUixUAANCqFRSh/introducing-maia-a-human-like-neural-network-chess-engine
https://lichess.org/blog/X9PUixUAANCqFRSh/introducing-maia-a-human-like-neural-network-chess-engine
https://lichess.org/blog/X9PUixUAANCqFRSh/introducing-maia-a-human-like-neural-network-chess-engine
https://proceedings.neurips.cc/paper/2020/file/d1419302db9c022ab1d48681b13d5f8b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d1419302db9c022ab1d48681b13d5f8b-Paper.pdf

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Anton Bakhtin, David Wu, Adam Lerer, and Noam Brown. No-press diplomacy from scratch. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

David Blackwell et al. An analog of the minimax theorem for vector payoffs. Pacific Journal of
Mathematics, 6(1):1–8, 1956.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp.
182–189. JMLR Workshop and Conference Proceedings, 2011.

Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats
top professionals. Science, pp. eaao1733, 2017.

Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science, 365(6456):
885–890, 2019.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep Blue. Artificial intelligence, 134
(1-2):57–83, 2002.

Tristan Cazenave. Residual networks for computer go. IEEE Transactions on Computational
Intelligence and AI in Games, PP:1–1, 03 2017. doi: 10.1109/TCIAIG.2017.2681042.

Shicong Cen, Yuting Wei, and Yuejie Chi. Fast policy extragradient methods for competitive games
with entropy regularization. In Neural Information Processing Systems (NeurIPS), 2021.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006.

Brandon Cui, Hengyuan Hu, Luis Pineda, and Jakob Foerster. K-level resoning for zero-shot
coordination in hanabi. In Thirty-Fifth Conference on Neural Information Processing Systems,
2021.

Attila Egri-Nagy and Antti Törmänen. The game is not over yet—go in the post-alphago era.
Philosophies, 5(4):37–0, 2020. ISSN 2409-9287. doi: 10.3390/philosophies5040037. URL
https://www.mdpi.com/2409-9287/5/4/37.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Online convex optimization for sequential
decision processes and extensive-form games. In AAAI Conference on Artificial Intelligence, 2019.

Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart Russell, and Noam Brown. Scalable
online planning via reinforcement learning fine-tuning. CoRR, abs/2109.15316, 2021. URL
https://arxiv.org/abs/2109.15316.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Jonathan Gray, Adam Lerer, Anton Bakhtin, and Noam Brown. Human-level performance in no-press
diplomacy via equilibrium search. In International Conference on Learning Representations, 2020.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis Antonoglou,
and Rémi Munos. Monte-carlo tree search as regularized policy optimization. In International
Conference on Machine Learning, pp. 3769–3778. PMLR, 2020.

James Hannan. Approximation to bayes risk in repeated play. Contributions to the Theory of Games,
3:97–139, 1957.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.
Econometrica, 68(5):1127–1150, 2000.

10

https://www.mdpi.com/2409-9287/5/4/37
https://arxiv.org/abs/2109.15316

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Thirty-second AAAI conference on artificial intelligence, 2018.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.

Hengyuan Hu, Adam Lerer, Noam Brown, and Jakob N. Foerster. Learned belief search: Efficiently
improving policies in partially observable settings. CoRR, abs/2106.09086, 2021a. URL https:
//arxiv.org/abs/2106.09086.

Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, David Wu, Noam Brown, and Jakob Foerster.
Off-belief learning. In International Conference on Machine Learning. PMLR, 2021b.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7132–7141, 2018. doi: 10.1109/CVPR.2018.00745.

Matthew Lai. Forum post on alphazero news (post by user matthewlai).
http://talkchess.com/forum3/viewtopic.php?f=2&t=69175&sid=
06ca6a966c29743d765c11b13402be8d&start=70#p781765, 2018.

LC0. Leela chess zero information page on "neural network topology". https://lczero.org/
dev/backend/nn/, 2020.

Adam Lerer and Alexander Peysakhovich. Learning existing social conventions via observationally
augmented self-play. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society,
pp. 107–114. ACM, 2019.

Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies via search in
cooperative partially observable games. In AAAI Conference on Artificial Intelligence, 2020.

Chun Kai Ling, Fei Fang, and J Zico Kolter. What game are we playing? end-to-end learning
in normal and extensive form games. International Joint Conferences on Artificial Intelligence
Organization, 2018.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212–261, 1994.

Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Aligning superhuman
ai with human behavior: Chess as a model system. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1677–1687, 2020a.

Reid McIlroy-Young, Russell Wang, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Learning
personalized models of human behavior in chess. Technical report, Microsoft, Inc., August 2020b.
URL https://www.microsoft.com/en-us/research/publication/learning-
personalized-models-of-human-behavior-in-chess/.

Richard D. McKelvey and Thomas R. Palfrey. Quantal response equilibria for normal form games.
Games and Economic Behavior, 10(1):6–38, 1995a. ISSN 0899-8256. doi: https://doi.org/10.1006/
game.1995.1023. URL https://www.sciencedirect.com/science/article/pii/
S0899825685710238.

Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form games.
Games and economic behavior, 10(1):6–38, 1995b.

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6292–6299. IEEE, 2018.

John Nash. Non-cooperative games. Annals of mathematics, pp. 286–295, 1951.

11

https://arxiv.org/abs/2106.09086
https://arxiv.org/abs/2106.09086
http://talkchess.com/forum3/viewtopic.php?f=2&t=69175&sid=06ca6a966c29743d765c11b13402be8d&start=70#p781765
http://talkchess.com/forum3/viewtopic.php?f=2&t=69175&sid=06ca6a966c29743d765c11b13402be8d&start=70#p781765
https://lczero.org/dev/backend/nn/
https://lczero.org/dev/backend/nn/
https://www.microsoft.com/en-us/research/publication/learning-personalized-models-of-human-behavior-in-chess/
https://www.microsoft.com/en-us/research/publication/learning-personalized-models-of-human-behavior-in-chess/
https://www.sciencedirect.com/science/article/pii/S0899825685710238
https://www.sciencedirect.com/science/article/pii/S0899825685710238

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, pp. 2, 2000.

Philip Paquette, Yuchen Lu, Seton Steven Bocco, Max Smith, O-G Satya, Jonathan K Kummerfeld,
Joelle Pineau, Satinder Singh, and Aaron C Courville. No-press diplomacy: Modeling multi-agent
gameplay. In Advances in Neural Information Processing Systems, pp. 4474–4485, 2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Alexander Rakhlin. Lecture notes on online learning, 2009.

Tim GJ Rudner, Cong Lu, Michael Osborne, Yarin Gal, and Yee Whye Teh. On pathologies in
kl-regularized reinforcement learning from expert demonstrations. In Thirty-Fifth Conference on
Neural Information Processing Systems, 2021.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:
Behavior modelling priors for offline reinforcement learning. In International Conference on
Learning Representations, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Ho Chit Siu, Jaime Peña, Kimberlee C. Chang, Edenna Chen, Yutai Zhou, Victor J. Lopez, Kyle
Palko, and Ross E. Allen. Evaluation of human-ai teams for learned and rule-based agents in
hanabi. CoRR, abs/2107.07630, 2021. URL https://arxiv.org/abs/2107.07630.

John Maynard Smith. Evolution and the Theory of Games. Cambridge university press, 1982.

Peter D Taylor and Leo B Jonker. Evolutionary stable strategies and game dynamics. Mathematical
biosciences, 40(1-2):145–156, 1978.

Yuandong Tian. Github thread for elf opengo, "[suggestion] clarify fpu in paper". https://
github.com/pytorch/ELF/issues/140, 2019.

Yuandong Tian and Yan Zhu. Better computer go player with neural network and long-term prediction,
2016.

Seth Troisi. Github thread for minigo "[experiment] squeeze and excitation". https://
github.com/tensorflow/minigo/issues/683, 2019.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817,
2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

12

https://arxiv.org/abs/2107.07630
https://github.com/pytorch/ELF/issues/140
https://github.com/pytorch/ELF/issues/140
https://github.com/tensorflow/minigo/issues/683
https://github.com/tensorflow/minigo/issues/683

Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Jinzhuo Wang, Wenmin Wang, Ronggang Wang, and Wen Gao. Beyond monte carlo tree search:
Playing go with deep alternative neural network and long-term evaluation. Proceedings of the
AAAI Conference on Artificial Intelligence, 31(1), Feb. 2017. URL https://ojs.aaai.org/
index.php/AAAI/article/view/10749.

David Wu. Go neural net sandbox. https://github.com/lightvector/GoNN#raw-
neural-net-results, 2018.

David Wu. Accelerating self-play learning in go. In AAAI-20 Workshop on Reinforcement Learning
in Games, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
2019.

13

https://ojs.aaai.org/index.php/AAAI/article/view/10749
https://ojs.aaai.org/index.php/AAAI/article/view/10749
https://github.com/lightvector/GoNN#raw-neural-net-results
https://github.com/lightvector/GoNN#raw-neural-net-results

A RELATED WORK

A.1 REGULARIZED LEARNING AND PLANNING

Several prior works have explored augmenting reinforcement learning with supervised data from expert demonstrations (Vecerik
et al., 2017; Nair et al., 2018). For example, Hester et al. (2018) augment Deep Q Learning with a margin loss on demonstration
data that aims to make Q(a) for each demonstration action higher than that of other actions. KL-regularization has also been used
successfully to incorporate expert demonstrations into RL training (Rudner et al., 2021; Ng et al., 2000; Boularias et al., 2011; Wu
et al., 2019; Peng et al., 2019; Siegel et al., 2019). In these settings, the standard RL objective is augmented by a KL divergence
penalty that expresses the dissimilarity between the online policy and a reference policy derived from demonstrations. This helps
guide exploration in RL or ameliorate inaccurate modeling of the environment in domains such as robotics. AlphaStar Vinyals
et al. (2019), which achieved expert human performance in StarCraft 2, uses self-play RL initialized from supervised policies
with a KL penalty term for deviating from the supervised policy during training to "aid in exploration and to preserve strategic
diversity". In our work, we use the KL term to better approximate human play during inference-time search.

Prior work has explored entropy-regularized utilities in games. Ling et al. (2018) show that a particular type of entropic
regularization in extensive-form games leads to quantal response equilibria. Cen et al. (2021) give fast online optimization
algorithms for entropy-regularized utilities in the context of quantal response. Farina et al. (2019) regularize utilities with a
KL divergence term from a precomputed Nash equilibrium strategy to design agents that trade off game-theoretic safety and
exploitation. In our work, we leverage the KL divergence term towards a human-imitation learned policy instead, to regularize the
utilities. And unlike previous works, we empirically study our approach in a much larger imperfect information game.

A.2 STRONG HUMAN-COMPATIBLE POLICIES

Prior work in multi-agent reinforcement learning has emphasized the importance of human-compatible policies in cooperative
multi-agent environments. Lerer & Peysakhovich (2019) demonstrate that self-play policies may perform poorly with other agents
if they do not conform to the population equilibrium (social conventions), and propose a combination of policy gradient and
imitation loss directly on samples of population data.

Human-compatible policies have also been studied on the benchmark game of Hanabi, where ad hoc play with humans is regarded
as an open challenge problem Bard et al. (2020). Most work on this challenge has focused on zero-shot coordination with humans,
in which an agent must adapt to human play with no prior experience with human partners Hu et al. (2020; 2021b); Cui et al.
(2021). Learning human-compatible policies from a combination of human data and planning are less well-studied in this setting.

A.2.1 MCTS, Chess and Go Prior work in tree search methods, especially in chess and Go, has typically focused on developing
strong agents without concern for accurately modeling human behavior. For example in Go, a significant body of older work
investigates imitation learning (IL) to obtain a baseline policy prior to use with MCTS, but tunes and evaluates the final agent via
playing strength alone Tian & Zhu (2016); Cazenave (2017).

Regarding the use of search for human modeling, recent work in chess by McIlroy-Young et al. (2020b) found that pure IL
outperformed all other approaches and that adding MCTS with the parameters of a standard engine significantly harmed human
prediction accuracy. However in our work, using a different range of parameters, we show clear results to the contrary. In Go,
Wang et al. (2017) report promising results on human prediction and playing strength using search, albeit with a specialized
architecture and rollout method. Baier et al. (2018) report in the card game Spades both excellent human accuracy and playing
strength by adding a human policy bias to a variant of MCTS. To our knowledge, our work is the first to demonstrate a clear gain in
human prediction accuracy over deep learning models in the highly-studied domains of chess and Go via simple well-established
methods of policy-regularized planning.

A.2.2 Diplomacy Diplomacy is a benchmark 7-player game that involves communication, negotiation, cooperation, and
competition in a strategic multi-agent setting. While chess and Go are two-player zero-sum games for which optimal play is
well-defined and can be computed through self-play Nash (1951), Diplomacy has no such guarantees and strong play likely
requires modeling other agents, even in the no-press variant where natural-language communication is not allowed Bakhtin et al.
(2021).

Paquette et al. (2019) showed that neural network IL on human data in no-press Diplomacy can reasonably approximate human
play, but that bootstrapping RL from this agent leads to a breakdown in cooperation. Anthony et al. (2020) developed new RL
methods based on fictitious play that improve the performance of agents in no-press Diplomacy, and Gray et al. (2020) showed
that an equilibrium-finding regret minimization search procedure on top of human IL models achieves human-level performance in
no-press Diplomacy. However, although both methods rely on the human IL model to generate a restricted action set for RL or
search, neither contains any explicit regularization when choosing among those actions, and we show that the equilibrium search
in Gray et al. (2020) greatly decreases the accuracy of modeling human players. Similarly, Bakhtin et al. (2021) achieved strong
results in no-press Diplomacy via self-play RL both from scratch and initialized with a human-learned policy, but we show that the
resulting final agents do not ultimately model humans well.

14

B PROOFS

In this Appendix, we present detailed proofs of Proposition 1 and Theorem 2.

B.1 KNOWN RESULTS

We start by recalling a few standard results. First, we recall the follow-the-regularized-leader (FTRL) algorithm, one of the most
well-studied algorithms in online optimization. At every time t, the FTRL algorithm instantiated with domain X , 1-strongly-convex
regularizer ϕ : X → R, and learning rate η > 0, produces iterates according to

xt+1 = argmax
x∈X

{
−ϕ(x)

η
+

t∑
τ=1

ℓτ (x)

}
, (FTRL)

where ℓ1, . . . , ℓt are the convex utility functions gave as feedback by the environment. The FTRL algorithm guarantees the
following regret bound.

Lemma 1 (Rakhlin (2009), Corollary 7). The iterates xt ∈ X produced by the FTRL algorithm set up with constant step size
η > 0 and 1-strongly convex regularizer ϕ satisfy the regret bound

T∑
t=1

ℓt(u)− ℓt(xt) ≤ ϕ(u)

η
+

T∑
t=1

ℓt(xt+1)− ℓt(xt) ∀u ∈ X . (8)

In the analysis of Algorithm 1 we will also make use of the following technical lemma, a proof of which can be obtained starting
using the same techniques as Abernethy & Rakhlin (2009, Lemma A.4)

Lemma 2. Let p ∈ ∆(A) be a distribution over a discrete set A, q ∈ R|A| be a vector, and D > 0 be any constant such that
maxa,a′∈A{q(a)− q(a′)} ≤M . Then,∑

a∈A p(a) · exp{−q(a)}2(∑
a∈A p(a) · exp{−q(a)}

)2 − 1 ≤ exp{2M}
M2

∑
a∈A

p(a)q(a)2.

Proof. Let qmin := mina∈A q(a) and q̃(a) := q(a)− qmin be a shifted version of q(a) so that 0 ≤ q̃(a) ≤M for all a ∈ A. Let
now X denote a random variable with value q̃(a) with probability p(a) for all a ∈ A. Then,∑

a∈A p(a) · exp{−q(a)}2(∑
a∈A p(a) · exp{−q(a)}

)2 − 1 =
exp{qmin}2

∑
a∈A p(a) · exp{q(a)}2

exp{qmin}2
(∑

a∈A p(a) · exp{−q(a)}
)2 − 1

=

∑
a∈A p(a) · exp{−q̃(a)}2(∑
a∈A p(a) · exp{−q̃(a)}

)2 − 1

=
E[exp(−X)]

[E exp(−X)]2
− 1.

Applying Lemma A.4 from Abernethy & Rakhlin (2009) we obtain∑
a∈A p(a) · exp{−q(a)}2(∑
a∈A p(a) · exp{−q(a)}

)2 − 1 ≤ exp{2M} − 2M − 1

M2
(E[X2]− E[X]2) ≤ exp{2M}

M2
E[X2],

which is exactly the statement.

B.2 BOUNDING THE DISTANCE BETWEEN THE ITERATES OF ALGORITHM 1

Lemma 3. At all times t and for all players i, the policies πt
i produced by the FTRL algorithm set up with constant step size η

and negative entropy regularizer φ(x) :=
∑

a∈Ai
x(a) logx(a), when observing the utilities U t

i , match the policies πt
i produced

by Algorithm 1.

15

Proof. Plugging the particular choices of utilities and regularizer into equation FTRL, we obtain

πt+1
i = argmax

π∈∆(Ai)

{(
t∑

t′=1

U t′

i (π)

)
− 1

η

∑
a∈Ai

π(a) logπ(a)

}

= argmax
π∈∆(Ai)

{
η

(
t∑

t′=1

∑
a∈Ai

π(a)ui(a,a
t′

−i)− λi π(a) log

(
π(a)

τi(a)

))
−
∑
a∈Ai

π(a) logπ(a)

}

= argmax
π∈∆(Ai)

{
η
∑
a∈Ai

(
tλi log τi(a) +

t∑
t′=1

ui(a,a
t′

−i)

)
π(a)− (1 + tλiη)

∑
a∈Ai

π(a) logπ(a)

}

= argmax
π∈∆(Ai)

{
η

1 + tλiη

∑
a∈Ai

(
tλi log τi(a) +

t∑
t′=1

ui(a,a
t′

−i)

)
π(a)−

∑
a∈Ai

π(a) logπ(a)

}
. (9)

A well-known closed form solution to the above entropy-regularized problem is given by the softmax function. In particular, let

wt+1
i (a) :=

η

1 + tλiη

(
tλi log τi(a) +

t∑
t′=1

ũi(a,a
t′

−i)

)
∀a ∈ Ai. (10)

Then,

πt+1
i (a) =

exp{wt+1
i (a)}∑

a′∈Ai
exp{wt+1

i (a′)} ∀a ∈ Ai,

which coincides with the iterate produced by Algorithm 1.

The next observation shows that the iterates πi do not change if the utility function ui is first shifted to be in the range [0, Di].
Remark 1. Consider the shifted utilities

ũi(a,a
t
−i) := ui(a,a

t′

−i)− min
a∈A1×···×An

ui(a) ∈ [0, Di] (11)

and let v be defined as equation 10 using ũi in place of ui, that is,

vt+1
i (a) :=

η

1 + tλiη

(
tλi log τi(a) +

t∑
t′=1

ũi(a,a
t′

−i)

)
∀a ∈ Ai. (12)

Then, the iterates πi can be equivalently expressed as

πt+1
i (a) =

exp{vt+1
i (a)}∑

a′∈Ai
exp{vt+1

i (a′)} ∀a ∈ Ai.

Proof. Let γ :=
mina∈A1×···×Anui(a) denote the minimum utility that Player i can get against the actions of the opponents. Since the argmax of
a function does not change if a constant is added to the objective, from equation 9 we can write

πt+1
i = argmax

π∈∆(Ai)

{
− η

1 + tλiη
γ +

η

1 + tλiη

∑
a∈Ai

(
tλi log τi(a) +

t∑
t′=1

ui(a,a
t′

−i)

)
π(a)−

∑
a∈Ai

π(a) logπ(a)

}

= argmax
π∈∆(Ai)

{
η

1 + tλiη

∑
a∈Ai

(
tλi log τi(a) +

t∑
t′=1

(ui(a,a
t′

−i)− γ)

)
π(a)−

∑
a∈Ai

π(a) logπ(a)

}

= argmax
π∈∆(Ai)

{∑
a∈Ai

vt+1
i (a)π(a)−

∑
a∈Ai

π(a) logπ(a)

}
,

where the second equality follows from the fact that π ∈ ∆(Ai).

A solution is again given by softmax function

πt+1
i (a) =

exp{vt+1
i (a)}∑

a′∈Ai
exp{vt+1

i (a′)} ∀a ∈ Ai. (13)

16

In the rest of the proof we will use equation 13 to analyze the iterates πi produced by the algorithm.
Lemma 4. Let η ≤ 1/(λiβi + 2Di). Then, at all times t,

∥πt+1
i − πt

i∥∇2φ(πt
i)
≤
√
3 e

tλiη
.

Proof. At all times t, introduce the vector ξti ∈ R|Ai| defined as

ξti(a) :=
η

1 + tλiη

(
−λiv

t(a) + λi log τi(a) + ũi(a,a
t
−i)
)

∀a ∈ Ai. (14)

At all times t and for all a, it holds that

vt+1
i (a) =

η

1 + tλiη

(
1 + (t− 1)λiη

η
vt(a) + λi log τi(a) + ũi(a,a

t
−i)

)
=

η

1 + tλiη

(
1 + tλiη

η
vt(a)− λiv

t(a) + λi log τi(a) + ũi(a,a
t
−i)

)
= vt(a) + ξti(a). (15)

Substituting equation 15 we can write

πt+1
i (a) =

exp{vt
i(a)} · exp{ξti(a)}∑

a′∈Ai
exp{vt

i(a
′)} · exp{ξti(a′)}

=
πt
i(a) exp{ξti(a)}∑

a′∈Ai
πt
i(a

′) exp{ξti(a′)}
. (16)

Expanding the definition of the local norm induced by∇2φ(πt
i) we find

∥πt+1
i − πt

i∥2∇2φ(πt
i)
=
∑
a∈Ai

1

πt
i(a)

(
πt+1
i (a)− πt

i(a)
)2

=
∑
a∈Ai

πt
i(a)

(
exp{ξti(a)}∑

a′∈Ai
πt
i(a

′) exp{ξti(a′)}
− 1

)2

(17)

=
∑
a∈Ai

πt
i(a)

(exp{ξti(a)}∑
a′∈Ai

πt
i(a

′) exp{ξti(a′)}

)2

− 2

(
exp{ξti(a)}∑

a′∈Ai
πt
i(a

′) exp{ξti(a′)}

)
+ 1

=

∑
a∈Ai

πt
i(a) exp{ξti(a)}2(∑

a′∈Ai
πt
i(a

′) exp{ξti(a′)}
)2 − 2

∑
a∈Ai

πt
i(a) exp{ξti(a)}∑

a′∈Ai
πt
i(a

′) exp{ξti(a′)}
+
∑
a∈Ai

πt
i(a)

=

∑
a∈Ai

πt
i(a) exp{ξti(a)}2(∑

a′∈Ai
πt
i(a

′) exp{ξti(a′)}
)2 − 1, (18)

where equation 17 follows from substituting equation 16. We now apply Lemma 2, applied with q = ξti , p = πt
i , and A = Ai.

First, we study the range Di = maxa,a′∈Ai
{ξti(a)− ξti(a

′)} used in the statement of the Lemma. In particular, using equation 15
we have

max
a,a′∈Ai

{ξti(a)− ξti(a
′)} = max

a,a′∈Ai

{vt+1
i (a)− vt

i(a)− vt+1
i (a′) + vt

i(a
′)}

= max
a,a′∈Ai

{
(log τi(a)− log τi(a

′)) ·
(

tλiη

1 + tλiη
− (t− 1)λiη

1 + (t− 1)λiη

)
+

η

1 + tλiη

(
t∑

t′=1

ũi(a,a
t′

−i)− ũi(a
′,at′

−i)

)

− η

1 + (t− 1)λiη

(
t−1∑
t′=1

ũi(a,a
t′

−i)− ũi(a
′,at′

−i)

)}

= max
a,a′∈Ai

{
λiη

(1 + tλiη)(1 + (t− 1)λiη)
(log τi(a)− log τi(a

′))

+
λiη

2

(1 + tλiη)(1 + (t− 1)λiη)

(
t−1∑
t′=1

ũi(a,a
t′

−i)− ũi(a
′,at′

−i)

)

17

+
η

1 + tλiη
(ũi(a,a

t
−i)− ũi(a

′,at
−i))

}
≤ max

a,a′∈Ai

{
λiη

(1 + tλiη)(1 + (t− 1)λiη)
(log τi(a)− log τi(a

′))

}
+ max

a,a′∈Ai

{
λiη

2

(1 + tλiη)(1 + (t− 1)λiη)

(
t−1∑
t′=1

ũi(a,a
t′

−i)− ũi(a
′,at′

−i)

)}

+ max
a,a′∈Ai

{
η

1 + tλiη
(ũi(a,a

t
−i)− ũi(a

′,at
−i))

}
≤ η(λiβi + 2Di), (19)

where the first inequality follows from upper bounding the max of a sum with the sum of max of each term, and the second
inequality follows from noting that

λiη

(1 + tλiη)(1 + (t− 1)λiη)
≤ η

1 + tλiη
≤ η,

and
λiη

2

(1 + tλiη)(1 + (t− 1)λiη)
≤ η

t

(
t−1∑
t′=1

ũi(a,a
t′

−i)− ũi(a
′,at′

−i)

)
≤ λiη

2

tλiη
· tDi = ηDi.

Applying Lemma 2 to the right-hand side of equation 18 using the bound on the range of ξti shown in equation 19 yields

∥πt+1
i − πt

i∥2∇2φ(πt
i)
≤ exp{2η(λiβi + 2Di)}

η2(λiβi + 2Di)2

∑
a∈Ai

πt
i(a)

(
ξti(a)

)2
. (20)

Using the fact that any convex combination of values is upper bounded by the maximum value, we can further bound the right-hand
side of equation 20 as

∥πt+1
i − πt

i∥2∇2φ(πt
i)
≤ exp{2η(λiβi + 2Di)}

η2(λiβi + 2Di)2
max
a∈Ai

(ξti(a))
2

=
exp{2η(λiβi + 2Di)}

η2(λiβi + 2Di)2
max
a∈Ai

(
vt+1
i (a)− vt

i(a)
)2
,

where the equality follows from equation 15. Hence, expanding the definition of vt
i and vt+1

i ,

∥πt+1
i − πt

i∥2∇2φ(πt
i)
≤ exp{2η(λiβi + 2Di)}

η2(λiβi + 2Di)2
max
a∈Ai

{(
tλiη

1 + tλiη
− (t− 1)λiη

1 + (t− 1)λiη

)
log τi(a)

+
η

1 + tλiη

t∑
t′=1

ũi(a,a
t′

−i)−
η

1 + (t− 1)λiη

t−1∑
t′=1

ũi(a,a
t′

−i)

}2

=
exp{2η(λiβi + 2Di)}

η2(λiβi + 2Di)2
max
a∈Ai

{
λiη

(1 + tλiη)(1 + (t− 1)λiη)
log τi(a) +

η

1 + tλiη
ũi(a,a

t
−i)

− λiη
2

(1 + tλiη)(1 + (t− 1)λiη)

t−1∑
t′=1

ũi(a,a
t′

−i)

}2

≤ 3
exp{2η(λiβi + 2Di)}

η2(λiβi + 2Di)2
max
a∈Ai

{(
λiη

(1 + tλiη)(1 + (t− 1)λiη)
log τi(a)

)2

+

(
η

1 + tλiη
ũi(a,a

t
−i)

)2

+

(
λiη

2

(1 + tλiη)(1 + (t− 1)λiη)

t−1∑
t′=1

ũi(a,a
t′

−i)

)2

=
3

(1 + tλiη)2
exp{2η(λiβi + 2Di)}

η2(λiβi + 2Di)2
max
a∈Ai

{(
λiη

1 + (t− 1)λiη
log τi(a)

)2

+
(
ηũi(a,a

t
−i)
)2

+

(
λiη

2

(1 + (t− 1)λiη)

t−1∑
t′=1

ũi(a,a
t′

−i)

)2

18

≤ 3

(1 + tλiη)2
exp{2η(λiβi + 2Di)}

η2(λiβi + 2Di)2
(λ2η2β2

i + 2η2D2
i)

≤ 3
exp{2η(λiβi + 2Di)}

(1 + tλiη)2

≤ 3
exp{2η(λiβi + 2Di)}

(tλiη)2
=

(√
3 · exp{η(λiβi + 2Di)}

tλiη

)2

.

Using the hypothesis that η ≤ 1/(λiβi + 2Di) and taking square roots yields the statement.

B.3 COMPLETING THE ANALYSIS

Proposition 1. Fix a player i ∈ {1, . . . , n}. The regret

RT
i := max

π∗∈∆(Ai)

T∑
t=1

U t
i (π

∗)−
T∑

t=1

U t
i (π

t
i)

incurred up to any time T by policies πt
i defined in equation 6 where the learning rate is set to any value 0 < η ≤ 1/(λiβi+2Di),

satisfies

RT
i ≤

log |Ai|
η

+
3 e(1 + log T)

λiη
(Di + λiβi + λi

√
|Ai|),

where Di is any upper bound on the range of the possible rewards of Player i, and

βi := max
a∈Ai

log(1/τ (a)). (21)

Proof. Let
qt
i :=

(
ũi(a,a

t
−i)
)
a∈Ai

,

and note that, by definition of the regularized utilities Ui,
U t
i (π

t+1
i)− U t

i (π
t
i) = q⊤

i

(
πt+1
i − πt

i

)
− λiDKL(π

t+1
i ∥ τ) + λiDKL(π

t
i ∥ τ)

= q⊤
i

(
πt+1
i − πt

i

)
− λiφ(π

t+1
i) + λiφ(π

t
i)− λi∇φ(τi)⊤(πt

i − πt+1
i)

= (qi −∇φ(τi))⊤
(
πt+1
i − πt

i

)
− λiφ(π

t+1
i) + λiφ(π

t
i)

≤ (qi +∇φ(τi))⊤
(
πt+1
i − πt

i

)
− λiφ(π

t
i)− λi∇φ(πt

i)
⊤(πt+1

i − πt
i) + λiφ(π

t
i)

=
(
qi + λi∇φ(τi)− λi∇φ(πt

i)
)⊤(

πt+1
i − πt

i

)
≤
∥∥qi + λi∇φ(τi)− λi∇φ(πt

i)
∥∥
∇−2φ(πt

i)
·
∥∥πt+1

i − πt
i

∥∥
∇2φ(πt

i)
,

where the first inequality follows by convexity and the second inequality by the generalized Cauchy-Schwarz inequality with the
primal-dual norm pair ∥ · ∥∇2φ(πt

i)
and ∥ · ∥∇−2φ(πt

i)
. A bound for the second term in the product if given by Lemma 4. We now

bound the first norm. First,∥∥qi + λi∇φ(τi)− λi∇φ(πt
i)
∥∥2
∇−2φ(πt

i)
=
∑
a∈Ai

πt(a) ·
(
ũi(a,a

t
−i) + λi log τi(a)− λi logπ

t
i(a)

)2
≤ 3

∑
a∈Ai

πt(a) ·
(
ũi(a,a

t
−i)

2 + λ2
i (log τi(a))

2 + λ2
i (logπ

t
i(a))

2
)

≤ 3
(
D2

i + λ2
iβ

2
i + λ2

i |Ai|
)

≤ 3
(
Di + λiβi + λi

√
|Ai|

)2
,

where the second inequality follows from the fact that x log2 x ≤ 1 for all x ∈ [0, 1]. Taking square roots, we find∥∥qi + λi∇φ(τi)− λi∇φ(πt
i)
∥∥
∇−2φ(πt

i)
≤
√
3
(
Di + λiβi + λi

√
|Ai|

)
.

So, using Lemma 4, we can write

U t
i (π

t+1
i)− U t

i (π
t
i) ≤

3 e

tλiη
(Di + λiβi + λi

√
|Ai|).

19

Plugging in the above expression into Lemma 1 yields

RT
i ≤

log |Ai|
η

+

T∑
t=1

3 e

tλiη
(Di + λiβi + λi

√
|Ai|)

≤ log |Ai|
η

+
3 e(1 + log T)

λiη
(Di + λiβi + λi

√
|Ai|),

which is the statement.

B.4 PROOF OF THEOREM 1

Theorem 1. (piKL stays close to the anchor policy) Upon running Algorithm 1 for T iterations in a multiplayer general-sum
game, the policy π̄T

i is at a distance DKL(π̄
T
i ∥ τi) ≤ 1

λi

(
RT

i

T +Di

)
, where Di is any upper bound on possible rewards for

Player i. In particular, if η > 0 is set so that RT
i = o(T), then DKL(π̄

T
i ∥ τi)→ Di/λi as T → +∞.

Proof. By definition of regret,

1

T
RT

i =
1

T
max

π∗
i ∈∆(Ai)

{
T∑

t=1

U t
i (π

∗
i)− U t

i (π
t
i)

}

= max
π∗

i ∈∆(Ai)

{(
1

T

T∑
t=1

ui(π
∗
i ,π

t
−i)

)
−
(

1

T

T∑
t=1

ui(π
t
i ,π

t
−i)

)
− λi

T

T∑
t=1

DKL(π
∗
i ∥ τi) +

λi

T

T∑
t=1

DKL(π
t
i ∥ τi)

}

= max
π∗

i ∈∆(Ai)

{(
1

T

T∑
t=1

ui(π
∗
i ,π

t
−i)

)
−
(

1

T

T∑
t=1

ui(π
t
i ,π

t
−i)

)
− λiDKL(π

∗
i ∥ τi) +

λi

T

T∑
t=1

DKL(π
t
i ∥ τi)

}

≥ max
π∗

i ∈∆(Ai)

{(
1

T

T∑
t=1

ui(π
∗
i ,π

t
−i)

)
−
(

1

T

T∑
t=1

ui(π
t
i ,π

t
−i)

)
+

λi

T

T∑
t=1

DKL(π
t
i ∥ τi)

}

≥ max
π∗

i ∈∆(Ai)

{(
1

T

T∑
t=1

ui(π
∗
i ,π

t
−i)

)
−
(

1

T

T∑
t=1

ui(π
t
i ,π

t
−i)

)
+ λiDKL(π̄

T
i ∥ τi)

}

= max
π∗

i ∈∆(Ai)

{(
1

T

T∑
t=1

(ui(π
∗
i ,π

t
−i)− ui(π

t
i ,π

t
−i)

)
+ λiDKL(π̄

T
i ∥ τi)

}

≥ max
π∗

i ∈∆(Ai)

{(
1

T

T∑
t=1

−Di

)
+ λiDKL(π̄

T
i ∥ τi)

}
= −Di + λiDKL(π̄

T
i ∥ τi),

where the first inequality holds since the KL divergence is nonnegative, the second inequality by convexity of the KL divergence,
and the third inequality by definition of Di. Rearranging yields the inequality in the statement.

B.5 RELATIONSHIP WITH NASH EQUILIBRIUM

In this subsection, we show that when all players play according to Algorithm 1 in a two-player zero-sum game, then the average
policies π̄T

i converge to a Nash equilibrium of the regularized game whose utilities are Ui.
Proposition 2. For any T ∈ N, η > 0, and δ ∈ (0, 1), define the quantity

ξT (δ) :=
RT

1 +RT
2

T
+ (max

i
Di)

√
32

T
log

2maxi |Ai|
δ

.

Upon running Algorithm 1 for any T iterations with learning rate η > 0, the average policies π̄T
i of each player form a

ξT (δ)-approximate Nash equilibrium with respect to the regularized utility functions Ui with probability at least 1− δ, for any
δ ∈ (0, 1).

Proof. Fix a player i ∈ {1, 2}, and any policy π∗ ∈ ∆(Ai), and introduce the discrete-time stochastic process

wt :=
(
Ui(π∗,πt

−i)− Ui(πt
i ,π

t
−i)
)
−
(
Ui(π∗, at−i)− Ui(πt

i , a
t
−i)
)
.

20

Since the opponent player −i plays according to Algorithm 1, its action at−i at all times t is selected by sampling (unbiasedly) an
action from the policy πt

−i. Therefore, wt is a martingale difference sequence. Furthermore, by expanding the definition of Ui, the
absolute value of wt satisfies

|wt| =
∣∣∣(ui(π

∗,πt
−i)− ui(π

t
i ,π

t
−i)
)
−
(
ui(π

∗, at−i)− ui(π
t
i , a

t
−i)
)∣∣∣

≤
∣∣ui(π

∗,πt
−i)− ui(π

t
i ,π

t
−i)
∣∣− ∣∣ui(π

∗, at−i)− ui(π
t
i , a

t
−i)
∣∣ ≤ 2Di.

Hence, using Azuma-Hoeffding’s inequality, for any δ ∈ (0, 1),

1− δ ≤ P

[
T∑

t=1

wt ≤ Di

√
8T log

1

δ

]

= P

[(
T∑

t=1

Ui(π∗,πt
−i)−

T∑
t=1

Ui(πt
i ,π

t
−i)

)
−
(

T∑
t=1

ui(π
∗, at−i)−

T∑
t=1

Ui(πt
i , a

t
−i)

)
≤
√
8T log

1

δ

]

= P

[
T∑

t=1

Ui(π∗,πt
−i)−

T∑
t=1

Ui(πt
i ,π

t
−i) ≤ RT

i +Di

√
8T log

1

δ

]
,

where RT
i is as defined in Proposition 1. Since the above expression holds for any π∗ ∈ ∆(Ai), in particular, using the union

bound on each a ∈ Ai,

P

[
max

π∗∈∆(Ai)

T∑
t=1

Ui(π∗,πt
−i)−

T∑
t=1

Ui(πt
i ,π

t
−i) ≤ RT

i +Di

√
8T log

|Ai|
δ

]
≥ 1− δ (22)

for any player i ∈ {1, 2} and any δ ∈ (0, 1).

Summing Inequality equation 22 for i ∈ {1, 2} and using the union bound, we can further write

P

[
max

π∗
1∈∆(A1)

{
T∑

t=1

U1(π∗
1 ,π

t
2)

}
+ max

π∗
2∈∆(A2)

{
T∑

t=1

U2(πt
1,π

∗
2)

}
−
(

T∑
t=1

U1(πt
1,π

t
2) + U2(πt

1,π
t
2)

)

≤ RT
1 +RT

2 + (max
i

Di)

√
32T log

maxi |Ai|
δ

]
≥ 1− 2δ.

Dividing by T and noting that for any player i ∈ {1, 2}

1

T

T∑
t=1

Ui(π∗,πt
−i) = Ui

(
π∗,

1

T

T∑
t=1

πt
−i

)
= Ui

(
π∗, π̄T

−i

)
further yields

P

[
max

π∗
1∈∆(A1)

{
U1(π∗

1 , π̄
T
2)
}
+ max

π∗
2∈∆(A2)

{
U2(π̄T

1 ,π
∗
2)
}
− 1

T

(
T∑

t=1

U1(πt
1,π

t
2) + U2(πt

1,π
t
2)

)

≤ RT
1 +RT

2

T
+Di

√
32

T
log

maxi |Ai|
δ

]
≥ 1− 2δ.

(23)

We now analyze the term in parenthesis, that is,

(♣) := − 1

T

(
T∑

t=1

U1(πt
1,π

t
2) + U2(πt

1,π
t
2)

)
Plugging in the definition of U1 and U2, that is,

U1(π1,π2) := u1(π1,π2)− λ1DKL(π1 ∥ τ1)
U2(π1,π2) := u2(π1,π2)− λ2DKL(π2 ∥ τ2) = −u1(π1,π2) + λ2DKL(π2 ∥ τ2)

21

into (♣) yields

(♣) = − 1

T

(
T∑

t=1

U1(πt
1,π

t
2) + U2(πt

1,π
t
2)

)
=

1

T

(
T∑

t=1

λ1DKL(π
t
1 ∥ τ1) + λ2DKL(π

t
2 ∥ τ2)

)
≥ λ1DKL(π̄

T
1 ∥ τ1) + λ2DKL(π̄

T
2 ∥ τ2) (24)

= −
(
U1(π̄T

1 , π̄
T
2) + U2(π̄T

1 , π̄
T
2)
)
, (25)

where equation 24 follows from convexity of the KL divergence function, and equation 25 follows again from the definition of U1
and U2. Substituting equation 25 back into equation 23, we find

P
[

max
π∗

1∈∆(A1)

{
U1(π∗

1 , π̄
T
2)− U1(π̄T

1 , π̄
T
2)
}
+ max

π∗
2∈∆(A2)

{
U2(π̄T

1 ,π
∗
2)− U2(π̄T

1 , π̄
T
2)
}

≤ RT
1 +RT

2

T
+ (max

i
Di)

√
32

T
log

maxi |Ai|
δ

]
≥ 1− 2δ. (26)

Since
max

π∗
1∈∆(A1)

{
U1(π∗

1 , π̄
T
2)− U1(π̄T

1 , π̄
T
2)
}
≥ 0, and max

π∗
2∈∆(A2)

{
U2(π̄T

1 ,π
∗
2)− U2(π̄T

1 , π̄
T
2)
}
≥ 0,

the inequality above in particular implies that

P
[
max

{
max

π∗
1∈∆(A1)

{
U1(π∗

1 , π̄
T
2)− U1(π̄T

1 , π̄
T
2)
}
, max
π∗

2∈∆(A2)

{
U2(π̄T

1 ,π
∗
2)− U2(π̄T

1 , π̄
T
2)
}}

≤ RT
1 +RT

2

T
+ (max

i
Di)

√
32

T
log

maxi |Ai|
δ

]
≥ 1− 2δ, (27)

which is equivalent to the statement after making the variable substitution δ := δ′/2.

In particular, when η ≤ 1/(λiβi + 2Di) for both players i ∈ {1, 2}, Proposition 2 implies that the average strategy profile is a
O(1/

√
T)-Nash equilibrium with respect to the regularized utility functions Ui.

A standard application of the Borel-Cantelli lemma enables to convert from the high-proability guarantees of Proposition 2 at
finite time to almost-sure convergence in the limit. Specifically,
Corollary 1. Let (π̄1, π̄2) be any limit point of the average policies (π̄T

1 , π̄
T
2) of the players. Almost surely, (π̄1, π̄2) is a Nash

equilibrium with respect to the regularized utility functions U1,U2, respectively.

From there, it is immediate to give guarantees with respect to the original (i.e., unregularized) game, and Theorem 2 follows.
Theorem 2. Let (π̄1, π̄2) be any limit point of the average policies (π̄T

1 , π̄
T
2) of the players. Almost surely, (π̄1, π̄2) is a

(maxi=1,2{λiβi})-approximate Nash equilibrium policy with respect to the original utility functions ui, where βi is a constant
depending on τi (see equation 21 in Appendix B).

Proof. From Corollary 1, almost surely (π̄1, π̄2) is a Nash equilibrium of the regularized game whose players’ utilities are U1 and
U2, respectively. Expanding the definition of Nash equilibrium relative to Player 1, we have that

0 = max
π∗

1∈∆(A1)
{U1(π∗

1 , π̄2)− U1(π̄1, π̄2)}

= max
π∗

1∈∆(A1)
{u1(π

∗
1 , π̄2)− λ1DKL(π

∗
1 ∥ τ1)− u1(π̄1, π̄2) + λ1DKL(π̄1 ∥ τ1)}

≥ max
π∗

1∈∆(A1)
{u1(π

∗
1 , π̄2)− u1(π̄1, π̄2)} − λ1DKL(π

∗
1 ∥ τ1)

= max
π∗

1∈∆(A1)

{
(u1(π

∗
1 , π̄2)− u1(π̄1, π̄2))− λ1

∑
a∈A1

π∗
i (a) log(π

∗
i (a))− λ1

∑
a∈A1

π∗
1(a) log(1/τ1(a))

}

≥ max
π∗

1∈∆(A1)

{
(u1(π

∗
1 , π̄2)− u1(π̄1, π̄2))− λ1

∑
a∈A1

π∗
1(a) log(1/τ1(a))

}
≥ max

π∗
1∈∆(A1)

{u1(π
∗
1 , π̄2)− u1(π̄1, π̄2)} − λ1β1,

22

where the first inequality follows since the KL divergence is alwasy nonnegative, the second inequality since the negative entropy
function is nonpositive on the simplex, and the third inequality follows from the definition of β1. Symmetrically, for Player 2 we
find that

0 ≥ max
π∗

2∈∆(A2)
{u2(π̄1,π

∗
2)− u2(π̄1, π̄2)} − λ2β2.

Hence, the exploitability of π̄1 is at most λ1β1, while the exploitability of π̄2 is at most λ2β2, which immediately implies the
statement.

C ILLUSTRATIONS OF PIKL-HEDGE IN BLOTTO

Figure 4: Comparison of piKL and regret matching as a function of λ in Colonel Blotto(10, 3). As λ increases in piKL-hedge, piKL moves
closer to the anchor policy at the cost of increased exploitability. The scale of λ is related to the scale of the payoffs in the game, which are [0, 1]
in Blotto.

Colonel Blotto is a famous 2-player simultaneous action game that has a large action space but has rules that are short and simple.
In Blotto, each player has c coins to be distributed across f fields. The aim is to win the most fields by allocating the player’s
coins across the fields. A field is won by contributing the most coins to that field (and drawn if there is a tie). The winner receives
a reward of +1 and the loser receives -1. Both receive 0 in the case of a tie.

In Figure 4 we illustrate the key features of piKL-Hedge in Blotto, using a uniform anchor policy for convenience. Incidentally,
piKL-Hedge with a uniform anchor policy converges to a quantal response equilibrium McKelvey & Palfrey (1995b). piKL-Hedge
finds policies that play close to the anchor policy while having low regret, with λ controlling the relative optimality of these two
desiderata.

D HUMAN POLICY KL-REGULARIZED SEARCH ALSO IMPROVES CROSS-ENTROPY

Model Dataset (raw model) cpuct = 10 cpuct = 5 cpuct = 2 cpuct = 1 cpuct = 0.5

Maia1500 (Chess) Lichess 1500 Rating Bucket 1.476 1.469 1.465 1.470 1.504 1.598
Maia1900 (Chess) Lichess 1900 Rating Bucket 1.440 1.429 1.422 1.418 1.443 1.529
Our Model (Go) GoGoD 1.388 1.362 1.359 1.362 1.391 1.478

Table 3: Cross-entropy predicting human moves in chess and Go using smooth KL optimization post-processing of MCTS with
various cpuct. Largest standard error of any value is around 0.0033.

Here we show that not only does policy-regularized search improve top-1 accuracy, it also improves cross entropy for a reasonable
range of parameter values in both chess and Go, as well as performing well in Diplomacy.

For Chess and Go, to obtain the policy distribution with which to compute its cross entropy with the human data, unlike for top-1
accuracy or for play we cannot directly use the MCTS visit distribution because occasionally simply due to discretization MCTS
may give zero visits to the actual move that a human played, resulting in an undefined (i.e. infinite) cross-entropy. Instead, we
leverage the result of Grill et al. (2020) that PUCT-style MCTS with a policy prior can be seen as a discrete approximation to
solving a smooth optimization:

argmax
π

∑
a

Q(s, a)π(s, a) + λDKL(τ ∥π)

23

800 900 1000 1100 1200 1300 1400 1500 1600
Pseudo-ELO

1

2

3

4

5

6

7
U

ni
tO

rd
er

C
ro

ss
-E

nt
ro

py
Anchor Policy

piKL-Hedge (λ = 10−1)

piKL-Hedge (λ = 10−2)

piKL-Hedge (λ = 10−3)

piKL-Hedge (λ = 10−4)

piKL-Hedge (λ = 10−5)
Hedge
Regret Matching

Figure 5: Average cross-entropy of per-unit order prediction in Diplomacy, comparing the human-imitation-learned anchor policy, regret
matching, hedge, and piKL-Hedge, as a function of pseudo-Elo player rating.

where

λ = cpuct

√∑
a na

(k +
∑

a na)

where Q is the current value estimate from search for each action, τ is the anchor or prior policy, λ controls the strength of the
regularization towards that prior as a function of the number of visits, cpuct is the MCTS exploration coefficient, na is the number
of times a was explored and k is an arbitrary constant not affecting the asymptotic results.

We perform MCTS exactly the same as normal, the only difference is that at the very end, rather than using visit counts, we
compute π optimizing the above objective using the human imitation-learned anchor policy for τ and the MCTS-estimated
Q-values for Q (and using the same unweighted average child value for moves that lack a Q-value estimate due to having zero
visits as described in Appendix G). We use this resulting smooth π as the final policy prediction and compute its cross entropy
with the actual human moves.

Note that the authors choose k = |A|, the number of legal actions, for mathematical convenience, corresponding to adding one
extra visit per every possible action (Grill et al., 2020), but since in our experiments we use only use 50 visits including the root
visit (i.e.

∑
a na = 49), and the branching factor can be as large as 362 in Go, adding one extra visit per legal action in our case

greatly overestimates the total number of visits, which in practice gives a less accurate correspondence between MCTS and this
smoother regularized solution, so we instead choose k = 0.

In Table 3 we show the results. Across roughly the same parameter ranges, the regularized search policy using this smoothed
MCTS postprocessing achieves lower cross-entropy with human moves than the raw imitation-learned policy without search. This
suggests that not only does search improve on the raw imitation-learned policy at pinpointing the top action, it also gives a more
accurate model of the overall distribution of likely human actions.

Similarly, in Figure 5, we show that piKL-Hedge achieves better average cross entropy of unit orders in no-press Diplomacy
compared to unregularized search methods, and matches that of imitation learning at λ = 0.1. This corroborates the results of
Section 4.3 and shows that piKL-Hedge provides the same benefits in modeling the overall distribution of human actions as it
does on predicting the top move - outpredicting unregularized search (while playing as well or slightly better against human-like
opponents), or equaling the prediction quality of imitation learning (while playing much more strongly than IL).

24

E MORE EXPERIMENTS IN CHESS AND GO

Game cpuct
MCTS Win% vs raw model

temp = 1 temp = 0.3

Chess 10.0 72.2% ± 1.2% 62.4% ± 1.3%
Chess 5.0 79.5% ± 1.1% 72.3% ± 1.2%
Chess 2.0 88.0% ± 0.8% 86.1% ± 0.9%
Chess 1.0 92.2% ± 0.7% 92.9% ± 0.6%
Chess 0.5 94.4% ± 0.6% 94.7% ± 0.5%

Go 10.0 73.2% ± 1.4% 63.3% ± 1.5%
Go 5.0 80.5% ± 1.3% 74.1% ± 1.4%
Go 2.0 87.6% ± 1.0% 85.3% ± 1.1%
Go 1.0 94.6% ± 0.7% 94.4% ± 0.7%
Go 0.5 96.4% ± 0.6% 97.0% ± 0.5%

Table 4: Winrate of base model + MCTS vs base model at temperature 1 and 0.3. Base model is Maia1900 in chess, and our
GoGoD model in Go. 1000 games per figure, draws count as half a win, ± indicates one standard error. Go uses Japanese rules
with 6.5 komi. MCTS greatly improves strength in Chess and Go, the smallest cpuct values improve it most.

Model Predicting Main Time Increment Raw Model Acc % MCTS Acc % Acc Gain from MCTS Approx Stderr

Maia1500 1500 3m 0s 51.9 52.1 0.2 0.17
Maia1500 1500 5m 0s 52.7 53.2 0.5 0.16
Maia1500 1500 10m 0s 52.4 53.1 0.7 0.20
Maia1500 1500 3m 2s 53.1 53.7 0.6 0.31
Maia1500 1500 5m 3s 52.5 53.4 0.9 0.35
Maia1500 1500 15m 15s 51.9 52.6 0.7 0.37

Maia1900 1900 3m 0s 53.0 53.9 0.8 0.12
Maia1900 1900 5m 0s 53.2 54.5 1.3 0.17
Maia1900 1900 10m 0s 52.9 54.6 1.7 0.24
Maia1900 1900 3m 2s 54.1 55.5 1.4 0.27
Maia1900 1900 5m 3s 53.1 55.1 2.0 0.51
Maia1900 1900 15m 15s 53.7 55.9 2.2 0.56

Table 5: Difference in top-1 accuracy between raw model and MCTS using the best cpuct in predicting human moves for chess
players in rating buckets 1500 and 1900 using Maia1500 and Maia1900, split by time control of the games, excluding all time
controls with fewer than 100 games. Approx Stderr indicates the rough standard error of raw accuracy values on that row given the
number of games of that time control. Despite the statistical uncertainty on some individual values, overall the improvement of
MCTS vs the raw model does clearly tend to be larger on the games with longer time controls.

This section summarizes the results of a small number of additional experiments in chess and Go. Whereas Figure 1 used a
temperature of 1.0 when sampling from the agent policy, we show in Table 4 that MCTS also achieves similar winrates versus the
raw model when both are sampled using a much lower temperature of 0.3.

Additionally, we confirm in Go the same result that McIlroy-Young et al. (2020a) reported in chess, that current top RL agents
are far worse at matching human moves than even just imitation learning. We tested the current top open-source Go program
KataGo (Wu, 2020) using its final 6, 10, and 15 block models5 which range from upper-amateur to superhuman level, and found
that they achieve accuracies of about 35%, 43%, and 43%, all more than 10% lower than the results in Table 1.

Lastly, in Table 5 we show that in chess the amount of improvement given by MCTS over the raw model in predicting human
players on the Lichess test set tends to be larger for games with longer time controls than for shorter time controls, going from
about 0.2% to about 0.7% between the shortest and longer time controls for 1500-1599-rated players, and going from about 0.8%
to around 2.0% for 1900-1999-rated players. This is consistent with the intuition that humans rely more heavily on planning when
they have more time to think, increasing the gain from modeling that planning.

5from https://katagotraining.org

25

F BASELINE MODEL ARCHITECTURE AND TRAINING FOR GO

As summarized in Section 3.2, for training baseline imitation-learning models to play on the 19x19 board in Go, our architecture
follows the same 20-block 256-channel residual net described in Silver et al. (2017), except with the addition of squeeze-and-
excitation layers at the end of each residual block (Hu et al., 2018). In particular, the following additional operations are inserted
just prior to each skip connection that adds the output R of a residual block to the trunk X:

• Channelwise global average pooling of R from 19 × 19 × 256 channels to 256 channels.

• A fully connected layer including bias from 256 channels to 64 channels.

• A ReLU nonlinearity.

• A fully connected layer including bias from 64 channels to 512 channels, which are split two vectors S and B of 256
channels each.

• Output R × sigmoid(S) + B to be added back to the trunk X , instead of R as in a normal residual net.

In other words, the final result of the residual block as a whole is ReLU(X + R × sigmoid(S) + B) instead of ReLU(X + R).

Additionally, some games are played with a komi (compensation given to White for playing second) that is not equal to the value of
7.5 used by Silver et al. (2017). Therefore, for the final feature of the input encoding, rather than a binary-valued feature equalling
1 if the player to move is White and 0 if the player to move is Black, we instead use the real-valued feature of komi/10 if the player
to move is White or -komi/10 if the player to move is Black. We additionally exclude a very tiny number of games with extreme
komi values, outside of the range [-60,60].

We train using a mini-batch size of 2048 distributed as 8 batches of 256 across 8 GPUs, and train for a total of 64 epochs - roughly
475000 minibatches for the GoGoD dataset. We use SGD with momentum 0.9, weight decay coefficient of 1e-4, and a learning
rate schedule of of 1e-1, 1e-2, 1e-3, 1e-4 for the first 16, next 16, next 16, and last 16 epochs respectively.

We train both the policy and values heads jointly, minimizing the cross entropy of the policy head with respect to the one-hot move
made in the actual game, and the MSE of the value head with respect to the game result of -1 or 1, except similarly to Silver et al.
(2017) we weight the MSE value loss by 0.01 to avoid overfitting of the value head.

G MCTS ALGORITHMIC DETAILS

In this appendix, we summarize the details of the version of MCTS used in our experiments, including one often-overlooked detail.
We follow a standard MCTS implementation very similar to that of Silver et al. (2017).

Each turn, the algorithm builds and expands a game tree over multiple iterations rooted at the current state for that turn. On each
iteration t MCTS starts at the root and descends the tree by exploring at each state s an action a according to some exploration
method. Upon reaching a state st not yet explored, it adds st to the tree, queries the value function Vi(st) for each i to estimate
the total expected future reward, and updates the statistics of all nodes traversed based on Vi(st) and any intermediate rewards
received. Subsequent iterations begin again from the root. For our work in chess and Go, we follow the convention where win,
loss, and draw have reward 1,-1, and 0.

The statistics tracked at the node for each state s where player i is to move include the visit counts N(s, a) which are the number
of iterations that reached state s and tried action a, and Q(s, a) the average value of those iterations from the perspective of player
i, i.e. Q(s, a) = (1/N(s, a))

∑
t Vi(st) + Ui(s, st) where the sum ranges only over those iterations t that reached state s and

tried action a and Ui(s, st) is the total intermediate reward on the path from s to st. When descending the tree, the exploration
method is to always select the action:

argmax
a

Q(s, a) + cpuctτ(s, a)

√∑
b N(s, b)

N(s, a) + 1
(28)

where τ(s, a) is the prior policy probability for action a in state s, and cpuct is a tunable parameter controlling the tradeoff
between exploration and exploitation. The final agent policy π is simply proportional to the visit counts for the root, i.e.
π(s, a) = N(s, a)/

∑
b N(s, b) where s is the root state, or optionally we may also have π(s, a) ∼ N(s, a)1/T where T is a

temperature parameter.

One final often-overlooked detail concerns how to evaluate states for which there is no Q(s, a) estimate. Since the tree policy
depends on the Q(s, a) estimates of the possible actions, there is a nontrivial choice of what Q value to use for an action a that has
been tried zero times and therefore never estimated. Since the tree branches exponentially, deeper in the MCTS tree there will
always be many actions with zero visits, and so this choice can affect the behavior of MCTS even in the limit of large amounts of

26

search. Unfortunately, the details of this choice have sometimes been left undiscussed and undocumented in major past work,
and as a result major MCTS implementations have not standardized on it, variously choosing game-loss (Lai, 2018), the current
running average parent Q or a Q-value minus a heuristic offset parameter (Tian, 2019), or many other options.

In our work, we use the equal-weighted average value of all actions at the parent node that have been visited at least once, i.e.∑
a Q(s, a)I(N(s, a) > 0)/

∑
a I(N(s, a) > 0) . This can be viewed as corresponding to a naive prior that the values of actions

are i.i.d draws from an unknown distribution. While not perfect, our choice is simple, parameter-free, behaves in a way that is
invariant to any global translation or scaling of the game’s rewards, and works reasonably in practice for our purposes.

H BRIEF DESCRIPTION OF DIPLOMACY

We briefly summarizing the rules of Diplomacy. See Paquette et al. (2019) for a more detailed description. The board is a map
of Europe partitioned into 75 regions, 34 of which are supply centers (SCs) that players compete to control. Players command
multiple units and each turn privately issue orders for each unit they own (to hold, move, support another unit, or convoy).
These orders are revealed at the same time, thereby making Diplomacy a simultaneous-action game. A player wins the game by
controlling a majority (18) of the SCs. A game may also end in a draw if all remaining players agree. In this case, we use the
Sum-of-Squares (SoS) scoring system as used in prior works Paquette et al. (2019); Gray et al. (2020); Bakhtin et al. (2021). If
no player wins, SoS defines the score of player i as C2

i /
∑

i′ C
2
i′ , where Ci is the SC count for player i.

Diplomacy is specifically designed so that a player is unlikely to achieve victory without help from other players. The full game
allows unrestricted private natural-language communication between players each turn prior to choosing orders, but we focus on
the simpler no-press variant, in which no such communication is allowed, but modeling how opponents will behave continues to
be important.

I DIPLOMACY HYPER-PARAMETERS

We describe the describe the search parameters used in this work and compare it to those in previous works. As compared to Gray
et al. (2020), we use a much less expensive set of search parameters for all results in the main section of this paper (See, Table 7).
In Table 8, we show that these tuned-down set of parameters, slightly reduces piKL-HedgeBot’s performance but allows us to
make similar conclusions when comparing against SearchBot Gray et al. (2020) and supervised learning-based bots from prior
works. Additionally, in Table 8, we also show that when our agent (piKL-HedgeBot (λ = 10−3)) uses the same search parameters
as Gray et al. (2020), it outperforms SearchBot by a big margin.

In our experiments, to compare against DipNet (Paquette et al., 2019) we use the original model checkpoint6 and we sample from
the policy with temperature 0.1 (as used in prior works). Similarly, to compare against SearchBot (Gray et al., 2020) agent we use
the released checkpoint7 and agent configuration8.

The only other search parameter unique and new to our piKL-HedgeBot algorithm is η in Algorithm 1, which we heuristically set
on each Hedge iteration t to c/(σ

√
t) where σ is the standard deviation across iterations of the average utility experienced by the

agent i being updated. We find c = 10/3 works well for no-press Diplomacy.

Model Temperature

DipNet (Paquette et al., 2019) 0.1
DipNet RL (Paquette et al., 2019) 0.1
Blueprint (Gray et al., 2020) 0.1
IL Policy (Ours) 0.5

Table 6: Sampling temperatures used in the models across prior works. For our imitation learning model (IL Policy), we use a
temperature of 0.5 in all experiments to encourage stochasticity.

J DIPLOMACY MODEL ARCHITECTURE AND INPUT FEATURES

Our imitation learning policy model for Diplomacy uses the same transformer-encoder LSTM-decoder architecture as Bakhtin
et al. (2021) for reinforcement learning in Diplomacy, but applied to imitation learning over human games. This architecture also

6DipNet SL from https://github.com/diplomacy/research.
7blueprint from https://github.com/facebookresearch/diplomacy_searchbot/releases/tag/1.0.
8https://github.com/facebookresearch/diplomacy_searchbot/blob/master/conf/common/agents/

searchbot_02_fastbot.prototxt

27

https://github.com/diplomacy/research
https://github.com/facebookresearch/diplomacy_searchbot/releases/tag/1.0
https://github.com/facebookresearch/diplomacy_searchbot/blob/master/conf/common/agents/searchbot_02_fastbot.prototxt
https://github.com/facebookresearch/diplomacy_searchbot/blob/master/conf/common/agents/searchbot_02_fastbot.prototxt

Parameter Gray et al. (2020) Ours

Number candidate actions (Nc) 50 30
Max candidate actions per unit 3.5 3.5
Number search iterations 256 512
Policy sampling temperature for rollouts 0.75 N/A
Policy sampling top-p 0.95 0.95
Rollout length, move phases 2 0

Table 7: Search parameters used in Gray et al. (2020) compared to the search parameters used in our work. All experiments in
the main body of this work uses search settings that are much cheaper to run. We use a rollout length of 0 and Nc = 30 while
increasing the number of search iterations to 512.

1x ↓ 6x → DipNet DipNet RL Blueprint BRBot SearchBot

DipNet (Paquette et al., 2019) - 6.7% ± 0.9% 11.6% ± 0.1% 0.1% ± 0.1% 0.7% ± 0.2%
DipNet RL (Paquette et al., 2019) 18.9% ± 1.4% - 10.5% ± 1.1% 0.1% ± 0.1% 0.6% ± 0.2%

Blueprint (Gray et al., 2020) 20.2% ± 1.3% 7.5% ± 1.0% - 0.3% ± 0.1% 0.9% ± 0.2%
BRBot (Gray et al., 2020) 67.3% ± 1.0% 43.7% ± 1.0% 69.3% ± 1.7% - 11.1% ± 1.1%
SearchBot (Gray et al., 2020) 51.1% ± 1.9% 35.2% ± 1.8% 52.7% ± 1.3% 17.2% ± 1.3% -

piKL-HedgeBot (λ = 0.001) 54.8% ± 1.8% 31.4% ± 1.8% 50.3% ± 1.8% 19.2% ± 1.4% 16.6% ± 1.3%

piKL-HedgeBot (λ = 0.001) (Gray et al. (2020) parameters) 60.1% ± 1.8% 33.3% ± 1.8% 58.1% ± 1.8% 23.6% ± 1.6% 20.3% ± 1.4%

Table 8: Average SoS scores achieved by the 1x agent against the 6x agents. This table compares the performance of SearchBot
Gray et al. (2020) and other agents from prior work with piKL-HedgeBot (λ = 10−3) that uses a much cheaper search setting.
Using the much cheaper search setting, comes at relatively small cost in its performance as we use improved value and policy
models (See, Appendix J and Appendix I for more details). When using the same parameters as Gray et al. (2020), piKL-HedgeBot
(λ = 10−3) significantly outperforms SearchBot under most settings. Note that equal performance would be 1/7 ≈ 14.3%. The ±
shows one standard error.

resembles the architecture used by a significant amount of past work Gray et al. (2020); Anthony et al. (2020); Paquette et al.
(2019) but replaces the graph-convolution encoder with a transformer, which we find to produce good results.

Additionally, we slightly modify the input feature encoding relative to Gray et al. (2020), removing a small number of redundant
channels and adding channels to indicate the “home centers” of each of the 7 powers (Austria, England, France,... etc), which are
the locations where that power is allowed to build new armies or fleets. See Table 9 for the new list of input features. By adding
the home centers to the input encoding instead of leaving them implicit, the game becomes entirely equivariant to permutations of
those powers - e.g. if one swaps all the units of England and France, and all their centers, and which centers are their home centers,
the resulting game is isomorphic to the original except with the two powers renamed.

This allows us to then augment the training data via equivariant permutations of the seven possible powers in the encoding. Every
time we sample a position from the dataset for training, we also choose among all 7-factorial permutations of the powers uniformly
at random, and correspondingly permute both the input and output, to reduce overfit and improve the model’s generalization given
the limited human data available.

Feature Type Number of Channels
Location has unit? One-hot (army/fleet), or all zero 2
Owner of unit One-hot (7 powers), or all zero 7
Buildable, Removable? Binary 2
Location has dislodged unit? One-hot (army/fleet), or all zero 2
Owner of dislodged unit One-hot (7 powers), or all zero 7
Area type One-hot (land,coast,water) 3
Supply center owner One-hot (7 powers or neutral), or all zero 8
Home center One-hot (7 powers), or all zero 7

Table 9: Per-location input features used

28

K IMPROVED VALUE MODEL IN DIPLOMACY

For no-press Diplomacy, we note that Gray et al. (2020) observed that their search agent benefits from short rollouts using the
trained human policy before applying the human-learned value model to evaluate the position. Doing so appears to result in
more accurate evaluations reflecting the likely outcomes from a given game state, which the raw value model may failed to learn
sufficiently accurately on the limited human dataset. Since expectation of the learned value model after a short rollout appears to
be better than the learned value model itself, this motivates training a model to directly approximate the former.

In a fashion broadly similar to Silver et al. (2016) generating rollout games to train a more accurate value head for Go, we therefore
generated a large stream of data by uniformly sampling positions from the human game dataset for Diplomacy, rolling them
forward between 4-8 phases of game play via the same rollout settings as Gray et al. (2020), i.e. policy sampling temperature 0.75,
top-p 0.95, and training a new value model to predict the resulting post-rollout value estimate of the old value model. Samples
were continuously and asynchronously added to a replay buffer of 10000 batches, and the buffer was continuously sampled to train
the same transformer-based architecture as the human-trained model from Appendix J initialized with the weights of that model.
Training was constrained to never exceed the rate of data generation by more than a factor of 2 (i.e. using each sample twice in
expectation) and proceeded for 128000 mini-batches of 1024 samples each using the ADAM optimizer with a fixed learning rate
of 1e-5.

L MORE EXPERIMENTS IN DIPLOMACY

This section compiles additional performance results from evaluation games.

L.1 HEAD-TO-HEAD PERFORMANCE

In Table 10, we compare the performance of piKL-HedgeBotin 1v6 head-to-head games against the underlying imitation anchor
policy, following prior work Gray et al. (2020); Bakhtin et al. (2021); Paquette et al. (2019); Anthony et al. (2020). We find that
the λ = 10−1 policy is substantially stronger than the imitation policy while matching the accuracy in predicting human moves,
while the λ = 10−3 policy outperforms unregularized search methods while playing much closer to the human policy.

1x 6x Average SoS Score

IL Policy

piKL-HedgeBot (λ = 10−1) 8.3±0.9%
piKL-HedgeBot (λ = 10−2) 2.5±0.4%
piKL-HedgeBot (λ = 10−3) 1.8±0.3%
piKL-HedgeBot (λ = 10−4) 2.1±0.3%
piKL-HedgeBot (λ = 10−5) 1.6±0.2%
HedgeBot 1.5±0.2%
RMBot 1.4±0.2%

1x 6x Average SoS Score

piKL-HedgeBot (λ = 10−1)

IL Policy

21.1±1.4%
piKL-HedgeBot (λ = 10−2) 44.2±1.7%
piKL-HedgeBot (λ = 10−3) 52.7±1.7%
piKL-HedgeBot (λ = 10−4) 49.7±1.7%
piKL-HedgeBot (λ = 10−5) 46.9±1.7%
HedgeBot 46.5±1.7%
RMBot 46.2±1.7%

Table 10: Average SoS score attained by the 1x agent against the 6x agent. piKL-HedgeBot(λ = 10−1) policy is substantially
stronger than IL Policy, while the (λ = 10−2) policy is almost as strong as RMBot. The ± shows one standard error. Note that
equal performance would be 1/7 ≈ 14.3%.

L.2 PIKL-HEDGEBOT’S PERFORMANCE IN POPULATION-BASED EXPERIMENTS

In this section, we provide all the results from the population experiments across various piKL-HedgeBot’s lambda values. Figure 6
and Table 11 show the results. piKL-HedgeBot with λ = 10−3 performs best across individual population experiments with an
SoS score of 32.9%. The performance drops as we continue to increase λ past 1e− 3. Error bars indicate 1 standard error.

29

Agent Average SoS Score

DipNet (Paquette et al., 2019) 4.9% ± 0.3%
DipNet RL (Paquette et al., 2019) 5.6% ± 0.4%

Blueprint (Gray et al., 2020) 7.1% ± 0.4%
BRBot (Gray et al., 2020) 18.2% ± 0.6%
SearchBot (Gray et al., 2020) 36.1% ± 0.8%

IL Policy 10.2% ± 0.6%
RMBot 36.8% ± 1.1%

piKL-HedgeBot (λ = 10−1) 15.6% ± 0.6%

Agent Average SoS Score

DipNet (Paquette et al., 2019) 3.8% ± 0.3%
DipNet RL (Paquette et al., 2019) 4.2% ± 0.3%

Blueprint (Gray et al., 2020) 5.8% ± 0.4%
BRBot (Gray et al., 2020) 16.3% ± 0.6%
SearchBot (Gray et al., 2020) 14.1% ± 0.6%

IL Policy 8.5% ± 0.4%
RMBot 31.7% ± 0.8%

piKL-HedgeBot (λ = 10−2) 29.9% ± 0.7%

Agent Average SoS Score

DipNet (Paquette et al., 2019) 3.7% ± 0.3%
DipNet RL (Paquette et al., 2019) 4.7% ± 0.3%

Blueprint (Gray et al., 2020) 4.9% ± 0.3%
BRBot (Gray et al., 2020) 16.1% ± 0.6%
SearchBot (Gray et al., 2020) 13.4% ± 0.5%

IL Policy 7.9% ± 0.4%
RMBot 31.3% ± 0.7%

piKL-HedgeBot (λ = 10−3) 32.9% ± 0.7%

Agent Average SoS Score

DipNet (Paquette et al., 2019) 3.5% ± 0.3%
DipNet RL (Paquette et al., 2019) 4.6% ± 0.3%

Blueprint (Gray et al., 2020) 5.7% ± 0.3%
BRBot (Gray et al., 2020) 14.3% ± 0.6%
SearchBot (Gray et al., 2020) 13.6% ± 0.5%

IL Policy 8.8% ± 0.4%
RMBot 31.8% ± 0.7%

piKL-HedgeBot (λ = 10−4) 31.8% ± 0.7%

Agent Average SoS Score

DipNet (Paquette et al., 2019) 3.6% ± 0.3%
DipNet RL (Paquette et al., 2019) 4.4% ± 0.3%

Blueprint (Gray et al., 2020) 5.3% ± 0.3%
BRBot (Gray et al., 2020) 15.0% ± 0.6%
SearchBot (Gray et al., 2020) 13.0% ± 0.5%

IL Policy 8.9% ± 0.4%
RMBot 32.2% ± 0.7%

piKL-HedgeBot (λ = 10−5) 31.9% ± 0.7%

Agent Average SoS Score

DipNet (Paquette et al., 2019) 3.6% ± 0.3%
DipNet RL (Paquette et al., 2019) 3.9% ± 0.3%

Blueprint (Gray et al., 2020) 5.5% ± 0.3%
BRBot (Gray et al., 2020) 14.7% ± 0.6%
SearchBot (Gray et al., 2020) 14.1% ± 0.6%

IL Policy 8.7% ± 0.4%
RMBot 32.2% ± 0.7%

HedgeBot 31.7% ± 0.7%

Table 11: Average SoS score achieved by agents in uniformly sampled pools of other agents. piKL-HedgeBot with λ = 10−3

performs best across individual sweeps with an SoS score of 32.9%. The ± shows one standard error.

30

10−5 10−4 10−3 10−2 10−1

λ

15.0%

17.5%

20.0%

22.5%

25.0%

27.5%

30.0%

32.5%

A
ve

ra
ge

Sc
or

e

piKL-Hedge (λ = 10−1)

piKL-Hedge (λ = 10−2)

piKL-Hedge (λ = 10−3)

piKL-Hedge (λ = 10−4)

piKL-Hedge (λ = 10−5)

Figure 6: Average SoS score achieved by piKL-HedgeBots in uniformly sampled pools of other agents as a function of λ. piKL-HedgeBot
(λ = 10−3) performs best across individual sweeps with an SoS score of 32.9%.

31

M DEC-POMDP GAMES: POLICY-REGULARIZED SPARTA ON HANABI

In this section, we extend KL-regularized search to decentralized partially observable Markov decision processes (Dec-POMDP)
and test it on the Hanabi benchmark (Bard et al., 2020). We first train an imitation learning policy (IL policy) from human data.
We then use the IL policy as the blueprint policy in SPARTA (Lerer et al., 2020), a search technique for Dec-POMDPs, and apply
KL-regularization toward the IL policy in SPARTA. We call this new algorithm piKL-SPARTA. We show that piKL-SPARTA
matches or even slightly improves the original IL policy in human move prediction accuracy while greatly improving self-play
performance.

M.1 BACKGROUND

A Dec-POMDP is an N -player fully cooperative game with state space S that is partially observed by each player i through
their individual observation function oi = Ωi(s) for s ∈ S, with joint action space A = A1 × A2 × · · · × AN and transition
function T : S ×A→ P (S) that returns the distribution of next state given current state and joint action. The reward function
R : S ×A→ R assigns a scalar reward for the entire team at each time step. A trajectory is denoted as τ t = (s0, a0, r0, . . . , st)
while the action-observation history (AOH) of each player is defined as τ ti = (o0, a0, r0, . . . , ot). A full trajectory or full AOH
that reaches the terminal state may be denoted more simply as τ or τi respectively. The policy for each individual player πi(a

t
i|τ ti)

takes as input the AOH and returns a distribution over valid actions. The joint policy π = (π1, . . . , πN) is a tuple containing all
players’ policies. The goal is to find a policy to maximize the expected total return π∗ = argmaxπ J(π) = Eτ∼P (τ |π)R

0(τ)

where Rt(τ) =
∑

t′≥t γ
(t′−t)r′t is the forward looking return with optional discount factor γ ≤ 1.

Hanabi is a well-established large-scale Dec-POMDP benchmark (Bard et al., 2020). It is a 2 to 5 player card game with a deck
of 50 cards equally divided into 5 color suits. Each color consists of five ranks with three 1s, two 2s, two 3s, two 4s, and one 5.
Each player draws five cards from a randomly shuffled deck to start the game. The goal of the team is to play cards in order of
increasing rank from 1 to 5 for every color suit. Players take turns to either play a card, discard a card, or give a hint to another
player about their cards. When giving a hint, the acting player picks a receiver of the hint and a rank or color of any card in the
receiver’s hand. The recipient will then learn exactly which cards in their hand match the given rank or color. Hinting costs one
information token. The team starts with eight information tokens and they can recoup one information token after discarding a
card or successfully playing a 5 of any color. If a player makes an invalid play, e.g. playing a red 3 when a red 2 is not played yet,
the team loses one life token. After each play or a discard, a player draws a new card if possible. The game ends when three life
tokens are lost, in which case the team receives 0 points, or one round after the entire deck is exhausted, in which case the score
equals the number of cards successfully played.

The majority of existing works in the Hanabi domain focus on learning human compatible policies without using human data (Bard
et al., 2020; Siu et al., 2021; Hu et al., 2021b). Fewer works have explored better modeling human policies using human game
data, partly due to the lack of publicly available datasets. To the best of our knowledge, the strongest supervised learning agent
trained from human data was done by Hu et al. (2021b) where the authors use it as an unseen test-time partner agent in evaluation
to estimate how well their agents might collaborate with humans. No prior work has been done to better predict human moves in
Hanabi.

A few search techniques such as SPARTA (Lerer et al., 2020) and RL-search (Fickinger et al., 2021) have been proposed for
large scale Dec-POMDPs and have specifically been applied in Hanabi. In this work we choose SPARTA as our backbone for
simplicity, while noting that our KL-regularization methods may also be generalized to other search techniques. SPARTA is a
test-time policy improvement algorithm that can be applied on top of any policy. SPARTA assumes that a blueprint policy (BP) π
is common knowledge in the Dec-POMDP and all players play their part of the blueprint unless they should deviate according to
the SPARTA rule. Here we briefly discuss the single-agent variant where the search agent assumes that other agents will always
play the blueprint. Given blueprint π, SPARTA first defines a belief function that tracks the distribution of the real trajectory given
the search agent’s own AOH Bi(τ t) = P (τ t|τ ti , π). Then the search agent i computes the expected value for each action a using
Monte Carlo rollouts:

Qπ(τ
t
i , a) = Eτt∼Bi(τt)Qπ(τ

t, a), (29)

where:

Qπ(τ
t, a) = Eτ∼P (τ |T ,τt,at

i=a,at
j ̸=i∼π,at′>t∼π)R

t(τ)

is the expected forward looking return on τ t assuming that the search agent will perform the action a for the current step and
follow the blueprint afterwards while other agents always follow the blueprint. SPARTA computes the belief Bi(τt) analytically. It
maintains a distribution of all possible trajectories and adjusts it at every step by removing the trajectories that contradict public
knowledge or would have led to different joint actions according to the known joint policy π.

32

M.2 METHOD

We start with an imitation learning policy (IL policy) trained from human gameplay data collected from an online Hanabi
game platform. The IL policy is used as both the baseline for predicting human moves as well as the blueprint policy for our
piKL-SPARTA. The analytical belief update procedure in SPARTA requires full knowledge of the partners’ policy. This is
challenging when predicting human moves and playing with humans because our IL policy models the average behavior of the
entire population of players in the training dataset and a player at test time may perform actions that the IL policy will never do,
leading to a null belief space that will terminate the search. Therefore, we follow the practice in (Hu et al., 2021a) and train an
approximate neural network belief model on self-play data generated by the IL policy.

Given the IL policy π as blueprint and the approximate belief model B̂i that replaces the Bi in Eq. 29, piKL-SPARTA selects
actions for the search player i following

P (a) ∝ π(a|τ ti) · exp
[
Qπ(τ

t
i , a)

λ

]
. (30)

M.3 EXPERIMENTAL SETUP

We use a similar dataset acquired from en.boardgamearena.com as in Hu et al. (2021b). The dataset consists of 240,954
2-player Hanabi games. We randomly sample 1,000 games to create a validation set and another 4,000 games for the test set. The
training set contains the remaining 235,954 games with an average score of 15.88. Each game records the AOH τi, i ∈ {1, 2} for
both players. The IL policy πθ is parameterized by a neural network θ and is trained to minimize the cross-entropy loss

L(θ) = −Eτi∼D

T∑
t=0

πθ(a
t
i|τ ti)

with stochastic gradient descent. The training set D is dynamically augmented with color shuffling (Hu et al., 2020) where a
random color permutation that changes both observation and action space is applied to each trajectory τi sampled from the dataset
before feeding it to the network. Hu et al. (2021b) shows that this data augmentation method greatly reduces overfitting and leads
to better policies. The network θ uses the Public-LSTM structure in Hu et al. (2021a), which eliminates the need to re-unroll
LSTM on sampled trajectories from the beginning of the game as they share the same public observations as the real trajectory.

To construct the approximate belief model B̂, we train a neural network ϕ to predict each player’s own hand, which is the only
hidden information in Hanabi. The network predicts each card in hand from oldest to newest auto-regressively. We denote the
hidden cards as {hj

i} with h1
i being the oldest and hm

i being the newest, m ≤ 5. Then the cross-entropy loss for ϕ in an N -player
setting becomes

L(ϕ) = −Eτ∼πθ

 1

N

N∑
i=1

T∑
t=1

m∑
j=1

logPϕ(h
j
i |τ ti , h1

i , . . . , h
j−1
i)

 .

In Hanabi, it is sufficient to reconstruct τ t given τ ti and {hi
j}. The model is trained on infinite stream of data generated by πθ

through self-play to avoid overfitting. We train two variants of the belief model, one with sampled action a ∼ πθ while the other
with greedy action a = argmaxπθ. They are used by piKL-SPARTA and piKL-SPARTA-G(reedy) respectively.

We first run piKL-SPARTA on the test set to compare its ability to predict human moves against the IL policy. For each τ ti in
the test set, we sample K

|Ai| hands from the belief model Pϕ where K is the total number of searches for this step and |Ai| is the
number of legal actions of the search player. In all our experiments we set K = 10, 000. In practice, we sample 2K

|Ai| hands and
take the top K

|Ai| samples not contradicting the public knowledge. If the belief model fails to produce any samples that comply with
the public knowledge, we revert back to the blueprint. We then compute the expected value for each search action by unrolling the
IL policy until the end of the game for each sampled trajectory and compare apred = argmaxa πθ(a|τ ti) · exp[Qπ(τ

t
i ,a)

λ] against
the human move ati from the data. We experiment with different λ to study its effect on prediction accuracy.

We also evaluate piKL-SPARTA in self-play to compare its performance under different λ against the IL policy. We run
piKL-SPARTA and the IL policy on 4,000 games with different seeds for the deck. At each step, the IL policy acts following
at ∼ πθ(a|τ ti) while piKL-SPARTA acts following Eq. (30) again using K = 10, 000 rollouts.

The λ in these experiments are significantly higher than those in Diplomacy or implicitly in MCTS in Chess and Go9 because λ
represents the scale of utility difference that offsets a particular KL penalty, and the range of the utilities Qπ(τ

t
i , a) in Hanabi is

[−25, 25] whereas the range in other games are either [0, 1] or [−1, 1].
9Via the relationship λ ≈ cpuct

√
N where N is the number of MCTS iterations

33

en.boardgamearena.com

Subset of Test Set λ =0 λ =0.5 λ =1 λ =2 IL Policy

All games 25.30% ± 0.16% 56.04% ± 0.24% 60.22% ± 0.21% 62.44% ± 0.19% 63.63% ± 0.18%
Games w/score ≥ 10 27.01% ± 0.18% 58.86% ± 0.25% 62.62% ± 0.22% 64.51% ± 0.20% 65.29% ± 0.19%
Games w/score ≥ 20 28.87% ± 0.19% 61.86% ± 0.25% 65.21% ± 0.23% 66.81% ± 0.21% 67.39% ± 0.19%

Subset of Test Set λ =5 λ =10 λ =20 λ =50 IL Policy

All games 63.50% ± 0.18% 63.68% ± 0.18% 63.71% ± 0.18% 63.68% ± 0.18% 63.63% ± 0.18%
Games w/score ≥ 10 65.33% ± 0.19% 65.43% ± 0.19% 65.42% ± 0.19% 65.35% ± 0.19% 65.29% ± 0.19%
Games w/score ≥ 20 67.48% ± 0.19% 67.54% ± 0.19% 67.53% ± 0.19% 67.45% ± 0.19% 67.39% ± 0.19%

Table 12: Human prediction accuracy of unregularized SPARTA (λ = 0) and of piKL-SPARTA with different λ and the IL policy
on test set. Each row represents their accuracy on a subset filtered by the final score of the games. pikl-SPARTA achieves similar
prediction accuracy as IL for most λ and is far more accurate than unregularized SPARTA.

We experiment with both 1p piKL-SPARTA, where one player uses piKL-SPARTA and the other follows the blueprint, and
2p piKL-SPARTA, where both players run the same single-agent version of piKL-SPARTA independently. The latter is not
theoretically sound and 2p SPARTA has in past papers produced worse performance than 1p SPARTA (Lerer et al., 2020) because
1p SPARTA assumes that partners are playing according to the blueprint policy while in actuality the partners are playing according
to a SPARTA policy. Despite the lack of theoretical soundness, we are interested in whether 2p piKL-SPARTA can obtain empirical
improvement over the 1p version, since piKL-SPARTA regularizes towards the blueprint and therefore the mismatch between
assuming the partner follows the blueprint and the policy they actually play would likely be less severe.

Lastly, in Dec-POMDPs, it is common to select actions greedily in self-play instead of sampling from a mixed policy, since in fully
cooperative settings there is no need to avoid being deterministic or predictable to an adversary. Therefore, we also experimented
with piKL-SPARTA-G(reedy) where every agent, including the baseline IL policy, play according to the argmax of their action
distributions at every step, and the belief model for piKL-SPARTA-G is trained on trajectories produced by a greedy IL policy.

M.4 RESULTS

Figure 7: Top-1 test accuracy and self-play score of IL policy and piKL-SPARTA in Hanabi. Blue dot is the IL policy and green
dots are piKL-SPARTA with different λ. The self-play score is evaluated with sampling based 2p piKL-SPARTA and sampling
based SL policy. Additional evaluations with more λ and more algorithm variants are presented in Table 12 and Table 13. Error
bar is 1 standard error.

Table 12 summarizes the results for human move prediction. On the full test set, piKL-SPARTA with λ = 10 and λ = 20
outperform the IL policy slightly, although not statistically confidently, and vastly outperform unregularized SPARTA. We also
investigate the prediction accuracy on games with score ≥ 10 or ≥ 20 that more predominantly come from more experienced
human players. The improvement of piKL-SPARTA over the IL policy may be larger on these games, although this result is noisy
and at best should be considered only mildly suggestive since filtering on final score also introduces other major confounding
factors as well.

34

λ =0 λ =0.5 λ =1 λ =2 λ =5 λ =10 IL Policy

1p piKL-SPARTA 20.56 ± 0.05 21.16 ± 0.06 20.02 ± 0.09 17.71 ± 0.12 13.53 ± 0.16 11.04 ± 0.17 8.81 ± 0.152p piKL-SPARTA 20.23 ± 0.04 23.11 ± 0.03 22.60 ± 0.03 21.63 ± 0.05 18.65 ± 0.11 15.23 ± 0.15

1p piKL-SPARTA-G 22.78 ± 0.03 23.07 ± 0.03 22.76 ± 0.03 22.41 ± 0.04 21.91 ± 0.05 21.45 ± 0.06 19.72 ± 0.102p piKL-SPARTA-G 19.98 ± 0.04 23.72 ± 0.02 23.39 ± 0.03 22.93 ± 0.03 22.36 ± 0.03 21.98 ± 0.04

Table 13: Performance of unregularized SPARTA (λ = 0) and piKL-SPARTA under different λ and IL policy evaluated on
4,000 self-play games, reported ± one standard error. In the top two rows, both piKL-SPARTA and IL policy sample actions
according to their action distribution respectively. In the bottom two rows, both algorithms take greedy actions; “-G" is short for
“-Greedy". All numbers shown in each table section use the same learned belief model for fair comparison. At the high lambdas
that maintain or improve human accuracy, piKL-SPARTA significantly improves playing strength over IL, while at lower lambda
values piKL-SPARTA outscores unregularized SPARTA. For reference, unregularized greedy 1p SPARTA with exact beliefs rather
than learned beliefs gets 23.49 ± 0.02.

In Table 13, we show the self-play performance piKL-SPARTA and IL policy. The top two rows show the results of the sampling
version while the bottom two rows show those of the greedy version. The conclusions are consistent across both cases. Both
1p and 2p variants of piKL-SPARTA outscore IL for all λ tested. Together with Table 12 we find with λ = 10, piKL-SPARTA
maintains IL prediction accuracy and outscores IL greatly in self-play, an overall improvement without any tradeoff. For smaller
λ = 2 or λ = 5, piKL-SPARTA further outscores IL while losing some prediction accuracy on human moves, but remains vastly
more accurate than unregularized SPARTA (λ = 0).

Through qualitative analysis of the games played by both methods, we find that IL makes many mistakes due to both sampling
low probability actions and the fact that the training set contains bad moves. piKL-SPARTA, on the other hand, avoids many of
these mistakes while still otherwise following the same strategies and humanlike signaling conventions. It is particularly good at
preventing catastrophic failures where the agents lose all life tokens and points since the Q values for good and bad actions differ
much more widely in those cases.

The 2p piKL-SPARTA variants, despite being theoretically unsound, result in a further score improvement. Meanwhile, we notice
that 2p versions of the plain SPARTA (λ = 0) underperform their 1p variants, which is consistent with the observations from Lerer
et al. (2020) despite us using an approximate learned belief model instead of exact belief. This suggests that regularization
towards the blueprint IL policy is successful in keeping the trajectories similar enough to those from the blueprint that the unsound
assumption that the partner plays the blueprint does not cause major problems, while still allowing both players to deviate enough
to correct major blunders that they would otherwise make.

Lastly, we notice that 1p piKL-SPARTA with λ = 0.5 outperforms the unregularized version in self-play. The reason could be that
the quality of the samples from the learned belief model worsen as the trajectories it sees at test time becomes more off-distribution
for smaller λ. For reference, we also run the original SPARTA which does not have this problem as it computes beliefs analytically.
The original SPARTA gets 23.49 ± 0.02, which is better than 1p piKL-SPARTA with λ = 0.5 but worse than 2p piKL-SPARTA
with the same λ. The computational cost of 1p SPARTA with exact beliefs and 2p piKL-SPARTA with approximate learned
beliefs is roughly the same because the exact beliefs computation accounts for 50% of the entire computation. Therefore, 2p
piKL-SPARTA could be a preferable option to improve performance in Dec-POMDPs via self play without incurring the huge cost
of joint SPARTA or RL-search (Fickinger et al., 2021).

35

	Introduction
	Preliminaries
	Perfect-Information Games: Policy Regularization in Monte Carlo Tree Search
	Background
	Experiments in Chess and Go

	Imperfect-Information Games: Policy-regularized Regret Minimization
	Background
	No-Regret Learning for Policy-Regularized Utilities
	Diplomacy Experiments

	Conclusion
	Related Work
	Regularized Learning and Planning
	Strong Human-Compatible Policies

	Proofs
	Known results
	Bounding the distance between the iterates of algo:noregret
	Completing the analysis
	Proof of cor:distance
	Relationship with Nash Equilibrium

	Illustrations of piKL-Hedge in Blotto
	Human Policy KL-Regularized Search also improves Cross-Entropy
	More Experiments in Chess and Go
	Baseline Model Architecture and Training for Go
	MCTS Algorithmic Details
	Brief Description of Diplomacy
	Diplomacy hyper-parameters
	Diplomacy Model Architecture and Input Features
	Improved Value Model in Diplomacy
	More Experiments in Diplomacy
	Head-to-Head Performance
	piKL-HedgeBot's performance in population-based experiments

	Dec-POMDP Games: Policy-regularized SPARTA on Hanabi
	Background
	Method
	Experimental Setup
	Results

