
Submitted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

WHAT DOES HYPERBOLIC SPACE ROLES FOR GRAPH
LEARNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Models, like graph neural networks, built upon hyperbolic spaces have achieved
great success in tree-structured data, but it is not clear in what aspect the hy-
perbolic space plays an effective role. In this paper, we take the recommender
system, a user-item graph-structured networks, as an example for an in-depth
analysis. Given that the prevalence of the power-law distribution in user-item
graph-structured networks, hyperbolic space has attracted considerable attention
and achieved impressive performance recently. The advantage of hyperbolic rec-
ommendation lies in that its exponentially increasing capacity is well-suited to de-
scribe the power-law distributed user-item network whereas the Euclidean equiv-
alent is deficient in. Nonetheless, it remains unclear which aspects are effective
or counterproductive with hyperbolic models. To address the above concerns, we
take the one of the most popular recommendation techniques, collaborative fil-
tering, as the medium, to investigate the behaviors of hyperbolic and Euclidean
graph models. The results reveal that tail nodes get more emphasise in the hy-
perbolic model than that built upon Euclidean space, but there is still ample room
for improvement; head nodes receive modest attention in hyperbolic space, which
could be considerably improved; and nonetheless, the hyperbolic models show
more competitive performance.

1 INTRODUCTION

With the growth of Amazon, Netflix, TikTok, and other e-commerce or social networking services
over the past several years, recommender systems are becoming ubiquitous in the digital age. Rec-
ommender systems, in a broad sense, are algorithms that try to suggest relevant or potentially prefer-
able items to the users(items being movies to watch, articles to read, products to buy, etc).

Collaborative filtering, one of the most extensively used techniques in customized recommendation,
is based on the assumption that users often get the preferable suggestions from someone with similar
preferences. To provide relevant recommendations, collaborative-filtering approaches (Koren et al.,
2009; Koren, 2008; Liang et al., 2018; Luo et al., 2014) rely on historical interactions between users
and items, which are stored in the user-item matrix. Recently, researchers have proposed to explicitly
incorporate the high-order collaborative interaction to enhance the recommendation performance.
Usually, the user-item relationship is modeled as a bipartite graph with nodes representing users or
items and edges representing their interactions. After then, the graph neural networks (GNNs) (Kipf
& Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017) are applied to extract the high-order
relationships between users and items via the message propagation paradigm. By using layers of
neighborhood aggregation under the graph convolutional setup to construct the final representations,
these techniques (Wang et al., 2019; He et al., 2020; Sun et al., 2021) have attained state-of-the-art
performance on diverse benchmark datasets.

The heavy-tailed distribution1 occurs in most large-scale recommendation datasets where the num-
ber of popular items is liked by a large number of users accounts for the minority and the rest are
the majority which is unpopular ones. In general, popular items are competitive while the long-tail

1Heavy-tailed distributions are substantially right-skewed, with a small number of large values in the head
and a large number of small values in the tail; they are often described by a power law, a log-normal, or an
exponential function.
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Table 1: Statistics of the experimental data.

Dataset #User #Item #Interactions Density
All H20(%) T80(%)

Amazon-CD 22,947 18,395 46 54 422,301 0.10%
Amazon-Book 52,406 41,264 47 53 1,861,118 0.09%

Yelp2020 71,135 45,063 62 37 1,940,014 0.05%

item reflects personalized preference or something new. Both of them are critical for the recommen-
dation. Recently, hyperbolic space has gained increasing interest in the recommendation area as the
capacity of hyperbolic space exponentially increases with radius, which fits nicely with a power-law
distributed user-item network. Naturally, hyperbolic graph neural network-based models achieve
competitive performance in recommender systems (Sun et al., 2021; Chen et al., 2022). However, it
is not clear in what respects the hyperbolic model is superior to the Euclidean counterpart? At the
same time, it is unclear in which aspects hyperbolic models perform worse than Euclidean models?

To answer the above doubts, in this work, we take the simplest form of recommendation model -
collaborative filtering (CF) - as an example to analyze and observe the behaviors of hyperbolic and
Euclidean models. Specifically, we take LightGCN (He et al., 2020) and HGCF (Sun et al., 2021)
as an example for analysis and observation, both of which are essentially the same model applied in
different spaces. Specifically, we compare the recommendation effects of hyperbolic and Euclidean
models, as well as their performance on the head and tail item, using the similar model configura-
tion and running environment. The head and tail items are essentially chosen by the 20/80 rule2,
which states that all items are ranked according to their degrees, and the top 20% is considered
as the head (abbreviated as H20), while the remaining 80% is referred to as the tail (abbreviated
as T20). The experimental findings reveal the following facts. The tail item receives more con-
sideration in the hyperbolic model than it does in the Euclidean model, but there is still plenty of
room for improvement while the head item receives marginal attention in hyperbolic space, which
might be substantially improved. Overall, the hyperbolic models outperform the Euclidean space
models. These findings are of great significance to community of hyperbolic graph neural network
and recommender systems, since they may help researchers better understand the advantages and
disadvantages of hyperbolic models, as well as when and where to deploy them.

2 MODELS

The core idea behind Euclidean and hyperbolic graph collaborative filtering (He et al., 2020; Wang
et al., 2019; Sun et al., 2021; Chen et al., 2022) is to extract high-order interactions within user and
items through message aggregation and build the representation for users and items. This technique
will cluster users who like the same items together, as well as items that are liked by the same users.
The basic concept behind Euclidean and hyperbolic graph collaborative filtering (He et al., 2020;
Wang et al., 2019; Sun et al., 2021; Chen et al., 2022) is to extract high-order dependencies between
users and items via message aggregation mechanism. By graph collaborative filtering, users who
like the same items, as well as items that are liked by the same users, will be grouped together.
Similar to Euclidean graph collaborative filtering, hyperbolic graph collaborative filtering has three
components: (1) hyperbolic encoding layer; (2) hyperbolic neighbor aggregation; and (3) prediction
layer.

Hyperbolic encoding layer. The purpose of the hyperbolic encoding layer is to create hyperbolic
initial embedding for users and items. Gaussian distribution initialization is a typical method in
Euclidean space. Similarly, an embedding initialization technique is based on the Wrapped Normal
Distribution (Nagano et al., 2019), which is a hyperbolic version of the Gaussian distribution (Sun
et al., 2021; Wang et al., 2021; Chen et al., 2022). Formally, we use x ∈ Rn to represent the
Euclidean node state (including the user and item). Then the initial hyperbolic node state e0i and e0u

2Mathematically, the 80/20 rule is roughly described by a power-law distribution (also known as a Pareto
distribution)

2



Submitted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

T80 H20 All

0.050

0.075

0.100

0.125

0.150

0.175

R
ec

al
l@

10

Amazon-CD

Euc
Hyp

T80 H20 All
0.02

0.04

0.06

0.08

0.10

N
D

C
G

@
10

Amazon-CD

Euc
Hyp

T80 H20 All

0.050

0.075

0.100

0.125

0.150

0.175

R
ec

al
l@

20

Amazon-CD

Euc
Hyp

T80 H20 All
0.02

0.04

0.06

0.08

0.10

N
D

C
G

@
20

Amazon-CD

Euc
Hyp

T80 H20 All

0.050

0.075

0.100

0.125

0.150

R
ec

al
l@

10

Amazon-Book

Euc
Hyp

T80 H20 All
0.02

0.04

0.06

0.08

0.10

0.12

N
D

C
G

@
10

Amazon-Book

Euc
Hyp

T80 H20 All

0.050

0.075

0.100

0.125

0.150

R
ec

al
l@

20

Amazon-Book

Euc
Hyp

T80 H20 All
0.02

0.04

0.06

0.08

0.10

0.12

N
D

C
G

@
20

Amazon-Book

Euc
Hyp

Figure 1: Comparisons of Euclidean and hyperbolic models on Amazon-CD and Amazon-Book
datasets. Euc represents Euclidean model, LightGCN, and Hyp denotes hyperbolic model, HGCF.

can be obtained by:
e0i = expo(z

0
i ), e0u = expo(z

0
u)

z0i = (0,xi), z0u = (0,xu)
(1)

where x is taken from multivariate Gaussian distribution. z0 = (0,x) denotes the operations insert-
ing value 0 into the zero-th coordinate of x so that z0 can always live in the tangent space of origin.
The superscript 0 in e0 and z0 indicates the initial or zero-th layer state.

Hyperbolic neighbor aggregation. Hyperbolic neighbor aggregation is to extract explicit user-
item interaction. The hyperbolic neighbor aggregation is computed by aggregating neighboring
representations of user and item from previous aggregation. Given the neighbors Ni and Nu of i
and u, respectively, the embedding of user u and i is updated utilizing the tangent state z and the
k-th (k¿0) aggregation is given by:

zki = zk−1
i +

∑
u∈Ni

1

|Ni|
zk−1
u , zku = zk−1

u +
∑
i∈Nu

1

|Nu|
zk−1
i . (2)

where |Nu| and |Ni| are the number of one-hop neighbors of u and i, respectively. For high-order
aggregation, the sum-pooling are applied on these K tangential states:

zi =

K∑
k=1

zki , zu =

K∑
k=1

zku. (3)

Note that z is on the tangent space of origin. For the hyperbolic state, it is projected back to the
hyperbolic space with the exponential map,

ei = expo(zi), eu = expo(zu), (4)
where ei and eu represents the final hyperbolic embeddings.

Prediction layer. Through hyperbolic neighbor propagation, explicitly structural information is
embedded in the user and item embeddings. To infer the preference of a user to an item, the hy-
perbolic distance dH can be utilized for the prediction, p(u, i) = 1/d2H(eu, ei). Since we con-
cerned with the rank of preferred items, the negative form can likewise be used for prediction, i.e,
p(u, i) = −d2H(eu, ei).

3 INVESTIGATION

In this work, we use three public recommendation datasets, namely Amazon-CD1, Amazon-Book3

and Yelp20204. Note that we only use user-item interactions to maintain consistency with the com-
parison models. The statistics of the dataset are in Table 1, where H20 and T80 denote the av-
erage ratio of the head items and tail items appear in users preference. They are calculated by

3https://jmcauley.ucsd.edu/data/amazon/
4https://www.yelp.com/dataset
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1
|U|

∑
u∈U #{Nu ∩ IH20} and 1

|U|
∑

u∈U #{Nu ∩ IB80}, respectively. Each dataset is split into
80% and 20% training and test sets for training and evaluation, respectively. In these datasets, the
ratings are converted into binary preferences by applying a threshold ≥ 4 which simulates the im-
plicit feedback settings. We employ two standard evaluation metric to assess the performance of
top-K recommendation and preference ranking: Recall and NDCG (Ying et al., 2018).

According to the previous research (He et al., 2020; Sun et al., 2021), the hyperbolic model (Sun
et al., 2021) performs more competitively than that built upon Euclidean space (He et al., 2020) us-
ing models with essentially the same structure. However, it is unclear in what aspects the hyperbolic
model excels above its Euclidean equivalent. Simultaneously, it’s uncertain in which places hyper-
bolic models worse than Euclidean models. These issues obstruct our understanding of hyperbolic
recommendation models and hinder their applications in real-world scenarios.

To solve the aforementioned doubts, we undertake a quantitative analysis that aims to experimentally
study the behaviors of hyperbolic and Euclidean recommendation models by disentangling their
performance on the tail and head items. In particular, we first sort items by their degree, which is
similar to the popularity, and then split into the head 20%(denoted as H20, or IH20) and the tail 80%,
(denoted as T80, IT80). Next, we investigate the recommendation effect via the metric Recall@K
and NDCG@K on the H20 and T80 items, respectively, using the Euclidean graph collaborative
filter model, LightGCN, and the corresponding hyperbolic model, HGCF. The results are shown in
Figure 1. From the experimental results, we have the following observations:

• The overall recommendation performance of the hyperbolic model is better than that of the
Euclidean model;

• Tail items get greater emphasis in the hyperbolic model as the results on tail items are far
beyond that of the Euclidean counterpart ;

• Head items receive moderate attention in the hyperbolic model as the performance of
HGCF is sightly lower than that of LightGCN.

The above findings provide valuable insights on the benefits of hyperbolic space for recommender
systems: the exponentially increased capacity of hyperbolic space enables the model to pay more
attention to tail items, which is beneficial for personalized recommendation and increasing market
diversity.5 The hyperbolic model is a strong contender, but there are still two main shortage in
the present hyperbolic model. (1) Despite the fact that hyperbolic model produces better overall
outcomes and has a greater recommendation effect on tail items, there is still large room for im-
provement. The reason is that tail items account more user’s interests in Amazon-CD (54% T80
vs 46% H20) and Amazon-Book (53% T80 vs 47%) as given in Table 1, but the recommendation
effect of tail item is much lower than that of head items as shown in Figure 1. (2) Besides, compared
with Euclidean space, hyperbolic space reduces the attention of the model on head items to a certain
extent. Thus, there is an urgent need to improve the recommendation ability of head items.

4 CONCLUSION

Hyperbolic models have received increasing attention in the recommendation community, while
their pros and cons over the Euclidean counterparts have not been explicitly studied. In this work,
we attempt to initiate the investigation by further separately comparing their performance on head
and tail items against the Euclidean equivalents. Overall, the hyperbolic model shows apparent
superiority. It is also observed that the hyperbolic model performs substantially better on Tail items
than the Euclidean equivalent, but there is still sufficient room for improvement. For the head item,
the hyperbolic model place modest attention.

The above observations shed more light on the role of hyperbolic models in Recommender system.
Note that the exponentially increased capacity of hyperbolic space allows the model to pay more
attention to tail items, which is beneficial for personalized recommendation and increasing market
diversity; In future work, we aim to analyze the advantages and disadvantages of hyperbolic spaces
from a more theoretical perspective.

5As we know, the head item is popular and liked by a large number of users while the tail item is either
personalized reflecting the unique preference of the user or something fresh increasing the diversity of the
market.
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