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ABSTRACT

Recently, Direct Alignment Algorithms (DAAs) such as Direct Preference Opti-
mization (DPO) have emerged as alternatives to the standard Reinforcement learn-
ing from human feedback (RLHF) for aligning large language models (LLMs)
with human values. Surprisingly, while DAAs do not use a separate proxy reward
model as in RLHF, their performance can still deteriorate due to over-optimization
– a phenomenon found in RLHF where the policy can exploit failures of the re-
ward model to achieve high rewards but the actual quality of the model begins
to degrade. Recent studies find that DAAs tend to increase probability mass on
out-of-distribution responses and the training objective in DAAs is heavily under-
constrained on these out-of-distribution (OOD) responses due to a mismatch be-
tween offline distribution and the LM policy. In this paper, we propose a method
to mitigate the distribution shift between the offline distribution and the LM pol-
icy by multiplying with an importance weight to reflect the policy distribution.
The resulting method, called Adaptive Importance Sampling (AIS), relies on im-
portance sampling techniques and resolves the high variance issue in importance
sampling without extra hyper-parameters. Our experiment results showed Adap-
tive IS can improve win rates by 15% while maintaining lower KL budged

:::::
budget

compared to DAAs.

1 INTRODUCTION

Preference learning has emerged as an important part of the fine-tuning process to align large lan-
guage models with human preference. There are two predominant flavors of preference learning for
LLMs. The first approach includes online reinforcement learning from human feedback (RLHF)
methods (Ouyang et al., 2022; Christiano et al., 2017). It typically involves a multi-stage proce-
dure: fine-tuning a reward model to capture human preference and fine-tuning the LM policy to
maximize the expected reward using online RL algorithms such as Proximal Policy Optimization
(Schulman et al., 2017). While empirically performant, this multi-stage procedure is complex and
computationally intensive: it requires repeated querying of the reward model as well as sampling
from the current policy. A set of alternative methods called direct alignment algorithms (DAAs),
avoid fitting separate reward models, instead opting to simply train the policy directly on the offline
preference dataset via a ranking loss. The most known examples are Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023), and Identity Preference Optimization (IPO) (Tang et al., 2024c).
Since DAAs typically do not sample new responses from the LLM’s policy during training, they are
characterized as offline preference learning methods.

In RLHF, LMs are trained to optimize a surrogate, imperfect reward function instead of the actual
”ground-truth” human reward, resulting in situations where the policy learns to produce responses
that achieve high reward scores, but their quality is poor. This phenomenon is often known as the
reward over-optimization or reward hacking problem in RLHF (Stiennon et al., 2020b; Ouyang et al.,
2022; Chen et al., 2024b; Gao et al., 2022). In the context of direct alignment algorithms (DAAs),
reward-hacking-like behaviors still exist even when there is no explicit reward model (Rafailov et al.,
2024; Guo et al., 2024). For instance, LLMs fine-tuned with DPO generate responses with increasing
length but do not improve the ground-truth win rate (Park et al., 2024a). In another study, Rafailov
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et al. (2024) found that DAAs exhibit degradation patterns at various KL-divergence budgets, similar
to those in RLHF.

There are several explanations for why the reward over-optimization phenomenon occurs in the
classical RLHF pipeline: (1) the reward functions are evaluated on unseen responses and (2) learned
reward functions prefer unintended behaviors. Morever, the LLMs can learn to generate OOD ex-
amples to exploit these failure modes of RMs (Hendrycks et al., 2021; Rame et al., 2024). Similarly,
Rafailov et al. (2024) explains the over-optimization in DAAs by appealing to the under-constrained
nature of the optimization problem used in DAAs when extrapolating to OOD samples. As a result,
a large amount of extrapolation can potentially be detrimental to the performance of the learned
policy.

In this work, we first identify one source of over-optimization in DAAs: the ineffective regularization
of DAAs due to the shift between the distribution used for data collection and the trained policy, lead-
ing to ineffective use of the KL divergence budget. Our results show that reward over-optimization
happens earlier and the performance gain from DAAs diminishes as the offline data shifts away
from the LM policy. One approach to mitigate this problem is to add a KL divergence penalty
to encourage the model to stay close to reference policy (Song et al., 2024; Fisch et al., 2024)
::::::::::::::::::::::::::::::::::::::::::::
(Song et al., 2024; Fisch et al., 2024; Ding et al., 2024). This additional regularization explicitly
prevents the LM policy from pushing a large probability mass to OOD responses. However, these
methods are costly since they require repeated sampling from the current policy and are sensitive
to hyper-parameters. We propose a novel method based on importance sampling techniques, called
Adaptive Importance Sampling (Adaptive IS). Adaptive IS reduces the effects of the distribution
shift problem while also balancing the trade-off between bias and variance of the importance ratio
to stabilize training. Furthermore, the implementation of Adaptive IS incurs minimal computational
overhead, making it highly scalable.

Our main contributions are as follows:

• We study the effect of distribution shift and how it relates to reward over-optimization in
DAAs.

• We propose Adaptive Importance Sampling (Adaptive IS), to minimize the distribution gap
between offline distribution and the LM policy

• Our results indicate that Adaptive IS outperforms DAAs, with up to a 15% win rate as
measured by a golden reward model, while maintaining a lower KL budget.

2 PRELIMINARIES

We provide the formulation and background of RLHF and DAAs in sections 2.1 and 2.2, respec-
tively. The over-optimization phenomenon and regularization in DAAs are presented in Section 2.3
and 2.4.

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

To align LMs with human preferences, the overall RLHF pipelines consist of three stages:

Supervised Fine-Tuning (SFT): Given a pre-trained model and a dataset of prompts x and response
y. Language models are trained for instruction following via maximum-likelihood estimation over
next-tokens. The resultant model is then called πref(y|x).
Reward Modeling: In the second phase, the reference model is prompted with prompts x to produce
pairs of responses (y1,y2) ∼ πref(·|x). The pair of responses then being labeled by the human to
express preferences, which are denoted as yw ≻ yl|x. Typically, user rankings are assumed to
follow the Bradley-Terry model:

p(y1 ≻ y2|x) =
exp(r(x,y1))

exp(r(x,y1)) + exp(r(x,y2))
= σ

(
r(x,y1)− r(x,y2)

)
This results on preference dataset D = {x(i),yw(i),yl(i)}Ni=1. We can then use this dataset to
train a parametrized reward model rϕ(x, y) to maximize the differences between yw and yl using
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maximum likelihood estimation with the following objective:

LR(rϕ) = −E(x,yw,yl)∼D[log σ
(
rϕ(x,y

w)− rϕ(x,y
l)
)
]

RL Fine-tuning: After obtaining the learned reward function at the second stage, it can be used to
provide feedback to the language model with an on-policy algorithm such as PPO with the following
objective:

max
πθ

Ex∼D,y∼πθ(·|x)

[
rϕ(x,y)− βKL(πθ||πref)

]
Where β controlling the deviation from the reference policy πref. This constraint prevents the model
from deviating too far away from the region that the reward model is well-trained on and prevents
mode-collapse to single high-rewards responses.

2.2 DIRECT ALIGNMENT ALGORITHMS (DAAS).

While RLHF achieves superior performance in aligning LMs with human preferences, this process
is complex and computationally expensive. DAAs address these problems by directly optimizing
policy πθ over preference data. Amongst these algorithms, Direct Preference Optimization is the
most popular approach, DPO derived the closed-form solution of Eq 2,

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x,y)

)
With Z(x) as the normalization function, According to the above equation, we can parameterize the
reward function by the log-likelihood ratio between πθ and πref:

rθ(x,y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x)

This enables us to optimize the LM policy πθ directly with human feedback data:

LDAA(πθ, πref) = Ex∼D,(yw,yl) ∼ πref(·|x)
[
f
(
β log

πθ(y
w|x)

πref(yw|x)
− β log

πθ(y
l|x)

πref(yl|x)

)]
Where f is a convex loss function. When f(x) = − log σ(x), we recover standard DPO objective
(Rafailov et al., 2023), other popular objectives include: IPO (Azar et al., 2024) with f(x) = (x −
1)2. Other objectives can be found in (Tang et al., 2024c). In this paper, we will focus on these 2
standard objectives due to limited computational resources.

2.3 OVER-OPTIMIZATION IN DAAS

Gao et al. (2022) refer to the over-optimization phenomenon as the situation where algorithms con-
sume a large optimization budget without improving or even reducing performance. In this study,
the KL divergence KL(πθ, πref) is used as an optimization budget since it measures how far the
optimized policy πθ drifts away from the reference policy πref during training. Rafailov et al. (2024)
study the trade-off between KL divergence and policy performance under three direct alignment
objectives DPO, IPO, and SLiC. They observe clear over-optimization after a certain time during
training when an additional increase in the KL budget leads to decreasing model performance.
This pattern persists across model sizes, and smaller models often exhibit clearer signs of over-
optimization. Moreover, regularization methods such as length regularization can not mitigate this
problem. Tang et al. (2024a) observe that both online and offline variants of DAAs suffer from over-
optimization, however, online achieve better budget and performance trade-offs than offline. It’s not
clear why since both of them are bottlenecked by an offline pairwise preference dataset.

2.4 REGULARIZATION IN DAAS

In this section, we borrow analysis from GPO Tang et al. (2024d) to investigate the regularization
effect of DAAs’ loss functions. We first denote the log ratio difference as ρθ := log πθ(y

w)
πref(yw) −

log πθ(y
l)

πref(yl)
, then the DAA loss can be written as the following:

LDAA(ρθ) = ExE(yw,yl)∼πref
[f(βρθ)] .

3
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We consider the Taylor expansion around ρθ = 0,

ExE(yw,yl)∼πref
[f (βρθ)]︸ ︷︷ ︸

offline loss

≈ f(0)+f ′(0)β · ExE(yw,yl)∼πref
[ρθ]︸ ︷︷ ︸

preference optimization

+
f ′′(0)β2

2
· ExE(yw,yl)∼πref

[
ρ2θ
]

︸ ︷︷ ︸
µ-weighted squared loss

,

(1)
Consider the expectation of gradient of the µ-weighted squared loss term,

ExEy∼πref

[
∇θ

1

2
ρ2θ

]
.

Tang et al. (2024d) show that if µ = πθ then this expectation will recover the update of reverse KL
regularization, i.e.

ExEy∼πθ

[
∇θ

1

2
ρ2θ

]
= CEx∇θKL (πθ, πref) (2)

where C is constant depended on β, f ′(0) and f ′′(0). This equality suggests that DAAs enforce
regularization via optimizing a µ-weigthed objective.

Note that the approximation in Eq. 1 is only valid when ρθ is small and Eq. 2 is only valid when the
expected gradient under current policy πθ can be estimated using training data. These conditions
are generally not held when the training progresses. As a result, the algorithms can not guarantee
bounded reverse KL if the training data does not cover the response space well (Song et al., 2024).
In section 3.2, we provide an analysis of the regularization effect in DAAs using a didactic setting.

3 METHODOLOGY

3.1 ADAPTIVE IMPORTANCE SAMPLING (ADAPTIVE-IS)

In the DAAs algorithm, human preference data does not need to be collected from the starting policy
πref. Moreover, even if µ = πref, during training DAAs tend to assign a high probability mass on
OOD responses that are not presented in offline data (Tajwar et al., 2024; Rafailov et al., 2024).
Once the policy πθ moves far away from πref, this can potentially be detrimental to performance and
offline data may not have sufficient coverage to rectify.

To mitigate this problem, a simple approach is to apply online sampling training to collect responses
from the current policy πθ and use an external reward to correct these biases from the LM policy
(Guo et al., 2024)

:::::::::::::::::::::::::::::::::::
(Calandriello et al., 2024; Guo et al., 2024).

LOnline-DPO(πθ, πref) = −Ex∼D,(yw,yl)∼πθ(·|x)

[
log σ

(
β log

πθ(y
w|x)

πref(yw|x)
− β log

πθ(y
l|x)

πref(yl|x)

)]

However, online training is considerably more complex than off-policy methods, involving multi-
stage training (requiring training an external reward) and sampling from the LM policy during train-
ing, incurring significant computational costs.

Our method aims to minimize the distribution gap between offline distribution and the policy dis-
tribution while does not need online sampling using importance sampling, a technique to estimate
expectations under one distribution given samples from a reference distribution πref, which leads to
an unbiased estimation of online-DPO objective :

LIS-DPO(πθ, πref)

=− Ex∼D,yw,yl∼πref(·|x)

[(
w(x,yw,yl) log σ

(
β log

πθ(y
w|x)

πref(yw|x)
− β log

πθ(y
l|x)

πref(yl|x)

)]

where the importance weights w(x,yw,yl) = πθ(y
w|x)

πref(yw|x)
πθ(y

l|x)
πref(yl|x) . Here, the importance weight is

the ratio of sequence-level probability between πθ and πref, e.g. πθ(y|x)
πref(y|x) =

∏T
t=1

πθ(yt|x,y<t)
πref(yt|x,y<t)

.
The update is multiplied by this importance weight to adjust the action probabilities so that the
expectation is as if the actions were sampled according to the LM policy πθ.

4
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Adaptive Importance Sampling Direct computing the importance weights in training can suffer
from extremely high variance when πθ deviate far away from πref. To mitigate this problem, we
consider another estimator, called Exponential Smoothing Importance Sampling (Aouali et al., 2023;
Korba & Portier, 2022), which is defined as:

LDPO(πθ, πref)

= − E(x,yw,yl)∼D

[( πθ(y
w|x)

πref(yw|x)
πθ(y

l|x)
πref(yl|x)

)α
log σ

(
β log

πθ(y
l|x)

πref(yw|x)
− β log

πθ(y
l|x)

πref(yl|x)

)]
where α serve as a regularization to trade-offs between bias and variance of the Importance weight
estimator. It is easy to see that when α = 0, we recover DPO loss and when α = 1, we obtain DPO
with importance sampling. We give further details on how α trade-off between bias and variance in
Appendix A

How to choose α? Given the LMs πθ is an auto-regressive model. Where for each prompt x, The
LM πθ generate y in an auto-regressive manner:

πθ(y|x) =
T∏

t=1

πθ(yt, (x,y<t)

As the number of the tokens T increases, the variance of the importance weight can grow exponen-
tially with respect to the number of tokens. Thus, we should decrease α value when the number of
tokens is large and vice versa. by setting α = 1

|y| , we can adaptively trade-offs between bias and
variance of importance weight.

:
A
:::::::
detailed

:::::::
analysis

::
of
:::

the
::::::::

variance
:::
and

:::
the

:::::
effect

:::
of

:
α
:::
are

:::::
given

::
in

::::::
Section

::
E,

:::::::::
Appendix.

:

3.2 AN ANALYSIS OF REGULARIZATION EFFECT IN DAAS AND ADAPTIVE-IS DAAS
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Figure 1: Correlation between KL divergence and µ-weighted loss and µ-IS weighted loss. We can
see that µ-IS weighted loss achieve high correlation with the KL divergence.

As the section 2.4 has shown the square loss term in DAAs only serves as a local approximation
of KL divergence when πθ is near πref, as the LM policy πθ deviates far away from the reference
model, the correlation between 2 objectives becomes more difficult to grasp. To see how importance
sampling can enforce a more effective regularization in DAAs, we experiment with a synthetic setup
using a Mixture of Gaussian and measure the correlation between µ-weighted loss and µ-weighted
loss with importance sampling (µ-IS weighted loss).

Ex∼D,(yw,yl)∼µ(·|x)

[
w(x,yw,yl)

2

(
log

πθ(y
w|x)

πref(yw|x)
− log

πθ(y
l|x)

πref(yl|x)

)2
]

The offline distribution µ is parameterized as µ = 3
10N (−0.8, 0.22) + 4

10N (0, 0.22) +
3
10N (0.8, 0.22). We assume πref = µ and the policy distribution πθ = N (θ, 0.12), where θ is a pa-
rameter, we varying θ from [−1, 1] and estimate KL divergence, µ-weighted loss and µ-IS weighted
loss, we generate 2000 samples to estimate these objectives.

In figure 1, we show the correlation between the KL divergence and µ-weighted loss and µ-IS
weighted loss under log scale with θ varying from [−1, 1]. When πθ is close to πref, both 2 losses

5
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exhibit a high correlation with KL divergence. But for µ-weigthed loss, the correlation starts to
break down when πθ moves far away from πref, while µ-IS still exhibits a high correlation with KL
divergence.

4 EXPERIMENTS

In this section, we will first examine how distribution shift affects the performance of DAAs. We
find that under distribution shift, the performance gain from DAAs is margin and decreases when
the offline data shifts away from the LM policy. Moreover, reward-overoptimization happen faster
under distribution shift.

Then, we will evaluate our methods in standard RLHF datasets: TL;DR summarization.

4.1 EXPERIMENT SETTINGS

We adopt a synthetic setup from Gao et al. (2022) to study the trade-off between KL divergence and
policy performance. We first train a golden reward model with a Pythia-6.9b from the initial human
preference dataset and then use it to label preference data for training offline algorithms. The gold
reward model will be much larger than the optimized policy to simulate the complexity of human
preferences for the LM policy to be captured given a finite dataset.

Dataset: For all experiments, we will use Reddit TL;DR summarization dataset
Stiennon et al. (2020a)

:::::::::::::::::::
(Stiennon et al., 2020a). It is a summarization dataset with SFT split,

consisting of 116,722 human-written summaries and preference split, comprising 92,858 human-
annotated preference pairs.

Pretrained Model: All of our experiments will be carried out using the Pythia family of Large
Language Models Biderman et al. (2023)

:::::::::::::::::::
(Biderman et al., 2023) with 1B model sizes due to lim-

ited computational resources. All models have gone through supervised fine-tuning on the SFT split
of the TL;DR dataset, resulting πref policy. The model is then trained on preference learning data
for 1 epoch using AdamW optimizer, with a cosine decay schedule and a learning rate of 1e− 6.

Model Evaluation: We evaluate the performance of any policy by the win rate against 512 reference
summaries available in the SFT split. The golden reward model determines the win rate. We evaluate
with 2 standard objectives in DAAs: DPO and IPO. Following previous works, we use the KL
divergence between the current policy πθ and the reference policy πref as a measure of optimization
budget (Rafailov et al., 2024; Tang et al., 2024a; Gao et al., 2022).

4.2 MAIN RESULTS

Figure 2: Trade-off between performance and KL divergence for DPO and Adaptive IS with varying
regularization strength. We see that Adaptive IS achieves superior performance and KL efficiency.

In this section, we evaluate the over-optimization phenomenon when using Adaptive IS and compare
it against two baselines: DPO and IPO. Our key findings are illustrated in Figure 2, which displays
the model win rates using an evaluation set of prompts judged by the golden reward model. It’s im-
portant to note that over-optimization for DAAs occurs when the performance shows a hump-shaped

6
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Figure 3: Evolution of win-rates, and KL divergence. Adaptive IS model achieves higher final win
rate over standard DPO model with less than 35% of the KL budget Moreover, Adaptive IS maintains
consistent performance throughout training, while standard DPO performance peaks early at 20%
of the first epoch and start to decreasing performance.

pattern, where increasing the KL budget leads to a decrease in model performance (Rafailov et al.,
2024). These patterns can be clearly observed from the DPO and IPO tradeoff curves. On the other
hand, Adaptive IS-DPO (resp IPO) outperforms standard DPO (resp IPO) by a large margin given
a smaller KL budget, increasing performance by over 10% under the same KL budget. The results
demonstrate that Adaptive IS can address the over-optimization issue and uses the KL divergence
budget more efficiently than offline.

In previous studies, it has been shown that DAAs tend to show early convergence behavior during
training. They achieve their highest performance after being trained on only a small portion of the
data. Subsequently, their performance starts decreasing in conjunction with a rise in KL divergence
metrics (Park et al., 2024a; Rafailov et al., 2023). In figure 3, we analyze the intra-epoch training
dynamics patterns of standard DPO, IPO, and the AIS variants as configurations with β = 0.01.
After 20% of the epoch, DPO has reach it highest win-rate and start to descend while increasing KL
steadily with further training. In contrast, Adaptive IS-DPO shows no degradation as the training
progresses and achieves higher final win rates. This can be explained that at the initial steps, DAAs
objective always initialized as the reference model, the offline data distribution is similar to the
LM policy distribution and can make a solid improvement, as the LM policy deviates far away
from the reference model. Offline algorithms become less effective as they no longer represent the
distribution encountered during on-policy. This growing discrepancy between the training and test
time may lead to sub-optimal performance. In contrast, AIS can leverage pre-collected data and
select training instances that benefit the learning process.

4.3 HOW DOES DISTRIBUTION SHIFT AFFECT OFFLINE PREFERENCE OPTIMIZATION?

Previous works often attribute the sub-optimal performance of DAAs to a distribution gap between
the current policy and the policy used to sample training data. In this experiment, we create a setting
where we can control the gap between the training data and the training policy and try to observe the
effect of these gaps on the final performance. Specifically, we first perform DPO fine-tuning on the

7
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SFT model πref and collect two checkpoints πθ1 and πθ2 , ordered by number of training iterations.
Then we generate pairs of responses using πref, πθ1 and πθ2 , resulting to three synthetic datasets
D1, D2 and D3, respectively. These datasets are labeled using the golden preference model. By
following this procedure, D1, D2 and D3 are gradually shifted away form πref. We then finetune 3
LM policies initialized from πref on these 3 datasets using DPO objective with varying regularization
strength.

Figure 4: Win-rate and KL divergence against the fraction of epoch results for datasets D1,D2,D3

gradually shift away from πref
.

In figure 4, we observed the same phenomenon as in (Tang et al., 2024a) where the SFT data achieves
the best performance compared to the other 2 datasets. For the other 2 datasets, the performance gain
is margin and cannot achieve the same level of performance of the data generated policy. Moreover,
as the data gradually shifts away from the initial policy, the performance gain from offline preference
learning becomes less significant. In figure 5 (left), we report the win-rate KL trade-off between the

0 2 4 6 8
 Divergence

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Go
ld

 w
in

-ra
te

KL-winrate trade-off under distribution shift

SFT data
Online Policy 1.2k steps data

1 2 3
Shifted Dataset

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Go
ld

en
 w

in
 ra

te

Peak winrate under distribution shift

Figure 5: Left: KL-win rate tradeoff results under distribution shift. Reward-over-optimization
happens earlier under distribution shift and cannot achieve satisfying performance even though the
online policy data performs much better than the SFT model. Right: Peak win rate across different
datasets. As the data gradually shifts, the performance of DAAs starts to degrade.

policy learned from SFT data and data D3 that generated from the policy with the highest win rate.
We can see that reward-over-optimization happens earlier under distribution shift than the SFT data
and cannot achieve satisfying performance even though the offline is generated from a higher win-
rate policy, showing the importance of how different the offline distribution is to the LM policycan
have large effect to the performance of DAAs. In figure 5 (right), we show the peak win rate of
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various regularization strengths across different shifted datasets. As the offline shift aways from the
initial LM policy πθ, the performance gain from DAAs methods starts to decrease.

5 RELATED WORKS

Preference fine-tuning. There are two main approaches for fine-tuning language models based
on user preferences. The first approach involves online reinforcement learning methods such as
RLHF (Ouyang et al., 2022). This method includes multiple steps: fine-tuning a reward model to
capture preferences and optimizing language models to maximize the reward scores. The second
approach, known as direct alignment algorithms (DAAs), aims to simplify the multi-step process
of RLHF. DAAs directly update the language model’s policy using human feedback. Examples of
DAAs include Direct Preference Optimization (DPO) (Rafailov et al., 2023), and Identity Preference
Optimization (IPO) (Tang et al., 2024c). Since DAAs don’t typically generate new responses from
the language model’s policy during training, they are considered offline preference learning methods.

Reward-Overoptimization in RLHF. Gao et al. (2022) refer to the over-optimization phe-
nomenon as optimizing too much against a surrogate objective eventually hinders the true objective.
They introduce a synthetic setup to study the trade-off between the KL divergence KL(πθ, πref) and
the policy performance. In the context of RLHF, prior works have observed that while the LLM’s
expected reward increases the actual quality of the model’s output decreases. This phenomenon is
termed reward exploitation or reward ”over-optimization” in RLHF and relates to problems such as
verbosity bias. Many works try to address this problem by improve robustness of the reward model:
(Shen et al., 2023) proposed to use a smaller reward model to capture length bias and use a larger
reward model to learn true reward. (Coste et al., 2024) using an ensemble of rewards improves OOD
robustness, (Rame et al., 2024) use weighted-averaged reward models. While these methods have
been shown to effectively mitigate reward-overoptimization. Reward-overoptimization in DAAs
does not train a reward model, so previous approaches cannot be directly applied to this setting.

Over-optimization in DAAs. Recent works have shown that DAAs also exhibit reward ”over-
optimization” behavior such as length bias (Park et al., 2024a). Unlike standard RLHF, these offline
algorithms do not train an explicit reward function but directly finetune the LMs. However, research
addressing over-optimization in offline learning is still limited compared to standard RLHF. Rafailov
et al. (2024) explains why over-optimization occurs by pointing to the under-constrained nature of
the optimization problem used in DAAs. Park et al. (2024a) try to tackle this problem using reward
shaping to eliminate verbosity bias.

Performance gap between online and offline alignment. In this work, we draw the relationship
between reward-overoptimization problems in offline alignment algorithms and distribution issues
of shift in offline reinforcement learning context (Levine et al., 2020; Kumar et al., 2020). That is,
during training, LMs πθ is trained on data that is generated from reference model πref. However,
during deployment, it will be queried on its own distribution. which may lead to performance
degradation if the LMs are very unlikely to visit states that are present in the offline data Chen et al.
(2024a). The most closely related to our works is that of (Zhou et al., 2024), where they try to
minimize the distribution gap between offline and the LM policy simulating on-policy learning with
off-policy preference data where they approximate the importance weight by a constant instead of
using reference probability. However, they do not provide an explanation for how using length-
normalization helps in balancing the trade-offs between bias and variance in the importance weight.

6 CONLUSION

We study the problem of reward-overoptimization in Direct Alignment Algorithms (DAAs). We
showed that one of the main sources in reward-overoptimization in DAAs is due to the mismatch
between offline distribution and the LM policy. To reduce this distribution gap problem, we intro-
duce Adaptive Importance Sampling (Adaptive IS), a technique to estimate samples under the LM
policy distribution given samples from the offline distribution while resolving the high variance is-
sue of the importance ratio estimation. Our results showed that Adaptive IS improves performance
and is highly effective at combating reward over-optimization in DAAs.
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Limitation. In this paper, we adopt the synthetic setup used by (Gao et al., 2022), where we
assume the golden reward model as the ground truth reward. However, this golden reward model
may not accurately represent real-world human preferences. Moreover, we did not experiment with
larger models and other datasets due to limited computational resources.

:::::::
Another

::::::::
limitation

::
is

:::
that

:::
we

:::::::
assume

:::
that

:::
the

::::::::::
preference

:::
data

::
is
:::::::::
generated

::
by

:::
the

::::::::
reference

::::::
model.

:::::
Which

::
is
::::

not
::::::
always

::::
hold

:::
in

:::::::
practice.

:::
In

:::::
most

:::::
cases,

:::
the

::::::::::
preference

::::::
dataset

::
is

:::::::
sampled

:::::
from

::
an

:::::::
unknown

::::::
policy

::
µ,

:::
we

::::
can

::::
only

:::::::
estimate

::::
this

:::::
policy

:::::
using

:::::::::
maximum

:::::::::
likelihood

:::::::::
estimation,

:::::
which

:::::
results

::
in

:::
the

::::::::
reference

::::::
model

:::
πref.:
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A BIAS-VARIANCE TRADE-OFF OF EXPONENTIAL IMPORTANCE SAMPLING

Given a prompt x, we have that Ey∼πref(·|x)

[
πθ(y|x)
πref(y|x)

]
= 1. For a given α ∈ [0, 1]. The bias of

Adaptive Importance Sampling is

Ey∼πref(·|x)

[( πθ(y|x)
πref(y|x)

)α]
=
∑
y

πref(y|x)
(

πθ(y|x)
πref(y|x)

)α

≤

(∑
y

πref(y|x)(
πθ(y|x)
πref(y|x)

)α

( Jensen Inequality)

≤ 1

For the variance of Adaptive Importance Sampling, we have

Var
[(

πθ(y|x
πref(y|x

)α]
≤ Var

[(
πθ(y|x
πref(y|x

)α]
+

(
E
[(

πθ(y|x
πref(y|x)

)α

− 1

])2

= E


 πθ(y|x

πref(y|x)
πθ(y|x)
πref(y|x)
:::::::

α

− 1

2


≤ E


πθ(y|x)

πθ(y|x
α πθ(y|x)
πref(y|x)
:::::::

− 1

2
≤ E

πθ(y|x
πref(y|x

− 12

B KL DIVERGENCE
:::::
AND

:::::::::
GOLDEN

:::::::::::
WIN-RATE

:
CALCULATION

We calculate KL divergence on the full distribution over next token under
:::
The

::::::::::
calculation

::
of

:::
KL

:::::::::
divergence

::
in

:::
our

::::::::::
experiments

::
is

:::::
based

:::
on

::::::::::::::::
(Tang et al., 2024b)

:::::
where

:::
the

:::
KL

::
is
::::::::
estimated

:::
by

:::::
taking

::::::::
on-policy

:::::::
samples

:::::
under

::::
the

::::::
current

::::
LM

:
πθand πref. Thereforce, we calculcate KL divergence

acording to (Tang et al., 2024a). Specifically, given a response consists of T tokens. For each partial
completion, we can calculate the distribution over the next tokens of both

:
.
:::::::::::
Specifically,

:::
we

:::
first

::::::
sample

::
N

:::::
input

:::::::
prompts

:::::::
{xi}Ni=1::::

from
:::
the

:::::::::
evaluation

:::
set.

::::
For

::::
each

:::::
input

::::::
prompt

:::
xi,:::

we
:::::::
generate

:
a

:::::::
response

::
yi:::::

using
:::
the

::::::
current

::::::
policy πθ:

.
:::
Let

::
Ti:::

be
::
the

::::::
length

::
of

:::
the

:::::::
response

:::
yi,:::

we
:::::::
compute

:::
the

:::
KL

:::::::::
divergence

:::::::
between

::
πθ:

and πref .
:
as

:::::::
follows:

:

The KL divergence will be calculated for each time step i, this results an unbiased estimate of KL
divergence:

1

N

N∑
n=1

T∑
t=1

KL
(
πθ(·|x,y<t), πref(·|x,y<t)

)
Where N is number of samples in the evaluation set.

:::
We

::
set

::::::::
N = 512

::
in
::::
our

::::::::::
experiments.

:

:::
For

::::
Gold

:::::::
win-rate

::::::::::
calculation,

:::
we

:::
first

::::
use

:
a
::::
well

::::::::
fine-tuned

::::::
pythia

::::
6.9b

::
in

::::::::::::::::
(Huang et al., 2024)

:
.
:::
The

:::::
model

::::::::
achieve

::::::
≈ 70%

:::::::
accuracy

::
in
:::::::::
evaluation

:::
set

:::
and

:::::::::
achieving

::::
76.7

:::
For

:
a
:::::
given

::::::
prompt

::
x,

:::
we

::::
first

::::::
sample

:
a
::::::::
response

::::::::::
y ∼ πθ(·|x):::

and
::::
then

:::
use

:::
the

::::::
golden

::::::
reward

:::::
model

::::
rgold

::
to

:::::::
compare

:::::::
against

::::::::
reference

:::::::::
summaries

:::
yref::

in
:::::::::

evaluation
:::
set

::
to

:::::::::
determine

:::
the

:::::::
win-rate

::::
with

::
the

:::::::::
following

::::::::::
calculation:

1

N

N∑
i=1

1{rgold(x, y) > rgold(x, yref)}
:::::::::::::::::::::::::::::
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C
::::::::::::::
COMPARISON

::::::
WITH

:::::::::
ONLINE

:::::::::::::
ALIGNMENT

::::::::::
METHODS

:::
We

::::::::
conducted

::::::
further

:::::::::::
experiments

:::::
where

:::
we

::::::::
compared

::::::
DAAs

::::
with

::::::
online

::::::::
alignment

::::::::
methods.

:::
We

:::::::
consider

:::::::::::
REINFORCE

:::::::::::::
Leave-One-Out

::::::::
(RLOO)

:::::::::::::::::::
(Ahmadian et al., 2024)

:
.
:::
For

::::
RM

:::::::
training,

:::
we

:::
use

:
a
:::::::
learning

::::
rate

::
of

::::::::
3× 10−6

:::::
with

:
a
:::::
batch

::::
size

::
of

:::
64

::::
and

:
a
::::::
cosine

:::::::
learning

:::::::::
scheduler.

::::
The

::::::
reward

:::::
model

::
is

::::::
trained

::
on

:::
the

:::::::::
preference

::::::
dataset

::::
that

:
is
:::::::
labeled

::::
from

:::
the

::::::
golden

::::::
reward

::::::
model.

:::
We

:::
RL

:::
fine

::::::
tuning,

:::
use

:
a
:::::

batch
::::

size
::
of

::::
512

::::
and

:::
the

::::::
number

:::
of

::::::::
generated

:::::::
samples

:::
per

:::::::
prompt

:
k
::

is
:::
set

::
to
:::

2,
::
we

::::
train

:
it
:::
for

:::::
1200

:::::
steps,

:::::::
resulting

::
in

::::::::::::
approximately

:::
3.3

::::::
epochs

::::
with

::
a

:::::::
learning

:::
rate

::
of

:::::::::
3× 10−6,

:::
and

:
a

:::::::
constant

:::::
linear

::::::::
scheduler

::::
with

:
a
::::::::
warm-up

::::
ratio

::
of

::::
3%.

:::
We

:::::::
present

::
the

:::::
result

::
in
::::::
Figure

::
6.

:

Figure 6:
::::::::
Trade-off

:::::::
between

:::::::::::
performance

:::
and

:::
KL

::::::::::
divergence

:::
for

::::::::
alignment

::::::::
methods

::::
with

::::::
varying

:::::::::::
regularization

::::::::
strength.

::
As

::::::::
expected,

::::::
RLOO

:::::::
achieves

::
a
:::::
better

:::
win

::::
rate

::::::::
compared

::
to

:::::
DPO

:::
and

::::::::
AIS-DPO

::::
and

::::::
utilizes

:
a
:::::
better

:::
KL

::::::
budget.

:::::
The

:::::
result

::::
also

:::::
shows

::::
that

:::::::::
AIS-DPO

::::
helps

:::::
close

:::
the

::::
gap

:::::::
between

::::::
offline

::::
and

:::::
online

:::::::::
algorithms

D EXPERIMENTAL DETAILS

We follow the codebase from the N+ implementation of RLHF (Huang et al., 2024)with default
hyper-parameters as shown in the tables below : SFT hyperparameters. Parameter

:
.
::::

We
:::
use

::::::::::::::
transformers

:::::::::::::::
(Wolf et al., 2020)

::::::
library

:::::::::::::
implementation

::
of

::::::
Pythia

::::::
models

::
in

::::::::::
conjunction

::::
with

:::::::::::
deepspeed

::::::
ZERO

:::::
Stage

:
2
:::::::::::::::::
Rasley et al. (2020).

::::
All

::::::
models

:::
are

:::::::::
quantized

::
to

::::::::::
bfloat16

::::
dtype.

:::
We

::::::
provide

:::::::::
additional

:::::
details

:::
on

:::
our

:::::::
training

:::
and

::::
data

::::::::::::
preprocessing

:::::
below

:::::::::::::::::
Data-preprocessing:

:::
We

::::::
follow

::::::::::::::::
data-preprocessing

::::::
process

::::
from

:::::::::::::::::
(Huang et al., 2024).

::::
We

::::::
truncate

::
the

:::::::
prompt

::
to

:
a
:::::::::
maximum

::
of

:::
512

::::::
tokens,

::::::
where

:::
the

::::::::
truncation

::
is

::::
only

::::::
applied

::
at
:::
the

:::::::::
paragraph

::::
level.

:::
All

::::
input

::::::
strings

::::
will

::
be

::::::::
formatted

::::
with

:::
the

:::::::::
following

:::::::
template:

:

::::::::::::
SUBREDDIT:

::::::::::::::::::::::::::::
r/{subreddit}\n\nTITLE:

::::::::::::::::::::
{title}\n\nPOST:

:::::::::::::::::::
{post}\n\nTL;DR:

Value
:::
SFT

::::::::
Training Learning rate 3e-6 Epochs 1 Batch size

:::
We

:::
use

:::
the

::::
SFT

:::::
split,

:::::
which

:::::::
contains

::
an

:::::
input

:::::
query

:::
and

::
a
::::::::
reference

::::::::
summary

::::::
written

:::
by

:::::::
humans.

::::
We

::::
use

:
a
:::::::
learning

::::
rate

::
of

::::::::
3× 10−6

:::
and

:
a
:::::
batch

::::
size

::
of 64

:::
with

:::::::
gradient

::::::::::::
accumulation

::::
steps

::
of

::
8.

:::
We

:::
do

:::
not

:::::
apply warm-up steps 0DPO

hyperparameters. Parameter Value Learning rate 1e-6 Epochs 1 Batch size
:::
and

::::
train

::
for

::::
one

:::::
epoch.

:::::::::
Preference

::::::::
Training

:
:
::::

We
::::
train

::::::::::
preference

:::::::::
algorithms

:::::
using

:::
the

:::::::::
initialized

::::
SFT

::::::
Pythia

:::::::
models.

:::
We

::::
train

:::
for

:::::
1450

::::
steps

:::::
with

:
a
::::::::
learning

:::
rate

:::
of

::::::::
1× 10−6

::::
with

::
a
:::::
batch

::::
size

::
of

:
64 Warm-up steps

::::
with

:::::::
gradient

:::::::::::
accumulation

:::::
steps

::
of

::
8,

:::
we

:::
use

::
a
::::::
cosine

:::::::
learning

::::
rate

::::::::
scheduler

::::
with

:
150

:::::::
warm-up

::::
steps.

:
Generation hyperparameters. Parameter Value Max prompt length 512 Max new tokens 128

Temperature 0.01

E
::::
THE

::::::::::::
NECESSITY

::::
OF

::::
THE

:::::::::::
ADAPTIVE

::::::::::::
HEURISTIC

::::
Since

:::
we

:::
are

:::::::
working

::::
with

::
an

:::::::::::::
auto-regressive

::::::::
language

:::::
model,

:::
the

::::::::::
importance

::::::
weights

:::
are

::::::::
computed

::
as

:::
the

::::::
product

:::
of

:::
the

:::::::::
importance

::::
ratio

:::
of

:::::
many

::::::::
timesteps.

::::
Let

::
T

::
be

:::
the

::::::
length

::
of

:::
the

::::::::
response

:
y
::
to

15
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Figure 7: Result on intra-epoch training dynamics of Adaptive IS. The top row shows win-rate
against fraction on an epoch and the bottom row shows the Square root of KL evolution. Adatpive
IS maintains consistent performance throughout the training process.

::
an

:::::
input

:::::::
prompt

::
x,

:::
the

:::::::::
importance

::::::
weight

::
is
:::::::::
calculated

:::::
based

::
on

:::
the

:::::::::
following

:::::::
equation

w(x,y) =
πθ(y|x)
πref(y|x)

=

T∏
t=1

πθ(yt|x,y<t)

πref(yt|x,y<t)
:::::::::::::::::::::::::::::::::::

:::::
Thus,

::
the

::::::::
variance

::
of

:::
the

::
IS

::::::::
estimator

::::::::::
accumulates

::::::::::::
multiplicative.

:::
For

::::::::
instance,

:::
we

::::::
analyze

::
a
:::::
setting

:::::
where

:::
the

::::::::
reference

::::
mode

::::
πref :

is
::
a

::::::
uniform

::::::::::
distribution

::::
over

:::
the

:::::::::
vocabulary

:::::
space

::
V .

::::
The

:::::::::
importance

:::::
weight

::
in
::::

this
::::::
setting

::
is

::::
given

:::
by

:::
the

::::::::
following

::::::::
equation.

:

w(x,y) = |V |T
T∏

t=1

πθ(yt|x,y<t)

:::::::::::::::::::::::::::

:::
The

:::::::
variance

:::
of

::
the

::::::::::
importance

:::::::
weights

:::
can

:::::
grow

:::::::::::
exponentially

::::
large

::::
with

:::::::
respect

::
to

:::
the

::::::
number

::
of

:::::
tokens

::
in

:::
the

::::::::
response

::
y.

:

Var
y∼πref(·|x)

[w(x,y)]

:::::::::::::::

= |V |2T Var
y∼πref(·|x)

[
T∏

t=1

πθ(yt|x,y<t)

]
.

::::::::::::::::::::::::::::::::

::
By

:::::
using

::::::::::
exponential

:::::::::
smoothing

:::::::::
importance

:::::::
weights

:

w(x,y) = |V |
T∏

t=1

πθ(yt|x,y<t)
α

:::::::::::::::::::::::::::

:::
and

::::::::
choosing

:::
the

:::::
value

::
of

:::::::
α = 1

T ,
:::
the

:::::::
variance

:::
of

:::
the

:::::::::
importance

:::::::
weights

::
is

:::::::
reduced

::::::::::
significantly

:::
and

::::
does

:::
not

:::::
grow

:::::::::::
exponentially

::::
with

::::::
respect

::
to

:::
the

:::::::
number

::
of

::::::
tokens

::
in

:::
the

:::::::
response

::
y.

:

Var(w(x, y))
::::::::::

= |V |2 Var(πθ(y|x)α)
::::::::::::::::::
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F
::::::::::::
ABALATION

::::::::
STUDY

:::
OF

::
α

:::::::::
VALUES
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Figure 8:
::::
(Left)

:::::
Win

:::::::
rate-KL

:::::::
tradeoff

::
of

::::::::
different

::
α

::::::
values,

::::
we

::::::::
observed

::
no

:::::::::::::::
over-optimization

::::::::::
phenomenon

::::
and

:::
can

::::
even

::::::::::
outperform

::::
DPO

::::
with

:::
the

::::
right

:::
α,

:::::::
(Middle)

:::
the

::::
best

:::::::
win-rate

::
of

:::::::
different

:
α
::::::
values,

::::::
where

::
α

::::::
around

::::
0.05

:::::::
achieve

:::
the

:::
best

::::::::::::
performance.

::::::
(Right)

::::
Best

::::::::::
performing

::::::
square

:::
root

:::
KL

:::::::::
divergence

::
of

::::::::
different

::
α

::::::
values.

:::::::::
Increasing

::
α
:::::
helps

::::::::::::
regularization

:::
up

::
to

:
a
:::::::
specific

:::::
point,

:::
the

:::::::::::
regularization

:::::
effect

::::
will

:::::::
diminish

:::::
when

:::::::::
increasing

::
α

:::
due

::
to

::::
high

:::::::
variance

::::::
issues.

:::::
Fixed

::
α.

:::
We

::::
have

:::::::
provided

:::
an

:::::::
ablation

::::
over

::::
alpha

::
in
:::::::::
alignment

:::::::::::
experiments,

::
we

::::
first

:::
fix

:::::::
β = 0.01

:::
and

::::
vary

::
α

:
=
::::
(0.0,

:::::
0.05,

:::
0.1,

::::
0.2,

::::
0.4)

:::
and

:::::::
compare

::::
with

:::
the

::::::::::
adaptive-IS

::::
DPO

::::
and

::::
DPO

::::::::
objective

::
on

::
the

::::::
Reddit

:::::::
TL;DR

::::::
dataset.

::::::
Figure

::
8
:::::
shows

::::
that

:
a
:::::
small

:::::
value

::
of

::
α

:::
can

::::::
achieve

:::
the

::::
best

::::::::::
performance

Figure 9:
:::
Win

:::::::
rate-KL

:::::::
tradeoff

:::
of

:::::
DPO,

:::::::::
AIS-DPO

:::
and

::::::::
different

:::::::::
functional

:::::
forms

:::
of

::::::::
α = 1√

|y|

::::::
(Square

::::::::
root-IDS

::::::
DPO).

:::::::::
Although

::::::::::
Square-root

::::
IDS

:::::::
achieves

::
a
::::::

lower
:::
win

::::
rate

::::
than

::::
the

:::::
other

:
2

:::::::
methods,

::
it

:::
still

:::::::::
maintains

:
a
:::::
better

::::::::::::
regularization

:::::
effect

::::
with

:::
the

:::::
lowest

::::
KL

::::::
budget.

::::
with

:
a
:::::
lower

:::
KL

::::::
budget

::::
than

:::::
DPO.

::::::
While

:::::::::
increasing

:
α
:::::
helps

:::::::
increase

:::
the

::::::::::::
regularization

:::::
effect

:::
and

:::
win

::::
rate.

:::
Up

::
to

::
a

::::::
specific

:::::
point

:::::::
(around

::::
0.1),

:::
the

::::::::::::
regularization

:::::
effect

::::
starts

::
to
::::::::
diminish

:::
due

::
to
::::
high

:::::::
variance

::
in

:::
the

:::::::::
importance

:::::
ratio,

::::::
causing

::::::::
unstable

:::::::
training.

:

::::::::
Adaptive

::
α.

:::
As

:::::::::
mentioned

::
in
:::::::

Section
:::

E,
::::::
setting

:::::::
α = 1

|y|::::
can

::::::
reduce

::::::::
variance

:::
of

:::::::::
importance

:::::::
weighted

::::::::::
estimators.

:::
We

::::::
present

:::
the

:::::
effect

::
of

::::
this

:::::
choice

:::
of

:
α
:::::::::
compared

::
to

::::
fixed

::
α
::::::
values

::
in

:::::
Figure

::
8.

::::::::::
Adaptive-IS

:::::::
achieves

:::
the

:::
best

:::::
result

::
in

::::
this

:::::
setting

:::::
while

:::::::
avoiding

::::::::
manually

:::::::
tunning

:::
the

::::::::
smoothing

:::::
factor

::
α.

:::
We

::::
also

:::::::
provide

:::::::::
experiment

::::::
results

:::
for

:::::::
different

:::::::::
functional

:::::
forms

::
of

::
α
::::
that

::::::
depend

:::
on

::
the

:::::::
response

::::::
length:

::::::::::
α = 1√

|y|
.
::::::
Figure

::
9
::::::
shows

:::
that

:::::::::
α = 1√

|y| :::::::
achieves

::
a
:::::
lower

::::
win

::::
rate

::::
than

::::
DPO

:::
and

:::::::::
AIS-DPO.

:::
We

::::::::
speculate

::::
that

::::::
setting

:::::::
α = 1√

y::::
can

:::
still

:::::
have

:
a
::::
high

::::::::
variance

::
in

:::
the

:::::::::
importance

::::
ratio,

:::::::
leading

::
to

:
a
:::::
small

::::::
number

:::
of

:::::::
samples

::::::
having

::::::::
enormous

:::::::
weights

:::
that

:::
can

::::::::::
potentially

:::::::
dominate

:::::::
learning

::::::
signals

::
of

::::
other

::::::::
valuable

:::::::
samples

:::::::::::::::
(Park et al., 2024b)

:
.
:
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Figure 10:
::::
DPO

::::
loss

::::
over

:::
the

::::::
course

::
of

:::::::
training.

:::::::
Training

::::::::::::
convergence.

:::
We

::::
plot

:::
the

:::::::
training

::::
loss

:::
of

::::::::
AIS-DPO

:::::
with

:::::::
different

:::
α

:::::
values

::::::
during

::::::
training

::
in
::::::

Figure
:::

10
::::
and

:::::::
observed

::::
that

:::
the

:::::::
training

::
is
::::::
stable

::
in

:::
all

:::::::
settings.

::::::::
Another

:::::::::
observation

:
is
::::
that

:::::
larger

::::::
values

::
of

:
α
::::
lead

::
to
:::::
faster

:::::::::::
convergence

::::
than

::::::
smaller

::::::
values.

:

G
:::::
HOW

:::::::
DOES

:::::::::::
ADAPTIVE

:::
IS

::::::::::
PERFORM

::::::::
UNDER

::::::::::::::::
DISTRIBUTION

:::::::
SHIFT?

Figure 11:
:::::::
Win-rate

::::
and

:::
KL

:::::::::
divergence

:::::::
against

:::
the

:::::::
fraction

::
of

::::::
epochs

::::::
results

:::
for

:::::::
different

::::::
shifted

::::::
datasets

::::::::::
D1,D2,D3::

of
:::::::::::::
Adaptive-DPO

:::
and

:::::::
standard

:::::
DPO.

::
In

:::
this

:::::::
section,

::
we

:::::::
provide

::
an

:::::::
analysis

::
of

::::::::
applying

::
IS

:::
on

:::
the

:::::::::
distribution

::::
shift

::::::::::
experiment

::::::::
(presented

::
in

::::::
section

::::
4.3).

:::::
The

::::::
results

:::
are

::::::
plotted

::
in

::::::
Figure

:::
11.

::::::
When

:::
the

:::::
data

:::::::::
distribution

::
is
:::::

close
:::
to

:::
πref,

:::::::
Adaptive

:::
IS

:::
and

:::::
DPO

::::
show

:::::::
similar

::::::::::
performance

::
in
:::::
terms

:::
of

:::
win

::::
rate

:::
and

::::
KL

:::::::::
divergence,

:::
but

::::
both

:::
still

:::::
suffer

:::::
from

:::
the

:::::::::
distribution

:::::
shift

:::::
effect.

:::::::::::
Interestingly,

:::
we

::::::::
observed

::::
that

::
as

:::
the

::::
data

:::::::::
distribution

::::
shifts

:::::
away

::::
from

::::
πref,:::::::::

AIS-DPO
::
is

:::::
shown

::
to

:::::::
achieve

:::::
better

::::::::::::
regularization

:::
and

:::
win

::::
rate

::::::::
compared

::
to

:::::::
standard

::::
DPO

:::::
even

:::::
when

:::
the

::::
data

::
is

::
no

::::::
longer

::::
from

::::
πref.:::::

This
:::::::::::
phenomenon

::
is

::::::
helpful

::
in

:::::::
practice,

:::::
where

:::
the

:::::::::
preference

::::
data

::
is

::::::
usually

::::::::
generated

:::::
from

::
an

::::::::
unknown

:::::
policy

:::
µ,

:::
not

::::
from

::::
πref.::::::::

AIS-DPO
:::
can

:::
still

:::::::
improve

:::::::::::
performance

:::
and

::::::::::::
regularization

:::::
when

:::
πref::

is
:::
not

:::
far

::::
from

::
µ.

:

H
::
A

:::::::::
POLICY

:::::::::::
GRADIENT

::::::::::::::
DERIVATION

:::
OF

:::::::
DAAS

:::
Our

:::::::::
motivation

::
to

:::::
derive

:::
the

:::::::
original

:::::::
equation

::::::
comes

::::
from

:::
the

:::
fact

::::
that

:::::
DAAs

:::::::
method

:::
can

::
be

::::::
derived

::::
from

::::::
vanilla

:::::
policy

:::::::
gradient

::::::
(VPG)

:
([
:
4]

:
, [

:
5]

::
),

::
an

::::::::
on-policy

::::::::
algorithm

::::
aims

::
to

:::::::::
maximize

::
the

::::::::
following

:::::::
formula:

:
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∇LPG(πθ)
::::::::

= Ey∼πθ(·|x) [r(x, y)∇ log πθ(y|x)]
::::::::::::::::::::::::::::

=
∑
y

∇πθ(y|x)r(x, y)
::::::::::::::::::

:::
The

::::::::
estimator

::::::
above

::::
can

::::
have

::::
high

::::::::
variance,

::
a
:::::::

popular
::::::::

approach
::

is
:::

to
:::::::
subtract

::
a
:::::::
baseline

::::
b(x)

::
to

::::::
reduce

:::::::
variance

::::::
while

:::::::
keeping

:::
the

::::::::
estimator

:::::::::
unbiased.

:::
A

:::::::
popular

::::::
choice

:::
of

:::
the

:::::::
baseline

::
is

::::::::::::::::::::::
b(x) =

∑
y r(x, y)πθ(y|x).::::::::

Plugging
::::
into

::
the

::::::
above

::::::::
equation,

::
we

:::
get

:

∇LPG(πθ)
::::::::

=

(∑
y1

r(x, y1)∇πθ(y1|x)−
∑
y1,y2

r(x, y2)πθ(y2|x)∇πθ(y1|x)

)
::::::::::::::::::::::::::::::::::::::::::::::::::::

=
∑
y1,y2

r(x, y1)πθ(y2|x)∇πθ(y1|x)−
∑
y1,y2

r(x, y2)πθ(y2|x)∇πθ(y1|x)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

=
∑
y1,y2

(r(x, y1)− r(x, y2)πθ(y2|x)∇πθ(y1|x))
::::::::::::::::::::::::::::::::::::::

= E(y1,y2)∼πθ(·|x) [(r(x, y1)− r(x, y2))∇ log πθ(y1|x)]
:::::::::::::::::::::::::::::::::::::::::::::

:::
We

::::
then

:::::::
swapped

::::::
actions

:::::
y1, y2::::

and
:::::::
averaged

:::::
them

:::::::
together

::
to

:::
get

:::
the

::::::
desired

:::::
form.

:

∇LPG(πθ) = E(y1,y2)∼πθ

[
(r(x, y1)− r(x, y2))

2
(∇ log πθ(y1|x)−∇ log πθ(y2|x))

]
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
Where

:::::::::::::::::::::::::::::
r(x, y) = R(x, y)− β log πθ(y|x)

πref(y|x):::
is
::::

the
:::::::::::

reward-KL
:::::::::::::

regularization
:::

in
:::::::

RLHF.
::::

The

:::::
above

::::::::
equation

:::
is

::::::
called

:::::::::
Pairwise

::::::
Policy

:::::::::
Gradient

:::
and

::::
has

:::::
been

::::::::
recently

:::::::::
proposed

:::
by

::::::::::::::::::::::::::::::::::
(Wu et al., 2024; Flet-Berliac et al., 2024).

:

::::
Here

:::
we

:::
will

:::::
show

::::
how

:::::
Policy

::::::::
Gradient

:::
can

:::
be

::::::
related

::
to

:::::
DAAs

:::::::
methods

::::
(e.g.

::::::
IPO).

::::::::
Property

::::
(IPO

::
as

::::::
Policy

::::::::
Gradient

:::::
with

::::::::
binarized

::::::::
reward):

::::::
Given

::
a
:::::::

prompt
::
x
::::
and

::
a
::::
pair

::
of

:::::::::
generations

:::::::
(y1, y2),:::::::::

assuming
:::
that

:::::::
y1 ≻ y2:::

and
:::::::
defining

:::::::
reward

:::::::::::::::::::::::
R(x, y1) = −R(x, y2) =

1
4 .

::::
Then

::
we

:::::::
have**

∇LVPG(πθ) = − 1

2β
∇LIPO(πθ, πref)

:::::::::::::::::::::::::::::

::::
Proof

:
:
::::
The

:::::::
gradient

::
of

::::::
Policy

:::::::
Gradient

:::
can

::::
now

:::
be

::::::
written:

:

∇LPG(πθ) = E(y1,y2)∼πθ(·|x)

[(
1

2
− β log

πθ(y1|x)
πref(y1|x)

+ β log
πθ(y2|x)
πref(y2|x)

)
(∇ log πθ(y1|x)−∇ log πθ(y2|x))

]
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::::
Let’s

::::::::
consider

:::
the

:::::::
gradient

::
of

:::::
IPO,

:
a
:::::::
popular

:::
loss

::
in

::::::
DAAs

::::::
family:

:
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∇E(y1,y2)∼πθ(·|x)

[(
1

2
− β

(
log

πθ(y1|x)
πref(y1|x)

− log
πθ(y2|x)
πref(y2|x)

))2
]

::::::::::::::::::::::::::::::::::::::::::::::::::::::

= E(y1,y2∼πθ(·|x)

[
∇2

(
1

2
− β

(
log

πθ(y1|x)
πref(y1|x)

− log
πθ(y2|x)
πref(y2|x)

))
(∇ log πθ(y1|x)−∇ log πθ(y2|x))

]
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

= −2βLPG(πθ)
::::::::::::

::
As

::::::
shown

:::::::
above,

::::::
DAAs

::::
can

::
be

:::::
seen

:::
as

::::::::::
maximizing

:::::::::
binarized

:::::::
rewards

::::
with

::::::
policy

::::::::
gradient.

::::::::
However,

::::
this

::::::::::
equivalence

:::::
only

:::::
holds

:::::
when

::::
we

:::::::
consider

::::
the

::::::
online

:::::::
version

::
of

:::::
DPO

:::
or

::::
IPO.

::
In

:::::::::
off-policy

::::::
setups,

:::::::
DAAs

:::
can

::::::
suffer

:::::
from

::::
the

::::::::::
distribution

:::::
shift

::::::::
problem,

::::::
which

::::
has

::::
been

::::::::::
well-studied

::
in

:::::::
Offline

:::
RL

::::::::
literature

:::::::::::::::::
Levine et al. (2020).

:::::
This

::::
also

::::::::
explains

:::
the

::::::::::::
ineffectiveness

::
of

:::::::::::
regularization

:::
in

:::::
DAAs

:::::
when

:::::
using

::::::
offline

::::
data

::::
due

::
to

:::
the

::::::::
sampling

::::
bias

:::
in

:::
the

:::::::::::
regularization

:::::::
objective

::::::::::::::::::::::::::::::::
(Levine et al., 2020; Tang et al., 2024d)

:
.

:::::
Thus,

::::::
Offline

:::::
DAAs

:::::::
methods

::::::
should

::
be

::::
seen

::
as

::::::::
on-policy

::::::::::
maximizing

::::::::
expected

::::::
reward

::::::
r(x, y)

::::
under

::
the

:::::::
current

::::
LLM

::::::
policy

::::
with

:::
the

::::::::
additional

::::::::
constraint

::::
that

::
we

::::
only

:::::
have

:::::
access

::
to

:::::
some

:::::
static

:::::
dataset

::
D.

:::::::::
Therefore,

:::
our

:::::
ideal

:::::::
objective

:::
is:

max
θ

J(θ) = Ex∼D,(yw,yl)∼πθ(·|x)

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::
As

:::
we

:::::
only

::::
have

::::::
access

:::
to

:
a
:::::

static
:::::::

dataset
::::::::
generated

:::::
from

::::
πref,::::

we
:::::::
propose

::
to

::::
use

:::::::::
importance

:::::::
sampling

::
to
::::::::
estimate

::::::::::
expectations

:::::
under

:::
πθ :::::::::

distribution
:::::
given

:::::::
samples

::::
from

::
a
::::::::
reference

:::::::::
distribution

:::
πref.:

J(θ)
:::

=
∑

x,yw,y

πθ(yw|x)πθ(yl|x)
(
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

))
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

=
∑

x,yw,y

πref(yw|x)πref(yl|x)
πθ(yw|x)
πref(yw|x)

πθ(yl|x)
πref(yl|x)

(
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

))
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

= E(x,yw,yl)∼πref

[
πθ(yw|x)
πref(yw|x)

πθ(yl|x)
πref(yl|x)

log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::
Asuming

::::
that

::
πθ::::

and
:::
πref::::

have
:::
the

:::::
same

:::::::
support.

I
::::::::::
RESULTS

::::::
WITH

:::::::::::::::
REGULARIZED

::::::::::::::
PREFERENCE

::::::::::::::::
OPTIMIZATION

::::::::::
Regularized

::::::::::
Preference

:::::::::::::
Optimization

:::::::
(RPO)

::::::::::::::::
(Liu et al., 2024)

::::
also

:::::::
shows

:::::
that

:::::::
reward

::::::::::::::
over-optimization

::::::::
happens

::::
due

::
to

::::::::::
distribution

:::::
shift

::::::::
problem,

::::::
similar

:::
to

:::::
ours.

:::::
They

::::::::
propose

:
a

::::::::
theoretical

:::::::::
algorithm

:::
that

:::::::::
minimizes

::::
the

::::
DPO

::::
loss

:::
and

:::
an

:::::::::
additional

::::
SFT

::::
term

::
to

:::::::
mitigate

::::::
reward

:::::::::::::::
over-optimization.

::::
The

::::::::
additional

::::
SFT

::::
loss

::::::
ensures

:::::::::
alignment

::::
with

:::
the

::::::::
reference

:::::
policy

::
to

:::::::
stabilize

::::::
training

::::
and

:::::
reduce

::::::::
uncertain

::::::
labels

::
in

:::::::::
preference

::::
data.

::
On

:::
the

:::::
other

:::::
hand,

:::
we

:::::::
propose

::
to

:::::::
mitigate

::::::::::
distribution

::::
shift

:::::::
problem

::
by

::::::
adding

:::
an

:::::::::
importance

::::
ratio

::
to

:::::::
estimate

:::::::
samples

:::::
under

:::
the

::::::
current

::::
LM

::::::
policy

:::
πθ.

::::
The

:::::::::
importance

:::::
ratio

:::
will

::::::::
upweight

:::::::
samples

:::
that

::::
have

:::::
high

:::::::::
likelihood

:::::
under

:::
πθ :::

and
:::::::::::

downweight
::::
low

::::::::
likelihood

::::::::
samples.

:::::
RPO

::::
also

:::::::
requires

::::::::
additional

:::::::::::::::
hyper-parameters

:
η
::
to

:::::::
balance

:::
the

:::::::
tradeoff

:::::::
between

:::::::::
alignment

::::
with

:::
the

::::::::
reference

:::::
policy

:::
and

:::::::
learning

:::::
from

:::::::::
preference

:::::
while

::::
our

::::::::
approach

::::
does

::::
not

::::::::
introduce

::::
any

::::
new

::::::::::::::
hyper-parameters

:::::
where

:::
the

::
α

:::::
terms

::::::::
adaptively

::::::
trading

:::
off

:::::::
between

::::
bias

:

::
To

::::::::
compare

::::::::::
Adaptive-IS

::::
with

:::::
RPO,

:::
we

:::
use

:
a
::::::
similar

:::::::::::
experimental

:::::
setup

::
as

:::::::::
described

::
in

::::::
section

::
D.

:::
We

::::
train

:::::
RPO

::::
with

::
3

:::::::
different

::::::
values

::
of

::::::::::::::::::
β = (0.01, 0.05, 0.1)

:::
and

:::::
tune

::::::::::::::::::::
η = (0.001, 0.005, 0.01).
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Figure 12:
:::
Win

:::::::
rate-KL

:::::::
tradeoff

::
of

:::::::::::
Adaptive-IS,

::::::
DPO,

:::
and

:::::
RPO.

:::::::::::
Adaptive-IS

:::::::
achieves

::::
the

:::
best

::::::::::
performance

::::::::
compared

:::
to

::::
other

:::::::
methods

:::::
while

::::::::::
maintaining

::
a
:::::
lower

:::
KL

::::::
budget.

:::::
Based

::
on

:::
the

::::::
results,

:::
we

:::::
select

:::::::::
η = 0.005

::
as

::
it

:::::
yields

:::
the

:::
best

:::::::::::
performance

:::
and

::
is
:::::::::
consistent

::::
with

::
the

:::::
choice

::
in

:::
the

:::::::
original

:::::
study.

:

:::::
Figure

:::
12

::::::
shows

:::
the

::::
win

:::::::
rate-KL

:::::::
tradeoff

:::
of

:::::::::::
Adaptive-IS,

:::::
RPO,

::::
and

:::::
DPO.

:::
As

:::::::::
expected,

::::
DPO

:::::::
achieved

:::
the

::::::
lowest

:::::::::::
performance

:::::
with

:
a
::::::

higher
::::

KL
::::::::::
divergence.

:::::::::::
Adaptive-IS

:::::
DPO

::::
was

::::
able

::
to

::::
show

:::::::
superior

:::::::::::
performance

::::
than

:::::
RPO

:::::
under

:
a
::::::
similar

::::
KL

::::::
budget

::::::
without

::::::::
requiring

::::
any

::::::::
additional

::::::::::::::
hyper-parameters.

:

J
:::::::
DAAS

:::::::::::::::::::
REGULARIZATION

::::::::::
SUFFERS

::::::
FROM

::::::::::::::::
DISTRIBUTION

::::::
SHIFT

::
In

:::
this

:::::::
section,

::
we

::::
will

:::::
follow

::::::::::::::::
Tang et al. (2024d)

::::::::
derivation

::
to
:::::
show

::::
how

::::
does

:::::
DAAs

:::::::
methods

:::::
suffer

::::
from

::::::::::
distribution

::::
shift.

:::
As

::
an

::::::::
example,

:::::
given

:
a
:::::::
prompt

::
x.

::::
Let’s

::::::::
consider

:::
the

:::::
Taylor

:::::::::
expansion

::
of

::
ρθ

::::::
around

:::
zero

:::
in

:::
IPO

::::
loss:

:

min
πθ

E(yw,yl)∼πref(·|x)

[(
ρθ(yw, yl)−

1

2β

)2
]
=

1

4β2
− 1

β
E(yw,yl)∼πref [ρθ(yw, yl)]︸ ︷︷ ︸

Preference Optimization

+E(yw,yl)∼πref

[
ρθ(yw, yl)

2
]︸ ︷︷ ︸

µ−weighted loss

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::
The

::::::
second

:::::
term

:::::
serves

:::
as

::::::::::::
regularization,

:::::
which

::
is
::::::

called
:::
the

::::::::::
µ-weighted

::::
loss

:::::::::::::::
Tang et al. (2024d)

:::
,this

::::
loss

::::::::::
encourages

:::
πθ ::

to
::::
stay

::::
close

:::
to

::::
πref. ::::::::

Although,
:::::

both
:::
KL

:::::::::
divergence

::::
and

::::::::::
µ-weighted

:::
loss

::::::
achieve

:::
the

:::::
same

:::::
global

:::::::::
minimizer

:::::
(when

:::::::::
πθ = πref),:::::

their
::::
main

:::::::::
difference

:::
lies

::
in

:::
the

::::
their

:::::::
gradient.

:::
For

:::
KL

::::::::::
divergence,

::::::::::::::::::::::::::::::::::::::::::::
∇θKL(πθ, πref) = Ey∼πθ

[
log πθ(y|x)

πref(y|x)∇ log πθ(y|x)
]
:
,
::::::
While

:::
the

:::::::
gradient

::
of

::
the

:::::::::
µ-squared

::::
loss:

:

E(y1,y2)∼πref(y|x)

[
log

πθ(y|x)
πref(y|x)

∇ log πθ(y|x)
]

:::::::::::::::::::::::::::::::::::::

:::::
There

::
is

::
a
:::::::::
mismatch

:::::::
between

:::::
data

::::::::::
distribution,

::::::
where

::::
KL

::::::::::
divergence

::
is

:::::::::
calculated

::::::
based

::
on

::
the

:::::::
current

::::
LM

::::::::
samples,

:::::
while

::::::
Offline

::::::::::::
regularization

:::
in

::::::
DAAs

:::::::
directly

:::
use

::::::
offline

:::::::
samples

:::
for

::::::::::::
regularization.

::::
This

:::::
leads

::
to

:::::
cases

::::::::
minimize

::::::
offline

::::::::::::
regularization

:::::::
objective

::::::
might

:::
not

:::::::::
necessarily

::::::::
minimize

:::
KL

::::::::::
divergence.

::::::
This

::
is
::::::::

because
:::
the

::::::
offline

::::::::
samples

::::
may

::::
not

:::::::::
accurately

::::::::
represent

::
the

::::::::
samples

:::::::::
generated

:::::
under

::::
the

:::::::
current

::::::
policy,

::::::::::
potentially

:::::::
causing

:::::::::::
performance

::::::::::
degradation

:::::::::::::::::::::::::::::::
(Tang et al., 2024d; Chen et al., 2024a)

:
.
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