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ABSTRACT

This paper deals with distributed optimization problems that use compressed
communication to achieve efficient performance and mitigate the communication
bottleneck. We propose a family of compression schemes in which operators trans-
form vectors fed to their input according to a Markov chain, i.e., the stochasticity of
the compressors depends on previous iterations. Intuitively, this should accelerate
the convergence of optimization methods, as considering previous iterations seems
more natural and robust. The compressors are implemented in the vanilla Quantized
Stochastic Gradient Descent (QSGD) algorithm. To further improve efficiency
and convergence rate, we apply the momentum acceleration method. We prove
convergence results for our algorithms with Markovian compressors and show
theoretically that the accelerated method converges faster than the basic version.
The analysis covers non-convex, Polyak-Lojasiewicz (PL), and strongly convex
cases. Experiments are conducted to demonstrate the applicability of the results
to distributed data-parallel optimization problems. Practical results demonstrate
the superiority of methods utilizing our compressors design over several existing
optimization algorithms.

1 INTRODUCTION

The optimization problem is currently a key issue in many practical applications, such as optimization
in neural network training, resource allocation in computational systems, and parameter tuning in
algorithmic trading strategies.
In addition, a variety of algorithms for optimization on a single device, such as SGD Robbins
& Monro (1951), Adam Kingma & Ba (2014), Lion Yazdani & Jolai (2016), have emerged and
been subjected to theoretical analysis. However, in the contemporary landscape of deep learning,
there is an increasing trend towards adopting intricate and expansive models that pose significant
training challenges. Prominent among these challenges are advanced deep learning frameworks for
image analysis, sophisticated natural language processing structures akin to transformers Vaswani
et al. (2017), and complex reinforcement learning methodologies designed for autonomous system
operations Kiran et al. (2021). As a result, the training of such models has become impractical for
execution on a single device due to their requirement for extensive data sets for training, which are
unfeasible to store on a single device. Consequently, optimization algorithms have been specifically
developed for distributed training Verbraeken et al. (2020); Chen et al. (2021). These methods utilize
a large number of devices, with each one processing distinct data subsets and participating in an
effective data exchange mechanism, thereby aiding in the training of these computationally intensive
models. Thus, the problem of classical optimization evolves into a distributed optimization form:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where fi is a function, located on a device i. This formulation encompasses not only distributed
learning, where data is dispersed across multiple devices to expedite training and facilitate the storage
of large amounts of data, but also extends to federated learning Konečnỳ et al. (2016); Li et al. (2020);
Kairouz et al. (2021), where data distribution is motivated by the architecture of the system itself,
allowing for decentralized model training while maintaining data privacy and integrity across diverse
devices.
A downside of this approach manifests as the complexity associated with the transmission of large-
scale data, a phenomenon often referred to as the "communication bottleneck" Gupta et al. (2021).
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This bottleneck can significantly impede the efficiency of the system, particularly in scenarios involv-
ing extensive data exchange across distributed networks. The challenge intensifies in environments
where the bandwidth is limited, requiring solutions to mitigate the impact of data transmission delays
and ensure seamless data flow.
The primary solution at present is the compression of transmitted information Bekkerman et al.
(2011); Chilimbi et al. (2014); Alistarh et al. (2017), wherein not a whole package is sent, but rather
a selected subset. This method involves strategically selecting and compressing the most informative
segments of data for transmission. By doing this way, it significantly reduces the volume of data that
needs to be communicated across the network, thereby alleviating the communication bottleneck.
In recent times, a number of methods employing compression have been conceived and scrutinized
Mishchenko et al. (2019); Gorbunov et al. (2021a); Richtárik et al. (2021). However, a lot of studies
have utilized unbiased compression operators due to their simplicity and amenability to theoretical
analysis. Such compression techniques, including methods as random sparsification and value
rounding Nesterov (2012a); Alistarh et al. (2017); Horvath et al. (2022); Beznosikov et al. (2023a),
fail to consider the integration of information conveyed in prior iterations. We hence highlight a
potential research gap regarding the usage of previously transmitted data in compression operators
and optimization algorithms.
This omission raises the following research questions that we address in the paper:

• Is it possible to design compression operators that take into account information
about what and how we forwarded in previous iterations?
• What methods can we integrate this kind of compression operators into? How
does it affect the convergence rate of the methods, both in theory and in practice?
• Can the methods be made even more efficient, e.g., by using additional momentum
acceleration techniques?

In our paper, we focus on compression-based methods that take into account information collected
across multiple preceding iterations, employing what are termed as Markovian compression operators.
To the best of our knowledge, this approach emerges as novel and unexplored in the existing literature.

1.1 OUR CONTRIBUTIONS

New type of compression operators. We introduce a novel type of compressors that utilizes stochas-
ticity transmitted over several previous iterations. We refer to this type of compressors as Markovian,
because the states of these compressors can be viewed as a Markov chain. We examine two in-
vented examples of such compressors: BanLast(K,m) (Definition 5) and KAWASAKI(K, b, π∆,m)
(Definition 6). The first new compressor operates on a more intuitive basis: it works as random
sparsification, but prohibits the transmission of coordinates that were sent in the previous K iterations.
The latter functions in terms of probabilities: it reduces the likelihood of transmitting coordinates that
appeared in previous iterations. The KAWASAKI(K, b, π∆,m) compressor is more flexible and, in
fact, modify the idea BanLast(K,m), but it introduces two hyperparameters that will be discussed
later in Section 2.1.
New algorithms. The compression operators described above give rise to new methods that utilize
them. In this context, our paper outlines a general framework based on Alistarh et al. (2017) for
distributed gradient descent algorithms that employ Markovian compression operators (MQSGD, see
Algorithm 1). Subsequently, to make this basic algorithm faster we apply the multiple momentum
technique Nesterov (2012a) and obtain the accelerated method AMQSGD. The formulation of such
an algorithm is detailed in Algorithm 2. The basic and accelerated methods are explored both
theoretically and experimentally throughout the paper. Furthermore, experiments utilizing Markovian
operators in the DIANA Mishchenko et al. (2019) and SGD with momentum algorithms are conducted
in Section 3.
Strongly convex and non-convex cases. Motivated by various applications primarily from machine
learning, we provide the theoretical analysis in the strongly convex (Theorem 3) and non-convex / PL-
condition (Theorem 2) cases of the target function f . Notably, we provide proper analysis for both
setups with specific cases, which is rarely present in the field.
Numerical experiments. We conduct experiments with Markovian compressors in a data-parallel
setup for several optimization problems and datasets. In particular, we analyze the proposed MQSGD
and AMQSGD, as well as the DIANA and SGD optimizers for distributed optimization. In all setups,
we observe an acceleration of convergence for methods employing the BanLast and KAWASAKI
compressors compared to the baseline random sparsification.
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1.2 RELATED WORK

Compressed communications. The use of compressed communications is a fairly well-known idea
in distributed learning Seide et al. (2014). As soon as the main property of compressed messages
is that they are much easier to transfer, it can be reached in different ways, such as by quantizing
the entries of the input vector Alistarh et al. (2017); Mayekar & Tyagi (2019); Gandikota et al.
(2020); Horvath et al. (2022), or by sparsifying it Richtárik & Takáč (2016); Alistarh et al. (2018), or
even by combining these ideas Albasyoni et al. (2020); Beznosikov et al. (2023a). However, all of
the compression operators could be roughly Condat et al. (2023) separated into two large groups:
unbiased and biased.
The first group is much easier to analyze and is therefore more broadly represented in the literature.
The basic method with unbiased compression was presented in Alistarh et al. (2017). Later this
algorithms were modified using variance reduction technique with compression of gradient differences
Mishchenko et al. (2019); Horváth et al. (2019); Gorbunov et al. (2021a) in order to improve the
theoretical convergence guarantees. One can also note the works Gorbunov et al. (2019) and Khaled
et al. (2020), where the authors developed a general theory for SGD-type methods with unbiased
compression.
On the other hand, our understanding of distributed optimization with biased compressors is more
complicated. In particular, biased compression implies the use of error compensation techniques
Stich et al. (2018). Distributed SGD with biased compression and linear rate of convergence in a
multi-node setting was first introduced in Beznosikov et al. (2023a). In the meantime, other error
compensation techniques are being actively developed, Lin et al. (2022); Richtárik et al. (2021). The
last approach called EF21 was later studied in Fatkhullin et al. (2021), Gruntkowska et al. (2023).
Markovian stochasticity. Another recent trend in the literature is to design algorithms that use
Markovian stochastic processes instead of i.i.d. random variables in various ways. For instance, Duchi
et al. (2012) introduced a version of the Mirror Descent algorithm that yields optimal convergence
rates for non-smooth and convex problems. Later, Doan et al. (2020a); Dorfman & Levy (2023);
Beznosikov et al. (2023b) studied first-order methods in the Markovian noise setting. Alternatively,
token algorithms Hendrikx (2022); Ayache et al. (2022) are also a popular area of research in
Markovian stochasticity. In particular, Even (2023) obtained optimal rates of convergence, and Sun
et al. (2022); Mao et al. (2019); Doan et al. (2020b) looked at the token algorithm from the angle
of the Lagrangian duality and from variants of the ADMM method. At the same time, there exist
particular results, e.g., Bresler et al. (2020), which provide a lower bound for the particular finite sum
problems in the Markovian setting.
Despite all of the above, to the best of our knowledge, there are currently no works that combine
compressed data communications and Markovian stochasticity of the compressors.

1.3 TECHNICAL PRELIMINARIES

Notations. We use ⟨x, y⟩ :=
∑d

i=1 xiyi to denote standard inner product of vectors x, y ∈ Rd and
(x⊙ y)i = xiyi to denote Hadamard product of vectors x, y ∈ Rd. We introduce l2-norm of vector
x ∈ Rd as ∥x∥ :=

√
⟨x, x⟩. We define x∗ ∈ Rd as a point, where we reach the minimum in the

problem (1). We also denote f∗ > −∞ as a global (potentially not unique) minimum of f . We use a
standard notation for (d − 1)-dimensional simplex ∆d :=

{
p ∈ Rd | pj ≥ 0 and

∑d
j=1 pj = 1

}
and for a set of natural numbers 1, n := {1, 2, . . . , n}. We denote Ck

m as the binomial coefficient(
m
k

)
.

Throughout the paper, we assume that the objective functions fi and the function f from (1) satisfy
the following assumptions.
Assumption 1 (Li-smooth). Every function fi is Li-smooth on Rd with Li > 0, i.e. it is differentiable
and there exists a constant Li > 0 such that for all x, y ∈ Rd it holds that ∥∇fi(x)−∇fi(y)∥2 ≤
L2
i ∥x− y∥2 . We define L2 := 1

n

∑n
i=1 L

2
i .

Assumption 2 (µ-strongly convex). The function f is µ-strongly convex on Rd, i.e., it is differentiable
and there is a constant µ > 0 such that for all x, y ∈ Rd it holds that (µ/2) ∥x− y∥2 ≤ f(x) −
f(y)− ⟨∇f(y), x− y⟩ .
Assumption 3 (PL-condition). The function f satisfies the PL-condition, i.e., it is differentiable and
there is a constant µ > 0 such that for all x ∈ Rd it holds that ∥∇f(x)∥2 ≥ 2µ (f(x)− f∗) .

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Assumption 4 (Data similarity). The functions fi are similar on Rd, i.e., there are constants δ, σ ≥ 0,
such that the following inequality holds for all x ∈ Rd: ∥∇fi(x)−∇f(x)∥2 ≤ δ2 ∥∇f(x)∥2 + σ2.

The equation above implies that the data stored at each worker does not differ significantly. This
Assumption is quite standard in the literature Shamir et al. (2014); Arjevani & Shamir (2015); Khaled
et al. (2020); Woodworth et al. (2020); Gorbunov et al. (2021b); Beznosikov et al. (2022; 2023b).
Now we introduce important definitions related to the theory of Markov processes.

Definition 1 (Markov chain). Markov chain with a finite state space {νn}Nn=0 is a stochastic process
{Xt}t≥0, that satisfies Markov property, i.e. P{Xt = νt | Xt−1 = νt−1, Xt−2 = νt−2, ..., X0 =
ν0} = P{Xt = νt | Xt−1 = νt−1}.

Definition 2 (Ergodicity of Markov chain). Markov chain {Xt}t≥0 with a finite state space {νn}Nn=0

is referred to be ergodic if for any n ∈ 1, N there exists lim
t→∞

P {Xt = νn | X0 = ν0} = pn, where

0 ≤ pn ≤ 1 does not depend on the ν0. If Markov chain is ergodic, then {pn}Nn=0 ∈ ∆N and there
exist 0 < ρ < 1, C > 0, such that |P {Xt = νn | X0 = ν0} − pn| ≤ Cρt.

Definition 3 (Mixing time of the discrete Markov chain). We say that τmix(ε) is the mixing time of
the ergodic Markov chain {Xt}t≥0 with stationary distribution {pn}Nn=0, if ∀ε > 0,∀t ≥ τmix(ε) ↪→
max
n∈0,N

{|P {Xt = νn | X0 = ν0} − pn|} ≤ ε · pmin, where pmin := minn∈0,N{pn}. From the

Definition 2, it follows that τmix(ε) ≥ log(C/pminε)
log(1/ρ) .

These definitions are extremely important for further analysis of the Markovian compressors, which
are presented in the next section.

2 MAIN RESULTS

2.1 MARKOVIAN COMPRESSORS

In this section, we introduce Markovian compressors that take into account the information transmitted
in previous K operations. It is assumed that these compressors function within an iterative algorithm
aimed at minimizing the problem (1), wherein a distinct discrete variable, denoted as the step t, is
involved. Consequently, due to the dependence of the compressors on previous states, they exhibit a
reliance on the step t. Let us narrow down the class of compressors to be discussed in this paper.
Definition 4 (Random sparsification). Qt(x) is a random sparsification compressor, if it operates on
the vector x ∈ Rd as Qt(x) =

d
mx⊙ 1(νt), where νt is a set of m coordinates : νt ⊆ 1, d.

The classical Randm operator fits Definition 4, in particular, for this compressor subsets νt are
generated uniformly at each step t, therefore it is unbiased, i.e., Et[Qt(x)] = x for all t. In this paper,
we do not generate νt independently, but according to some Markov chain, i.e., compressors start to
take into account past iterations. We formulate this idea as an assumption.
Assumption 5 (Asymptotic unbiasedness of Markovian compressors). We assume that operator Qt

is a random sparsification compressor (Definition 4) and {νt}t≥0 are realizations of some ergodic
Markov chain with uniform stationary distribution.

Assumption 5 implies that in the limit as t → ∞, the compressor Qt is unbiased, i.e., E [Qt(x)] → x
as t → ∞, because the stationary distribution of the Markov chain is uniform. We are now
ready to introduce two compressors that adhere to Assumption 5. The first compressor is called
BanLast(K,m), it prohibits sending coordinates that have been sent at least once in the last K
iterations.
Definition 5 (BanLast(K,m) compressor). Let Qt(x) be a random sparsification compressor
(Definition 4). The j ∈ νt are chosen according to the distribution pt ∈ ∆d and pt is given by the
formula:

ptj =

{
0, if j ∈

⋃t−1
s=t−K νs,

1
d−Km , otherwise.

The BanLast(K,m) compressor exhibits a limitation in its utility due to an application restriction:
d ≥ (K + 1)m, since we need at least m coordinates to have a non-zero probability at each
step t. In order to avoid these limitations, we introduce a more flexible Markovian compressor
KAWASAKI(K, b, π∆,m).
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Definition 6 (KAWASAKI(K, b, π∆,m) compressor). Let Qt(x) be a random sparsification com-
pressor (Definition 4). The j ∈ νt are chosen according to the distribution pt ∈ ∆d, which is given
by the formula:

p̃ t
j =

1/d

b# of choices j for the last K iterations , j ∈ 1, d; pt = π∆

(
p̃ t
)
,

where b > 1 is a forgetting rate and π∆ : Rd → ∆d is an activation function.

The KAWASAKI(K, b, π∆,m) compressor is now applicable for arbitrary values of d ≥ m, and K.
However, it introduces two additional hyperparameters in comparison with BanLast(K,m), namely
b and π∆. The parameter b is responsible for the how strongly we penalize a coordinate if it was
selected in previous iterations, the larger b is, the less likely we are to select a coordinate in step t if it
was selected in steps t−K to t− 1. The function π∆ is required in order to obtain the probability
vector pt from the vector p̃ t, the necessary conditions for this function will be introduced later. The
following examples illustrate potential selections for π∆:

(π∆ (p̃))j = |p̃j |/∥p̃∥1, π∆ (p̃) = Softmax (p̃) , π∆ (p̃) = argmin
p∈∆d

{∥p̃− p∥2}.

We now provide an example where using the Markovian compressor BanLast(K,m) (Definition 5)
speeds up the optimization process by a factor of three compared to the unbiased compressor Randm.
Example 1. Consider the QSGD algorithm (Algorithm 1), which solves the problem (1) in the case
n = 1, of the form xt+1 = xt − γQ(∇f(xt)). Assume that at some step t we observe gradient of the
form (1, 0, ..., 0)T ∈ Rd. In the QSGD algorithm, we compress the gradient at each step, therefore,
we do not always send the first coordinate to the server, i.e. we do not move from the point xt.
In the case of m = 0.1 · d, i.e. we send 10% of all coordinates at each step, if we use the
BanLast(K,m) compressor, then the mathematical expectation of the number of steps to leave the
point xt is approximately 3.4 in the case of K = 7. For Rand10% this number is equal to 10, i.e. we
speed up the optimization process by a factor of three. For arbitrary values of d and m, the formula
for calculating the number of steps to leave the point xt is provided in Appendix B.

Moreover, in Appendix B, we obtain more general results for an arbitrary value of α ∈ (0; 1] with
d = α ·m. In particular, we find the exact expression for the dependence of the number of steps
to leave the point xt. For each fixed α we can find the optimal value of K∗(α). It turns out that
empirically this dependence is close to a linear one of the form K∗(α) ≈ 0.73 ·α. Such a rule can be
used as an automatic way of choosing K.
We now present a theorem demonstrating that our Markovian compressors from Definitions 5 and 6
satisfy the conditions outlined in Assumption 5.

Theorem 1 (Asymptotic unbiasedness of BanLast(K,m) and KAWASAKI(K, b, π∆,m)). Com-
pressors from Definitions 5 and 6 can be described using Markov chains with states
{ν1, ν2, ..., νK}ν1,...,νK∈M , where M is the set of all subsets of 1, d of size m. Moreover,

• BanLast(K,m) (Definition 5) is ergodic with a uniform stationary distribution, if d > (K+1)m.

• If d > (2K + 1)m, then for BanLast(K,m) we get

ρ =

√
1−

(
Cm

d−2Km

(Cm
d−Km)2

)K

and C =

(
1−

(
Cm

d−2Km

(Cm
d−Km)2

)K
)−1

.

• If for all permutations ϕ of the set 1, d it holds that π∆ (ϕ (p̃)) = ϕ (π∆ (p̃)), then
KAWASAKI(K, b, π∆,m) (Definition 6) is ergodic with a uniform stationary distribution.

• If (π∆ (p̃))j = |p̃j |/∥p̃∥1, then

ρ = 1−
[
dbK −m(bK − 1)

]−mK
and C =

(
1−

[
dbK −m(bK − 1)

]−mK
)−1

. (2)

The proof of Theorem 1 is provided in Appendix C. The outcomes of Theorem 1 hold significant
importance for the subsequent investigation of algorithms aimed at solving problem (1) employing
Markovian compressors. Note that the examples of activation functions π∆ provided above satisfy
the conditions of Theorem 1.
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2.2 DISTRIBUTED GRADIENT DESCENT WITH MARKOVIAN COMPRESSORS

In this section, we propose a new algorithm Markovian QSGD (Algorithm 1). This algorithm is
similar to the vanilla QSGD Alistarh et al. (2017), but in line 7 of Algorithm 1 we use Markovian
compressor Qi

t, that we introduced in Section 2.1, i.e., Qi
t can be either BanLast(K,m) (Definition

5) or KAWASAKI(K, b, π∆,m) (Definition 6).
Theorem 2 (Convergence of MQSGD (Algorithm 1)). Consider Assumptions 1, 4 and 5. Let the
problem (1) be solved by Algorithm 1.
• For any ε, γ > 0, T > τ > τmix(ε) satisfying conditions, described in Appendix E.1, it holds that

E
[∥∥∇f(x̂T )

∥∥2] = O
(
Fτ

γT
+

γLτd2

m2
σ2

)
,

where x̂T is chosen uniformly from {xt}Tt=0.

• If f additionally verifies the PL-condition (Assumption 3), then for any ε > 0, γ > 0, τ > τmix(ε)
and T > τ satisfying conditions, described in Appendix E.1, it holds that

FT = O
((

1− µγ

12

)T−τ

Fτ +
γd2Lτ

µm2
σ2

)
.

Here we use the notations Ft := E [f(xt)− f(x∗)] and Fτ := E [f(xτ )− f(x∗)].

Algorithm 1 Markovian QSGD (MQSGD)

1: Input: starting point x0 ∈ Rd,
2: step size γ > 0,
3: number of iterations T
4: for t = 0 to T do
5: Broadcast xt to all workers
6: for i = 1 to n in parallel do
7: Set gti = Qi

t (∇fi(x
t))

8: Send gti to the server
9: end for

10: Aggregate gt = 1
n

n∑
i=1

gti

11: Update xt+1 = xt − γgt

12: end for

The proof of Theorem 2 is provided in Appendix
E.3, E.4. If Assumption 4 does not hold we ob-
serve different results, which are provided in the
Appendix F.
Usually in convergence evaluations of various meth-
ods, expressions with the term of F0, i.e., something
that depends on the initial choice, arise as constants,
but in Theorem 2, a term of the form Fτ appears.
This can be explained by the fact that at iterations
from t = 0 → τ the Markov chain has not yet been
stabilized, and the initial state can be taken as t = τ .
Sketch proof of Theorem 2. Let us write out a
descent lemma of the form

E
[∥∥xt+1 − x∗∥∥2] = E

[∥∥xt − x∗∥∥2]− 2E
[
γ
〈
∇f(xt), xt − x∗〉]

− 2γ

n

n∑
i=1

E
[〈
Qi

t(∇f(xt))−∇fi(x
t), xt − x∗〉]

︸ ︷︷ ︸
①

+γ2E

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
 .

(3)

The expression ① in (3) is zero if Qi
t are unbiased and independent from iteration t, be-

cause E
[〈
Qi

t(∇f(xt))−∇fi(x
t), xt − x∗〉] = E

[〈
Et

[
Qi

t(∇f(xt))−∇fi(x
t)
]
, xt − x∗〉] = 0,

where Et [·] is the conditional expectation at a step t. Therefore, the theory for such compressors
is highly developed. In our case, Qi

t(x
s) are unbiased only if t − s → ∞, which follows from

asymptotic unbiasedness of our Markovian compressors obtained from Assumption 5. However, we
can use some coarsening rather than unbiasedness when t − s = τ , where τ > τmix(ε), using the
technique of "stepping back" as follows:

E
[〈
Qi

t

(
at−τ

)
− at−τ , bt−τ

〉]
≤ εd

m
E
[∥∥at−τ

∥∥∥∥bt−τ
∥∥] . (4)

Importantly, we must apply the compressor Qt at step t to the vector at−τ at step t− τ , since if we
apply it to the vector at at step t, we will not be able to uncover the conditional expectation, since we
will have randomness in at (see details in Appendix D). As can be seen from (3) we need to apply the
last inequality with at−τ = ∇fi(x

t−τ ) and bt−τ = xt−τ − x∗, but in (3) we only obtain expression
with variables at step t, therefore, it has to be handled in some way. In order to resolve this issue we
use a straightforward algebra:
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E
[〈
Qi

t

(
∇fi(x

t)
)
−∇fi(x

t), xt − x∗〉] = E
[〈
Qi

t

(
∇fi(x

t−τ )
)
−∇fi(x

t−τ ), xt−τ − x∗〉]
− E

[〈
Qi

t

(
∇fi(x

t)−∇fi(x
t−τ )

)
−∇fi(x

t) +∇fi(x
t−τ ), xt − xt−τ

〉]

+ E

[〈
Qi

t

(
∇fi(x

t)−∇fi(x
t−τ )

)
−∇fi(x

t) +∇fi(x
t−τ ), xt − x∗

〉]
+ E

[〈
Qi

t

(
∇fi(x

t)
)
−∇fi(x

t), xt − xt−τ
〉]

.

(5)

The first term in the last inequality (5) is solved with the ε-inequality (4), other scalar products are
solved using the Fenchel-Young inequality. Terms with E ∥xt − xt−τ∥2 are evaluated using line
9 of Algorithm 1: xt − xt−τ = −γ

∑t−1
s=t−τ g

s. Terms with E
∥∥Qi

t (∇fi(x
t)−∇fi(x

t−τ ))
∥∥2 are

obtained from the following inequalities (see details in Appendix E):

∥∥Qi
t (∇f(x)−∇f(y))

∥∥2 ≤ d2

m2
∥∇f(x)−∇f(y)∥2 ≤ d2L2

m2
∥x− y∥2 ,

Since the evaluation of E
∥∥xt+1 − x∗∥∥2 raises the terms of the form E ∥xt−τ − x∗∥2, we have to do

a summation of E
∥∥xt+1 − x∗∥∥2 from t = τ to t = T . These terms greatly complicate the proof of

Theorem 2 compared to the unbiased compressors. The results of Theorem 2 can be rewritten as an
upper complexity bound on a number of iterations T of the Algorithm 1 by carefully tuning the step
size γ.
Corollary 1 (Step tuning for Theorem 2).
• Under the conditions of Theorem 2 in the non-convex case, choosing γ as in Appendix E.2, in
order to achieve the ϵ-approximate solution (in terms of E

[∥∥∇f(xT )
∥∥2] ≤ ϵ2), it takes

O
(
Lτd2

m2
Fτ

(
δ2 + 1

ϵ2
+

σ2

ϵ4

))
iterations of Algorithm 1.

• Under the conditions of Theorem 2 in the PL-condition (Assumption 3) case, choosing γ as in
Appendix E.2 in order to achieve the ϵ-approximate solution (in terms of E [f(xt)− f(x∗)] ≤ ϵ), it
takes

O
(
d2Lτ

m2µ

(
(δ2 + 1) log

(
1

ϵ

)
+

σ2

µϵ

))
iterations of Algorithm 1.

2.3 ACCELERATED METHOD Algorithm 2 Accelerated Markovian QSGD (AMQSGD)

1: Input: starting point x0 ∈ Rd, step size γ > 0, momentums
θ, η, β, p, number of iterations T

2: for t = 0 to T do
3: Update xt

g = θxt
f + (1− θ)xt

4: Broadcast xt
g to all workers

5: for i = 1 to n in parallel do
6: Set gti = Qi

t

(
∇fi(x

t
g)
)

7: Send gti to the server
8: end for
9: Aggregate gt = 1

n

n∑
i=1

gti

10: Update xt+1
f = xt

g − pγgt

11: Update xt+1 = ηxt+1
f + (p− η)xt

f

12: + (1− p)(1− β)xt + (1− p)βxt
g

13: end for

After giving the convergence re-
sult for the vanilla distributed
SGD with Markovian compres-
sion operator, we now move
on to the accelerated scheme.
Since we do not assume bound-
edness of the gradient variance,
the classical Nesterov acceler-
ation Nesterov (2014) does not
produce the expected effect, and
therefore an additional momen-
tum has to be introduced Nes-
terov (2012b); Vaswani et al.
(2019). By applying a multi-
step strategy partially similar to
Beznosikov et al. (2023b), we
obtain our Algorithm 2.
Theorem 3 (Convergence of AMQSGD (Algorithm 2)). Consider Assumptions 1, 2, 4. Let the problem
(1) be solved by Algorithm 2. Then for any γ, ε > 0, T > τ > τmix(ε), β, θ, η, p satisfying conditions,
described in Appendix G.1,it holds that
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FT+1 = O

(
exp

[
−(T − τ)

√
p2µγ

3

]
Fτ + exp

[
−T

√
p2µγ

3

]
∆τ +

γ

µ
σ2

)
.

Here we use the notations: Ft := E[∥xt − x∗∥2 + 3/µ(f(xt
f ) − f(x∗))] and ∆τ ≤

γ1/2τ−4/3µ−1/3
∑τ

t=0

(
E ∥∇f(xt

g)∥2 + E ∥xt − x∗∥2 + E[f(xt
f )− f(x∗)]

)
.

The above theorem shows that in the strongly convex case Accelerated Markov QSGD with constant
step-size can attain sublinear convergence. In terms of dealing with Markovian stochasticity, its proof
follows quite similar ideas as the proof of Theorem 2: here again we use the technique of stepping
back for mixing time, which allows us to effectively deal with the bias of the gradient estimator.
The full proof is provided in Appendix G.3. The results of Theorem 3 can be rewritten as an upper
complexity bound on a number of iterations T of the Algorithm 2 by carefully tuning the step size γ.
Corollary 2 (Step tuning for Theorem 3). Under the conditions of Theorem 3, choosing γ as in
Appendix G.2 in order to achieve the ϵ-approximate solution (in terms of E

[∥∥xT − x∗∥∥2] ≤ ϵ2), it
takes

O

(
d2L

2
3 τ

4
3

m2µ
2
3

(
(δ2 + 1) log

(
1

ϵ

)
+

σ2

µϵ

))
iterations of Algorithm 2.

2.4 DISCUSSION

Our Example 1 and the numerical experiments in Section 3 show that the using of Markovian
compressors could lead to a better performance quite well, however, the theoretical guarantees turn
out to be poorer than in the unbiased case. In particular, if we use Randm in the QSGD algorithm,
then we observe the following estimates Beznosikov et al. (2023a):

XT = O
(
(1− µγ)TX0 + γ

d

m

σ2

µn

)
,

where Xt = E
[
∥xt − x∗∥2

]
and γ ≲ 1

L(1+d/mn) . However, Theorem 2 gives us such estimates:

FT = O
((

1− µγ

12

)T
Fτ + γ

d2

m2

τLσ2

µ

)
,

where Ft := E
[
f(xT )− f(x∗)

]
and γ ≲ m2

Ld2τ(δ2+1) . It is important to note that not only has
the theory for Markovian compressors not yet been studied, but also dealing with the Markovian
stochasticity itself implies quite strict limitations. For instance,
d/m vs d2/m2. We are forced to uniformly bound the noise of the compressor (linearity in the
compression constant is prevented by this) due to the impossibility of using the expectation trick, in
contrast to the unbiased case Beznosikov et al. (2023a), where the authors estimated the variance of
the compressor noise. The assumption of uniformly bounded noise cannot be rejected by any authors
who work with Markovian stochasticity Beznosikov et al. (2023b); Dorfman & Levy (2023); Doan
et al. (2020a); Sun et al. (2018); Even (2023), therefore, there is no possibility to achieve linearity in
the compression rate in our theoretical guaranties, according to the current theoretical advances.
Mixing time. Furthermore, it is imperative to emphasize that it follows from Theorems 2 and 3
that the convergence rate is improved as τ (and, consequently, K) diminishes. In other words, the
distribution of the compressor’s underlying Markov chain has to converge to a uniform distribution
as fast as possible, but empirically one wants the choice of coordinates to depend on previous
iterations rather than be random (e.g. for Randm compressor τ = 1,K = 0). This causes a logical
contradiction: while using a large K will theoretically give poorer convergence, in practice algorithms
with non-zero values of K perform better (see Section 3). It is also worth mentioning that when
Markovian stochasticity is employed, we can never avoid τ in our estimates, since it appears in the
lower bounds on the convergence rate of methods that involve Markovian properties Bresler et al.
(2020). Thus, our Algorithms 1 and 2 have a reasonably good polynomial dependence on mixing
time (Theorem 2 shows an optimal estimation in terms of τ ), considering the fact there are several
works Doan et al. (2020b) whose bounds include terms that are even exponential in the mixing time.
L/µ. In spite of the difficulties listed above, we still can observe that the momentums implementation
in Algorithm 2 gives an acceleration in terms of L/µ compared to vanilla QSGD (Algorithm 1). In
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the classical version of accelerated Gradient Descent, one can achieve an acceleration of the form√
L/µ Nesterov (1983), but our analysis allows only to achieve (L/µ)2/3 in Theorem 3. When

Markovian stochasticity is employed, it is also possible to achieve estimation of the form
√
L/µ

Beznosikov et al. (2023b), but it is obtained by using batches with size scaled as 2j , where j is drawn
from a truncated geometric distribution. Unfortunately, this specific batching technique cannot be
applied in our paper, as we consider compressors that act as random sparsification (Definition 4),
which necessitates that the gradient be compressed only once at each iteration.
Variance reduction. In our paper, we focus on the QSGD method and its accelerated version
(Algorithms 1 and 2). However, in modern studies on distributed optimization, techniques of variance
reduction are of a great interest (DIANA Mishchenko et al. (2019), MARINA Gorbunov et al. (2021a),
DASHA Tyurin & Richtárik (2022)), because these methods converge linearly to the exact solution
of the problem (1), while QSGD (Algorithms 1 and 2) converges only to the σ2-neighborhood of
the solution. We implement Markovian compressors (Definitions 5 and 6) in these methods in our
experiments, but we do not provide theoretical guarantees for such algorithms since we have just
developed a theoretical baseline for the study of Markovian compressors. This represents a promising
direction for future research.
Even though it is not entirely clear whether it is possible to achieve significant improvements in
the theoretical results, due to the peculiarities of dealing with Markovian randomness, for now we
could only highlight a significantly better performance of Algorithms 1 and 2 compared to a similar
algorithms using a vanilla unbiased compressor Randm (see Section 3).

3 EXPERIMENTS

In order to justify the practical usage of the proposed methods and analyze their behavior, we
conduct a series of experiments using Markovian compression on distributed optimization problems,
specifically logistic regression and neural network-based image classification. We observe that
Markovian compressors, when used with MQSGD and AMQSGD, as well as with classical SGD and
DIANA Mishchenko et al. (2019), improve convergence on several benchmarks. Appendix H provides
a description of the technical setup, extended experiments with hyperparameters analysis, and an
application of Markovian compressors to model-parallel neural network training.

3.1 LOGISTIC REGRESSION

Firstly, we experiment on a classification task using a logistic regression model with L2 regularization
of the form:

min
w∈Rd

{
f(w) =

1

n

n∑
i=1

log(1 + exp(−ysw
Txs)) + λ∥w∥2

}
,

0.0 0.5 1.0 1.5

Information sent ×106

10−5

10−3

10−1

101

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

MQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Information sent ×106

10−3

10−2

10−1

100

‖∇
f

(x
k
)‖

2

MQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0.0 0.5 1.0 1.5

Information sent ×106

10−5

10−3

10−1

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

AMQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Information sent ×106

10−3

10−2

10−1

100

‖∇
f

(x
k
)‖

2

AMQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10)

Figure 1: Logistic Regression on MNIST experiments results. All hyperparame-
ters are fine-tuned, and best runs are selected.

with a regularization
term λ = 0.05. The
dataset is split among
n = 10 clients. We
use Mushrooms, A9A,
and W8A datasets from
LibSVM Chang & Lin
(2011) and MNIST Deng
(2012). Experiments are
conducted using Python
3.10 and PyTorch, and a
distributed environment is
simulated. We experiment
with MQSGD, AMQSGD,
and DIANA optimizers,
employing Rand-10% as a
sparsification compressor.
Markovian compressors
were utilized indepen-
dently on each client, with normalization activation function, and with all hyperparameters being
fine-tuned.
Figure 1 shows the convergence of the Rand-10% baseline and Markovian compressors on the MQSGD
and AMQSGD algorithms on MNIST dataset. Both Markovian compressors achieve faster convergence
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than the baseline and more complex compressors like PermK Szlendak et al. (2021) and Natural
compressors Horvath et al. (2022). In most of our results, BanLast and KAWASAKI show similar
performance with fine-tuned hyperparameters. Experiments on other datasets, and tuning history size
K tuning analysis appear in Appendix H.2. Additionally, as our compressors are fully compatible
with classical compressors, we conduct experiments on combination with Natural compression in
Appendix H.5.

3.2 NEURAL NETWORKS

We also apply Markovian compressors in more complex optimization tasks, such as image clas-
sification on CIFAR-10 Krizhevsky et al. (2009) dataset with ResNet-18 convolutional neural
network He et al. (2016). Formally, we solve optimization problem:

min
w∈Rd

{
f(w) =

1

n

n∑
i=1

l(softmax(f(xi, w)), yi)
}
,

where xi is a training image, yi is its respective class, and l() is a cross-entropy
loss function. Dataset is split equally between n = 5 clients. We use Rand-
5% sparsification operator and SGD optimizer with cosine annealing LR schedule.

Table 1: Numerical results of training ResNet-18 on CIFAR-10 with different
compressors. Each cell represents mean ± standard deviation over 5 runs.

Rand-5% Banlast KAWASAKI
Train Loss 0.0743 ± 0.003 0.0734 ± 0.003 0.0305 ± 0.001
Gradient Norm 1.403±0.029 1.383±0.035 0.745±0.015
Test Accuracy 87.9 ± 0.179 88.0± 0.122 89.05 ± 0.294
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Figure 2: Image classification with ResNet-18 on CIFAR-10 experiments results.
Best runs for each method are displayed.
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Figure 3: Comparison with other compressors on Resnet-18 training on CIFAR-
10 dataset for Rand-5% sparsification on N = 20 clients. Natural compression
factor is 4. Left figure is sequential combination with Natural compression.
Right figure is comparison against PermK and Natural compressors indepen-
dently, with information sent on x-axis.

Hyperparameters, such
as the learning rate, batch
size, and Markovian-
specific ones are fine-
tuned.

Figure 2 depicts the train-
ing loss and gradient norm,
with the aggregate values
shown in Table 1. As
in the previous case, the
application of the Marko-
vian compressor favours
faster convergence and bet-
ter validation results. Note
that for more complex op-
timization task, smoother
history accumulation (as in
KAWASAKI) is required.

Figure 3 presents com-
parison with Permutation
and Natural compression,
which confirm practical
usefullness of Markovian
compressors on more com-
plex and non-convex opti-
mization problems. Note
that our compressors can
be applied in combination
with complex randomized
compressor like Natural
compression, making our
method even more flexible.
4 CONCLUSION
In this paper, we propose a family of compression schemes, which takes into account previous
iterations of algorithm and transform the input vector according to a Markov chain. We develop two
sparsification methods BanLast (Definition 5) and KAWASAKI (Definition 6) based on this idea.
These compressors are implemented in QSGD (Algorithm 1) and accelerated QSGD (Algorithm
2). We provide convergence rates under different assumptions on the objective function (Theorems
2 and 3). In experiments, we show that our compression methods outperform the baselines in the
deep neural network optimisation problem. Future research may consider the implementation of our
Markovian compressors in other optimization methods, e.g. using the variance reduction techniques.
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Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Computers
& Industrial Engineering, 149:106854, 2020.

Chung-Yi Lin, Victoria Kostina, and Babak Hassibi. Differentially quantized gradient methods, 2022.

Xianghui Mao, Kun Yuan, Yubin Hu, Yuantao Gu, Ali H. Sayed, and Wotao Yin. Walkman: A
communication-efficient random-walk algorithm for decentralized optimization, 2019.

Prathamesh Mayekar and Himanshu Tyagi. Ratq: A universal fixed-length quantizer for stochastic
optimization, 2019.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
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A AUXILIARY LEMMAS AND FACTS

In this section we list auxiliary facts and our results that we use several times in our proofs.

A.1 CAUCHY–SCHWARZ INEQUALITY

For all x, y ∈ Rd

⟨x, y⟩ ≤ ∥x∥ ∥y∥ .

A.2 FENCHEL-YOUNG INEQUALITY

For all x, y ∈ Rd and β > 0

2 ⟨x, y⟩ ≤ β−1∥x∥2 + β∥y∥2.

B MATHEMATICAL CALCULATIONS FROM EXAMPLE 1

By definition of the mathematical expectation of an integer positive random variable Z, we obtain
that E[Z] =

∑∞
s=1 s · P{Z = s}. In our problem, Z is the number of an iteration where we first

selected the desired coordinate. For Randm compressor, we have P{Z = s} = m
d ·
(
1− m

d

)s−1
.

The first term is the probability of picking the desired coordinate at iteration s and the second term
is the probability of not picking the desired coordinate at iterations from 1 to s− 1. Using this, the
mathematical expectation of the number of steps to quit the point xt for Randm compressor is equal
to

∞∑
s=1

s
(
1− m

d

)s−1 m

d
=

d

m
. (6)

Now we calculate the expectation for BanLast(K,m) compressor (Definition 5). If s > K,

similarly to the Randm case, we obtain that P{Z = s} = m
d−Km

(
1− m

d−Km

)s−1

, because we
cannot choose Km coordinates. If s ≤ K, then the formula of P{Z = s} becomes a bit more
complicated, because the probability of not picking the desired coordinate at iterations from 1 to
s− 1 is different at each iteration and is equal to

∏s−2
h=0

(
1− m

d−hm

)
. If s = 1, then this probability

is equal to one. Using this, we can calculate the mathematical expectation of the number of steps to
leave the point xt for BanLast(K,m) compressor:

K∑
s=1

sm

d− (s− 1)m

s−2∏
h=0

(
1− m

d− hm

)
+

∞∑
s=K+1

s

(
1− m

d−Km

)s−1
m

d−Km

=

K∑
s=1

sm

d− (s− 1)m

s−2∏
h=0

(
1− m

d− hm

)
+

d

m

(
1− m

d−Km

)K

=

K∑
s=1

s

α− (s− 1)

s−2∏
h=0

(
1− 1

α− h

)
+ α

(
1− 1

α−K

)K

,

(7)

where we used the notation α = d/m to show that (7) depends only on d/m, but not on d and m
separately. We can consider (7) as an optimization problem with respect to K. Since K is an integer
and the objective function in (7) is complex, we numerically find the optimal K for different α. For
the sake of clarity, we show the difference between formulas (6) and (7) on Figure 4(c).
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We consider α ∈ [5.3, 6.7, 8.3, 10, 11.1, 12.5, 14.3, 16.7, 20] and find the optimal K by a complete
brute force search – see Figure 4 (a). Then, we perform a linear approximation and obtain the formula
K∗(α) ≈ 0.7323α – see Figure 4 (b). Since the correlation coefficient between the points and the
approximated line is equal to 0.73, we can consider this formula to be accurate enough for practical
applications.
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Figure 4: Theoretical estimate on dependence of history buffer size K on parameter α = d/m: (a) represents
expected number of iterations required to transfer all coordinates to server on history buffer size K for different
α, (b) represents scaling of optimal history buffer size K∗ on α. (c) represents comparison of expected number
of iterations required to transfer all coordinates to server on problems parameter α for Randm and BanLastK.

C PROOF OF THEOREM 1

Lemma 1. If P is a transition matrix of a finite homogeneous Markov chain, i.e.

P := (pij)
n
i,j=1,

where pij is probability of moving from i to j in one time step. And the matrix P is symmetric, i.e.
PT = P , then stationary distribution exists and it is uniformly distributed.

Proof of Lemma 1. Let us look at uniform distribution

π :=

(
1

n
,
1

n
, . . . ,

1

n

)
.

We can easily obtain that π is a stationary distribution, using symmetry and stochastic property of
matrix P :

πP =
1

n
1TP =

1

n
(P1)T =

1

n
1T = π.

Proof of Theorem 1. We consider states of Markov chain as s := {ν1, ν2, ..., νK}ν1,...,νK∈M , where
M is the set of all subsets of 1, d of size m. We define p(s, s′, i) as the probability to move from state
s to state s′ for the number of steps i.

• For both compressors BanLast(K,m) (Definition 5) and KAWASAKI(K, b, π∆,m) (Definition 6)
corresponding Markov chain is finite and indecomposable.

The finiteness of the chain is apparent, as the number of states can be explicitly expressed as
|M | = (Cm

d )K . We show that both chains are indecomposable below. Then we deduce that the
chain is ergodic based on the Ergodic Theorem Neumann (1932). Thus, we know that a stationary
distribution exists. Than we show that the statinary distribution is uniform over the set of states using
Lemma 1.

All that remains is to show that both chains are indecomposable and that transition matrixes for both
chaines are symmetric.
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We will start with BanLast(K,m). Restriction on K,m and d is d > (K + 1)m. That makes
obvious that any two states are communicated, i.e. for any s, s′ there exists way from s to s′. Thus,
the Markov chain is indecomposable.

For the compressor probability to move from s to s′ in one time step can be explicitly expressed as:

p(s, s′, 1) =

(
1

Cm
d−Km

)K

,

where Cm
d−Km = (d−Km)!

m!(d−(K+1)m)! is a binomial coefficient. And all these states are equal in proba-
bility. If d = (K + 1)m, then for s there will be only one set s′, such that p(s, s′, 1) > 0, in this
case chain will not be ergodic. If d > (K + 1)m, then there are more then one state s′, for witch
p(s, s′, 1) > 0, therefore chain will be ergodic.

• According to the Ergodic Theorem, ρ = (1− δ)1/N0 and C = (1− δ)−1, where N0 is the minimal
number of iterations through which is strictly greater then zero and δ := mins,s′{p(s, s′, N0)} > 0.
For BanLast(K,m) in case of d > (2K + 1)m it holds that

N0 = 2 and δ = p(s, s, 2) =

(
Cm

d−2Km

Cm
d−Km

)K

·
(

1

Cm
d−Km

)K

,

because the smallest probability is to return to state s in two steps.

• For KAWASAKI(K, b, π∆,m) from any given state, there exists a path to any other state in just
one iteration, because probabilities to choose any set of coordinates ν are non-zero. Thus, the
corresponding markov chain is indecomposable.

We focus on the case where K = 1 and that generalize analysis to accommodate larger values of
K. Let us look at probabilities to move from νi to νj and from νj to νi. We show that both these
probabilities correspond to random choice of the same indexes with the same distribution vector p,
defined in 6, i.e. the probabilities are equal. For this case let us define ν as operator

Ψi(1, d) := νi,

i.e. operator chooses indexes that are in νi from 1, d. And

Φ(p,Ψi) := P{choose νi with distribution vector p}.

According to 6, probability to move from νi to νj equals a probability to choose indexes νj with
distribution

pi = π∆(p̃i),

where

p̃ki =

{
1/bd if k ∈ νi
1/d if k /∈ νi

,

i.e.
pij = Φ(pi,Ψj).

By the definition of Φ, for arbitrary permutation ϕ and index choice Ψ holds

Φ(ϕ(p),Ψ ◦ ϕ) = Φ(p,Ψ).

Now we point out that for arbitrary νi and νj exists permutation ϕij , such that

Ψj ◦ ϕij = Ψi.

For such permutation holds ϕij(p̃i) = p̃j , i.e. the permutations moves indexes from νi to indexes
from νj . Then we need to use the property of π∆ to get the same equality for pi, pj :

ϕij(pi) = ϕij(π∆(p̃i)) = π∆ϕij((p̃i)) = π∆(pj).

This allows us to write

pij = Φ(pi,Ψj) = Φ(ϕij(pi),Ψj ◦ ϕij) = Φ(pj ,Ψi) = pji.
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Thus we get equality of probabilities to move from νj to νi and to opposite way.

Now we can easily generalize the proof for arbitrary K. All that is required is to consider, instead
of the sets of indices ν, combinations of sets of indices that were chosen for transmission over the
previous K steps. In this way, the number of states is increased, but the logic of reasoning remains
unchanged.

• As was mentioned above, for KAWASAKI(K, b, π∆,m) N0 = 1. We now compute δ := p(s, s, 1),
where s = {ν, ..., ν}, where ν occurs K times. In this case probability to choose ν another K times
is equal to P{j ∈ ν}mK . And

P{j ∈ ν} = min

{
π∆

[
p̃ :=

( 1/d

bK
, ...,

1/d

bK︸ ︷︷ ︸
m

,
1/d

1
, ...,

1/d

1︸ ︷︷ ︸
d−m

)T]}
.

If we consider (π∆ (p̃))j = |p̃j |/∥p̃∥1, then, since ∥p̃∥1 = 1
dbk

(dbK − m(bK − 1)), it hold that
δ = (dbK −m(bK − 1))−mK . This finishes the proof.

D MAIN LEMMAS

Lemma 2. For any i ∈ 1, n, ε > 0, τ > τmix(ε), t > τ , for any at−τ , bt−τ ∈ Rd, such that if we fix
all randomness up to step t− τ , at−τ and bt−τ become non-random, it holds that

E
[〈
Qi

t

(
at−τ

)
− at−τ , bt−τ

〉]
≤ εd

m
E
[∥∥at−τ

∥∥ · ∥∥bt−τ
∥∥] .

Proof. We begin by using tower property:

E
[〈
Qi

t

(
at−τ

)
− at−τ , bt−τ

〉]
= E

[〈
Et−τ

[
Qi

t

(
at−τ

)
− at−τ

]
, bt−τ

〉]
, (8)

where Et−τ [·] is the conditional expectation with fixed randomness of all steps up to t− τ . Since
on a step t we compress vector at−τ according to distribution πi

t by the formula Qi
t (a

t−τ ) =
d/mat−τ ⊙ 1(νit), where νit is some set of m coordinates : νit ⊂ 1, d and 1(νit) is vector with 1 on
coordinates νit on 0 otherwise. Using this we can obtain:

Et−τ

[
Qi

t

(
at−τ

)
− at−τ

]
=
∑
ν̃i∈M

(
Pt−τ

{
νit = ν̃i

}
− 1

Cm
d

)
at−τ ⊙ 1(ν̃i)

d

m
,

where M is set of all subsets of 1, d of size m. This equality follows from the fact that
∑

ν̃i∈M at−τ ⊙
1(ν̃i) = Cm−1

d−1 at−τ and Cm−1
d−1 /Cm

d = m/d. Now with the help of Cauchy–Schwarz inequality A.1
we can estimate (8):

(8) ≤ E

 ∑
ν̃i∈M

∣∣∣∣Pt−τ

{
νit = ν̃i

}
− 1

Cm
d

∣∣∣∣ ∥∥at−τ ⊙ 1(ν̃i)
∥∥ d

m

∥∥bt−τ
∥∥ . (9)

Since t > τ and τ > τmix(ε) it holds that
∣∣Pt−τ

{
νit = ν̃i

}
− 1/Cm

d

∣∣ ≤ ε · 1/Cm
d , because stationary

distribution of our Markov chain is uniform. Using the fact that ∥at−τ ⊙ 1(ν̃i)∥ ≤ ∥at−τ∥ we can
obtain:

(9) ≤ E

 ∑
ν̃i∈M

ε
1

Cm
d

∥∥at−τ
∥∥ d

m

∥∥bt−τ
∥∥ =

εd

m
E
[∥∥at−τ

∥∥ · ∥∥bt−τ
∥∥] .

This finishes the proof.
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Lemma 3. For any i ∈ 1, n, ε > 0, τ > τmix(ε), t > τ , for any at−τ ∈ Rd, such that if we fix all
randomness up to step t− τ , at−τ becomes non-random, it holds that

E
[∥∥Et−τ

[
Qi

t(a
t−τ )

]
− at−τ

∥∥2] ≤ ε2d2

m2
E
[∥∥at−τ

∥∥2] .
Proof. Using same notation as in the proof of Lemma 3 we obtain

E
[
∥Et−τ

[
Qi

t(a
t−τ )

]
−at−τ∥2

]
= E


∥∥∥∥∥∥
∑
ν̃i∈M

(
Pt−τ

{
νit = ν̃i

}
− 1

Cm
d

)
d

m
at−τ ⊙ 1(ν̃i)

∥∥∥∥∥∥
2


≤ E

 d2

m2
Cm

d

∑
ν̃i∈M

(∣∣∣∣Pt−τ

{
νit = ν̃i

}
− 1

Cm
d

∣∣∣∣2 ∥∥at−τ ⊙ 1(ν̃i)
∥∥2) .

Since t > τ and τ > τmix(ε) it holds that
∣∣Pt−τ

{
νit = ν̃i

}
− 1/Cm

d

∣∣ ≤ ε · 1/Cm
d , because stationary

distribution of our Markov chain is uniform. Using the fact that ∥at−τ ⊙ 1(ν̃i)∥ ≤ ∥at−τ∥ we can
obtain:

E
[∥∥Et−τ

[
Qi

t(a
t−τ )

]
− at−τ

∥∥2] ≤ ε2d2

m2
E
[∥∥at−τ

∥∥2] .
This finishes the proof.

Lemma 4. For any i ∈ 1, n and a ∈ Rd it holds that

∥∥Qi(a)
∥∥2 ≤ d2

m2
∥a∥2 and

∥∥Qi(a)− a
∥∥2 ≤ 4

d2

m2
∥a∥2 .

Proof. Consider the first inequality. Since Qi (a) = d/ma ⊙ 1(νi), then
∥∥Qi(a)

∥∥ ≤ d/m ∥a∥,
therefore

∥∥Qi(a)
∥∥2 ≤ d2

m2
∥a∥2 .

Consider the second inequality. Using Fenchel-Young inequality A.2 with β = 1 we can estimate

∥∥Qi(a)− a
∥∥2 ≤ 2

∥∥Qi(a)
∥∥2 + 2 ∥a∥2 ≤ 2

(
d2

m2
+ 1

)
∥a∥2 ≤ 4

d2

m2
∥a∥2 .

This finishes the proof.

Corollary 3. For any i ∈ 1, n, ε > 0, τ > τmix(ε), t > τ , for any at, bt ∈ Rd, such that if we fix all
randomness up to step t, at and bt become non-random. And for any ât−τ , b̂t−τ , such that if we fix
all randomness up to step t− τ , ât−τ and b̂t−τ become non-random, it holds that

2
∣∣E [〈Qi

t

(
at
)
− at, bt

〉]∣∣ ≤ εd

mβ0
E
[∥∥ât−τ

∥∥2]+ εdβ0

m
E
[∥∥∥b̂t−τ

∥∥∥2]+ 1

β2
E
[∥∥bt∥∥2] ,

+

(
1

β1
+

1

β3

)
E
[∥∥∥bt − b̂t−τ

∥∥∥2]+ 4
d2

m2
β3E

[∥∥at∥∥2]+ 4
d2 (β1 + β2)

m2
E
[∥∥at − ât−τ

∥∥2]
where β0, β1, β2, β3 > 0.
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Proof. Using straightforward algebra we obtain

E
[〈
Qi

t

(
at
)
− at, bt

〉]
= E

[〈
Qi

t

(
ât−τ

)
− ât−τ , b̂t−τ

〉]
− E

[〈
Qi

t

(
at − ât−τ

)
− at + ât−τ , bt − b̂t−τ

〉]
+ E

[〈
Qi

t

(
at − ât−τ

)
− at + ât−τ , bt

〉]
+ E

[〈
Qi

t

(
at
)
− at, bt − b̂t−τ

〉]
.

Using Lemma 2 with at−τ = ât−τ , bt−τ = b̂t−τ and Fenchel-Young inequality A.2 with β1, β2, β3 >
0 we obtain:

2
∣∣E [〈Qi

t

(
at
)
− at, bt

〉]∣∣ ≤ 2
εd

m
E
[∥∥ât−τ

∥∥ · ∥∥∥b̂t−τ
∥∥∥]

+ β1E
[∥∥Qi

t

(
at − ât−τ

)
− at + ât−τ

∥∥2]+ 1

β1
E
[∥∥∥bt − b̂t−τ

∥∥∥2]
+ β2E

[∥∥Qi
t

(
at − ât−τ

)
− at + ât−τ

∥∥2]+ 1

β2
E
[∥∥bt∥∥2]

+ β3E
[∥∥Qi

t

(
at
)
− at

∥∥2]+ 1

β3
E
[∥∥∥bt − b̂t−τ

∥∥∥2] .
Using Lemma 4 and Fenchel-Young inequality A.2 with β0 > 0 we obtain

2
∣∣E [〈Qi

t

(
at
)
− at, bt

〉]∣∣ ≤ εd

mβ0
E
[∥∥ât−τ

∥∥2]+ εdβ0

m
E
[∥∥∥b̂t−τ

∥∥∥2]
+ 4

d2

m2
(β1 + β2)E

[∥∥at − ât−τ
∥∥2]+ ( 1

β1
+

1

β3

)
E
[∥∥∥bt − b̂t−τ

∥∥∥2]
+ 4

d2

m2
β3E

[∥∥at∥∥2]+ 1

β2
E
[∥∥bt∥∥2] .

This finishes the proof.

Lemma 5. Assume 4, then for any x ∈ Rd it holds that

1

n

n∑
i=1

∥∇fi(x)∥2 ≤ 2(δ2 + 1) ∥∇f(x)∥2 + 2σ2.

Proof. Using straightforward algebra and Fenchel-Young inequality A.2 with β = 1 we obtain

1

n

n∑
i=1

∥∇fi(x)∥2 ≤ 2

n

n∑
i=1

∥∇fi(x)−∇f(x)∥2 + 2 ∥∇f(x)∥2

≤ 2(δ2 + 1) ∥∇f(x)∥2 + 2σ2.

The last inequity follows from 4. This finishes the proof.

E EXTENSIONS FOR THEOREM 2

E.1 FULL VERSION OF THEOREM 2

Theorem 4 (Convergence of MQSGD (Algorithm 1), extension of 2). Consider Assumptions 1, 4 and
5. Let problem (1) be solved by Algorithm 1.
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• For any ε > 0, γ > 0, τ > τmix(ε) and T > τ satisfying

γ ≲
m2

d2L(δ2 + 1)τ
and ε ≲

m2

d2(δ2 + 1)
,

it holds that

E
[∥∥∇f(x̂T )

∥∥2] = O
(
Fτ

γT
+

γLτd2

m2
σ2

)
,

where x̂T is chosen uniformly from {xt}Tt=0.

• If f additionally verifies the PL-condition (Assumption 3), then for any ε > 0, γ > 0, τ > τmix(ε)
and T > τ satisfying

γ ≲
m2

Ld2τ(δ2 + 1)
and ε =

√
γLτ ≲

m

d
√
δ2 + 1

,

it holds that

FT = O
((

1− µγ

12

)T−τ

Fτ +
γd2Lτ

µm2
σ2

)
.

Here we use a notation Ft := E [f(xt)− f(x∗)] .

E.2 FULL VERSION OF COROLLARY 1

Corollary 4 (Step tuning for Theorem 2, extension of Corollary 1).
• Under the conditions of Theorem 2 in the non-convex case, choosing γ as

γ ≲
m

d
√
Lτ

min

{
m

d(δ2 + 1)
√
Lτ

;

√
Fτ

Tσ2
,

}
,

in order to achieve ϵ-approximate solution (in terms of E
[∥∥∇f(xT )

∥∥2] ≤ ϵ2) it takes

O
(
Lτd2

m2
Fτ

(
δ2 + 1

ϵ2
+

σ2

ϵ4

))
iterations of Algorithm 1.

• Under the conditions of Theorem 2 in the PL-condition (Assumption 3) case, choosing γ as

γ ≲ min

 m2

Ld2τ(δ2 + 1)
;
log
(
max

{
2; µ2m2FτT

d2Lτσ2

})
µT

 ,

in order to achieve ϵ-approximate solution (in terms of E [f(xt)− f(x∗)] ≤ ϵ) it takes

O
(
d2Lτ

m2µ

(
(δ2 + 1) log

(
1

ϵ

)
+

σ2

µϵ

))
iterations of Algorithm 1.

E.3 PROOF OF THEOREM 2, NON-CONVEX CASE

Proof. Denoting Ft := E [f(xt)− f(x∗)], we have using L-smoothness:

Ft+1 − Ft ≤ −γE

[〈
1

n

n∑
i=1

Qi
t(∇fi(x

t)),∇f(xt)

〉]
+

γ2L

2
E

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
 .

(10)
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Consider −γE
[〈

1
n

n∑
i=1

Qi
t(∇fi(x

t)),∇f(xt)

〉]
. Using straightforward algebra: ±∇fi(x

t−τ ) and

±∇f(xt−τ ) we can re-write this term:

− γ E

[〈
1

n

n∑
i=1

Qi
t(∇fi(x

t)),∇f(xt)

〉]

= −γE

[〈
1

n

n∑
i=1

Qi
t(∇fi(x

t−τ )),∇f(xt−τ )

〉]
︸ ︷︷ ︸

①

−γE

[〈
1

n

n∑
i=1

Qi
t(∇fi(x

t)),∇f(xt)−∇f(xt−τ )

〉]
︸ ︷︷ ︸

②

−γE

[〈
1

n

n∑
i=1

Qi
t(∇fi(x

t)−∇fi(x
t−τ )),∇f(xt−τ )

〉]
︸ ︷︷ ︸

③

.

Consider ①. Using straightforward algebra, tower property, Lemmas 3 and 5 we obtain

① = −γE

[〈
1

n

n∑
i=1

Et−τ

[
Qi

t(∇fi(x
t−τ ))

]
,∇f(xt−τ )

〉]

= −γ

2
E

∥∥∥∥∥ 1n
n∑

i=1

Et−τ

[
Qi

t(∇fi(x
t−τ ))

]∥∥∥∥∥
2


+
γ

2
E

∥∥∥∥∥∇f(xt−τ )− 1

n

n∑
i=1

Et−τ

[
Qi

t(∇fi(x
t−τ ))

]∥∥∥∥∥
2
− γ

2
E
[∥∥∇f(xt−τ )

∥∥2]

≤ γ

2
ε2

d2

m2

1

n

n∑
i=1

E
[∥∥∇fi(x

t−τ )
∥∥2]− γ

2
E
[∥∥∇f(xt−τ )

∥∥2]
≤ γ

(
ε2

d2

m2
(δ2 + 1)− 1

2

)
E
[∥∥∇f(xt−τ )

∥∥2]+ γε2
d2

m2
σ2

≤ −γ

4
E
[∥∥∇f(xt−τ )

∥∥2]+ γε2
d2

m2
σ2.

(11)

The last inequality follows from the fact, that

ε ≤ m

2d
√
δ2 + 1

.

Consider ②. Using Cauchy-Schwarz A.1 and Fenchel-Young A.2 with β = 1 inequalities we obtain
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② ≤ E

[∥∥∥∥∥−γ

n

n∑
i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥∥∥∇f(xt)−∇f(xt−τ )
∥∥]

≤ γLE

[∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥ ∥∥xt − xt−τ
∥∥]

= γ2LE

[∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
∥∥∥∥∥

t−1∑
s=t−τ

1

n

n∑
i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
]

≤ γ2L

2

τE

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
+

t−1∑
s=t−τ

E

∥∥∥∥∥ 1n
n∑

i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
2
 .

(12)

Third equality holds since xt − xt−τ = γ
∑t−1

s=t−τ
1
n

n∑
i=1

Qi
s(∇fi(x

s)). Consider ③. Using Cauchy-

Schwarz A.1 and Fenchel-Young A.2 with β = m/d inequalities we obtain

③ ≤ E

[∥∥∥∥∥−γ

n

n∑
i=1

Qi
t(∇fi(x

t)−∇fi(x
t−τ ))

∥∥∥∥∥∥∥∇f(xt−τ )
∥∥]

≤ γLE

[∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t)−∇fi(x
t−τ )

∥∥∥∥∥ ∥∥∇f(xt−τ )
∥∥]

≤ γ2L
d

m
E

[∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
∥∥∥∥∥

t−1∑
s=t−τ

1

n

n∑
i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
]

≤ γ2L

2

 t−1∑
s=t−τ

E

∥∥∥∥∥ 1n
n∑

i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
2
+

d2τ

m2
E
[∥∥∇f(xt−τ )

∥∥2] .

(13)

Wrapping (10) - (13) up we obtain

Ft+1 − Ft ≤
γ2L

2
E

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
− γ

4
E
[∥∥∇f(xt−τ )

∥∥2]+ γε2
d2

m2
σ2

+
γ2L

2

τE

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
+

t−1∑
s=t−τ

E

∥∥∥∥∥ 1n
n∑

i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
2


+
γ2L

2

 t−1∑
s=t−τ

E

∥∥∥∥∥ 1n
n∑

i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
2
+

d2τ

m2
E
[∥∥∇f(xt−τ )

∥∥2]
≤ γ2LτE

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
+ γε2

d2

m2
σ2

+ γ2L

t−1∑
s=t−τ

E

∥∥∥∥∥ 1n
n∑

i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
2
+

(
γ2Lτd2

2m2
− γ

4

)
E
[∥∥∇f(xt−τ )

∥∥2] .
Using Lemma 5 we obtain
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Ft+1 − Ft ≤
2d2γ2Lτ

m2

(
(δ2 + 1)E

[∥∥∇f(xt)
∥∥2]+ σ2

)
+

(
γ2Lτd2

2m2
− γ

4

)
E
[∥∥∇f(xt−τ )

∥∥2]
+

2d2γ2L

m2

t−1∑
s=t−τ

(
(δ2 + 1)E

[
∥∇f(xs)∥2

]
+ σ2

)
+ γε2

d2

m2
σ2

=
2d2γ2L(δ2 + 1)τ

m2
E
[∥∥∇f(xt)

∥∥2]+ 2d2γ2L(δ2 + 1)

m2

t−1∑
s=t−τ

E
[
∥∇f(xs)∥2

]
+

(
γ2Lτd2

2m2
− γ

4

)
E
[∥∥∇f(xt−τ )

∥∥2]+ γd2

m2

(
4γLτ + ε2

)
σ2.

(14)

Summing (14) from t = τ to t = T and using the fact that ε2 ≤ γLτ and 1 + δ2 ≥ 1 we obtain

T∑
t=τ

γ

4
E
[∥∥∇f(xt−τ )

∥∥2] ≤ Fτ +
2d2γ2L(δ2 + 1)

m2

(
τ

T∑
t=τ

E
[∥∥∇f(xt)

∥∥2]
+

T∑
t=τ

t−1∑
s=t−τ

E
[
∥∇f(xs)∥2

]
+ τ

T∑
t=τ

E
[∥∥∇f(xt−τ )

∥∥2])+

T∑
t=τ

5
γ2Lτd2

m2
σ2.

Since
∑T

t=τ

∑t−1
s=t−τ E

[
∥∇f(xs)∥2

]
≤ τ

∑T
t=0 E

[
∥∇f(xt)∥2

]
, we get

γ

T−τ∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ 4Fτ +
24d2γ2L(δ2 + 1)τ

m2

T∑
t=0

E
[∥∥∇f(xt)

∥∥2]+ 20

T∑
t=τ

γ2Lτd2

m2
σ2.

Taking

γ ≤ m2

48d2L(δ2 + 1)τ
,

we obtain

γ

T−τ∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ 8Fτ +
48d2γ2L(δ2 + 1)τ

m2

T∑
t=T−τ

E
[∥∥∇f(xt)

∥∥2]+ 40

T∑
t=τ

γ2Lτd2

m2
σ2.

(15)

We now prove that for any t ≥ 0, we have

sup
t≤s≤t+τ

{
E
[
∥∇f(xs)∥2

]}
≤ 4E

[∥∥∇f(xt)
∥∥2]+ 8L2γ2τ2

d2

m2
σ2.

For t ≤ s ≤ t+ τ it holds that
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E
[
∥∇f(xs)∥2

]
≤ 2E

[∥∥∇f(xt)
∥∥2]+ E

[∥∥∇f(xs)−∇f(xt)
∥∥2]

≤ 2E
[∥∥∇f(xt)

∥∥2]+ 2L2γ2E

∥∥∥∥∥
s−1∑
r=t

1

n

n∑
i=1

Qi
r(∇fi(x

r))

∥∥∥∥∥
2


≤ 2E
[∥∥∇f(xt)

∥∥2]+ 2L2γ2τ
d2

m2

s−1∑
r=t

1

n

n∑
i=1

E
[
∥∇fi(x

r)∥2
]

≤ 2E
[∥∥∇f(xt)

∥∥2]+ 4L2γ2τ
d2

m2

s−1∑
r=t

(
(δ2 + 1)E

[
∥∇f(xr)∥2

]
+ σ2

)
≤ 2E

[∥∥∇f(xt)
∥∥2]+ 4L2γ2τ2

d2

m2

(
(δ2 + 1) sup

t≤s≤t+τ

{
E
[
∥∇f(xs)∥2

]}
+ σ2

)
.

Since
γ ≤ m√

8dL
√
δ2 + 1τ

,

it holds that

sup
t≤s≤t+τ

{
E
[
∥∇f(xs)∥2

]}
≤ 4E

[∥∥∇f(xt)
∥∥2]+ 8L2γ2τ2

d2

m2
σ2.

Using this (15) takes form

γ

T−τ∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ 8Fτ +
192d2γ2L(δ2 + 1)τ

m2

T−τ∑
t=T−2τ

E
[∥∥∇f(xt)

∥∥2]

+ 384L3γ4τ3
d4

m4
(δ2 + 1)σ2 + 40

T∑
t=τ

γ2Lτd2

m2
σ2.

Taking

γ ≤ m

384dL
√
δ2 + 1τ

,

and dividing both sides of the inequality by T − τ , we obtain

1

T − τ

T−τ∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ 16
Fτ

γ(T − τ)
+ 80

γ2Lτd2

m2
σ2.

Therefore, if x̂T is chosen uniformly from {xt}T−1
t=0 , then it holds that

E
[∥∥∇f(x̂T )

∥∥2] ≤ 16
Fτ

γT
+ 80

γ2Lτd2

m2
σ2.

This finishes the proof.

E.4 PROOF OF THEOREM 2, UNDER PL-CONDITION

Proof. We start from (14):
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Ft+1 − Ft =
2d2γ2L(δ2 + 1)τ

m2
E
[∥∥∇f(xt)

∥∥2]+ 2d2γ2L(δ2 + 1)

m2

t−1∑
s=t−τ

E
[
∥∇f(xs)∥2

]
+

(
γ2Lτd2

2m2
− γ

4

)
E
[∥∥∇f(xt−τ )

∥∥2]+ γd2

m2

(
4γLτ + ε2

)
σ2.

If f satisfies PL-inequality (Assumption 3), then −E
[
∥∇f(xt−τ∥2

]
≤ −2µFt−τ , so that, for some

0 < α < 1 we obtain

Ft+1 − Ft =
2d2γ2L(δ2 + 1)τ

m2
E
[∥∥∇f(xt)

∥∥2]+ 2d2γ2L(δ2 + 1)

m2

t−1∑
s=t−τ

E
[
∥∇f(xs)∥2

]
+

(
γ2Lτd2

2m2
− (1− α)γ

4

)
E
[∥∥∇f(xt−τ )

∥∥2]
− αγµ

2
Ft−τ +

γd2

m2

(
4γLτ + ε2

)
σ2.

(16)

For t ≥ 0, let pt = pt and p = (1− αµγ/4)−1. We multiply the above expression by pt and sum for
t < T , hoping for cancellations. Using PL-condition (Assumption 3), for T ≥ τ we obtain

T−1∑
t=τ

pt+1

(
Ft − Ft+1 −

αγµ

4
Ft−τ

)
=

T−1∑
t=τ

pt+1

[(
1− αγµ

4

)
Ft − Ft+1 +

αγµ

4
(Ft − Ft−τ )

]
=

T−1∑
t=τ

ptFt −
T∑

t=τ+1

ptFt +
αγµ

4

T−1∑
t=τ

pt+1(Ft − Ft−τ )

≤ pτFτ − pTFT +
αγµ

4

T−1∑
t=τ

pt+1Ft

− αγµpτ
4

T−1−τ∑
t=0

pt+1Ft

≤ pτFτ − pTFT +
αγµ

4

T−1∑
t=T−τ

pt+1Ft

≤ pτFτ − pTFT +
αγ

8

T−1∑
t=T−τ

pt+1E
[∥∥∇f(xt)

∥∥2] .
For any t ≥ 0 we use a notation bt := E

[
∥∇f(xt)∥2

]
. We now handle bt terms from (16).

−
T−1∑
t=τ

(1− α)γ

4
pt+1bt−τ + γ2L

d2

m2

T−1∑
t=τ

pt+1

(
2τ(δ2 + 1)bt + 2(δ2 + 1)

t−1∑
s=t−τ

bs +
τ

2
bt−τ

)
.

(17)

If pt = pt, p = (1− αµγ/2)−1 and γ = γ1/τ , then, using the fact that (1− a/x)−x ≤ 2ea ≤ 2e if
x ≥ 2 and 0 ≤ a ≤ 1, we can get that 1 ≥ pτ = (1− µγ1/(2τ))

−τ ≤ 2eµγ1/2 ≤ 2e ≤ 6. Then

T∑
t=τ

pt+1

t−1∑
s=t−τ

bs ≤ pτ
T∑

t=τ

t−1∑
s=t−τ

ps+1bs ≤ 6τ

T∑
t=0

pt+1bt.
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Now we can estimate (17):

(17) ≤ −
T−τ−1∑
t=0

(1− α)γ

4
pt+1bt + γ2L

d2τ

m2

(
2(δ2 + 1)

T−1∑
t=τ

bt + 12(δ2 + 1)

T−1∑
t=0

bt + 3

T−τ∑
t=0

bt

)

≤ −
T−τ−1∑
t=0

pt+1γbt

(
1− α

4
− 17γL

d2τ(δ2 + 1)

m2

)
+ 14γ2L

d2τ(δ2 + 1)

m2

T−1∑
t=T−τ

pt+1bt.

Taking

γ ≤ m2(1− α)

136Ld2τ(δ2 + 1)β
,

where β ≥ 1, we obtain

(17) ≤ − (1− α)γ

8

T−τ−1∑
t=0

pt+1bt +
(1− α)γ

4β

T−1∑
t=T−τ

pt+1bt.

Now we can estimate (16):

0 ≤ pτFτ − pTFT +

(
αγ

8
+

(1− α)γ

4β

) T−1∑
t=T−τ

pt+1bt −
(1− α)γ

8

T−τ−1∑
t=0

pt+1bt

+

T−1∑
t=τ

pt+1
γd2

m2

(
4γLτ + ε2

)
σ2.

(18)

Using that we proved in E.3 we have bt ≤ 4bt−τ + 8L2γ2τ2 d2

m2σ
2. Then, we can obtain

γ

(
α

8
+

1− α

4β

) T−1∑
t=T−τ

pt+1bt ≤ 24γ

(
α

8
+

1− α

4β

) T−τ−1∑
t=T−2τ

pt+1bt

+ 48L2γ3τ3
d2

m2

(
α

8
+

1− α

4β

)
σ2.

Taking α = 1/6 and β = 4, we obtain

α

8
+

1− α

4β
=

1− α

8
,

and (18) takes form

0 ≤ pτFτ − pTFT + 48L2γ3τ3
d2

m2
σ2 +

T−1∑
t=τ

pt+1
γd2

m2

(
4γLτ + ε2

)
σ2. (19)

Using the fact that

T∑
t=τ

(
1− αµγ

2

)T−t

=

T−τ∑
t=0

(
1− αµγ

2

)t
≤

+∞∑
t=0

(
1− αµγ

2

)t
=

2

αµγ
,

and taking
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γ ≤ m2

625Ld2τ(δ2 + 1)
and ε =

√
γLτ ≤ m

25d
√
δ2 + 1

,

by dividing (19) by pτ , we obtain

E
[
f(xT )− f(x∗)

]
≤
(
1− µγ

12

)T−τ

E [f(xτ )− f(x∗)] + 636
γd2Lτ

µm2
σ2.

This finishes the proof.

F CONVERGENCE OF ALGORITHM 1 WITHOUT DATA SIMILARITY

Theorem 5 (Convergence of GD Algorithm 1 without data similarity). Consider Assumptions 1 and
2. Let problem (1) be solved by Algorithm 1. Then for any ε > 0, γ > 0, τ > τmix(ε) and T > τ
satisfying

γ ≤
m2√µ

24d2L3/2τ
and ε ≤

m
√
µ

24d
min

{
1

L3/2
;
√
µ

}
,

it holds that

E
[∥∥xT+1 − x∗∥∥2] ≤ (1− µγ

2

)T−τ

E
[
∥xτ − x∗∥2

]
+
(
1− µγ

2

)T
∆τ + 26

γd2τ

µm2
σ2
∗,

where

∆τ = O

(
γ2d2

m2

√
µ

L

τ∑
t=0

[
τE
[∥∥xt − x∗∥∥2]+ 4LE

[
f(xt)− f(x∗)

] ])
.

Proof of Theorem 5. We start by writing out step of the Algorithm 1:

E
[∥∥xt+1 − x∗∥∥2] = E

[∥∥xt − x∗∥∥2]− 2γE

[
1

n

d∑
i=1

〈
Qi

t

(
∇fi(x

t)
)
−∇fi(x

t), xt − x∗〉]

− 2γE
[〈
∇f(xt), xt − x∗〉]+ γ2E

∥∥∥∥∥ 1n
n∑

i=1

Qi
t

(
∇fi(x

t)
)∥∥∥∥∥

2
 .

(20)

Consider E
[〈
Qi

t (∇fi(x
t))−∇fi(x

t), xt − x∗〉]. Using Corollary 3 with at = ∇fi(x
t), bt =

xt − x∗, ât−τ = ∇fi(x
t−τ ) and b̂t−tau = xt−τ − x∗ we obtain

2E[
1

n

n∑
i=1

|⟨Qi
t

(
∇fi(x

t)
)
−∇fi(x

t), xt − x∗⟩|] ≤ εd

mβ0

1

n

n∑
i=1

E
[∥∥∇fi(x

t−τ )
∥∥2]

+
εdβ0

m
E
[∥∥xt−τ − x∗∥∥2]+ 4

d2L2

m2
(β1 + β2)E

[∥∥xt − xτ
∥∥2]+ ( 1

β1
+

1

β3

)
E
[∥∥xt − xτ

∥∥2]
+ 4

d2

m2
β3

1

n

d∑
i=1

E
[∥∥∇fi(x

t)
∥∥2]+ 1

β2
E
[∥∥xt − x∗∥∥2] .

(21)
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Using the fact that fi are L-smooth, we can obtain:

1

n

n∑
i=1

∥∥∇fi(x
t)
∥∥2 =

1

n

n∑
i=1

∥∥∇fi(x
t)−∇fi(x

∗) +∇fi(x
∗)
∥∥2

≤ 2

n

n∑
i=1

∥∥∇fi(x
t)−∇fi(x

∗)
∥∥2 + 2

n

n∑
i=1

∥∇fi(x
∗)∥2

≤ 4L

n

n∑
i=1

(
fi(x

t)− fi(x
∗)−

〈
∇fi(x

∗), xt − x∗〉)+ 2σ2
∗

= 4L(f(xt)− f(x∗)) + 2σ2
∗,

(22)

where we use a notation σ2
∗ := 1

n

∑n
i=1 ∥∇fi(x

∗)∥2. Now we can estimate (21):

(21) ≤ 2εd

mβ0
(2LE

[
f(xt−τ )− f(x∗)

]
+ σ2

∗) +
εdβ0

m
E
[∥∥xt−τ − x∗∥∥2]

+

(
4
d2L2

m2
(β1 + β2) +

1

β1
+

1

β3

)
E

∥∥∥∥∥−γ

t−1∑
s=t−τ

1

n

n∑
i=1

Qi
s (∇fi(x

s))

∥∥∥∥∥
2


+ 8
d2

m2
β3(2LE

[
f(xt)− f(x∗)

]
+ σ2

∗) +
1

β2
E
[∥∥xt − x∗∥∥2] .

Now we can estimate (20). Using Lemma 4 and Assumption 2 we can obtain

E
[∥∥∥xt+1 − x∗

∥∥∥2] ≤ (1− µγ +
γ

β2

)
E
[∥∥xt − x∗∥∥2]+ εdβ0γ

m
E
[∥∥xt−τ − x∗∥∥2]

+ 4LE

[
εdγ

mβ0
(f(xt−τ )− f(x∗)) + 4

d2β3γ

m2
(f(xt)− f(x∗))

+

(
4
d2L2

m2
(β1 + β2) +

1

β1
+

1

β3

)
γ3τd2

m2

t−1∑
s=t−τ

(f(xs)− f(x∗))

+
γ2d2

m2
(f(xt)− f(x∗))− γ

2L
(f(xt)− f(x∗))

]

+ 2

[
εdγ

mβ0
+ 4

d2β3γ

m2
+

(
4
d2L2

m2
(β1 + β2) +

1

β1
+

1

β3

)
γ3τ2d2

m2
+

γ2d2

m2

]
σ2
∗.

(23)

Taking β0 = β1 = 1, β3 = γ, β2 = 4/µ and using fact, that ε ≤ γτd/m inequality (23) takes form

E
[∥∥xt+1 − x∗∥∥2] ≤ (1− 3

4µγ

)
E
[∥∥xt − x∗∥∥2]+ εdβ0γ

m
E
[∥∥xt−τ − x∗∥∥2]

+ 4LE

[
εdγ

mβ0
(f(xt−τ )− f(x∗)) + 5

d2γ2

m2
(f(xt)− f(x∗))

+ 20
d4L2

m4

γ3τ

µ

t−1∑
s=t−τ

(f(xs)− f(x∗))− γ

2L
(f(xt)− f(x∗))

]

+ 4
d2γ2τ

m2

[
3 + 10

d2L2

m2

γ

µ

]
σ2
∗.

(24)

Let us perform the summation from t = τ to t = T > τ of equations (24) with coefficients pk:
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T∑
t=τ

ptE
[∥∥xt+1 − x∗∥∥2] ≤ T∑

t=τ

pt(1−
3µγ

4
)E
[∥∥xt − x∗∥∥2]

+

T∑
t=τ

pt
γεd

m
E
[∥∥xt−τ − x∗∥∥2]

+

T∑
t=τ

pt4L

(
γεd

m
+ 5

γ2d2τ

m2
− γ

2L

)
E
[
f(xt)− f(x∗)

]
+ 20

T∑
t=τ

pt4L
d4L2

m4

γ3τ

µ

t−1∑
s=t−τ

E [f(xs)− f(x∗)]

+

T∑
t=τ

pt4
d2γ2τ

m2

[
3 + 10

d2L2

m2

γ

µ

]
σ2
∗.

(25)

If pt = pt, p = (1− µγ/2)−1 and γ = γ1/τ , then, using the fact that (1− a/x)−x ≤ 2ea ≤ 2e if
x ≥ 2 and 0 ≤ a ≤ 1, we can get that pτ = (1− µγ1/(2τ))

−τ ≤ 2eµγ1/2 ≤ 2e ≤ 6.

T∑
t=τ

pt

t−1∑
s=t−τ

as ≤ pτ
T∑

t=τ

t−1∑
s=t−τ

psas ≤ 6τ

T∑
t=0

ptat.

Using this we can estimate (25):
T∑

t=τ

ptE
[∥∥xt+1 − x∗∥∥2] ≤ T∑

t=τ

pt

(
1− µγ + 6

γεd

m

)
E
[∥∥xt − x∗∥∥2]

+

T∑
t=τ

4ptL

(
γεd

m
+ 5

γ2d2τ

m2
+ 120

d4L2

m4

γ3τ2

µ
− γ

2L

)
E
[
f(xt)− f(x∗)

]
+ 4

T∑
t=τ

pt

[
3 + 10

d2L2

m2

γ

µ

]
σ2
∗ +

τ∑
t=0

pt+τ
γεd

m
E
[∥∥xt − x∗∥∥2]

+ 80

τ∑
t=0

pt+τL
d4L2

m4

γ3τ

µ
E
[
f(xt)− f(x∗)

]
.

(26)

Taking

γ ≤
m2√µ

24d2L3/2τ
and ε = min

{
γdτ

m
;
µm

24d

}
≤

m
√
µ

24d
min

{
1

L3/2
;
√
µ

}
.

We get

γεd

m
+ 5

γ2d2τ

m2
+ 120

d4L2

m4

γ3τ2

µ
− γ

2L
≤ 0 and 1− 3µγ

4
+ 6

γεd

m
= 1− µγ

2
.

Assume a notation

∆τ :=

τ∑
t=0

pt+τ
γεd

m
E
[∥∥xt − x∗∥∥2]+ 80

τ∑
t=0

pt+τL
d4L2

m4

γ3τ

µ
E
[
f(xt)− f(x∗)

]
≤ 120

γ2d2

m2

√
µ

L

τ∑
t=0

(
τE
[∥∥xt − x∗∥∥2]+ 4LE

[
f(xt)− f(x∗)

])
.
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Using the notation of ∆τ , (26) takes form

T∑
t=τ

ptE
[∥∥xt+1 − x∗∥∥2] ≤ T∑

t=τ

pt

(
1− µγ

2

)
E
[∥∥xt − x∗∥∥2]+ T∑

t=τ

13pt
γ2d2τ

m2
σ2
∗ +∆τ .

Using pt = pt and p = (1− µγ/2)
−1 we can obtain:

T∑
t=τ

(
1− µγ

2

)−t

E
[∥∥xt+1 − x∗∥∥2] ≤ T∑

t=τ

(
1− µγ

2

)−t+1

E
[∥∥xt − x∗∥∥2]

+

T∑
t=τ

13
(
1− µγ

2

)−t γ2d2τ

m2
σ2
∗ +∆τ .

The summed terms on the left and right sides are reduced, therefore this expression takes the form:

(
1− µγ

2

)−T

E
[∥∥xT+1 − x∗∥∥2] ≤ (1− µγ

2

)−τ

E
[
∥xτ − x∗∥2

]
+

T∑
t=τ

13
(
1− µγ

2

)−t γ2d2τ

m2
σ2
∗ +∆τ .

We can re-arrange this inequality:

E
[∥∥xT+1 − x∗∥∥2] ≤ (1− µγ

2

)T−τ

E
[
∥xτ − x∗∥2

]
+

T∑
t=τ

13
(
1− µγ

2

)T−t γ2d2τ

m2
σ2
∗ +

(
1− µγ

2

)T
∆τ .

Using the fact that

T∑
t=τ

(
1− µγ

2

)T−t

=

T−τ∑
t=0

(
1− µγ

2

)t
≤

+∞∑
t=0

(
1− µγ

2

)t
=

2

µγ
.

We can estimate:

E
[∥∥xT+1 − x∗∥∥2] ≤ (1− µγ

2

)T−τ

E
[
∥xτ − x∗∥2

]
+
(
1− µγ

2

)T
∆τ + 26

γd2τ

µm2
σ2
∗.

This finishes the proof.

G EXTENSIONS FOR THEOREM 3

G.1 FULL VERSION OF THEOREM 3

Theorem 6 (Convergence of AMQSGD Algorithm 2, full version). Consider Assumptions 1, 2 and
4. Let problem (1) be solved by Algorithm 2. Then for any γ > 0, ε > 0, τ > τmix(ε), T > τ and
β, θ, η, p satisfying
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γ ≲
µ

1
3m

1
2

τL
4
3 d

1
2

, p ≲
m2

τ2d2(δ2 + 1)
, ε ≲ min

{ m
7
4

d
7
4 τ

5
4L(δ2 + 1)

;
m

15
4

d
15
4 τ

13
4 (δ2 + 1)2

}

β =

√
2p2µγ

3
, η =

√
3

2µγ
, θ =

pη−1 − 1

βpη−1 − 1

it holds that

FT+1 = O

(
exp

[
−(T − τ)

√
p2µγ

3

]
Fτ + exp

[
−T

√
p2µγ

3

]
∆τ +

γ

µ
σ2

)
.

Here we use notations: Ft := E[∥xt − x∗∥2 + 3
µ (f(x

t
f ) − f(x∗))] and ∆τ ≤

√
γ

τ
4
3 µ

1
3

τ∑
t=0

(
E
∥∥∇f(xt

g)
∥∥+ E ∥xt − x∗∥2 + E[f(xt

f )− f(x∗)]
)
.

G.2 FULL VERSION OF COROLLARY 2

Corollary 5 (Step tuning for Theorem 3, full version of Corollary 2). Under the conditions of
Theorem 3, choosing γ as

γ ≲ min


µ

1
3

L
4
3 τ

8
3

;

log

(
max

{
2; µ

2
3 (Fτ+∆τ )T

τ
4
3 L

2
3 σ2

})
µp2T 2

 ,

in order to achieve ϵ-approximate solution (in terms of E
[∥∥xT − x∗∥∥2] ≤ ϵ2) it takes

O

(
d2L

2
3 τ

4
3

m2µ
2
3

(
(δ2 + 1) log

(
1

ϵ

)
+

σ2

µϵ

))
iterations.

G.3 PROOF OF THEOREM 6

Lemma 6. Consider Algorithm 2 with θ = (pη−1 − 1)/(βη−1 − 1) < 1. Then for any yt =

κxt
f + (1− κ)xt ∈ conv

{
xt
f , x

t
}

for any s < t exist constants αs
f , α

s ≥ 0 and cr ≥ 0 such that

yt = ỹs − pγ

t−1∑
r=s

crg
r = αs

fx
s
f + αsxs − pγ

t−1∑
r=s

crg
r.

And αs
f + αs = 1 for any s < t. If (1− κ)η ≤ 1, then cr ≤ t− s+ 2, otherwise we can only use the

estimate cr ≤ η.

Proof. We start by writing out lines 3 and 10 of Algorithm 2:

xs
f = xs−1

g − pγgs−1 = θxs−1
f + (1− θ)xs−1 − pγgs−1. (27)

Now let us handle expression ηxk
g + (p − η)xk

f + (1 − p)(1 − β)xk + (1 − p)βxk
g − x∗ for a

while. Taking into account the choice of θ such that θ = (pη−1 − 1)/(βpη−1 − 1) (in particular,
(pη−1 − 1) = (βpη−1 − 1)θ and η(1− βpη−1)(1− θ) = p(1− β)), we get

ηxk
g + (p− η)xk

f + (1− p)(1− β)xk + (1− p)βxk
g
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= (η + (1− p)β)xk
g + (p− η)xk

f + (1− p)(1− β)xk

= (η + (1− p)β)xk
g + η(pη−1 − 1)xk

f + (1− p)(1− β)xk

= (η + (1− p)β)xk
g + η(βpη−1 − 1)θxk

f + (1− p)(1− β)xk

= (η + (1− p)β)xk
g + η(βpη−1 − 1)(xk

g − (1− θ)xk) + (1− p)(1− β)xk

= (η + (1− p)β)xk
g + η(βpη−1 − 1)(xk

g − (1− θ)xk) + (1− p)(1− β)xk

= βxk
g − η(βpη−1 − 1)(1− θ)xk + (1− p)(1− β)xk

= βxk
g + p(1− β)xk + (1− p)(1− β)xk

= βxk
g + (1− β)xk .

Now we write out line 11 of Algorithm 2:

xs = βxs−1
g + (1− β)xs−1 − ηxs−1

g + ηxs
f = βxs−1

g + (1− β)xs−1 − ηpγgs−1

= β(θxs−1
f + (1− θ)xs−1) + (1− β)xs−1 − ηpγgs−1

= βθxs−1
f + (1− βθ)xs−1 − ηpγgs−1.

(28)

Now we use induction. xt
f = θxs−1

f +(1−θ)xs−1−pγgs−1, then αt−1
f = θ ≥ 0, αt−1 = 1−θ ≥ 0,

cr = 1 ≤ η and αt−1
f + αt−1 = 1, therefore base step is fulfilled. If xt

f = αs
fx

s
f + αsxs −

pγ
∑t−1

r=s crg
r for some s < t, when with help of (27) and (28) we can write out

xt
f = αs

f

(
θxs−1

f + (1− θ)xs−1 − pγgs−1
)

+ αs
(
βθxs−1

f + (1− βθ)xs−1 − ηpγgs−1
)
− pγ

t−1∑
r=s

crg
r.

Therefore αs−1
f = αs

fθ+αsβθ ≥ 0, αs−1 = αs
f (1−θ)+αs(1−βθ) ≥ 0 and cs−1 = αs

f+ηαs ≤ η.
Then, the step of the induction is fulfilled, since αs−1

f + αs−1 = 1. Therefore results of this Lemma

are true for yt = xt
f ∈ conv

{
xt
f , x

t
}

.

Consider yt = xt ∈ conv
{
xt
f , x

t
}

. Form (28) follows that αt−1
f = βθ and αt−1 = 1−βθ, therefore

base step is fulfilled. The step of the induction will be the same as in yt = xt
f . Therefore results of

this Lemma are true for yt = xt. Then, they are true for any yt ∈ conv
{
xt
f , x

t
}

.

If yt = κxt
f + (1 − κ)xt, then αs(y) = καs(xt

f ) + (1 − κ)αs(xt). Since (1 − θ)η ≤ 1, then
αt−1(xt

f )η ≤ 1 = t − (t − 1). Therefore αs(xt
f )η ≤ t − s by induction, since αs−1(xt

f )η =

αs
f (x

t
f )(1− θ)η + (1− βθ)αs(xt

f )η ≤ αs
f (x

t
f ) + (1− βθ)(t− s) ≤ t− s+ 1.

Then, if (1−κ)η ≤ 1, then αs(yt)η = καs(xt
f )η+(1−κ)ηαs(xt) ≤ κ(t−s)+αs(xt) ≤ t−s+1.

Now we consider cs(yt). cs(yt) = αs
f (y

t) + αs(yt)η ≤ αs
f (y

t) + t− s+ 1 ≤ t− s+ 2.

Lemma 7. Assume 1, 2 and 4. Then for iterates of Algorithm 2 with θ = (pη−1 − 1)/(βpη−1 −
1), θ > 0, η ≥ 1, it holds that

E ∥xt+1 − x∗∥2

≤ (1− β)(1 +
β

4
)E
∥∥xt − x∗∥∥2 + β(1 +

β

4
)E
∥∥xt

g − x∗∥∥2 + (β2 − β)E
∥∥xt − xt

g

∥∥2
+ 10

d2

m2
(δ2 + 1)p2γ2η2 E

∥∥∇f(xt
g)
∥∥2 + p2γ2η2τ

(
32

τ2d2L2p2γ2

m2β
+

5

4

) t−1∑
r=t−τ

∥gr∥2
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+ 3εpγηL
d

m

√
δ2 + 1E

[∥∥xt−τ − x∗∥∥2]+ 3εpγηL
d

m

√
δ2 + 1E

[∥∥∥xt−τ
f − x∗

∥∥∥2] (29)

− 2γη2 E
〈
∇f(xt

g), x
t
g + (pη−1 − 1)xt

f − pη−1x∗〉+ 2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

)
σ2.

Proof. Using lines 10 and 11 of Algorithm 2, we get

E ∥xt+1 − x∗∥2 = E
∥∥∥ηxt+1

f + (p− η)xt
f + (1− p)(1− β)xt + (1− p)βxt

g − x∗
∥∥∥2

= E
∥∥ηxt

g − pγηgt + (p− η)xt
f + (1− p)(1− β)xt + (1− p)βxt

g − x∗∥∥2
= E

∥∥ηxt
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗∥∥2 + p2γ2η2 E

∥∥gt∥∥2
− 2pγη E

〈
gt, ηxt

g + (p− η)xt
f + (1− p)(1− β)xt + (1− p)βxt

g − x∗〉
= E

∥∥ηxt
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗∥∥2︸ ︷︷ ︸

①

+ p2γ2η2 E
∥∥gt∥∥2︸ ︷︷ ︸

②

−2pγη E
〈
gt −∇f(xt

g), ηx
t
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗〉︸ ︷︷ ︸

③

−2pγη E
〈
∇f(xt

g), ηx
t
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗〉︸ ︷︷ ︸

④

.

Consider ①. From Lemma 6, we know that

ηxt
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g = βxt

g + (1− β)xt.

It implies

∥ηxt
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗∥2

=
∥∥βxt

g + (1− β)xt − x∗∥∥2
=
∥∥β(xt

g − xt) + xt − x∗∥∥2
=
∥∥xt − x∗∥∥2 + 2β

〈
xt − x∗, xt

g − xt
〉
+ β2

∥∥xt
g − xt

∥∥2
=
∥∥xt − x∗∥∥2 + β(

∥∥xt
g − x∗∥∥2 − ∥∥xt − x∗∥∥2 − ∥∥xt

g − xt
∥∥2) + β2

∥∥xt
g − xt

∥∥2
= (1− β)

∥∥xt − x∗∥∥2 + β
∥∥xt

g − x∗∥∥2 + (β2 − β)
∥∥xt − xt

g

∥∥2 .
(30)

Consider ②. Using convexity of squared Euclidean norm and Lemma 4, one can obtain

p2γ2η2 E
∥∥gt∥∥2 = p2γ2η2 E

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t
g))

∥∥∥∥∥
2

≤ p2γ2η2
1

n

n∑
i=1

E
∥∥Qi

t(∇fi(x
t
g))
∥∥2

(4)
≤ p2γ2η2

d2

m2

1

n

n∑
i=1

E
∥∥∇fi(x

t
g)
∥∥2

(5)
≤ 2p2γ2η2

d2

m2
(δ2 + 1)E

∥∥∇f(xt
g)
∥∥2 + 2p2γ2η2

d2

m2
σ2,

(31)

where in the last inequality we used Lemma 5.
Consider ③. We first use Lemma 6 twice

xt
g = θxt

f + (1− θ)xt = αt−τ
f xt−τ

f + αt−τxt−τ − pγ

t−1∑
r=t−τ

crg
r
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ηxt
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g = βxt

g + (1− β)xt

= βθxt
f + (1− βθ)xt

= α̂t−τ
f xt−τ

f + α̂t−τxt−τ − pγ

t−1∑
r=t−τ

ĉrg
r.

Next, we apply Corollary 3 with ât−τ = ∇fi(x̃
t−τ
g ), where x̃t−τ

g = αt−τ
f xt−τ

f + αt−τxt−τ , and
b̂t−τ = α̂t−τ

f xt−τ
f + α̂t−τxt−τ − x∗, leading us to

− 2pγη E
〈
gt −∇f(xt

g), ηx
t
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗

〉
= −2pγη

1

n

n∑
i=1

E
〈
Qi

t(∇fi(x
t
g))−∇fi(x

t
g), ηx

t
g + (p− η)xt

f + (1− p)(1− β)xt

+ (1− p)βxt
g − x∗

〉
≤ εd

mβ0
pγη

1

n

n∑
i=1

E
[∥∥∇fi(x̃

t−τ
g )

∥∥2]+ εdβ0

m
pγηE

[∥∥∥α̂t−τ
f xt−τ

f + α̂t−τxt−τ − x∗
∥∥∥2]

+ 4
d2

m2
pγη (β1 + β2)

1

n

n∑
i=1

E
[∥∥∇fi(x

t
g)−∇fi(x̃

t−τ
g )

∥∥2]

+ pγη

(
1

β1
+

1

β3

)
E

∥∥∥∥∥−pγ

t−1∑
r=t−τ

ĉrg
r

∥∥∥∥∥
2


+ 4
d2

m2
pγηβ3

1

n

n∑
i=1

E
[∥∥∇fi(x

t
g)
∥∥2]+ pγη

β2
E
[∥∥βxt

g + (1− β)xt − x∗∥∥2] .
Using Assumption 1 and Lemma 5 with cr ≤ τ ≤ 2τ and ĉr ≤ η one might obtain

− 2pγη E
〈
gt −∇f(xt

g), ηx
t
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗

〉
≤ 2εd

mβ0
pγη(δ2 + 1)E

[∥∥∇f(x̃t−τ
g )

∥∥2]+ εdβ0

m
pγηE

[∥∥∥α̂t−τ
f xt−τ

f + α̂t−τxt−τ − x∗
∥∥∥2]

+ 4
d2L2

m2
pγη (β1 + β2)E

∥∥∥∥∥−pγ

t−1∑
r=t−τ

crg
r

∥∥∥∥∥
2
+ pγη

(
1

β1
+

1

β3

)
E

∥∥∥∥∥−pγ

t−1∑
r=t−τ

ĉrg
r

∥∥∥∥∥
2


+ 8
d2

m2
(δ2 + 1)pγηβ3E

[∥∥∇f(xt
g)
∥∥2]+ pγη

β2
E
[∥∥βxt

g + (1− β)xt − x∗∥∥2]
+ 2pγη(

εd

mβ0
+ 4

d2β3

m2
)σ2 (32)

≤ εd

m
pγη

(
2(δ2 + 1)L2αt−τ

f

1

β0
+ β0α̂

t−τ
f

)
E
[∥∥∥xt−τ

f − x∗
∥∥∥2]

+
εd

m
pγη

(
2(δ2 + 1)L2αt−τ 1

β0
+ β0α̂

t−τ

)
E
[∥∥xt−τ − x∗∥∥2]

+ p3γ3ητ

(
4
τ2d2L2

m2
(β1 + β2) + η2

( 1

β1
+

1

β3

)) t−1∑
r=t−τ

∥gr∥2

+ 8
d2

m2
(δ2 + 1)pγηβ3E

[∥∥∇f(xt
g)
∥∥2]

+
pγη

β2
βE
[∥∥xt

g − x∗∥∥2]+ pγη

β2
(1− β)E

[∥∥xt − x∗∥∥2]+ 2pγη(
εd

mβ0
+ 4

d2β3

m2
)σ2.
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Consider ④. Taking into account line 4 and the choice of θ such that θ = (pη−1 − 1)/(βpη−1 − 1),
one can note

ηxk
g + (p− η)xk

f + (1− p)(1− β)xk + (1− p)βxk
g − x∗

= (η + (1− p)β)xk
g + (p− η)xk

f + (1− p)(1− β)xk − x∗

= ηp−1
(
(p+ (1− p)p−1ηβ)xk

g + (pη−1 − 1)pxk
f + (1− p)(1− β)pη−1xk − η−1px∗)

= ηp−1
(
(p+ (1− p)p−1ηβ)xk

g + (pη−1 − 1)pxk
f + (1− p)(1− βpη−1)(1− θ)xk − η−1px∗)

= ηp−1
(
(p+ (1− p)p−1ηβ)xk

g + (pη−1 − 1)pxk
f + (1− p)(1− βpη−1)(xk

g − θxk
f )− η−1px∗)

= ηp−1
(
xk
g + (pη−1 − 1)pxk

f − (1− p)(1− βpη−1)θxk
f − η−1px∗)

= ηp−1
(
xk
g + (pη−1 − 1)pxk

f − (1− p)(pη−1 − 1)xk
f − η−1px∗)

= ηp−1
(
xk
g + (pη−1 − 1)xk

f − η−1px∗) . (33)

Using that, we get

−2pγη E
〈
∇f(xt

g), ηx
t
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗

〉
= −2γη2 E

〈
∇f(xt

g), x
t
g + (pη−1 − 1)xt

f − pη−1x∗〉 .
(34)

Summing (30), (31), (32) and (34) with β0 =
√
δ2 + 1L, β1 = β2 = 4pγη

β and β3 = pγη we finish
the proof.

Lemma 8. Assume 1, 2 and 4. Then for iterates of Algorithm 2 and for any u ∈ Rd it holds that

E
[
f(xt+1

f )
]
≤ E [f(u)]− E

[〈
∇f(xt

g), u− xt
g

〉]
− µ

2

∥∥u− xt
g

∥∥− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]

+ 2εγE
[∥∥∇f(x̃t−τ

g )
∥∥2]+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 23

L2d3γ3p2τ4

m3
σ2,

where

γ ≤ 1

L
and p ≤ m2

12(δ2 + 1)d2
.

Proof. Using 1 with x = xt+1
f , y = xt

g and line 3 of Algorithm 2 we get

E
[
f(xt+1

f )
]
≤ E

[
f(xt

g)
]
+ E

[〈
∇f(xt

g), x
t+1
f − xt

g

〉]
+

L

2
E
[∥∥∥xt+1

f − xt
g

∥∥∥2]
= E

[
f(xt

g)
]
− pγE

[〈
∇f(xt

g), g
t
〉]

+
Lp2γ2

2
E
[∥∥gt∥∥2]

= E
[
f(xt

g)
]
− pγE

[〈
∇f(xt

g),∇f(xt
g)
〉]

− pγE
[〈
∇f(xt

g), g
k −∇f(xt

g)
〉]

+
Lp2γ2

2
E
[∥∥gt∥∥2] .

(35)

Consider E
[〈
∇f(xt

g), g
k −∇f(xt

g)
〉]

. Using Corollary 3 with at = ∇fi(x
t
g), b

t =

∇f(xt
g), â

t−τ = ∇fi(x̃
t−τ
g ), b̂t−τ = ∇f(x̃t−τ

g ), where xt
g ∈ conv

{
xt
f , x

t
}

= x̃t−τ
g −

pγ
∑t−1

s=t−τ csg
s from Lemma 6. Using Assumption 1 we obtain

2
∣∣E [〈∇f(xt

g), g
k −∇f(xt

g)
〉]∣∣ ≤ εd

mβ0
E

[
1

n

n∑
i=1

∥∥∇fi(x̃
t−τ
g )

∥∥2]+ εdβ0

m
E
[∥∥∇f(x̃t−τ

g )
∥∥2]

+ 4
d2L2

m2
(β1 + β2)E

[∥∥xt
g − x̃t−τ

g

∥∥2]+ L2

(
1

β1
+

1

β3

)
E
[∥∥xt

g − x̃t−τ
g

∥∥2]
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+ 4
d2

m2
β3E

[
1

n

n∑
i=1

∥∥∇fi(x
t
g)
∥∥2]+ 1

β2
E
[∥∥∇f(xt

g)
∥∥2] .

Taking β0 =
√
δ2 + 1, β1 = m/d, β2 = m/(dp), β3 = pm/d and using results from Lemma 5 we

obtain

2
∣∣E [〈∇f(xt

g), g
k −∇f(xt

g)
〉]∣∣ ≤ 2εd

m

(√
δ2 + 1E

[∥∥∇f(x̃t−τ
g )

∥∥2]+ σ2

√
δ2 + 1

)

+
dp

m
E
[∥∥∇f(xt

g)
∥∥2]+ 10

L2d

pm
E

∥∥∥∥∥−pγ

t−1∑
s=t−τ

cs
1

n

n∑
i=1

Qi
s(∇fi(x

s
g))

∥∥∥∥∥
2


+
8dp

m

(
(δ2 + 1)E

[∥∥∇f(xt
g)
∥∥2]+ σ2

)
+

εd
√
δ2 + 1

m
E
[∥∥∇f(x̃t−τ

g )
∥∥2] .

Using Lemma 4 and 5, convexity of the squared norm and the fact that cs ≤ t− s+ 2 ≤ τ + 2 ≤ 2τ
we obtain

2
∣∣E [〈∇f(xt

g), g
k −∇f(xt

g)
〉]∣∣ ≤ 3εd

√
δ2 + 1

m
E
[∥∥∇f(x̃t−τ

g )
∥∥2]+

+ 40
L2d3γ2pτ3

m3

t−1∑
s=t−τ

E
[
(δ2 + 1)

∥∥∇f(xs
g)
∥∥2 + σ2

]
+

9dp(δ2 + 1)

m
E
[∥∥∇f(xt

g)
∥∥2]+ 2d

m

(
ε√

δ2 + 1
+ p

)
σ2.

Using the fact that L2γ2d2/m2τ4η2 ≥ 1 and ε ≤
√
δ2 + 1p we obtain

2
∣∣E [〈∇f(xt

g), g
k −∇f(xt

g)
〉]∣∣ ≤ 3εd

√
δ2 + 1

m
E
[∥∥∇f(x̃t−τ

g )
∥∥2]+ 44

L2d3γ2pη2τ4

m3
σ2

+ 40
L2d3γ2pτ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 9dp(δ2 + 1)

m
E
[∥∥∇f(xt

g)
∥∥2] .

Using this result, Lemmas 4 and 5 we can estimate (35):

E
[
f(xt+1

f )
]
= E

[
f(xt

g)
]
− pγE

[∥∥∇f(xt
g)
∥∥2]

− pγE
[〈
∇f(xt

g), g
k −∇f(xt

g)
〉]

+
L

2
E
[∥∥gt∥∥2]

≤ E
[
f(xt

g)
]
− pγE

[∥∥∇f(xt
g)
∥∥2]+ 2εpγd

√
δ2 + 1

m
E
[∥∥∇f(x̃t−τ

g )
∥∥2]+

+ 20
L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 5dγp2(δ2 + 1)

m
E
[∥∥∇f(xt

g)
∥∥2]

+ 22
L2d3γ3p2τ4

m3
σ2 +

Lp2γ2d2

m2
(δ2 + 1)E

[∥∥∇f(xt
g)
∥∥2]+ Lp2γ2d2

m2
σ2.

Taking

γ ≤ 1

L
and p ≤ m2

12(δ2 + 1)d2
,
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we obtain

E
[
f(xt+1

f )
]
≤ E

[
f(xt

g)
]
− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]+ 2εγE

[∥∥∇f(x̃t−τ
g )

∥∥2]+
+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 23

L2d3γ3p2τ4

m3
σ2.

Using 2 with x = u and y = xt
g , one can conclude that for any u ∈ Rd it holds

E
[
f(xt+1

f )
]
≤ E [f(u)]− E

[〈
∇f(xt

g), u− xt
g

〉]
− µ

2

∥∥u− xt
g

∥∥
− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]+ 2εγE

[∥∥∇f(x̃t−τ
g )

∥∥2]+
+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 23

L2d3γ3p2τ4

m3
σ2.

This finishes the proof.

Theorem 7 (Theorem 3). Consider Assumptions 1, 2 and 4. Let problem (1) be solved by Algorithm
2. Then for any γ > 0, ε > 0, τ > τmix(ε), T > τ and β, θ, η, p satisfying

γ ≤ µ
1
3m

1
2

2τL
4
3 d

1
2

, ε ≤ min
{ m

7
4

6d
7
4 τ

5
4L(δ2 + 1)

;
m

5
4

√
2τ

3
4µ

1
3L

2
3 d

5
4

;
m

15
4

6d
15
4 τ

13
4 (δ2 + 1)2

}
,

p ≤ m2

13d2(δ2 + 1)τ2
, β =

√
2p2µγ

3
, η =

√
3

2µγ
, θ =

pη−1 − 1

βpη−1 − 1
.

it holds that

E[∥xT+1 − x∗∥2 + 3

µ
(f(xT+1

f )− f(x∗))] ≤ exp

(
− (T − τ)

√
2p2µγ

3

)
Fτ

+ exp

(
− T

√
2p2µγ

3

)
∆τ +

45γ

µ
σ2,

where Fτ := E[∥xτ − x∗∥2 + 3
µ (f(x

τ
f ) − f(x∗))] and ∆τ ≤

√
γ

τ
4
3 µ

1
3

τ∑
t=0

(
E
∥∥∇f(xt

g)
∥∥ +

E ∥xt − x∗∥2 + E[f(xt
f )− f(x∗)]

)
.

Proof. We start by using Lemma 8 with u = x∗ and u = xt
f

E
[
f(xt+1

f )
]
≤ E [f(x∗)]− E

[〈
∇f(xt

g), x
∗ − xt

g

〉]
− µ

2

∥∥x∗ − xt
g

∥∥− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]

+ 2εγE
[∥∥∇f(x̃t−τ

g )
∥∥2]+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 23

L2d3γ3p2τ4

m3
σ2,

E
[
f(xt+1

f )
]
≤ E

[
f(xt

f )
]
− E

[〈
∇f(xt

g), x
t
f − xt

g

〉]
− µ

2

∥∥xt
f − xt

g

∥∥− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]

+ 2εγE
[∥∥∇f(x̃t−τ

g )
∥∥2]+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 23

L2d3γ3p2τ4

m3
σ2.

Summing the first inequality with coefficient 2pγη, the second with coefficient 2pγη(η− p) and (29),
we get

E[∥xt+1 − x∗∥2 + 2γη2f(xt+1
f )]
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≤ (1− β)(1 +
β

4
)E
∥∥xt − x∗∥∥2 + β(1 +

β

4
)E
∥∥xt

g − x∗∥∥2 + (β2 − β)E
∥∥xt − xt

g

∥∥2
+ 10

d2

m2
(δ2 + 1)p2γ2η2 E

∥∥∇f(xt
g)
∥∥2 + p2γ2η2τ

(
32

τ2d2L2p2γ2

m2β
+

5

4

) t−1∑
r=t−τ

∥gr∥2

+ 3εpγηL
d

m

√
δ2 + 1E

[∥∥xt−τ − x∗∥∥2]+ 3εpγηL
d

m

√
δ2 + 1E

[∥∥∥xt−τ
f − x∗

∥∥∥2]
− 2γη2 E

〈
∇f(xt

g), x
t
g + (pη−1 − 1)xt

f − pη−1x∗〉+ 2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

)
σ2

+ 2pγη

(
E [f(x∗)]− E

[〈
∇f(xt

g), x
∗ − xt

g

〉]
− µ

2

∥∥x∗ − xt
g

∥∥− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]

+ 2εγE
[∥∥∇f(x̃t−τ

g )
∥∥2]+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]

+ 23
L2d3γ3p2τ4

m3
σ2

)

+ 2γη(η − p)

(
E
[
f(xt

f )
]
− E

[〈
∇f(xt

g), x
t
f − xt

g

〉]
− µ

2

∥∥xt
f − xt

g

∥∥− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]

+ 2εγE
[∥∥∇f(x̃t−τ

g )
∥∥2]+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]

+ 23
L2d3γ3p2τ4

m3
σ2

)

≤ (1− β)(1 +
β

4
)E
∥∥xt − x∗∥∥2 + (β +

β2

4
− pγηµ)E

∥∥xt
g − x∗∥∥2 + (β2 − β)E

∥∥xt − xt
g

∥∥2
+ p2γ2η2

(
10

d2

m2
(δ2 + 1)− 1

p

)
E
∥∥∇f(xt

g)
∥∥+ 2pγη E f(x∗) + 2γη(η − p)E f(xt

f )

+ p2γ2η2τ(δ2 + 1)
d2

m2

(
32

τ2d2L2p2γ2

m2β
+

5

4

) t−1∑
r=t−τ

E
∥∥∇f(xr

g)
∥∥

+ εγηL(3p
d

m

√
δ2 + 1 + 2γηL)E

[∥∥xt−τ − x∗∥∥2]
+ εγηL(3p

d

m

√
δ2 + 1 + 2γηL)E

[∥∥∥xt−τ
f − x∗

∥∥∥2]
+ 2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

+ 23pγ3ητ4
d3

m3
L2 + pγητ2

d2

m2

(
16

τ2d2L2p2γ2

m2β
+

5

8

))
σ2,

where in the last inequality we used Lemma 5 and Assumption 1. Since β < 1, the choice of
pγηµ = 3β

2 gives

(1− β)(1 +
β

4
) ≤ 1− 3β

4
,

β +
β2

4
− pγηµ ≤ 3β

2
− pγηµ ≤ 0,

β2 − β ≤ 0.
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This lead us to

E[∥xt+1 − x∗∥2 + 2γη2(f(xt+1
f )− f(x∗))]

≤ (1− 3β

4
)E
∥∥xt − x∗∥∥2 + 2pγη2(1− p

η
)E[f(xt

f )− f(x∗)]

+ p2γ2η2

(
10

d2

m2
(δ2 + 1)− 1

p

)
E
∥∥∇f(xt

g)
∥∥

+ p2γ2η2τ(δ2 + 1)
d2

m2

(
32

τ2d2L2p2γ2

m2β
+

5

4

) t−1∑
r=t−τ

E
∥∥∇f(xr

g)
∥∥ (36)

+ εγηL(3p
d

m

√
δ2 + 1 + 2γηL)E

[∥∥xt−τ − x∗∥∥2]
+ εγηL(3p

d

m

√
δ2 + 1 + 2γηL)

2

µ
E[f(xt−τ

f )− f(x∗)]

+ 2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

+ 23pγ3ητ4
d3

m3
L2 + pγητ2

d2

m2

(
16

τ2d2L2p2γ2

m2β
+

5

8

))
σ2,

where we also used Assumption 2 and subtracted 2γη2f(x∗) from both sides. Next, we perform the
summation from t = τ to t = T > τ of equations (36) with coefficients pt:

T∑
t=τ

pt E[∥xt+1 − x∗∥2 + 2γη2(f(xt+1
f )− f(x∗))]

≤
T∑

t=τ

pt(1−
3β

4
)E
∥∥xt − x∗∥∥2

+

T∑
t=τ

pt2pγη
2(1− p

η
)E[f(xt

f )− f(x∗)] +
T∑

t=τ

ptp
2γ2η2

(
10

d2

m2
(δ2 + 1)− 1

p

)
E
∥∥∇f(xt

g)
∥∥

+

T∑
t=τ

ptp
2γ2η2τ(δ2 + 1)

d2

m2

(
32

τ2d2L2p2γ2

m2β
+

5

4

) t−1∑
r=t−τ

E
∥∥∇f(xr

g)
∥∥

+

T∑
t=τ

ptεγηL(3p
d

m

√
δ2 + 1 + 2γηL)E

[∥∥xt−τ − x∗∥∥2]
+

T∑
t=τ

ptεγηL(3p
d

m

√
δ2 + 1 + 2γηL)

2

µ
E[f(xt−τ

f )− f(x∗)]

+

T∑
t=τ

pt2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

+ 23pγ3ητ4
d3

m3
L2 + pγητ2

d2

m2

(
16

τ2d2L2p2γ2

m2β
+

5

8

))
σ2.

Similar as in Theorem 5 we take pt = pt, p = (1− β
2 )

−1, it implies pτ ≤ 6 and therefore

T∑
t=τ

pt E[∥xt+1 − x∗∥2 + 2γη2(f(xt+1
f )− f(x∗))]

≤
T∑

t=τ

pt

(
1− 3β

4
+ 6εγηL

(
3p

d

m

√
δ2 + 1 + 2γηL

))
E
∥∥xt − x∗∥∥2
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+

T∑
t=τ

pt

(
2pγη2(1− p

η
) + 12

εγηL

µ

(
3p

d

m

√
δ2 + 1 + 2γηL

))
E[f(xt

f )− f(x∗)]

+

T∑
t=τ

ptp
2γ2η2

(
10

d2

m2
(δ2 + 1)− 1

p
+ τ2(δ2 + 1)

d2

m2

(
32

τ2d2L2p2γ2

m2β
+

5

4

))
E
∥∥∇f(xt

g)
∥∥

+

τ∑
t=0

pt+τ8p
2γ4η2(δ2 + 1)

d3

m3
τ3L2

(
2p2d

mβ
+ 5

)
t−1∑

r=t−τ

E
∥∥∇f(xr

g)
∥∥

+

τ∑
t=0

pt+τεγηL(3p
d

m

√
δ2 + 1 + 2γηL)E

[∥∥xt − x∗∥∥2]
+

τ∑
t=0
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Taking
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,
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√
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we get
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√
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and therefore with β = p
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+ 23pγ3ητ4
d3

m3
L2 + pγητ
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Assume the following notation

∆τ :=

τ∑
t=0

pt+τ8p
2γ4η2(δ2 + 1)

d3

m3
τ3L2

(
2p2d

mβ
+ 5

)
t−1∑

r=t−τ

E
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Now we substitute pt, this lead us to

T∑
t=τ

(
1− β

2

)−t
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This implies(
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Rearranging this inequality and taking ε ≤
√
γm√
µd we obtain

E[∥xT+1 − x∗∥2 + 2γη2(f(xT+1
f )− f(x∗))]

≤
(
1− β
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)T−τ

E[∥xτ − x∗∥2 + 2γη2(f(xτ
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(
1− β

2

)T
∆τ + 6

√
γ

µ
σ2.

This finishes the proof.

H EXPERIMENTS

This section provides description of the experiment setup, presents and analyses results of logistic
regression experiments on LIBSVM datasets, studies dependence of history size over convergence.
Moreover, experiments with neural networks optimization for data-parallelism and model-parallelism
are presented and discussed.
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H.1 TECHNICAL DETAILS

Our implementation of compression operators and algorithms is written in Python 3.10, with the use
of PyTorch optimization library. We implement a simulation of distributed optimization system on a
single machine, which is equivalent in terms of convergence analysis. Our server is AMD Ryzen
Threadripper 2950X 16-Core Processor @ 2.2 GHz CPU and x2 NVIDIA GeForce GTX 1080 Ti
GPU. We use Weights&Biases Biewald (2020) for experiments tracking and hyperparameters tuning.

H.2 LOGISTIC REGRESSION EXPERIMENTS

We conduct experiments on classification with logistic regression on four datasets: Mushrooms,
A9A, W8A, MNIST. We apply the following optimization algorithms: proposed MQSGD and its
accelerated version AMQSGD, and also use Markovian compressors with popular DIANA Mishchenko
et al. (2019) algorithm. In all of our experiments, we do not utilize the steps of the optimizer, but
rather the information that is transmitted by each worker at the current timestamp t. This implies that
there are n workers, with each worker sending m coordinates at each iteration of the optimization
step. Consequently, the x-axis displays numbers of the form mn · 1,mn · 2, . . . ,mn · t, . . . ,mn · T .
This allows us to understand the performance of compressors with varying values of m and n.

We use convex logistic regression loss with a regularization term λ = 0.05. Each dataset is split
horizontally (by rows) equally between N = 10 clients. The feature dimension is denoted as d in the
figures, varying from hundreds to almost a thousand between datasets. The underlying sparsification
compressors in Rand-10% for all logistic regression experiments. Learning rate initial value and decay
rate are fine-tuned for each problem and compressor. Additionally, Markovian-specific parameters
such as history size K, forgetting rate b are also fine-tuned. Table 2 provides hyperparameters grid
for the tuning. We obtain optimal solution x∗ for each problem with scipy.optimize method in
order to use this value for the graphics.

Table 2: Hyperparameters values used for tuning in the experiments.

Hyperparameters Values List
Learning rate [0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1]

Learning rate decay rate [0.5, 0.8, 1]

History size K [1 . . . 40]

Forgetting rate B [1, 10, 15, 20, 30, 50]

Figures 5, 6 and 7 present relative distance to the optimum and gradient norm for the best runs on
MQSGD, AMQSGD and DIANA, respectively. We observe that Markovian compressors consistently
outperform the Rand-10% baseline in all scenarios, as the diverging trend can be seen. Only in some
experiments with DIANA (MNIST) the advantage is negligible although present. We also observe
that simpler and computational-effective BanLast compressor is often enough to achieve substantial
convergence improvement. Notably, fine-tuned hyperparameters are similar across datasets and
algorithms: for example, BanLast tends to perform best with largest possible values of history size
K, and KAWASAKI forgetting rate b is large. Notice that BanLast compressor with largest K turns
into round-robin compressor with (almost) no stochasticity in coordinates choice.
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Figure 5: MQSGD LIBSVM logistic regression experiments. Best run after hyperparameters tuning is displayed
for each method.
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Figure 6: AMQSGD LIBSVM logistic regression experiments. Best run after hyperparameters tuning is displayed
for each method.
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Figure 7: DIANA LIBSVM logistic regression experiments. Best run after hyperparameters tuning is displayed
for each method.

H.3 DEPENDENCE ON SIZE HISTORY

As a part of hyperparameter tuning, we additionally analyze how history size K affects the con-
vergence of Markovian compression-based methods. Figure 8 presents dependence of distance to
optimum metric on history size for logistic regression experiments. We observe that BanLast
performs better around larger values of K = 8 or K = 9. In such case for Rand10% used along with
BanLast(9), the compression procedure resembles a permutation: for each 10 iterations, no indices
are repeated, and the transmission cycle repeats after that. KAWASAKI history size seems to have
periodical spikes and drops, achieving minimum at around K = 25. However, statistics for DIANA
differ drastically, indicating that history size should be adjusted for each problem independently.

H.4 COMPARISON WITH PERMUTATION & NATURAL COMPRESSION

In this section, we provide empirical comparison of the proposed compressors with other complex
compression schemes.
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Figure 8: Convergence of Markovian-based algorithms on history size K
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Figure 9: Comparison with PermK compressor and Natural compression. PermK compression factor is 10,
Natural compression factor is 4. Logistic regression with L2 regularization on MNIST dataset for MQSGD,
AMQSGD and DIANA algorithms on N = 5 clients. Best run is shown after fine-tuning learning rate, its decay,
and Markovian compression parameters. X axis represent amount of information communicated.

Markovian compressors proposed in the paper compress vector coordinates dependently over opti-
mization epochs. A similar idea of distributed compression is proposed in PermK Szlendak et al.
(2021), where coordinates are arranged between workers at each iteration. Another compressor in the
consideration is Natural compression Horvath et al. (2022), an unbiased randomized compressor.

Results of comparison of these compressors on MNIST dataset are presented in Figure 9. The results
justify that Markovian compressors tend to converge faster than the competitors, allowing larger
learning rates.

H.5 COMBINATION WITH OTHER COMPRESSORS

Although markovian compressors are initially targeted to work with sparsification-based compres-
sors, refining coordinates selection probabilities, they are fully compatible with other compressors
afterwards. To illustrate this, and to conduct additional comparison with PermK compressor, we
setup experiments combined with Natural Compression . Precisely, we compare RandK+Natural,
PermK+Natural, BanLast+Natural and KAWASAKI+Natural compressors on logistic regression on
MNIST dataset.
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Figure 10: Experiments with Natural compression, MNIST logistic regression experiments. Best run after
hyperparameters tuning is displayed for each method.

Figure 10 shows results of combination of mentioned sparsification compressors with natural com-
pression.

H.6 NEURAL NETWORKS EXPERIMENTS: DATA PARALLELISM CASE

To adopt Markovian compression to a more complex task, we perform image classification on CIFAR-
10 Krizhevsky et al. (2009) with Resnet-18 He et al. (2016) convolutional neural network. We split the
training set of size 50, 000 equally between N = 5 clients. We use SGD optimizer with momentum
0.9 and weight decay 5 · 10−4. Hyperparameters such as batch size and learning rate are fine-tuned.
Markovian compresors hyperparameters, such as history size K and forgetting rate b are fine-tuned,
while activation function is set to ordinary normalization. Experiments are conducted with several
sparsification compressors, such as Rand-5%, Rand-7%, and Rand-10%, with number of epochs
adjusted for each case.

Figures 11, 12 and 13 present train loss, gradient norm and test accuracy for each baseline method
and Markovian compressors for Rand-5%, Rand-7% and Rand-10% scenarios, respectively. Summary
on best test accuracy is presented in Table 3, and extended numerical results for Rand-5% compressor
were presented in main experiments Table 1. We observe that in such complex, batched optimization
problem only KAWASAKI obtains a substantial convergence improvement, as opposed to simpler
logistic regression. Nevertheless, BanLast still performs the best when used with large history
size, while both history size and forgetting rate are low for KAWASAKI. In terms of achieved test set
accuracy, methods differ significantly only on higher compression rates like Rand-5%. This may
imply that Markovian compression tolerates stronger compression, which is useful in practice. To
summarize, Markovian compressors can be successfully applied in neural networks training, with
KAWASAKI compressor significantly improving convergence.

Finally, we also conduct the comparison with Permutatino and Natural compression, both inde-
pendently and in combination. Figure 14 shows learning curves for training with N = 20 clients.
KAWASAKI compressor appears to have best convergence in both independently and in combination
with Natural compression againt Permutation compressor.
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Figure 11: Resnet-18 on CIFAR-10 training results for Rand-5% sparsification.
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Figure 12: Resnet-18 on CIFAR-10 training results for Rand-7% sparsification.
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Figure 13: Resnet-18 on CIFAR-10 training results for Rand-10% sparsification.
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Figure 14: Comparison with other compressors on Resnet-18 training on CIFAR-10 dataset for Rand-5%
sparsification on N = 20 clients. Natural compression factor is 4. Left figure is sequential combination with
Natural compression. Right figure is comparison against PermK and Natural compressors independently, with
information sent on x-axis.

Table 3: Best test accuracy % of training ResNet-18 on CIFAR-10 with different compressors

Rand-K% Banlast KAWASAKI
Rand-5% 88.03 88.1 89.27
Rand-7% 89.31 89.38 90.28
Rand-10% 91.46 91.72 91.78

H.7 NEURAL NETWORKS EXPERIMENTS: MODEL PARALLELISM CASE

As opposed to data-parallel setting, model parallelism is paradigm which splits the model (typically a
deep neural network) to a pipeline of layers between workers. Such distributed scenario is especially
relevant for large language models (LLM), which consist of billions of trainable parameters. As
communication is a typical bottleneck in such systems Diskin et al. (2021), various compression
techniques are applied to layer activations and their respective gradients that are transferred between
adjacent pipeline workers. Such techniques include quantization and sparsification Dettmers et al.
(2022); Bian et al. (2023), as well as low-rank compression Song et al. (2023) techniques.

We perform training of Resnet-18 He et al. (2016) convolutional neural network on CIFAR-10
dataset Krizhevsky et al. (2009). We split the ResNet onto 4 workers by resnet blocks, simulated
on a single device with compression of activations and their respective gradients in the places of
communication. We apply Markovian compressors only to gradients in model-parallel setup, using
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same RandK compression for both activations and gradients independently for each compression
block.

Table 4: Best test accuracy % for model parallelism experiments with Resnet-18 classification of CIFAR-10

Compressor Compression ON Compression OFF
No compression 92.8 92.8
Rand10% 84.6 86.1
BanLastK+Rand10% 85.2 86.4
KAWASAKI(simplex projection)+Rand10% 84.5 85.0
KAWASAKI(normalize)+Rand10% 85.2 86.8
KAWASAKI(softmax)+Rand10% 85.3 87.3

Table 4 presents best test set accuracy achieved for training with different compressors. While
compression indeed decreases accuracy for Rand-10%, application of Markov compressors, especially
KAWASAKI with normalization and softmax activation functions, favours the final test accuracy on a
whole one percent. Note that compression is not applied during inference, only on training phase. This
case illustrates potential of Markov compressors beyond data-parallelism setup considered in theory.
In practical training of large neural networks, where both data-parallelism and model-parallelism are
often applied simultaneously, Markov compressors could also be useful, as per shown efficiency on
both these setups in separate.

H.8 FINE-TUNING DEBERTAV3-BASE ON GLUE DEVELOPMENT SET

In this series of experiments, we examine a distributed approach to fine-tuning language models using
LoRA (Hu et al., 2021). This method is based on freezing the model weights that are pre-trained on a
large dataset, and add a low rank adapter with matrices A ∈ Rn×r and B ∈ Rr×m to some selected
layers Wold ∈ Rn×m of this model, such that Wnew = Wold +A ·B. Since in practice the parameter
r is chosen to be much smaller than n and m, the new model has much fewer trainable parameters
and can be efficiently trained on downsteram tasks.

In our experiments, we apply LoRA adapters with fixed rank r = 8 to the attention layers of the
DeBERTaV3-base model (He et al., 2021). The downsteram task is the classical GLUE benchmark
for natural language understanding (Wang et al., 2019). We consider only random sparsification
compressors (Definition 4) with 25% compression rate, due to the large computational cost of this
experiment. Figure 15 shows learning curves for training with N = 10 clients. Our Markovian
compressors appears to have best convergence against independent Randm compressor.
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Figure 15: Comparison with other compressors on fine-tuning task on GLUE benchmark on N = 10 clients.
We performed experiments on SST2, QNLI and COLA tasks, they are arranged from left to right.
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