Under review as a conference paper at ICLR 2025

MARKOVIAN COMPRESSION: LOOKING TO THE PAST
HELPS ACCELERATE THE FUTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper deals with distributed optimization problems that use compressed
communication to achieve efficient performance and mitigate the communication
bottleneck. We propose a family of compression schemes in which operators trans-
form vectors fed to their input according to a Markov chain, i.e., the stochasticity of
the compressors depends on previous iterations. Intuitively, this should accelerate
the convergence of optimization methods, as considering previous iterations seems
more natural and robust. The compressors are implemented in the vanilla Quantized
Stochastic Gradient Descent (QSGD) algorithm. To further improve efficiency
and convergence rate, we apply the momentum acceleration method. We prove
convergence results for our algorithms with Markovian compressors and show
theoretically that the accelerated method converges faster than the basic version.
The analysis covers non-convex, Polyak-Lojasiewicz (PL), and strongly convex
cases. Experiments are conducted to demonstrate the applicability of the results
to distributed data-parallel optimization problems. Practical results demonstrate
the superiority of methods utilizing our compressors design over several existing
optimization algorithms.

1 INTRODUCTION

The optimization problem is currently a key issue in many practical applications, such as optimization
in neural network training, resource allocation in computational systems, and parameter tuning in
algorithmic trading strategies.

In addition, a variety of algorithms for optimization on a single device, such as SGD [Robbins
& Monro| (1951), Adam [Kingma & Ba) (2014), Lion [Yazdani & Jolai| (2016), have emerged and
been subjected to theoretical analysis. However, in the contemporary landscape of deep learning,
there is an increasing trend towards adopting intricate and expansive models that pose significant
training challenges. Prominent among these challenges are advanced deep learning frameworks for
image analysis, sophisticated natural language processing structures akin to transformers |Vaswani
et al.[(2017), and complex reinforcement learning methodologies designed for autonomous system
operations Kiran et al.|(2021)). As a result, the training of such models has become impractical for
execution on a single device due to their requirement for extensive data sets for training, which are
unfeasible to store on a single device. Consequently, optimization algorithms have been specifically
developed for distributed training [Verbraeken et al.| (2020); |Chen et al.|(2021). These methods utilize
a large number of devices, with each one processing distinct data subsets and participating in an
effective data exchange mechanism, thereby aiding in the training of these computationally intensive
models. Thus, the problem of classical optimization evolves into a distributed optimization form:

min {f(:c) = i;fi(w)} : (1)

where f; is a function, located on a device . This formulation encompasses not only distributed
learning, where data is dispersed across multiple devices to expedite training and facilitate the storage
of large amounts of data, but also extends to federated learning Konecny et al.|(2016)); [Li et al.| (2020);
Kairouz et al.|(2021), where data distribution is motivated by the architecture of the system itself,
allowing for decentralized model training while maintaining data privacy and integrity across diverse
devices.

A downside of this approach manifests as the complexity associated with the transmission of large-
scale data, a phenomenon often referred to as the "communication bottleneck" |Gupta et al.|(2021)).

Under review as a conference paper at ICLR 2025

This bottleneck can significantly impede the efficiency of the system, particularly in scenarios involv-
ing extensive data exchange across distributed networks. The challenge intensifies in environments
where the bandwidth is limited, requiring solutions to mitigate the impact of data transmission delays
and ensure seamless data flow.

The primary solution at present is the compression of transmitted information Bekkerman et al.
(2011); Chilimbi et al.[(2014); |Alistarh et al.|(2017), wherein not a whole package is sent, but rather
a selected subset. This method involves strategically selecting and compressing the most informative
segments of data for transmission. By doing this way, it significantly reduces the volume of data that
needs to be communicated across the network, thereby alleviating the communication bottleneck.

In recent times, a number of methods employing compression have been conceived and scrutinized
Mishchenko et al.|(2019); \Gorbunov et al.| (2021a); Richtarik et al.| (2021). However, a lot of studies
have utilized unbiased compression operators due to their simplicity and amenability to theoretical
analysis. Such compression techniques, including methods as random sparsification and value
rounding [Nesterov| (2012a); |Alistarh et al.| (2017); [Horvath et al.| (2022); Beznosikov et al.|(2023a)),
fail to consider the integration of information conveyed in prior iterations. We hence highlight a
potential research gap regarding the usage of previously transmitted data in compression operators
and optimization algorithms.

This omission raises the following research questions that we address in the paper:

e [s it possible to design compression operators that take into account information
about what and how we forwarded in previous iterations?

o What methods can we integrate this kind of compression operators into? How
does it affect the convergence rate of the methods, both in theory and in practice?
o Can the methods be made even more efficient, e.g., by using additional momentum
acceleration techniques?

In our paper, we focus on compression-based methods that take into account information collected
across multiple preceding iterations, employing what are termed as Markovian compression operators.
To the best of our knowledge, this approach emerges as novel and unexplored in the existing literature.

1.1 OUR CONTRIBUTIONS

New type of compression operators. We introduce a novel type of compressors that utilizes stochas-
ticity transmitted over several previous iterations. We refer to this type of compressors as Markovian,
because the states of these compressors can be viewed as a Markov chain. We examine two in-
vented examples of such compressors: BanLast (K, m) (Definition[3)) and KAWASAKI(K, b, ma,m)
(Definition [6). The first new compressor operates on a more intuitive basis: it works as random
sparsification, but prohibits the transmission of coordinates that were sent in the previous K iterations.
The latter functions in terms of probabilities: it reduces the likelihood of transmitting coordinates that
appeared in previous iterations. The KAWASAKI(K, b, ma, m) compressor is more flexible and, in
fact, modify the idea BanLast (K, m), but it introduces two hyperparameters that will be discussed
later in Section2.11

New algorithms. The compression operators described above give rise to new methods that utilize
them. In this context, our paper outlines a general framework based on |Alistarh et al.| (2017) for
distributed gradient descent algorithms that employ Markovian compression operators (MQSGD, see
Algorithm[T)). Subsequently, to make this basic algorithm faster we apply the multiple momentum
technique Nesterov| (2012a) and obtain the accelerated method AMQSGD. The formulation of such
an algorithm is detailed in Algorithm [2] The basic and accelerated methods are explored both
theoretically and experimentally throughout the paper. Furthermore, experiments utilizing Markovian
operators in the DIANA Mishchenko et al.| (2019) and SGD with momentum algorithms are conducted
in Section3l

Strongly convex and non-convex cases. Motivated by various applications primarily from machine
learning, we provide the theoretical analysis in the strongly convex (Theorem 3)) and non-convex / PL-
condition (Theorem 2)) cases of the target function f. Notably, we provide proper analysis for both
setups with specific cases, which is rarely present in the field.

Numerical experiments. We conduct experiments with Markovian compressors in a data-parallel
setup for several optimization problems and datasets. In particular, we analyze the proposed MQSGD
and AMQSGD, as well as the DIANA and SGD optimizers for distributed optimization. In all setups,
we observe an acceleration of convergence for methods employing the BanLast and KAWASAKI
compressors compared to the baseline random sparsification.

2

Under review as a conference paper at ICLR 2025

1.2 RELATED WORK

Compressed communications. The use of compressed communications is a fairly well-known idea
in distributed learning Seide et al.| (2014)). As soon as the main property of compressed messages
is that they are much easier to transfer, it can be reached in different ways, such as by quantizing
the entries of the input vector |Alistarh et al.| (2017); [Mayekar & Tyagi| (2019); |Gandikota et al.
(2020); Horvath et al.| (2022), or by sparsifying it Richtarik & Takac (2016)); Alistarh et al.|(2018), or
even by combining these ideas|Albasyoni et al.|(2020); [Beznosikov et al.|(2023a). However, all of
the compression operators could be roughly |(Condat et al.| (2023)) separated into two large groups:
unbiased and biased.

The first group is much easier to analyze and is therefore more broadly represented in the literature.
The basic method with unbiased compression was presented in |Alistarh et al.[|(2017). Later this
algorithms were modified using variance reduction technique with compression of gradient differences
Mishchenko et al.| (2019); Horvath et al.| (2019); |Gorbunov et al.|(2021a) in order to improve the
theoretical convergence guarantees. One can also note the works (Gorbunov et al.|(2019) and |Khaled
et al.| (2020), where the authors developed a general theory for SGD-type methods with unbiased
compression.

On the other hand, our understanding of distributed optimization with biased compressors is more
complicated. In particular, biased compression implies the use of error compensation techniques
Stich et al.|(2018). Distributed SGD with biased compression and linear rate of convergence in a
multi-node setting was first introduced in|Beznosikov et al.| (2023a). In the meantime, other error
compensation techniques are being actively developed, Lin et al.|(2022); |Richtérik et al.|(2021)). The
last approach called EF21 was later studied in [Fatkhullin et al.|(2021), (Gruntkowska et al.| (2023).
Markovian stochasticity. Another recent trend in the literature is to design algorithms that use
Markovian stochastic processes instead of 4.7.d. random variables in various ways. For instance, Duchi
et al.|(2012) introduced a version of the Mirror Descent algorithm that yields optimal convergence
rates for non-smooth and convex problems. Later, |[Doan et al.|(2020a); Dorfman & Levy|(2023);
Beznosikov et al.| (2023b) studied first-order methods in the Markovian noise setting. Alternatively,
token algorithms Hendrikx| (2022)); |Ayache et al.| (2022) are also a popular area of research in
Markovian stochasticity. In particular, Even|(2023)) obtained optimal rates of convergence, and |Sun
et al.[(2022); [Mao et al.|(2019); |Doan et al.| (2020b) looked at the token algorithm from the angle
of the Lagrangian duality and from variants of the ADMM method. At the same time, there exist
particular results, e.g., Bresler et al.|(2020), which provide a lower bound for the particular finite sum
problems in the Markovian setting.

Despite all of the above, to the best of our knowledge, there are currently no works that combine
compressed data communications and Markovian stochasticity of the compressors.

1.3 TECHNICAL PRELIMINARIES

Notations. We use (z,y) := Zle x;; to denote standard inner product of vectors x,y € R¢ and
(x ®y),; = x;y; to denote Hadamard product of vectors z,y € R?. We introduce l5-norm of vector
r € R?as ||z| := \/(z,2). We define 2* € R? as a point, where we reach the minimum in the
problem (T)). We also denote f* > —oo as a global (potentially not unique) minimum of f. We use a
standard notation for (d — 1)-dimensional simplex A, := {p €R?|p; >0 and Z?Zl pj = 1}

and for a set of natural numbers 1,n := {1,2,...,n}. We denote Cff1 as the binomial coefficient
(%)-

Throughout the paper, we assume that the objective functions f; and the function f from () satisfy
the following assumptions.

Assumption 1 (L;-smooth). Every function f; is L;-smooth on R% with L; > 0, i.e. it is differentiable
and there exists a constant L; > 0 such that for all z,y € R it holds that |V f;(z) — V f;(y)||*> <
L2 ||z —y|*. We define L? := L 3" L2

Assumption 2 (i-strongly convex). The function f is ji-strongly convex on R, i.e., it is differentiable
and there is a constant i > 0 such that for all z,y € R it holds that (u/2) ||z — y||* < f(z) —
f) = (Viy),z—y).

Assumption 3 (PL-condition). The function f satisfies the PL-condition, i.e., it is differentiable and
there is a constant 1 > 0 such that for all z € R? it holds that |V f (z)||> > 2u (f(z) — f*).

Under review as a conference paper at ICLR 2025

Assumption 4 (Data similarity). The functions f; are similar on R?, i.e., there are constants 6,0 > 0,
such that the following inequality holds for all z € R%: ||V fi(z) — V f(2)||> < 62 |V f(2)|* + o2.

The equation above implies that the data stored at each worker does not differ significantly. This
Assumption is quite standard in the literature [Shamir et al.| (2014)); [Arjevani & Shamir|(2015); |[Khaled
et al.[|(2020); Woodworth et al. (2020)); |Gorbunov et al.| (2021b); Beznosikov et al. (20225 2023b).

Now we introduce important definitions related to the theory of Markov processes.

Definition 1 (Markov chain). Markov chain with a finite state space {v,, }N_ is a stochastic process
{Xi}i>0, that satisfies Markov property, i.e. P{X; = vy | X4—1 = vp_1, X420 = v4—0,..., Xo =
Vo} = P{Xt =l | Xi—1= Vt71}-

Definition 2 (Ergodicity of Markov chain). Markov chain {X;}1>0 with a finite state space {v,}Y_
is referred to be ergodic if for any n € 1, N there exists tlim P{X; =v, | Xo =vo} = pn, where
—00

N
n=0

0 < pp, < 1does not depend on the vy. If Markov chain is ergodic, then {py} € An and there

exist 0 < p < 1,C >0, such that |P{X; = v, | Xo = o} — pn| < Cp'.

Definition 3 (Mixing time of the discrete Markov chain). We say that 7., (€) is the mixing time of
the ergodic Markov chain { X, }1> with stationary distribution {pn}ﬁ[:o, ifVe > 0,Vt > Tyin(e) —
mglN{|P{Xt =vp | Xo=w}—pnl} < € Pmin, Where ppin = minnem{pn}. From the
nel,

Deﬁnition it follows that Ty () > %.

These definitions are extremely important for further analysis of the Markovian compressors, which
are presented in the next section.

2 MAIN RESULTS

2.1 MARKOVIAN COMPRESSORS

In this section, we introduce Markovian compressors that take into account the information transmitted
in previous K operations. It is assumed that these compressors function within an iterative algorithm
aimed at minimizing the problem (I)), wherein a distinct discrete variable, denoted as the step ¢, is
involved. Consequently, due to the dependence of the compressors on previous states, they exhibit a
reliance on the step t. Let us narrow down the class of compressors to be discussed in this paper.
Definition 4 (Random sparsification). Q(x) is a random sparsification compressor, if it operates on
the vector v € R% as Q(v) = %x © L(vy), where vy is a set of m coordinates : vy C 1,d.

The classical Randm operator fits Definition] in particular, for this compressor subsets v; are
generated uniformly at each step ¢, therefore it is unbiased, i.e., E;[Q¢(x)] = z for all ¢. In this paper,
we do not generate v, independently, but according to some Markov chain, i.e., compressors start to
take into account past iterations. We formulate this idea as an assumption.

Assumption 5 (Asymptotic unbiasedness of Markovian compressors). We assume that operator)y
is a random sparsification compressor (DeﬁnitionEl) and {v},~, are realizations of some ergodic
Markov chain with uniform stationary distribution. B

Assumption [5)implies that in the limit as ¢ — co, the compressor @, is unbiased, i.e., E [Q¢(z)] —
as t — oo, because the stationary distribution of the Markov chain is uniform. We are now
ready to introduce two compressors that adhere to Assumption [5} The first compressor is called
BanLast (K, m), it prohibits sending coordinates that have been sent at least once in the last K
iterations.

Definition 5 (BanLast (K, m) compressor). Let Q:(x) be a random sparsification compressor
(Definition El) The j € vy are chosen according to the distribution p* € Ag and p is given by the

formula: o _
{07 lf J € UZ:%—K Vg,

p; = 1 .
T, Otherwise.

The BanLast (K, m) compressor exhibits a limitation in its utility due to an application restriction:
d > (K + 1)m, since we need at least m coordinates to have a non-zero probability at each
step t. In order to avoid these limitations, we introduce a more flexible Markovian compressor
KAWASAKI(K,b, ma,m).

Under review as a conference paper at ICLR 2025

Definition 6 (KAWASAKI(K,b, ma, m) compressor). Let Q.(x) be a random sparsification com-
pressor (Definition . The j € vy are chosen according to the distribution pt € Ag, which is given
by the formula:

1/d ¢

5t — ; . — ~t
pj - b# of choices j for the last K iterations v JE 1’ d’ p TA (p) ’

where b > 1 is a forgetting rate and 7w : R — Ay is an activation function.

The KAWASAKI(K, b, ma, m) compressor is now applicable for arbitrary values of d > m, and K.
However, it introduces two additional hyperparameters in comparison with BanLast (X, m), namely
b and ma. The parameter b is responsible for the how strongly we penalize a coordinate if it was
selected in previous iterations, the larger b is, the less likely we are to select a coordinate in step ¢ if it
was selected in steps ¢ — K to t — 1. The function 7 is required in order to obtain the probability
vector p* from the vector p ¥, the necessary conditions for this function will be introduced later. The
following examples illustrate potential selections for ma:

(ma (P)); = Ip;l/lIPll, 7a (P) = Softmax (p), 7a (p) = arg glin{llﬁ— plI*}-
PEA4
We now provide an example where using the Markovian compressor BanLast (K, m) (Definition 3]
speeds up the optimization process by a factor of three compared to the unbiased compressor Randm.

Example 1. Consider the QSGD algorithm (Algorithm|[I), which solves the problem (I)) in the case
n =1, of the form x'*1 = 2t — yQ(V f(a?)). Assume that at some step t we observe gradient of the
form (1,0, ...,0)T € R% In the QSGD algorithm, we compress the gradient at each step, therefore,
we do not always send the first coordinate to the server, i.e. we do not move from the point x?.

In the case of m = 0.1 - d, i.e. we send 10% of all coordinates at each step, if we use the
BanLast(K,m) compressor, then the mathematical expectation of the number of steps to leave the
point 2t is approximately 3.4 in the case of K = 7. For Rand10% this number is equal to 10, i.e. we
speed up the optimization process by a factor of three. For arbitrary values of d and m, the formula
for calculating the number of steps to leave the point z* is provided in Appendix@

Moreover, in Appendix we obtain more general results for an arbitrary value of « € (0; 1] with
d = « - m. In particular, we find the exact expression for the dependence of the number of steps
to leave the point z¢. For each fixed o we can find the optimal value of K*(«). It turns out that
empirically this dependence is close to a linear one of the form K*(«) ~ 0.73 - o. Such a rule can be
used as an automatic way of choosing K.

We now present a theorem demonstrating that our Markovian compressors from Definitions 5] and 6]
satisfy the conditions outlined in Assumption 5}

Theorem 1 (Asymptotic unbiasedness of BanLast (K, m) and KAWASAKI(K,b, ma, m)). Com-
pressors from Definitions and [6] can be described using Markov chains with states
{vi,v2, .y I/K}Vl . Where M is the set of all subsets of 1,d of size m. Moreover,

e BanLast(K,m) (Deﬁnition@) is ergodic with a uniform stationary distribution, if d > (K +1)m.
o Ifd> (2K + 1)m, then for BanLast(K,m) we get

C(T—2Km K C{T—ZKm Y
p=1[1- () and C = 1~ (m)
\/ (Cdem)2 (Cdem)2
o If for all permutations ¢ of the set 1,d it holds that Ta (¢ (p)) = & (7a (D)), then
KAWASAKI(K,b, ma, m) (Definition[6)) is ergodic with a uniform stationary distribution.

o If(ma(p)); = Ip;l/IIP

1, then

p=1= [—m®" ~1)] " and € = (1~ [@" — m(p* - 1)]”’”()71)

The proof of Theorem [I]is provided in Appendix [C] The outcomes of Theorem [I]hold significant
importance for the subsequent investigation of algorithms aimed at solving problem (I)) employing
Markovian compressors. Note that the examples of activation functions ma provided above satisfy
the conditions of Theorem/[dl

Under review as a conference paper at ICLR 2025

2.2 DISTRIBUTED GRADIENT DESCENT WITH MARKOVIAN COMPRESSORS

In this section, we propose a new algorithm Markovian QSGD (Algorithm). This algorithm is
similar to the vanilla QSGD |Alistarh et al.| (2017), but in line [/ l of Algorlthmﬂ] we use Markovian
compressor (¢, that we introduced in Sectlon L i.e., Qi can be either BanLast (K, m) (Definition
[B) or KAWASAKI(K, b, A, m) (Definition[6).

Theorem 2 (Convergence of MOSGD (Algorithm[I))). Consider Assumptions and[d] Let the
problem (1)) be solved by Algorithm |}
e Foranye,y>0,T > 7T > Tp(€) satisfying conditions, described in Appendix it holds that

(956N - 0 (5 + 258

where 2T is chosen uniformly from {xt}fzo.

o If f additionally verifies the PL-condition (Assumption|3)), then for any € > 0, v > 0, T > Tpix(€)
and T > 1 satisfying conditions, described in Appendix it holds that

yd*Lt
FT:0<(1—’1‘;) P4t = 2)

Here we use the notations Fy := E[f(a') — f(z*)] and F; :=E[f(27) — f(z*)].

The proof of Theorem [2]is provided in Appendix Algorithm 1 Markovian QSGD (MQSGD)

If Assumption] does not hold we ob- . Input: starting point 2° € R
serve different results, which are provided in the 5. step size v > 0 ’
Appendix [} 3: number of iterations T

Usually in convergence evaluations of various meth- 4: for ¢ = 0 to 7" do

ods, expressions with the term of Fy, i.e., something 5 Broadcast z? to all workers
that depends on the initial choice, arise as constants, 6 for ¢ = 1 to n in parallel do
but in Theorem 2} a term of the form F, appears. 7: Set ¢! = Q% (Vfi(z1))
8.
9

This can be explained by the fact that at iterations Send ¢! to the server

from ¢t = 0 — 7 the Markov chain has not yet been end for

stabilized, and the initial state can be taken as ¢t = 7. 10: Aggregate ¢' % i gf

Sketch proof of Theorem 2] Let us write out a =t

descent lemma of the form 11 Update z' ™! = 2! — g
12: end for

E [[lo" - o]

)-x[ie-

%ZEKQ?Z(WW)) Vfi(ah), 2" —2)] +9°E H ZQt Vfila

2} —2E [’y <Vf(xt),a:t — x*>]

3

@

The expression @ in (@) is zero if Q; are unbiased and independent from iteration ¢, be-
cause E [<Q§(Vf(xt)) Vii(xh),at —x >} =FE [<Ef [Qi(Vf(xt)) — Vfi(zt)] b — :1:*>] =0,
where E; [-] is the conditional expectation at a step ¢. Therefore, the theory for such compressors
is highly developed. In our case, Q(x*) are unbiased only if ¢ — s — oo, which follows from
asymptotic unbiasedness of our Markovian compressors obtained from Assumption [5} However, we
can use some coarsening rather than unbiasedness when ¢t — s = 7, where 7 > T« (€), using the
technique of "stepping back" as follows:

E [(Q} () — a7 57)] < R ot 5] @

Importantly, we must apply the compressor Q; at step ¢ to the vector a*~7 at step ¢ — 7, since if we
apply it to the vector a® at step ¢, we will not be able to uncover the conditional expectation, since we
will have randomness in a! (see details in Appendix @]) As can be seen from (3)) we need to apply the
last inequality with a'~™ = V f;(z*~7) and b7 = 2'~7 — 2*, but in (3) we only obtain expression
with variables at step ¢, therefore, it has to be handled in some way. In order to resolve this issue we
use a straightforward algebra:

Under review as a conference paper at ICLR 2025

E KQ% (Vfl(xt)) — Vi), 2" — ac*>] =K [<Qi (Vfi(a?t—T)) —Vfilx™), 2T — x*>]

~E [<Qi (VSi(a") = VHi(a'™) = Vfi(a") + Vila'),a" - >]
®)
+E

<Qi (Vfi(z") = Vfi(a"™ 7)) = Vfi(z") + Vfi(z"7),a" - x*>‘|
+E[(Q; (Vfiz") = VSi(a'), 2" —2"7T)].

The first term in the last inequality (3)) is solved with the e-inequality (@), other scalar products are
solved using the Fenchel-Young inequality. Terms with E ||zt — 2t~ ||2 are evaluated using line
9 of Algorithm gt — 2T = 43T g*. Terms with E Qi (V fi(at) — Vfi(xt_f))H2 are
obtained from the following inequalities (see details in Appendix |E):

2712

Qi (V1) ~ V1) < S5 195@) - Vi) < 5

2
[= ylI”

Since the evaluation of E ||z — 2* H2 raises the terms of the form E ||z*~7 — 2*||*, we have to do

a summation of E Hmt“ —z* H2 from ¢t = 7 tot = T. These terms greatly complicate the proof of
Theorem [2] compared to the unbiased compressors. The results of Theorem [2]can be rewritten as an
upper complexity bound on a number of iterations 7" of the Algorithm [I|by carefully tuning the step
size .

Corollary 1 (Step tuning for Theorem [2).

e Under the conditions of Theorem [2|in the non-convex case, choosing - as in Appendix in

order to achieve the e-approximate solution (in terms of E {HVf(:z:T) HZ] < €2), it takes

Lrd® | (6 +1 o°

@] (7-2FT <_2|_ + U4>> iterations of Algorithm|[I]
m € €

o Under the conditions of Theorem2in the PL-condition (Assumption[3) case, choosing v as in

Appendix in order to achieve the e-approximate solution (in terms of E [f (xt) — f(z*)] <€), it

takes

d’L 1 2
@ (5 T ((52 +1)log <> + 0)) iterations of Algorithm|[I}
m2pu € L€

2.3 ACCELERATED METHOD Algorithm 2 Accelerated Markovian QSGD (AMQSGD)

After giving the convergence re-
sult for the vanilla distributed
SGD with Markovian compres-
sion operator, we now move 2: p , .
on to the accelerated scheme. ° Update z, = 0 + (1 — 0)z
Since we do not assume bound- 4 Broadcast xz to all workers
edness of the gradient variance, 5: for i = 1 to n in parallel do

6.

7

8

9

1: Input: starting point z° € R?, step size v > 0, momentums
0,7, 5, p, number of iterations T'
fort =0to T do

the classical Nesterov acceler- Set gt = Qi (V fi(xh))
ation |[Nesterov| (2014} does not Send gf to the server
produce the expected effect, and end for
therefore an additional momen-
tum has to be introduced Nes+
terov| (2012b)); [Vaswani et al| 10: Update z'™! = PYg
(2019). By applying a multi- f+1 t+1 t

. Al 11 Update 271 = na’™ + (p — n)zf
step strategy partially similar to A R
Beznosikov et al] 2023b), we % + (1 =p)(1 = pB)z' + (1 —p)Buxy
obtain our Algorithm 2} 13: end for
Theorem 3 (Convergence of AMQSGD (Algorithm[2)). Consider Assumptions![l] Let the problem

(T be solved by Algorithm[2| Then for any v,e > 0, T > 7 > T,ux(€), B, 0,m, p satisfying conditions,
described in Appendix it holds that

-

Aggregate g = gt

K2

1
t

S s

Under review as a conference paper at ICLR 2025

2 2
Fry = (’)(exp —(T—-1) b ?'iw Fr+exp |-T b ?'iw A+ 202)
Here we use the notations: Fy = E[|z' — 2*|* 4+ 3/u(f(z}) — f(z*))] and A, <

PR ST G (EIVE I+ Eflaf — 27| + Ef () — f(2")).

The above theorem shows that in the strongly convex case Accelerated Markov QSGD with constant
step-size can attain sublinear convergence. In terms of dealing with Markovian stochasticity, its proof
follows quite similar ideas as the proof of Theorem[2} here again we use the technique of stepping
back for mixing time, which allows us to effectively deal with the bias of the gradient estimator.
The full proof is provided in Appendix[G.3] The results of Theorem [3|can be rewritten as an upper
complexity bound on a number of iterations 7" of the Algorithm [2]by carefully tuning the step size ~.
Corollary 2 (Step tuning for Theorem [3). Under the conditions of Theorem[3] choosing ~y as in

Appendix in order to achieve the e-approximate solution (in terms of E [HxT -z ||2] <€), it

d*L375 1 2
@) (2373 <(52 +1)log () + U)) iterations of Algorithm|2}
€ 1L€

Pl
m2us

takes

2.4 DISCUSSION

Our Example [T] and the numerical experiments in Section [3] show that the using of Markovian
compressors could lead to a better performance quite well, however, the theoretical guarantees turn
out to be poorer than in the unbiased case. In particular, if we use Randm in the QSGD algorithm,
then we observe the following estimates [Beznosikov et al.| (2023al)):

T d o?
Xp=0((1-—mw) Xo+y——,
mun
where X; = E [||a:t —z* ||2} and vy < m. However, Theoremgives us such estimates:

FT:O<(1_W)TFT—|—7d2 7'[/;0'2)7

m2

2 ..
where F; := E [f(27) — f(2*)] and v < m. It is important to note that not only has
the theory for Markovian compressors not yet been studied, but also dealing with the Markovian
stochasticity itself implies quite strict limitations. For instance,

d/m vs d?/m?. We are forced to uniformly bound the noise of the compressor (linearity in the
compression constant is prevented by this) due to the impossibility of using the expectation trick, in
contrast to the unbiased case |Beznosikov et al.|(2023a)), where the authors estimated the variance of
the compressor noise. The assumption of uniformly bounded noise cannot be rejected by any authors
who work with Markovian stochasticity Beznosikov et al.|(2023b)); Dorfman & Levy|(2023)); |Doan
et al.| (2020a); [Sun et al.[(2018)); [Even| (2023), therefore, there is no possibility to achieve linearity in
the compression rate in our theoretical guaranties, according to the current theoretical advances.

Mixing time. Furthermore, it is imperative to emphasize that it follows from Theorems [2] and
that the convergence rate is improved as 7 (and, consequently, K') diminishes. In other words, the
distribution of the compressor’s underlying Markov chain has to converge to a uniform distribution
as fast as possible, but empirically one wants the choice of coordinates to depend on previous
iterations rather than be random (e.g. for Randm compressor 7 = 1, K = 0). This causes a logical
contradiction: while using a large K will theoretically give poorer convergence, in practice algorithms
with non-zero values of K perform better (see Section [3)). It is also worth mentioning that when
Markovian stochasticity is employed, we can never avoid 7 in our estimates, since it appears in the
lower bounds on the convergence rate of methods that involve Markovian properties Bresler et al.
(2020). Thus, our Algorithms[I]and 2] have a reasonably good polynomial dependence on mixing
time (Theorem [2] shows an optimal estimation in terms of 7), considering the fact there are several
works Doan et al.| (2020b) whose bounds include terms that are even exponential in the mixing time.

L/ p. Tn spite of the difficulties listed above, we still can observe that the momentums implementation
in Algorithm gives an acceleration in terms of L/u compared to vanilla QSGD (Algorithm . In

Under review as a conference paper at ICLR 2025

the classical version of accelerated Gradient Descent, one can achieve an acceleration of the form
\/L /1t Nesterov| (1983), but our analysis allows only to achieve (L/z)?/3 in Theorem [3| When
Markovian stochasticity is employed, it is also possible to achieve estimation of the form /L/pu
Beznosikov et al.| (2023b), but it is obtained by using batches with size scaled as 27, where j is drawn
from a truncated geometric distribution. Unfortunately, this specific batching technique cannot be
applied in our paper, as we consider compressors that act as random sparsification (Definition [)),
which necessitates that the gradient be compressed only once at each iteration.

Variance reduction. In our paper, we focus on the QSGD method and its accelerated version
(Algorithms[T|and [2)). However, in modern studies on distributed optimization, techniques of variance
reduction are of a great interest (DIANA Mishchenko et al.| (2019), MARINA |Gorbunov et al.|(2021al),
DASHA [Tyurin & Richtarik (2022)), because these methods converge linearly to the exact solution
of the problem (I)), while QSGD (Algorithms |I| and converges only to the o2-neighborhood of
the solution. We implement Markovian compressors (Definitions [5|and [6) in these methods in our
experiments, but we do not provide theoretical guarantees for such algorithms since we have just
developed a theoretical baseline for the study of Markovian compressors. This represents a promising
direction for future research.

Even though it is not entirely clear whether it is possible to achieve significant improvements in
the theoretical results, due to the peculiarities of dealing with Markovian randomness, for now we
could only highlight a significantly better performance of Algorithms [I]and [2]compared to a similar
algorithms using a vanilla unbiased compressor Randm (see Section g

3 EXPERIMENTS

In order to justify the practical usage of the proposed methods and analyze their behavior, we
conduct a series of experiments using Markovian compression on distributed optimization problems,
specifically logistic regression and neural network-based image classification. We observe that
Markovian compressors, when used with MOSGD and AMQSGD, as well as with classical SGD and
DIANA Mishchenko et al| (2019), improve convergence on several benchmarks. Appendix[H|provides
a description of the technical setup, extended experiments with hyperparameters analysis, and an
application of Markovian compressors to model-parallel neural network training.

3.1 LOGISTIC REGRESSION

Firstly, we experiment on a classification task using a logistic regression model with Lo regularization

of the form: 1
. _ T 2
min {f(w) = 3 log(1 + exp(—ysw’.)) + Alw]*}.
wERd
i=1
with a regularization MQSGD on MNIST MOSGD on MNIST
term A = 0.05. The 10! e
. . —e— Ran o J —e— Rand@10)
dataset is split among A 10-1 o Perm(@/10) LV Perm(d/10)
= 1 lients. 32 Natural (x4) 10—t I\ 0 Nawral (x4)
n 0 clients We AT | s w0) - BanLast(9, d/10)
use Mushrooms, A9A, & 1077 17 A KAWASAKI(S, 50.|5:|/||]l2.0/10) | ; 1072 4 == KAWASAKI(28, 50,7 |/[|]11.4/10)
and W8A datasets from ~ - 1 = m
X . 107° 4 1072 o
LibSVM Chang & Lin ; ; —————
0.0 0.5 1.0 1.5 0.00 0.25 0.50 0.75 1.00 1.25 1.50
(2011) and MN,IST Deng Information sent x10° Information sent x10°
(2012). Experiments are AMQSGD on MNIST AMQSGD on MNIST
conducted using Python 10° 4
B =& Rand(d/10) =& Rand(d/10)
3.10 and PyTorch, and a - "1 3 Perm(d/10) SR Perm(d/10)
s gl . . BE Natural (x4) = T N Natral (x4)
d.IStrlbuted env1r0nment 18 II 10-3 4~ BanLast(9, d/10) B o ~ll= BanLast(9, d/10)
simulated. We experiment <R —A— KAWASAKI(29, 50,5 | /||5]]1.d/10) o “[; 1077 37 A KAWASAKI(Q9, 50, 5] /||5]|1,4/10)
. 22 > i
with MQSGD, AMQSGD, 1075 -q 107 4
and DIANA optimizers, T T 1

0.0 0.5 1.0 1.5 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Information sent x10° Information sent x10°

employing Rand-10% as a
sparsification compressor.
Markovian compressors Figure 1: Logistic Regression on MNIST experiments results. All hyperparame-
were utilized indepen- ters are fine-tuned, and best runs are selected.

dently on each client, with normalization activation function, and with all hyperparameters being
fine-tuned.

Figure[T]shows the convergence of the Rand-10% baseline and Markovian compressors on the MQSGD
and AMQSGD algorithms on MNIST dataset. Both Markovian compressors achieve faster convergence

Under review as a conference paper at ICLR 2025

than the baseline and more complex compressors like PermK |Szlendak et al.| (2021]) and Natural
compressors [Horvath et al.[(2022)). In most of our results, BanLast and KAWASAKI show similar
performance with fine-tuned hyperparameters. Experiments on other datasets, and tuning history size
K tuning analysis appear in Appendix [H.2] Additionally, as our compressors are fully compatible
with classical compressors, we conduct experiments on combination with Natural compression in

Appendix [H.3]
3.2 NEURAL NETWORKS

We also apply Markovian compressors in more complex optimization tasks, such as image clas-
sification on CIFAR-10 [Krizhevsky et al.| (2009) dataset with ResNet—18 convolutional neural
network He et al.|(2016). Formally, we solvenoptimization problem:
1

min w) = — [(softmax(f(x;, w)), 4},

amin, {£w) = 537 lsoftmax((.,))
where x; is a training image, y; is its respective class, and [() is a cross-entropy
loss function. Dataset is split equally between n = 5 clients. We use Rand-
5% sparsification operator and SGD optimizer with cosine annealing LR schedule.

Hyperparameters, such) . o
as the learning rate, batch Table 1: Numerical results of training ResNet-18 on CIFAR-10 with different

size, and Markovian- compressors. Each cell represents mean + standard deviation over 5 runs.

SpeClﬁC ones are fine- Rand-5% Banlast KAWASAKI

tuned. Train Loss 0.0743 £0.003 0.0734 £ 0.003 _ 0.0305 =+ 0.001
Figure [J] depicts the train- _ Gradient Norm _ 1.403£0.029 1.38320.035 0.74510.015
ing loss and gradient norm, ~_TestAccuracy __ 87.9 £0.179 88.0£0.122 89.05 - 0.294

with the aggregate values Training ResNet-18 on CIFAR-10 Training ResNet-18 on CIFAR-10
shown in Table @ As ; P r——— 5% 10°
in the previous case, the B BanLast(19, d/20) EE—
application of the Marko- < N LA RASARID, 311511420 | £2
vian compressor favours = - s -_:_- Rand(d/20)

= 10 BanLast(19, d/20)
faster convergence and bet- A KAWASAKIO0, 5[5/ I7]11.420) |
ter validation results. Note T T T T T T T T T T
h f 1 0 50 100 150 200 0 50 100 150 200
that for more complex op- Epochs Epochs

timization task, smoother
history accumulation (as in ~ Figure 2: Image classification with ResNet-18 on CIFAR-10 experiments results.

KAWASAKT) is required. Best runs for each method are displayed.
Training ResNet-18 on CIFAR-10 Training ResNet-18 on CIFAR-10

Flgure @ presents com- ; Rand(d/20)+Natural 100

parison with Permutation 107 5 Perm(@20p+Nataral
—~ - BanLast(19, d/20)+Natural —~

and Natural compression, =, A~ KAWASAKI(10, 5.5;| /|| |1 /200 Natural | & 107

=S
=@= Rand(d/20)
Perm(d/20)

il

which confirm practical = 1 _ = : Natural ()
. BanLast(19, d/20)
usefullness of Markovian 10~ Ay R AWASARITO S5 [P 200
compressors on more com- r r T T : : . . .
1 d t. 0 50 100 150 200 0 1000 2000 3000 4000
plex and non-convex opu- Epochs Information sent

mization problems. Note

that our compressors can Figure 3: Comparison with other compressors on Resnet-18 training on CIFAR-
be applied in combination 10 dataset for Rand-5% sparsification on N = 20 clients. Natural compression
with complex randomized factor is 4. Left figure is sequential combination with Natural compression.
Right figure is comparison against PermK and Natural compressors indepen-

compressor like Natural ure ¢ ¢
dently, with information sent on x-axis.

compression, making our
method even more flexible.

4 CONCLUSION
In this paper, we propose a family of compression schemes, which takes into account previous
iterations of algorithm and transform the input vector according to a Markov chain. We develop two
sparsification methods BanLast (DeﬁnitionEI) and KAWASAKI (Deﬁnition@ based on this idea.
These compressors are implemented in QSGD (Algorithm[T)) and accelerated QSGD (Algorithm
. We provide convergence rates under different assumptions on the objective function (Theorems
@and B). In experiments, we show that our compression methods outperform the baselines in the
deep neural network optimisation problem. Future research may consider the implementation of our
Markovian compressors in other optimization methods, e.g. using the variance reduction techniques.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Alyazeed Albasyoni, Mher Safaryan, Laurent Condat, and Peter Richtarik. Optimal gradient com-
pression for distributed and federated learning, 2020.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in neural information processing
systems, 30, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric
Renggli. The convergence of sparsified gradient methods, 2018.

Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and
optimization. Advances in neural information processing systems, 28, 2015.

Ghadir Ayache, Venkat Dassari, and Salim El Rouayheb. Walk for learning: A random walk approach
for federated learning from heterogeneous data, 2022.

Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning: Parallel and
distributed approaches. Cambridge University Press, 2011.

Aleksandr Beznosikov, Pavel Dvurechenskii, Anastasiia Koloskova, Valentin Samokhin, Sebastian U
Stich, and Alexander Gasnikov. Decentralized local stochastic extra-gradient for variational
inequalities. Advances in Neural Information Processing Systems, 35:38116-38133, 2022.

Aleksandr Beznosikov, Samuel Horvdth, Peter Richtdrik, and Mher Safaryan. On biased compression
for distributed learning. Journal of Machine Learning Research, 24(276):1-50, 2023a.

Aleksandr Beznosikov, Sergey Samsonov, Marina Sheshukova, Alexander Gasnikov, Alexey Naumov,
and Eric Moulines. First order methods with markovian noise: from acceleration to variational
inequalities. arXiv preprint arXiv:2305.15938, 2023b.

Song Bian, Dacheng Li, Hongyi Wang, Eric P. Xing, and Shivaram Venkataraman. Does compressing
activations help model parallel training?, 2023.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL fhttps://
www.wandb.com/. Software available from wandb.com.

Guy Bresler, Prateek Jain, Dheeraj Nagaraj, Praneeth Netrapalli, and Xian Wu. Least squares
regression with markovian data: Fundamental limits and algorithms, 2020.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1-27, 2011.

Mingzhe Chen, Deniz Giindiiz, Kaibin Huang, Walid Saad, Mehdi Bennis, Aneta Vulgarakis Feljan,
and H Vincent Poor. Distributed learning in wireless networks: Recent progress and future
challenges. IEEE Journal on Selected Areas in Communications, 39(12):3579-3605, 2021.

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam:
Building an efficient and scalable deep learning training system. In //th USENIX symposium on
operating systems design and implementation (OSDI 14), pp. 571-582, 2014.

Laurent Condat, Kai Yi, and Peter Richtarik. Ef-bv: A unified theory of error feedback and variance
reduction mechanisms for biased and unbiased compression in distributed optimization, 2023.

Li Deng. The mnist database of handwritten digit images for machine learning research. /IEEE Signal
Processing Magazine, 29(6):141-142, 2012.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318-30332, 2022.

Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier, Anton Sinitsin, Dmitry Popov,
Dmitry V Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova del Moral, et al.
Distributed deep learning in open collaborations. Advances in Neural Information Processing
Systems, 34:7879-7897, 2021.

11

https://www.wandb.com/
https://www.wandb.com/

Under review as a conference paper at ICLR 2025

Thinh T. Doan, Lam M. Nguyen, Nhan H. Pham, and Justin Romberg. Convergence rates of
accelerated markov gradient descent with applications in reinforcement learning, 2020a.

Thinh T. Doan, Lam M. Nguyen, Nhan H. Pham, and Justin Romberg. Finite-time analysis of
stochastic gradient descent under markov randomness, 2020b.

Ron Dorfman and Kfir Y. Levy. Adapting to mixing time in stochastic optimization with markovian
data, 2023.

John C. Duchi, Alekh Agarwal, Mikael Johansson, and Michael I. Jordan. Ergodic mirror descent,
2012.

Mathieu Even. Stochastic gradient descent under markovian sampling schemes, 2023.

Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtarik. Ef21 with bells &
whistles: Practical algorithmic extensions of modern error feedback, 2021.

Venkata Gandikota, Daniel Kane, Raj Kumar Maity, and Arya Mazumdar. vqsgd: Vector quantized
stochastic gradient descent, 2020.

Eduard Gorbunov, Filip Hanzely, and Peter Richtarik. A unified theory of sgd: Variance reduction,
sampling, quantization and coordinate descent, 2019.

Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtarik. Marina: Faster non-
convex distributed learning with compression. In International Conference on Machine Learning,
pp- 3788-3798. PMLR, 2021a.

Eduard Gorbunov, Filip Hanzely, and Peter Richtarik. Local sgd: Unified theory and new efficient
methods. In International Conference on Artificial Intelligence and Statistics, pp. 3556-3564.
PMLR, 2021b.

Kaja Gruntkowska, Alexander Tyurin, and Peter Richtarik. Ef21-p and friends: Improved theoretical
communication complexity for distributed optimization with bidirectional compression, 2023.

Vipul Gupta, Avishek Ghosh, Michal Derezinski, Rajiv Khanna, Kannan Ramchandran, and Michael
Mahoney. Localnewton: Reducing communication bottleneck for distributed learning. arXiv
preprint arXiv:2105.07320, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention, 2021. URL https://arxiv.org/abs/2006.03654/

Hadrien Hendrikx. A principled framework for the design and analysis of token algorithms, 2022.

Samuel Horvath, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtarik. Natural compression for distributed deep learning, 2022.

Samuel Horvath, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtarik.
Stochastic distributed learning with gradient quantization and variance reduction, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1-2):1-210, 2021.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. Tighter theory for local sgd on identical
and heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pp.
4519-4529. PMLR, 2020.

12

https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani,
and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. [EEE
Transactions on Intelligent Transportation Systems, 23(6):4909-4926, 2021.

Jakub Konec¢ny, H Brendan McMahan, Felix X Yu, Peter Richtérik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

LiLi, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Computers
& Industrial Engineering, 149:106854, 2020.

Chung-Yi Lin, Victoria Kostina, and Babak Hassibi. Differentially quantized gradient methods, 2022.

Xianghui Mao, Kun Yuan, Yubin Hu, Yuantao Gu, Ali H. Sayed, and Wotao Yin. Walkman: A
communication-efficient random-walk algorithm for decentralized optimization, 2019.

Prathamesh Mayekar and Himanshu Tyagi. Ratq: A universal fixed-length quantizer for stochastic
optimization, 2019.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takac¢, and Peter Richtérik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341-362, 2012a. doi: 10.1137/100802001. URL https
//doi.org/10.1137/100802001l

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k**
2). Doklady Akademii Nauk SSSR, 269(3):543, 1983.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
J. Optim., 22:341-362, 2012b. URL https://api.semanticscholar.org/CorpusID:
1424102.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 1 edition, 2014. ISBN 1461346916.

J v Neumann. Proof of the quasi-ergodic hypothesis. Proceedings of the National Academy of
Sciences, 18(1):70-82, 1932.

Peter Richtarik and Martin Takac¢. Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156:433-484, 2016.

Peter Richtarik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better,
and practically faster error feedback. Advances in Neural Information Processing Systems, 34:
4384-4396, 2021.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400407, 1951.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Interspeech, 2014. URL
https://api.semanticscholar.org/CorpusID:2189412.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization
using an approximate newton-type method. In International conference on machine learning, pp.
1000-1008. PMLR, 2014.

Jaeyong Song, Jinkyu Yim, Jaewon Jung, Hongsun Jang, Hyung-Jin Kim, Youngsok Kim, and Jinho
Lee. Optimus-cc: Efficient large nlp model training with 3d parallelism aware communication
compression. In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, pp. 560-573, 2023.

13

https://doi.org/10.1137/100802001
https://doi.org/10.1137/100802001
https://api.semanticscholar.org/CorpusID:1424102
https://api.semanticscholar.org/CorpusID:1424102
https://api.semanticscholar.org/CorpusID:2189412

Under review as a conference paper at ICLR 2025

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. Advances
in Neural Information Processing Systems, 31, 2018.

Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient descent. Advances in neural
information processing systems, 31, 2018.

Tao Sun, Dongsheng Li, and Bao Wang. Adaptive random walk gradient descent for decentralized
optimization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 20790-20809. PMLR, 17-23 Jul
2022. URLhttps://proceedings.mlr.press/v162/sun22b.html.

Rafat Szlendak, Alexander Tyurin, and Peter Richtarik. Permutation compressors for provably faster
distributed nonconvex optimization. arXiv preprint arXiv:2110.03300, 2021.

Alexander Tyurin and Peter Richtarik. Dasha: Distributed nonconvex optimization with communica-
tion compression, optimal oracle complexity, and no client synchronization, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron, 2019.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S
Rellermeyer. A survey on distributed machine learning. Acm computing surveys (csur), 53(2):
1-33, 2020.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding, 2019. URL
https://arxiv.org/abs/1804.07461.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281-6292, 2020.

Maziar Yazdani and Fariborz Jolai. Lion optimization algorithm (loa): a nature-inspired metaheuristic
algorithm. Journal of computational design and engineering, 3(1):24-36, 2016.

14

https://proceedings.mlr.press/v162/sun22b.html
https://arxiv.org/abs/1804.07461

Under review as a conference paper at ICLR 2025

Supplementary Material

CONTENTS
[B~ Mathematical calculations from Example[l] 16
[C_Proof of Theoremll| 17
D Main lemmas 19
[E_Extensions for TheoremD2] 21
IE.1 Full version of Theoreml2] 21
[E.2 Full version of Corollary|l| 22
IE.3 Proof of Theorem|2] non-convexcase] 22
IE.4 Proof of Theorem|2] Under PL-condition|. 26
[F_Convergence of Algorithm[{[without dafa similarity| 29
|G _Extensions for Theorem 3| 32
IG.I Full version of Theoreml3|, 32
|G.2 Full version of Corollary[2] 33
IG.3 ProofofTheoreml6l 33
H_Experiments 43
[H.I Technicaldetails] 44
[H.2 Logistic Regression experiments| 44
IH.3 Dependence onsize history|, . 45
|H.4 Comparison with Permutation & Natural Compression| 45
IH.5 Combination with other compressors|. 46
|H.6 Neural Networks Experiments: Data Parallelism Case|. 47
|H.7 Neural Networks Experiments: Model Parallelism Case] 48
[H.8 Fine-tuning DeBERTaV3-base on GLUE developmentseq. 49

15

Under review as a conference paper at ICLR 2025

A AUXILIARY LEMMAS AND FACTS

In this section we list auxiliary facts and our results that we use several times in our proofs.

A.1 CAUCHY-SCHWARZ INEQUALITY

For all z,y € R?

(@, y) <zl [yl -

A.2 FENCHEL-YOUNG INEQUALITY

Forall z,y € R*and 8 > 0
2(z,y) < B 2|* + Bllyll.

B MATHEMATICAL CALCULATIONS FROM EXAMPLE [1]

By definition of the mathematical expectation of an integer positive random variable Z, we obtain
that E[Z] = Y02, s - P{Z = s}. In our problem, Z is the number of an iteration where we first

selected the desired coordinate. For Randm compressor, we have P{Z = s} = = - (— %)S_l
The first term is the probability of picking the desired coordinate at iteration s and the second term
is the probability of not picking the desired coordinate at iterations from 1 to s — 1. Using this, the
mathematical expectation of the number of steps to quit the point x* for Randm compressor is equal

to

So(my et

s=1

Now we calculate the expectation for BanLast(K, m) compressor (Definition). If s > K,
s—1

similarly to the Randm case, we obtain that P{Z = s} = d_";(m 1-— d_?(m) , because we

cannot choose K'm coordinates. If s < K, then the formula of P{Z = s} becomes a bit more

complicated, because the probability of not picking the desired coordinate at iterations from 1 to

s — 1 is different at each iteration and is equal to HZ;% <1 — dj;im). If s = 1, then this probability

is equal to one. Using this, we can calculate the mathematical expectation of the number of steps to
leave the point z* for BanLast (K, m) compressor:

s=1 h=0 s=K+1
K sm pi m d m K
= — — i - 7
Zd—(s—l)m (1 d—hm)+m<1 d—Km) 0
s=1 h=0
K s s—2 K
:Za—<s—1>H<1‘ -)+a(1—a_K) |
s=1 h=0

where we used the notation v = d/m to show that (7) depends only on d/m, but not on d and m
separately. We can consider (7)) as an optimization problem with respect to K. Since K is an integer
and the objective function in (7) is complex, we numerically find the optimal K for different «. For
the sake of clarity, we show the difference between formulas (6)) and (7) on Figure dc).

16

Under review as a conference paper at ICLR 2025

We consider «v € [5.3,6.7,8.3,10,11.1,12.5,14.3, 16.7, 20] and find the optimal K by a complete
brute force search — see Figure[d] (a). Then, we perform a linear approximation and obtain the formula
K*(a) =~ 0.7323c — see Figure E| (b). Since the correlation coefficient between the points and the
approximated line is equal to 0.73, we can consider this formula to be accurate enough for practical
applications.

2001 —— Randm
—— BanlLastk

d/m = 20.0 Linaer approximation
d/m =16.7 1wl —— k=0.7323, b=-0.0853

e) ° dm=143 r2-score=0.9948
o e d/m=125

e dm=111
150 13 e d/m=10.0
1 . d/m =83
o dm=67
d/m =53

History buffer size K

Expected nuber of iterations
Expected nuber of iterations

50
25

0123456 7 8 910111213141516171819 6 8 10 14 16 18 20 5 6 7 8 9 10 11 12 13 12 15 16 17 18 19 20

History buffer size K du/ m d/m

(a) (b) (©

Figure 4: Theoretical estimate on dependence of history buffer size K on parameter v = d/m: (a) represents
expected number of iterations required to transfer all coordinates to server on history buffer size K for different
a, (b) represents scaling of optimal history buffer size K™ on «. (c) represents comparison of expected number
of iterations required to transfer all coordinates to server on problems parameter o for Randm and BanLast/K.

C PROOF OF THEOREM 1]

Lemma 1. If P is a transition matrix of a finite homogeneous Markov chain, i.e.
P = (pij)i =1

where p;; is probability of moving from i to j in one time step. And the matrix P is symmetric, i.e.
PT = P, then stationary distribution exists and it is uniformly distributed.

Proof of Lemmal[l] Let us look at uniform distribution

(1 1 1)
mi=— = ..., — .
n'n n

We can easily obtain that 7 is a stationary distribution, using symmetry and stochastic property of
matrix P:
L 7 1 r_ 1.
P=—-1"P=—(P1)) =—-1' =m.
n n n
O

Proof of Theorem(I] We consider states of Markov chain as s := {14, va, ..., VK Yy, ... uear» Where

M is the set of all subsets of 1, d of size m. We define p(s, s’, %) as the probability to move from state
s to state s’ for the number of steps .

e For both compressors BanLast (K, m) (Definition[5) and KAWASAKI(K, b, ma, m) (Definition[6)
corresponding Markov chain is finite and indecomposable.

The finiteness of the chain is apparent, as the number of states can be explicitly expressed as
|M| = (C7T")X. We show that both chains are indecomposable below. Then we deduce that the
chain is ergodic based on the Ergodic Theorem Neumann| (1932). Thus, we know that a stationary
distribution exists. Than we show that the statinary distribution is uniform over the set of states using
Lemmalll

All that remains is to show that both chains are indecomposable and that transition matrixes for both
chaines are symmetric.

17

Under review as a conference paper at ICLR 2025

We will start with BanLast (K, m). Restriction on K, m and d is d > (K + 1)m. That makes
obvious that any two states are communicated, i.e. for any s, s’ there exists way from s to s’. Thus,
the Markov chain is indecomposable.

For the compressor probability to move from s to s’ in one time step can be explicitly expressed as:

K
1
b /71 =)
P <C<T—Km>
(d—Km)!

where C* . = mr—(g+iymy 1S @ binomial coefficient. And all these states are equal in proba-
bility. If d = (K + 1)m, then for s there will be only one set s’, such that p(s,s’,1) > 0, in this
case chain will not be ergodic. If d > (K + 1)m, then there are more then one state s’, for witch
p(s,s’,1) > 0, therefore chain will be ergodic.

e According to the Ergodic Theorem, p = (1 — §)*/No and C' = (1 — §) ', where Ny is the minimal
number of iterations through which is strictly greater then zero and § := min, o {p(s, s’, Ng)} > 0.
For BanLast (K, m) in case of d > (2K + 1)m it holds that

Clorem \ 1 K
N0:2and5:p(s7s,2):(— m) (—) ’
Odem Cdem

because the smallest probability is to return to state s in two steps.

e For KAWASAKI(K, b, ma, m) from any given state, there exists a path to any other state in just
one iteration, because probabilities to choose any set of coordinates v are non-zero. Thus, the
corresponding markov chain is indecomposable.

We focus on the case where K = 1 and that generalize analysis to accommodate larger values of
K. Let us look at probabilities to move from v; to v; and from v; to v;. We show that both these
probabilities correspond to random choice of the same indexes with the same distribution vector p,
defined in[6] i.e. the probabilities are equal. For this case let us define v as operator

\111(1,7) =V,
i.e. operator chooses indexes that are in v; from 1, d. And

®(p, U,;) := P{choose v; with distribution vector p}.

According to[6] probability to move from v; to v; equals a probability to choose indexes v; with
distribution

Di =7TA(Z7i)7
where
. [1/bd ifk ey
‘ _{1/d ifk ¢ v’
ie.

pij = ®(pi, ¥5)-
By the definition of ®, for arbitrary permutation ¢ and index choice ¥ holds
(¢(p), Vo) = 2(p, V).
Now we point out that for arbitrary v; and v; exists permutation ¢;;, such that
Vo000 =Y,

For such permutation holds ¢;;(p;) = pj, i.e. the permutations moves indexes from v; to indexes
from v;. Then we need to use the property of ma to get the same equality for p;, p;:

bij(pi) = dij(ma(Di)) = 7adij (D)) = 7a(p;s)-
This allows us to write

Pij = ®(pi, ;) = ®(hij (i), ¥ 0 ¢i5) = ®(pj, Vi) = pji-

18

Under review as a conference paper at ICLR 2025

Thus we get equality of probabilities to move from v; to v; and to opposite way.

Now we can easily generalize the proof for arbitrary K. All that is required is to consider, instead
of the sets of indices v, combinations of sets of indices that were chosen for transmission over the
previous K steps. In this way, the number of states is increased, but the logic of reasoning remains
unchanged.

e As was mentioned above, for KAWASAKI(K, b, ma, m) Nog = 1. We now compute § := p(s, s, 1),
where s = {v, ..., v}, where v occurs K times. In this case probability to choose v another K times
is equal to P{j € v}™X. And

m d—m
If we consider (7a (p)); = |p;|/[|P||1, then, since ||p]l1 = <5 (db® — m(bX — 1)), it hold that
§ = (db® — m(b¥ — 1))~™¥ This finishes the proof. O

D MAIN LEMMAS

Lemma 2. Foranyi € 1,n, &€ > 0, 7 > T(€), t > 7, for any a'=7,b' =7 € RY, such that if we fix
all randomness up to step t — 7, a7 and b* =" become non-random, it holds that

7 —T —T —T ed —T -7
E[(Qi (a"7) =707)] < CE [l - b
Proof. We begin by using tower property:

B[(@} ()~ a0)] “ B (B [0 @) -] B ®

where E;_ [] is the conditional expectation with fixed randomness of all steps up to ¢ — 7. Since
on a step ¢t we compress vector a'~7 according to distribution 7 by the formula Qi (a'~") =

d/ma'~" ® 1(v}), where v} is some set of m coordinates : v{ C 1,d and 1(v) is vector with 1 on
coordinates v; on 0 otherwise. Using this we can obtain:

Ei(- [Q% (at_T) - at_T] = Z (Pt‘r {th = gz} - Crlm) a” "o]l(gi)iv
d m

v,eM

where M is set of all subsets of 1, d of size m. This equality follows from the fact that Y 5, -\, a"~7 ©
1(;) = O 'al~" and C"1' /CF* = m/d. Now with the help of Cauchy-Schwarz inequality |A.1
we can estimate (8):

®<E|>

v,eEM

] ~ 1 —T ~ d -7
pt_T{y;:ui}—%n’Hat 015 L)| ©)

Since t > 7 and T > Tix(€) it holds that |IP’t_T {Z/tZ = Di} — 1/C’LT| < e-1/CT, because stationary
distribution of our Markov chain is uniform. Using the fact that ||a’™7 ® 1(2;)|| < ||a*~7|| we can
obtain:

i t—T1 i t—T1 _ﬁ t—|| . =7
@ <E ggfcgl "] = (67| = —E [[la"=7]| - o 7[I]

This finishes the proof.

19

Under review as a conference paper at ICLR 2025

Lemma 3. Foranyi € 1,n, € > 0, 7 > Tuc(e), t > 7, for any a'=7 € R, such that if we fix all
randomness up to step t — 7, a'~" becomes non-random, it holds that

. 2d2
E[|E.— [@i(a')] o] < S5k [
Proof. Using same notation as in the proof of Lemma 3] we obtain

97

E (B [Qia')] =12 =E || 3 (P” {vi=7}- C}) Lo 01)

v, eEM
> . i _] Ty 7)1 _
<e | X ([rertut == g I 160)

Since t > 7 and T > Tyix(€) it holds that]]P’t_r {vi=0v} - 1/(]&"’ < e-1/C™, because stationary
distribution of our Markov chain is uniform. Using the fact that ||a’~" ® 1(7;)|| < ||a*~"|| we can
obtain:

B (|- (@it~ — a7) < S5 [l

This finishes the proof.

Lemma 4. Foranyi € 1,n and a € R? it holds that

2
el

. d? . d?
Q'@ < — llal* and [|Q'(a) —a* < 4

2 m2

Proof. Consider the first inequality. Since Q' (a) = d/ma ® 1(v'), then ||Q*(a)|| < d/m ||a],
therefore

. 42
|Q @I < 5 llal®.

Consider the second inequality. Using Fenchel-Young inequality [A2] with 3 = 1 we can estimate

d? 9
m2 lall”.

.) d?
1Q'(a) = a||* < 2[|Q"(@)|[" +2 a|* < 2 (m + 1) lal* < 4

This finishes the proof. O

Corollary 3. Foranyi € 1,n, e > 0, T > T(e), t > 7, for any a', bt € R?, such that if we fix all
randomness up to step t, a® and b become non-random. And for any a*~7,b*~7, such that if we fix

all randomness up to step t — T, at=™ and b'=T become non-random, it holds that

l;t—T

. d d 2 1
2[E (@ (o) - o' 0] < 28 [l)+ 220k i] + S).
1 1 2 d? 2 d? (51 + Ba) b a2
(5 +5)E| |+ o] + 42 [t —]

m
where /607B17 62753 > 0.

bt _ 61‘,—7’

20

Under review as a conference paper at ICLR 2025

Proof. Using straightforward algebra we obtain

4 [<er (“t) —d, btﬂ =E [<Q; (dt—T) _ dt—T,l;t—7—>}

(@i (" —a') —a' +a b = 57))|
PRI o) a0

+E [{@4 (a) —at, 0t~ 5]

Using Lemmawith a'™™ = a'=",b'=" = b'~" and Fenchel-Young inequalitywith B1, B2, B3 >
0 we obtain:

2[E (@i () — o', 1)]| < 222K |a]
+6@UWHM—W7)—M+WTW]+1EMN—#T

+ BB [[Q) (a* —a' ") —a +a || + 51 E | [lo*]]

1

- TH Hbt T

]

t l;tf‘r

+mE [0} (@) -]+ 5B |

Using Lemma[d]and Fenchel-Young inequality [A.2] with Sy > 0 we obtain
]
& t_ at—T||2 1 1 2
L G s [l — a7+ (1 + 5) B]
d? 2 1 2
+ 45 BE [lla']"] + 3E [l

This finishes the proof. O
Lemma 5. Assume then for any x € RY it holds that

13th

2B [(Q () — at,81)]| < SB[l)] + <0k {

mpo

bt — l;tfr

%Z IV fi@)]* < 2(6° + 1) [V f(@)||* +20°.
i=1

Proof. Using straightforward algebra and Fenchel-Young inequality [A.2] with 3 = 1 we obtain

= Z IV fi(z Z IV fi(z) = V(@) + 2| V()]
<2(6% +1) [Vf(2)|® +20%

The last inequity follows from] This finishes the proof. O

E EXTENSIONS FOR THEOREM

E.1 FULL VERSION OF THEOREM 2]

Theorem 4 (Convergence of MOSGD (Algorithm|[T), extension of). Consider Assumptions I} #|and
B Let problem () be solved by Algorithm [I]

21

Under review as a conference paper at ICLR 2025

o Foranye >0, >0, 7> Ty(e) and T > T satisfying
2 2

m
< <
"R E@) MR By
it holds that 2
T2 F. ALt
e [Ivs@D)7] :o<w+ i 02>,
T

where T is chosen uniformly from {xt}tT:O.

o If f additionally verifies the PL-condition (Assumption , then forany e > 0,y > 0, T > Tyin(€)
and T > T satisfying
< m? J o< m
————— and €= TS —,
TS LB 1) R N/ PR
it holds that

T—1 2L
Fr=0 (1—ﬂ) Foy YL 2
12 wm?

Here we use a notation Fy := E[f(xt) — f(z*)].

E.2 FULL VERSION OF COROLLARY[]]

Corollary 4 (Step tuning for Theorem 2] extension of Corollary [T).
e Under the conditions of Theorem[2]in the non-convex case, choosing ~y as

dv Lt d(62+ 1)V Lt To?

. . . Lo 2 ;
in order to achieve e-approximate solution (in terms of E [HV f(aT) H } < €2) it takes

Lrd? 2 +1 2
@) (TQFT (_; + i)) iterations of Algorithm|[I]
m € €

e Under the conditions of Theorem[2]in the PL-condition (Assumption[3) case, choosing ~ as

m2 log (maX{Q;%})
Ld?7(62+1)° ul ’

~v < min

in order to achieve e-approximate solution (in terms of E [f(z') — f(z*)] < €) it takes

d’L 1 2
@) < 5 T ((52 +1)log <) + J)) iterations of Algorithml[l]
m2pu € L€

E.3 PROOF OF THEOREM 2] NON-CONVEX CASE
Proof. Denoting F; := E[f(x?) — f(2*)], we have using L-smoothness:

2

I t ¢ 7L
i=1

LS QUVAG)
=1

(10)

22

Under review as a conference paper at ICLR 2025

Consider —/E [<71Z 3 QUV f;(ah)), Vf(a:t)ﬂ . Using straightforward algebra: =V f;(2'~") and
i=1

+V f(2'~7) we can re-write this term:

~7E K; _ Qi(Vfi(xt)%Vf(xt)H

— —E Ki ZQ@(foxt-w),Vf<xt-f>>]

@

—E <711 Qi (Vfi(z"), Vf(z') — Vf(x*_T)N
; @
- E <:L ZQ%(Vfi(QTt) — Vfi(z"T)), Vf(xt_T)ﬂ .
®

Consider @. Using straightforward algebra, tower property, Lemmas [3|and [5| we obtain

®=—E

<; S Ee [QUVE()] ,Vf<x“>>]

=1
v
=—1g
2 [

,
g
T3

2

LS B [QUV AT
=1

VI~ S B [QUV A

=1

] —SE[VIEI])

d21 = t—T t—T1
<1 B [|VaGE] - 2B [V
i=1

d? 1 d?
< <e2mz<52 1) - 2) E [V] +7e? 507
g
4

The last inequality follows from the fact, that

m

e ————.
T 2dvV2 41

Consider @. Using Cauchy-Schwarz [A.T|and Fenchel-Young[A.2|with § = 1 inequalities we obtain

23

Under review as a conference paper at ICLR 2025

®@<E l —%ZQ@(V}Z ") ‘ IV f(z') — Vf(xtT)M
i=1
<vLE[~>_Qi(Vfila") IIxt—x”II]
11:; (12)
— ’LE ‘HE:Q (Vilx }: E:Q’Vﬁ 1
=1 s=t—T1 =1

Z QiVfi(x

]4.35E

s=t—T

L3 QUVAEY)
i=1

2])
Third equality holds since #* — z/~7 =~ 32} 1 Z L(V fi(x*)). Consider ®. Using Cauchy-

Schwarz[A T and Fenchel-Young[A.2] with 3 = m/ din qualltles we obtain

@gﬂ

— Y QiV() = V)

|Wﬂffw]

SWLE[

=3 QU - Vil
i=1

L3 QUG

)Hvﬂﬂ”M]

t—1 n

> LY QUVAE)

s=t—T =1

d
SfLEl
m

]

1+dﬁmwt7no

Wrapping (T0) - (13) up we obtain

Z Qi(Vfilx

Fypq — E<E{

2 2
} — %E [HVf(xt*T)HQ} +752%02

2 n 2 — 2
rL TE[iZQi(Vfi] Y E [ZQl Vi D
=1 s=t—T =
2L t—1 .
+ 55 ; ch Vii(x +—E [[9s)7]
<A’L7E %ZQ%(Vﬂ(xt)) e o

+ 2L }: E [

s=t—T1

‘ Z (Vfi(z%))

=1

2
]_'_(’YZi;d _7) [va b= H}

Using Lemma 5] we obtain

24

Under review as a conference paper at ICLR 2025

Fipi—F < Qdij;LT (@2 +E ||Vr@")]*] +02) + (722%7;[2 - Z) E|[vs@a)|P]

2.2 t—1 2
+ 2 S (@4 01976 +0?) + 72> Lp0?
s=t—T
2d22L(52 + 1 2d242L(6% + 1) <=
= P e s]+ P 3 m [iesenr]

2Lrd? ~vd?
+ (G 3 (I P + L5 (i %) 2

(14)

Summing (T4) from ¢t = 7 to ¢t = T and using the fact that 2 < yL7 and 1 + §2 > 1 we obtain

iZE Vs < F dHL(ZIE“Vf I’
£ S B9 +r SR [v e) S

t=7 s=t—T t=1 t=1

Since 1., S04, E [[VF@*)]P] < 7 L0 E [V we get

— 244242 L(52 a 2Lrd?
v E[|ViE|] <4F + TZEUW MHOZ7 o2
t=0 t=0 t=1
Taking
2
7S BRLE + 1)
we obtain

g A8d2~2L 52+1 T 2 rd?
VS E[IVIE)]] < 8F+ r 2 Efjvre ||}+4o§:”m7

t —T t=1

15)

We now prove that for any ¢ > 0, we have

sup {E [||Vf(x8)||2]} <4E [HVf)|] +8L27272:T2202.

t<s<t+T1
Fort < s <t + 7 it holds that

25

Under review as a conference paper at ICLR 2025

E[IV/@)?] < 2 [[|V5)] +E[|[V/@) - viEh|P]

> L3 QUvAG)

2
< 2E ||V ("] +2L°E

B 2] - d2 s—1 1 n o
< [|[Va)F] + 22227 S5 ST S S R [IV A
- - r=t i=1

9 s—1

I - d
<28 [|[V G| + 4222 25 3 (102 + DE [I956)I7] +0°)
r=t
[N 2.2 2 2 2)
< 2B |||V | + 40277 ((5 + 1)tg§§§+T{E (IV7 @]} +o) _
Since
L —
VBALV6? + 17
it holds that

s {E[IVf@)°] } < 4| [|vre)]] + SWT?%UQ-

t<s<t+T

Using this (T3) takes form

T—7 T—7
192d2~2L(62 + 1
1 S E[Ivsa)] <k, + 2O EDT S g v s
t=0 t=T-21
4 T o 2
+ 384L3~y473%(52 +1)0% +403 7 :;d o,

t=7
Taking

m
< ———Fn—,

T= 384dL/6% + 17
and dividing both sides of the inequality by T' — 7, we obtain

1 T—1 2 FT 72LTd2)
T ;E INMEIINE 16y + 80 50

Therefore, if 77 is chosen uniformly from {J;t}fz_ol, then it holds that

y2Lrd*
R

2 F.
E[[[vr@)|*] <1627 + 80
IVF@EOI] <167+
This finishes the proof. O

E.4 PROOF OF THEOREM[Z] UNDER PL-CONDITION

Proof. We start from (T4):

26

Under review as a conference paper at ICLR 2025

242 L (57 d242L(5 —
Fra = F = 2 DT [0 o) 7] + 222K 2D 57 g vy]
=t—

VLrd® o ; yd?
(92 —) [HVf =)“2}+W(47L7-+52)02

T

If f satisfies PL-inequality (Assumption , then —E {HV flzt=T Hﬂ < —2uF;_;, so that, for some
0 < a < 1 we obtain

-1

2d%y2L(6% + 1)T L(6%+1)
Fi — F = T E[|IVFa)|F] + —s;TE[IVf)I1?]
Y2Lrd? (1 —a)y _r 16
(T -) Bl .
_0Mp 0T L g e?) o2
5 Firt 5 (L + &%) o

Fort > 0, let p; = p' and p = (1 — ayuy/4) ™. We multiply the above expression by p; and sum for
t < T, hoping for cancellations. Using PL-condition (Assumption [3), for 7' > 7 we obtain

_ T-1
« «@ «ar
;ptﬂ (Ft - Ft+1 - %FFJ = ;pt+1 [(1 - %) F — Ft+1 + %(Ft - th‘r)

T-1 T o T-1
= ;ptFt - Z pely + e Zpt-i—l(Ft -F_;)

t=7+1 t=1

T—1
a
<pF—prFr+ % Zpt+1Ft

t=1
T—1-—71

aYUpr
- ’YZ Z Pe+1Fy
t=0

T-1
ayp
<pFr—prFr+ e t; De+1Fy

T

SPTFT pTFT+% Z pt+1]E |:||vf || :|

t=T—1

For any ¢ > 0 we use a notation b; := E {HVf(xt) ||2} . We now handle b, terms from (T6).

T-1 (1—a)y d2 T-1 t—1
- Z Tpt+1bt—-r + ’Y Zpt+1 (27’(5 + 1)bt + 2(52 +1) Z bs + bt -,—) .
t=1

t=r s=t—1

7)

If p, = p', p = (1 — auy/2)~! and v = ~; /7, then, using the fact that (1 — a/x) ™% < 2% < 2e if
z>2and0<a<1,wecangetthatl > p, = (1 —uy/(27))" 7 < 2eM71/2 < 9¢ < 6. Then

!

Zthrl Z bs <pTZ Z Pst1bs <67'Zpt+1bt

s=t—T1 t=17 s=t—71

27

Under review as a conference paper at ICLR 2025

Now we can estimate (T7):

t=0

S 1-an , 2T , T—1) T-1 T—7
Z O byt L (20 +1);bt+12(5 +1>§bt+3§m
T—1-1 T-1

11—« d’r(6% +1 (6% +1
< - Pt+170t (4 - 177L(mz)> + 14’}’2L# Z Pr+1be.
t=0

t=T—1
Taking

< m2(1 — a)
7= 136Ld2r (62 + 1)5

where 5 > 1, we obtain

T—71—1

l1—«
@S*% Z pt+1bt+ o)y Z De+1bz.

t=0 t=T-—1

Now we can estimate (T6):

T—1—1

o (1—a)y
0<pFr—prfr+ (87) Z Pey1by — A=)y Z Pt+1bt
t=T-1 (18)

+ Z pt+1 4’}/LT +¢e?) o?

Using that we proved i mwe have b, < 4b;_, + 8L2~272 d 4 52. Then, we can obtain

T-1

(5+5) 2

T—7-—1
a 11—«
D410y < 24y () Z De+1b¢

t=T-21

d2 « 11—«
[2 3.3 2.
+ 48 YT m2 + . g

T

Taking o = 1/6 and 8 = 4, we obtain

o 1—a_1—a

and (I8) takes form

d2 T-1 d2
0<pFr —prkpr+ 48L2’y37'3—or2 + pt+1L dvLT + e?) 2. (19)
m?2 m?2

t=T1

Using the fact that

(oY oy Sy 2

and taking

28

Under review as a conference paper at ICLR 2025

2

v < __m and & =+/vL7 <
625Ld27(6%2 4+ 1)

- 25d\/52
by dividing (T9) by p,, we obtain
T &Lt
E[fa")) < (1-05) BUG) =] +6360 o,

This finishes the proof.

F CONVERGENCE OF ALGORITHM [l WITHOUT DATA SIMILARITY

Theorem 5 (Convergence of GD Algorithm|[T] without data similarity). Consider Assumptions|I|and
I Let problem (1)) be solved by Algorithm|I} Then for any e > 0, v > 0, T > Tyie(e) and T > 7
satisfying

—— min

m*\/i my/l
< —F <
VS ez 4SS g {

1
Lg/z;\/ﬁ},

it holds that

T—7 T d2
E [||$T+1 - x*||2] (1 — ﬂ) E [||:r7 — ™|] (1 - ﬁ) A+ 267 Tof,
2 2 m?2

where

A, - o(”;‘f \/gg 78 [Jlo* = o |F] + 42E [£(a") fa")]])

Proof of Theorem[5] We start by writing out step of the Algorithm T}

E [—o*") =B [[l ~ o] - 29E

d
LS (@ (V) - Vi), ot~)
=1

2 (20)
—NE[(Vf(a'), 2" —2")] ++°E H ZQt Vfi(z
Consider E [(Q} (Vf;(z")) — V f;(z"), z' — 2*)]. Using Corollarywith at = Vfi(xh), bt =
ot —ax*, atv" = () and b'~f% = 2!~ — z* we obtain

E[iz;“@i (vfi(;z:t sz(),1: —x* <ilZE{vat t— T || }

N 2712
. adﬂoE [th—T o 2] L 1

ro+ w0 ot =)+ (5 +) B -]

+4fﬂs*ZE[anz IF]+ 5 [l - 7).

21

29

Under review as a conference paper at ICLR 2025

Using the fact that f; are L-smooth, we can obtain:
1 - £ |12 1 = t * NI
S VAT = 2 D [V - VG + Vi)
i—1 i=1

< iz IV fi(at) = Vfila

Z IV fi(= o

<23 (1) - Al - (ThE) 2t - a) 207

i=1

= 4L(f(z") = f(z")) + 202,

where we use a notation 02 := L 3" | ||V f;(z*) |>. Now we can estimate (ZI):

< ZLoLE 1)~ f)] +02) + SO0 (|t — a7]

mfBo
d2 2 t—1 n _

+ (155 (/31+/32>+;+51)E[DI ICAIE

s=t—T =1

2

82 A (RLE [£) - fa)] + o) + o B [~]

[V)
—_ 1

Now we can estimate (20). Using Lemmald]and Assumption 2] we can obtain

B[+ - o 2} < (1 — iy + ;2) E (ot —a* "] + @E (o~ —a*

T

]

+ 48| S (7 7) = @) + 4222 () - 107)

+ (L 2(61 + Ba) + E - 63) 77232 Siz:i(f(xs) = f(z")) (23)
+ D8~ 1) - L) - f<z*>>]

+2 ;‘Z) + 4dr;f§7 + <4d;€2 (BL + Ba) + é + 513) 73;?2 V;Cf] ol

Taking 8y = 51 = 1, 83 = 7, B2 = 4/ and using fact, that e < y7d/m inequality (23) takes form

E [th-&-l ot 2} (1 _) {H t_ 2} n %]E {th—T g 2]
+4LB| S0 (7 7) = £ 45T (1) — £10)
dAL2 A3 L @4
PSS 3 U@ - S6) - g - f(w*))]
+4d272 3+10d2L271af.
m? Jz

Let us perform the summation from ¢t = 7 to t = T' > 7 of equations (24) with coefficients py:

30

Under review as a conference paper at ICLR 2025

) < S nt1 - ¥V ot - o

t=1

d ed 2
+ Y n B [ot - 2|

t=T1

a ed 2d2r
+ ZML <7 + 57m ;L) E[f(e') - fz")] (25)

T
> [[let - o d
t=r1

4 2 t—
+2o§ pt4Ld L E — f(@")]
t=71 s=t—

T
d2’}/27’ d2L2 v
+;pt4 w30 e

2
e

If pr = pt,p = (1 — py/2)~ ' and v = ~; /7, then, using the fact that (1 — a/z)~% < 2¢® < 2eif
x>2and 0 < a <1, wecan get that p, = (1 — puy1/(27)) 7 < 2e#71/2 < 2e < 6.

Zpt Z as <p’ Z Z Psas<GTZPtat

=7 s=t—-T7 t=7 s=t—T

Using this we can estimate (23)):

I [EEE Zmﬁw+wg)ﬂw I

t=71

(26)

T
d _A2d*r d*L?
+3 dp L (76 +57 Lo H120T ;L) E [f(a') — f(z")]
T T
d2L? d
+4ZPt 5 % Uf—i—ZpHT%E [th—m*HQ]
t=T1 t=0

+802Pt+f ﬁv "B [f(2") - f(=")] .

1
Taking
m? /1t . [ydr um my/i 1
7S ity = TR < G i v

We get

ved v d*r d*L? 3712 3uy yed wy

nee 12 ~ <0 oand 1- 2T 4620 1T

erE)m2Jr 0m4 1 2L_0 4+6m 2

Assume a notation

:|+802pt+7’ CH/’YHTE[f()—f(a:*)}

] +4LE [1@") - 1)) -

'ysd T
§ :PHT [Hw
m

vdu

L

TE

t= O

31

Under review as a conference paper at ICLR 2025

Using the notation of A, (26) takes form

T T
* Y *
e [l =] < X (1=) Bl

2 d fYQdQT 2 A
}+;13pt — Lo+ A,

Using p; = pt and p = (1 — ,117/2)_1 we can obtain:

a py\ 1 w2 a py Tt t
> (1) "Bl -] £ 3 (1) B

]
t=1 t=1

T —t A292
Py TP
+Y(1-5) et +a.
t=1

The summed terms on the left and right sides are reduced, therefore this expression takes the form:

_ﬂiT T+1 _
(1-5) E[le™ s

= (-2 TRl o]

—t 2d2
FXs(i-) Taetea

We can re-arrange this inequality:

2
13 (1 PN o BT
sy (=) St (1) A
Using the fact that
A = I\ py\t 2
Y (1-5) =X(-F)=X0-F) =3
t=71 t=0 t=0 /J")/

We can estimate:

T T 2
o™ -] < (1-E) B[l -]+ (1-) A, +261 702
2 m?2

This finishes the proof.

G EXTENSIONS FOR THEOREM [3]

G.1 FULL VERSION OF THEOREM [3]

Theorem 6 (Convergence of AMQSGD Algorithm 2] full version). Consider Assumptions|[I} 2] and
Let problem (1)) be solved by Algorithm Then for any v > 0,e > 0, T > Tyui(€), T > 7 and
B,0,n,p satisfying

32

Under review as a conference paper at ICLR 2025

1 1 2 T 15
p3imsz m _ { mi ma }
< < <
TR A P re@r1)y TG L2 1) dE R (02 + 1)
2p? /w / -1
Bpn~1—1
it holds that
2 2
FT+1O<eXp (T—-1) P;VY F. +exp |-T p?/)l’}/ ATJrZLoQ).
Here we use notations: F, = E[|zt — 2*||? + %(f(:rtf) — f(*)] and A, <
%2 *
7 5 (B (V7)) +E et - oI + Bl (e5) - Sa))

G.2 FULL VERSION OF COROLLARY 2]

Corollary 5 (Step tuning for Theorem [3] full version of Corollary 2). Under the conditions of

Theorem|3| choosing v as
. #3(Fr+A-)T
| log (max{Q, 1170 })

’ pp*T? ’

~v < min

| =
wl=

wloo

. . . Lo 2 ;
in order to achieve e-approximate solution (in terms of E [HxT —z* ||] < €2) it takes

d2L 2 4 1 2
O <m2:; (((52 +1) log() + Z€> iterations.

G.3 PROOF OF THEOREM [6]

Lemma 6. Consider Algorithm[é]with 0 = (pn~t —1)/(Bn~1—1) < 1. Then for any y* =
mc’}- + (1 — K)z' € conv {x'}, xt}for any s < t exist constants oy, a® > 0 and ¢, > 0 such that

t—1 i—1
v =T -y) g =ajai+atet —py) e
r=s r=s

And o +a® = 1forany s <rt. If (1 —k)n <1, then ¢, <t — s+ 2, otherwise we can only use the
estimate ¢, < 1.

Proof. We start by writing out lines 3 and 10 of Algorithm [}
oy =ay —pygtt =0 + (1= 0)z" T —pyg® 27)
Now let us handle expression na} + (p — n)x’; + (1 —p)(1 = B)a" + (1 — p)Bak — 2~ for a

while. Taking into account the choice of # such that § = (pn=! — 1)/(B8pn~! — 1) (in particular,
(Pt —=1) = (Bpn~" — D and (1 — Bpn~*)(1 - 0) = p(1 — B)). we get

nzh + (p—)k + (1—p)(1 - B)a* + (1 — p)Bat

33

Under review as a conference paper at ICLR 2025

=+ 1 —pB)ak+(p—naf+1-p)1-p)a

= (n+ 1 =p)B)ak+nlpn™" — Dk + (1 -p)(1 - B)a*

= (n+ (1 —p)B)zk +n(Bpn~" - 1)93«“'} +(1—-p)(1—)"

=+ (1 =p)B)zl +n(Bpn~ " = V)(xh — (1 - 0)z") + (1 —p)(1 - B)z*
=+ 1 =p)B)zl +nBpn~ " = V)(zh — (1 - 0)a") + (1 —p)(1 - B)z*
= By —n(Bpn~" = 1)(1 = 0)a* + (1 —p)(1 - p)z*

= fag +p(1 - B)a* + (1 —p)(1 - p)z*

Now we write out line [TT]of Algorithm [2}

2° =Py 4+ (1=)zt —nap ™ +pph = Bay + (1= B)a” T —npyg®!
= B0z + (1 —=0)x") + (1= B! —npyg”! (28)
= B0z + (1 — BO)z*"" —npyg* "

Now we use induction. z; = Qxffl +(1 =)zt —pyg*~1, then o/}_l =0>0,at"t=1-6>0,
=1<nand a;_l + ot~ = 1, therefore base step is fulfilled. If x; = a;x; + a®x® —
py S2FZ! ¢.g" for some s < t, when with help of (27) and (28) we can write out

x? =a} (0:5;71 + (1 -0zt = pngﬂ)
t—1
o’ (ﬂﬁxfc—l +(1-B0)a>" — nmgs’l) AP

Therefore ozjc_l =ajbf+a’pl > 0, asl = a?(l—@)—!—as(l—ﬂﬁ) > 0and cs—1 = aj+na’® <.
Then, the step of the induction is fulfilled, since o5 7 !+ a=1 = 1. Therefore results of this Lemma

are true fory = :Ef € conv {xf,xt}.

Consider 3¢ = ! € conv {x T } Form (28) follows that a = B0 and a'~! = 1— 36, therefore
base step is fulfilled. The step of the induction will be the same as in y* = x‘} Therefore results of
this Lemma are true for y* = 2. Then, they are true for any y* € conv {m;, xt}.
If y* = wat + (1 — w)a’, then a®(y) = ra’(2%) + (1 — k)a®(2!). Since (1 — #)n < 1, then
a'~!(ah)n <1 =t~ (t —1). Therefore a*(z%)n < t — s by induction, since a*~*(z})n =
a3 (@) (1~ B + (1 BB)a (el n < () + (1— B8)(t —) <t 54 1.
Then, if (1—x)n < 1, then o*(y*)n = ka®(zf)n+(1—r)na’(a') < k(t—s)+a®(z!) <t—s+1.
Now we consider ¢;(y"). cs(y") = a3 (y') + a*(y')n < a3 (y') +t—s+ 1<t —s+2.

O

Lemma 7. Assume and Then for iterates of Algorithm|2\with @ = (pn~1—1)/(Bpn~1 —
1),0 > 0,n > 1, it holds that

B[l - 7|

<=+ DEe — | + 80+ DB} ?_B)E o — ot
d2 2d2L2
+ 10 (02 + 1)p*y*n*E ||V £(ah)|| +p2727727'(327) Z g |1
r=t—r

34

Under review as a conference paper at ICLR 2025

d d
+ 3epynL—+/ 62 + 1E {th_T —z* 2} + 3epynL—+/62 + 1E [Haf}_T — ¥
m m

2
} (29)

d 2
NP E(Vf(2t), 2t + (pp~t = Dt — pp~ta®) + 2oy | — o 1 dpyp s |02,
y?E(V f(zg), x5 + (o)l —pn~tat) 4+ 2pyn s T Al

Proof. Using lines 10 and 11 of Algorithm[2] we get

E e — o' = E|[nef + (o —)al + (1= p)(1 —)t + (-)t — |
=E|[nz! — pyng' + (p — n)zh + (1 - p)(1 — Bz’ + (1 - p)Bat, — z*|
=E |zt + (p— n)al + (1 - p)(1 - B)at + (1 - p)Bat, — 2*||* + p*4*PE ||g*”

—2pynE (¢, nzg + (p — n)af + (1 —p)(1 = Bz’ + (1 — p)Bzry, — ™)
=E|jnal + (p —)zl + (1 —p)(1 — Bz’ + (1 —p)Bzl, — z*||° + p*1*1* E | ¢'|
) @
—2pE(g" = Vf(zy),nry + (p—n)al + (1 —p)(1 =)z’ + (1 - p)Bay —z*)

®
—2pynE(V f(zg), nzg + (p — n)ay + (1 —p)(1 = Bz’ + (1 — p)Bz, — 7).

| 2

Consider @. From Lemmal6} we know that

nzg + (p =z + (1 —p)(1 = Bz’ + (1 —p)Bry = fag + (1 — B)z".
It implies
Inzg + (0 —n)xy + (1 = p)(1 = B’ + (1 - p)Bay —z*|?
= [|Bat + (1 = B)at — a*|?
= ||5($’;—xt)+mt—x* 2
— |t — a*||* + 28 (a — a*, 2l — &) + B2 ||, — o
= [la* =& + B(l|2f — 2" |I* = [la* — || = [|}, — 2*[|*) + 8 ||}, — "

:(1—6)th—x* 2—1—(62—6)“1"5—1‘;H2.

Consider @. Using convexity of squared Euclidean norm and Lemma4] one can obtain

I’ 0

2
+ 8 |y —a”

2
p272772E HgtHQ _ pryQUQE

S QUG

1 & .
< 2= S E|Qi(V fi(2h))|
N3 (31)
2?1 2
< P272772Wﬁ ;E vaz(tTZ)H
2 2
9 2p272772%(52 +DE|Vrh)| + 217272772%02,

where in the last inequality we used Lemma 3]
Consider ®. We first use Lemmal@] twice

t—1
=02+ (=0 = e T

r=t—7

35

Under review as a conference paper at ICLR 2025

nzh + (p—nzh + (1 —p)(1 =)z’ + (1 — p)Bz}, = pal, + (1 — B)a’
= B0z + (1 — 80)a’

t—1
_ d} T{IJ} T _’_&t—Txt—T —py Z érgr.

r=t—r

Next, we apply Corollarylw1th at~T = Vfi(z,T), where T, T = a? T:c} T4+ a7 T2tT, and
b = Atf T tf T+ &t Tat T — ¥, leading us to

—2mnﬂ*3< — Vf(xy), nzy + (p —) +(l—p)(l—ﬁ)$t+(1—p)ﬁx§—x*>
— 20 S E(QUVA) ~ VA + 0+ (191 - B
+ (1 —p)Bay — w>

d 1< S dp
_%&)pwﬁzE[HVﬁ(IZ)IIQ} : OP’WE[

]

a? Txt T+&t Tl‘t T*.Z‘*

d? .
4Dy (81 +) Zﬂ«: [Hm - Vi@)|

—pY Z érg”

r=t—T

1 1
rom (548 |

+4—mnﬁ3—ZE[||sz W]+ 5 180 + (1 - p)at

Using Assumptionand Lemmawith ¢r <7 < 27 and ¢, < 7 one might obtain
- 2m771E<g — Vf(zh),nal, + (p—n)ah + (1 —p)(1 - f)a’ + (1 — p)Bz!, — x>

edf3
OmnE {

d? ijc T +dt_T$t_T —{E*

]

2ed (2
< BP0+ E V@] +

d2L2 1 1 t—1
A pn (BL+ B2) E ‘ —pY Z eg’|| |+ o (5 +) E ’ —py Y g
r=t—T 1 ﬁ3 r=t—7
d2
8W(52 + 1)pynBsE [HVf)| } + ZM]E [HB +(1-B)zt }
ed dQﬂg 9
+ 2p777(m750 +4 2)o (32)
< %p,yn 2((52+1)L2at 7+6 At T E th7 2
= m f B oY f
+ gmn 2(62 + 1)L20zt_7i + Boédt T |E [th_T —z* 2}
m Bo
2d2L2 1 t—1
+ p373m< (B1 + o) + (ﬁ— 6)) PG
d2
8- (02 + LpmBaE || V£ ()|’
Nyl P *Bs. o
[3 5E[Hx }—i-ﬂi(l)E[th—x | }—&-2;07 (7+) Yo

Under review as a conference paper at ICLR 2025

Consider @. Taking into account line 4 and the choice of § such that 0 = (pn=! —1)/(Bpn~! — 1),
one can note

nzy + (p =)l + (1= p)(1 = B)a* + (1 - p)fay —2”
=+ (1 -p)B)zk+ (p—n)af+ (1-p)(1-B)a" —z*

=mp " ((p+ A —pp~ Bl + (pn~ " — Vpaf + (1 —p)(1 — B)pn~'a* — ™ 'pa”)

=mp ' ((p+ (1 —p)p '0B)al + (pn~" — Dpak + (1 —p)(1 — Bpn ") (1 — 0)2" — ™' pa™)
=mp~ " ((p+ (A —p)p~ 0Bk + (pn~" — V)pal + (1 — p)(1 = Bpn~ ") (2k — 02%) — n~"pa”)
=np~ " (2h + (pn~! = Dpaf — (1 —p)(1 = Bpn~")0 — 0~ pa*)

=np~" («f + (pn~' = Dpaf — (1 —p)(pn~" = D)ay —n~'pa*)

=np~ " (zh + (pn~' = Daf —n~'pa*). (33)

Using that, we get

—~2pnE (Vf(@h),nal + (p—n)als + (1= p)(1 = B’ + (1= p)Ba}, —a*)
= =2y*E(Vf(z}), z) + (pn~ ' = Dl —pn~'a*).

(34)
ShumminEg @O, GI), (B2) and (B4) with By = V62 + 1L, B = B2 = 4”% and (5 = pyn we ﬁnisé]l
the proof.

Lemma 8. Assume andd}, Then for iterates of Algorithm |2 and for any u € R® it holds that

E[f@}™)] <Elf@] - E(VI@)).u-ai)] - § Ju-af| - T [V

273.3,2.3(52 -1 273.3,2 4
20k [V)|7] + 20T T D S g 9 pag))?] + 285 o
s=t—T1
where
< 1 and p < m72
T=7 =T r1)a
Proof. Usingwith T = :r?l y = x; and line 3 of Algorithmwe get
2
E[ff)] <E[7()] +E [(V/()). a5 - >M—EUW“ 7 }
t L t
—E[f(})] - mE[(V/(e).at)] + 2R] as)
=E [f(z})] = E [(Vf(z}), Vf(x}))] —mE [(Vf(zg), 9" = V(p))]
+ 2 [117).
Consider E [<),g* =V f(«}))]. Using Corollary 3| with o' = Vfi(z}), 0" =

Vi) - _ vfl("’t 7, P — Vf(~7), where a:g € conv{x},zt} - 5277 -

DY Zs:t—‘r csg° from Lemma@ Using Assumptlonwe obtain

2[E[(VF(x}),g* — V()] <E[lewi @ | + ok)]

L e[-] 5 () -

37

Under review as a conference paper at ICLR 2025

v E[|vab|].

d2
4—33E
+ 2 B3 3,

LS e
=1

Taking 5y = V62 + 1, 1 = m/d, B2 = m/(dp), B3 = pm/d and using results from Lemmawe
obtain

2|E [(VF(h). g — Vat))]| < ;(WE[“W%THMﬁ)

|
)

Using Lemma@ and@ convexity of the squared norm and the factthatc, <t —s+2<74+2 <271
we obtain

n

1 1
-py Z CanQs (Vfi(z

s=t—T

)+ e

+ %E v r@I] + 10—1@

+ 22 (02 + e [|vse)] + Ik

va "1 T

2[E[(V/(t), " ~ V)] < E g)| +
L2d372p73 t—1

> E @+ 1) Vs +o?]

s=t—T1

n 9dp(<:l+ 1)IE {va H } (625 +p) o2,

+407——g

Using the fact that L2y2d? /m?74n? > 1 and ¢ < v/§2 + 1p we obtain

L2d3~2p7r3 (52 =1 dp(52
p g (0T ZE[HW] + 2202 D (9 5t

m3

L2 d372p7]274 9
-3 o
m

s=t—T1

Using this result, Lemmas] and [5| we can estimate (33)):

E[f}™)] =E [fa)] - mE |V

~PE[(VI). 0"~ V)] + B [o!]]

} 2€p’yd\/52 +1

<E (1) - [V)] + 2N g v s] +

L2d3'y3p273 P +1) « 2 5dyp? (6% + 1) 2
+20 Z E {va } EE— [HW(%)H]

L2d3 3,24 L
+22 P o2y P (52+1)E[¢|w

m3

Lp 'y 2q?
7] + o2,

Taking

2

< l and < S L
TS P=T@2+ a2

38

Under review as a conference paper at ICLR 2025

we obtain

B [f()] <E[sa)] - DR[|956)|7] +20m [2 5@] +
L2d332362 -1 L2d3~3p274
LD S R[] - s

—r

+20

S=

Using[2|with = u and y = 2!, one can conclude that for any v € R? it holds
g

E[f@f)] <E[f(w)) - B[V (). u—))] = § u—ai]
-2g [Hw(x;)ﬂ + 2e9E [va@_ﬂlﬂ +

233232 t—1 273.3,2. 4

+20 e

s=t—T

This finishes the proof. O
Theorem 7 (Theorem[3). Consider Assumptions[I} 2land[d] Let problem (1) be solved by Algorithm
Then for any v > 0, > 0, 7 > Tyic(€), T > 7 and 3,0, n, p satisfying

5 1

11 5
nu3im2 m 4 m
1 2 b 15

m
orLsdz’ diTiL(62 +1) " V2riiridl 6d% T (62 4 1)2 }

< 5 /2pw [3 -1
= 13d2(62 13d2(62 + 1)72’ 2y’ Bpn~t =1

it holds that

NS
Ni=

v < 5<m1n{

E[llaT — 2*)% + i(f(DR f(x*))]éexp<(TT) 27’2“”)FT

where F, = E[||2” — 2*||*> + %(f(x}) — f(@*)] and A, < il ET: (EHVf(act)H +

%12 *
Ellat - 2> + Elf (%) - f(")]).
Proof. We start by using Lemmawith u=z*andu = xf

E [/} < Ef@) - E[(Vf(ah).a” —af)] - & o = ab | - TE[|Vs6h)|]

L2d3’)/3p27'3 52+1 Z E|: L2d3’73p27'4 2

m3 ’

+261E {||Vf(5g*7)||2] +20 F@)|’] + 23

s=t—T

E|[f@f™)] <E[765) ~E[(VI)).ah—)] = § |lof — ol - FE || V5a)]’]

293.,3,,2-4
IV s @)IP] +23Ldm#02.

t—1
+ 2eE {va(gg—‘r)uﬂ . 20L2d373p27'3 (62 +1) Z [

s=t—T1

Summing the first inequality with coefficient 2p~yn, the second with coefficient 2pyn(n — p) and 29),
we get

Eff 2™ — ™| + 2y f ()]

39

Under review as a conference paper at ICLR 2025

g(l—ﬂ)(ﬂ—ﬁ)E ||z — 2*||* + 8(1+5)E ||z} — 2*||* + (82 - B)E|jz* — o ||”
d? 24212p2
+10—5 (8 + 1)p*y*n*E ||V £ (o) +p2727727(327) T;T lg

el VIR [= | e V6 E {Hwtf-f —5

]

_ 21 s d?
= 2y*E(Vf(z}), =l + (pn~' = Daf —pp~'a >+2m?7< \/527L dpyn—;) 2

+ 2 (E @) —E (V). 2" —at)] = & [lo* || - B |[VA(h)|’]

t—1

B[Ivsel]

s=t—T1

L2d3’ygp27’3 52 +1

+ 209 [[[V4@ T)°] +20

+ 23

L2d3~3p2rt 2)
73 g
m

et (U] - E(O6D.05 -)] - Iy ot - F2 [0

t—1

. L2d332352+1
+ 209K [[Vf@)] + 2020 E[|vse)|?]
s=t—T1
213.3,2.-4
+23Ldvgwgz>
m

<(1 ﬂ)(1+5E|| 2 B t_ |2 2 ¢ 2
sUE- at —a*||" + (B + 1 —pynu) Bz}, —2*||” + (8% — B)E |2’ — 2|

+ > (OWW +1) - ;) E||Vf(x})| + 20 E f(z*) + 2yn(n — p) E f(z})

J42 2d2L2p272 5 t—1 .
PP 1) g (327 5+) Y (Vi)

+eynL(3pi\/52 1+ 2L)E [o'~7 - "]

2
+ eynL(Sp V62 +1+2ynL)E {Hx;_T —x* }

r=t—Tr

—+ 2 L + 4 iz
P mvo2 + 1L Py e
d2 2d2L2p2’}/2 5

d?
+ 23py*nT —LQ +p7777' T +=)03,
m23 8
where in the last inequality we used Lemma [5] and Assumption [} Since 8 < 1, the choice of
pynu =2 gives

by

1-pa+p<1-=,

B2 33
B+f—mnu_f—mnu<0

2
B2—p<o.

40

Under review as a conference paper at ICLR 2025

This lead us to
E[f|a"*! — ¥ + 299*(f(25) — f(2"))]

<= 2D~ + 2?1 - B Blf) - fla)
2.2,2 d2 2 1 t
+ 077N (10mg(5 +1) - p> E [V ()l

a2 P2PL2p%2 By A i,
+ PP (0% + 1) — (?’QT% +3) T;T]E [vs@ll - co

+ s'ynL(Sp% V62 + 1+ 2ynL)E [th’T —z* ||2}
d 2
+enL(3p Vo2 + 1+ 2717!1); E[f(z57) = f(z")]

2

ed
2 —_—— +4dpyn—s
+ mn(mmLJr Py

d3 d2 2d2L2 2.2 5
+28py et S L2 e pyyr? (16T BT 1 2) o,
m m m?3 8

where we also used Assumptlonland subtracted 2yn? f (z*) from both sides. Next, we perform the
summation from ¢t = 7 to t = T' > 7 of equations (36) with coefficients p;:

T

S pe Bl = 2|2 4 29n* (f (2 = f(27))]
T

< ;pt(l — %)]Eth — |

T 2
+ 22 (1= VL () — fa) + Zp P’ (107322(62 +1) - ;) B[V i)

t=1

d? T2d? L2 p*y 5\ e .
+ Zpth’anZT 52 + 1)@(32m726 + 1) T;TE Hv,f(-fg)H

d
+ menL(?mf\/cV +1+29mL)E |[|l2*~7 —a"||*
m

+Zpt6w7L3p V% + +2777LM [z T) = fa")]
T

+Zpt2mn< \/627L Ay

t=1
d3 d2 2d2L2 2.2
+28py 0t S L2 4 pynr? <1GT A 5)) o2,
m m

2

m2p3 8

Similar as in Theoremwe take p; = pt, p = (1 — g)_l, it implies p, < 6 and therefore

T

D B[l = 2P+ 29’ (f(@T) = f(2"))]

t=1

<Zpt<136+66'y77L(3p Vo2 + +2’ynL)>E||xtz*||2
t=71

41

Under review as a conference paper at ICLR 2025

T
eynL d .
2 m <2mn2<1 — 1)+ 127 (VB +2~mL)> Elf(a}) - /("))
t=1
T
d? 1 d2 P2d2L%p%% 5
2 2 2 2 2,2
R (107712(5 R +1)mZ<32m25+4 E V£

+Zpt+f8p2 ! 2(52+1)d oL <2pd+5> Z E||Vf(z

t=0 r=t—7

T d
- meean(i%pE\/m +2ynL)E let - ||2}
t=0

T d
3 P V14 29L) 2 B{f(a}) - f(a")
t=0

T
d? d3
+Zpt2pw7< T A Ak 7 +23pyPnrt L7
t=1 LL
d2 2d2L2p2’yQ 5
+pmt— (16m2ﬂ +3 o’
Taking
1 1 2
< Hme QL L—
T=5r5ar P e
7 5 15
< min{ m: me UL }
g 5)
6diTIL(6%+1) V2ripusLidi 6d% T4 (62 +1)2
we get

d2 1 d2 2d2L2p2’y2 5
10— (62 +1 — 241 22—+ - | <
0m2(6 +1)— +7' 2(6% +) (3 ey +3 0,

6577]L (3p VoZ+1+ 2’ynL) 6
57:L SV 414 29L) <

a0

and therefore with § =

d\’t?

T
ZptE[llwHl |2+ 29m? (f(2) = f(2"))]

<Zpt(1—f) lla" = a2 + 2m2(f (@) = ("))

t=0

+Zpt+r8p2 * 2(52+1)d L <2pd+5> Z E|Vf(z

=t—T7

d d
+ D PrreyL(3p— /6% + 1+ 2ynL)E I
t=0

i d
3 P L3V + 1+ 290L)~ Blf(a}) — f(a")
t=0

T

ed
+ > p2pyn| — e + Ay —
P PrEp (m\/(SQ +1L Ll

2

42

Under review as a conference paper at ICLR 2025

d3 d2 2d2L2 2.2 5
+ 23pySnrt — L? + pPINT—5 16# +=])%
m?3 m m23 8

Assume the following notation

d® 2p2d —
Z;pt+Tss;)2 B+ 1) 7L (;:LB + 5) S EVs@)
r=t—Tr
+ ZPHTEWL(?WE\/V +1+2L)E o - o*||]
t=0

T d
+ ZthrTE'YnL(?’pE\/ 5 +1+ 27%)% E[f(z}) — f(z")]
t=0

< 53 (Elwepl e -

TIPS =0

2 *
+E[f(z}) - f(z)])
Now we substitute p;, this lead us to

T —t
S (1=) Bl -+ 22) — fa))

t=r1

d AN t 2 2 t
<> (1-3) Elle 2"+ 29n3 (@) — f@)] + A

2
t=T1
T
ﬂ —t ed 2
+) (1-35) 20| —=—t4m—
2 (-g) 2| S
d? d2 2d2[2%p%2 5
3 4 2 2
+23py" " S LT+ pynt 5 (16m25 +3])"
This implies
5 - * ﬁ 4 T *
(1 - 5) E[la”™ — 2% |12 + 29*(f (27) = f(a"))] < (1 _ 5) E[lz" — 2|

+ 290 (f(2F) = f(@)] + Ar
+ i (1 - ﬁ)_t2
2 5) 20 \/627L Ay

d3 d2 2d2L2 2.2 5
+ 23p73777'4—3L2 +pynT—; 1677— 5 L + = o2
m m m23 8

2

Jim
Vi

Bl — 2|2 + 202(f(F*) — F(a))]
<(1-5) Bl - P e 2 - S+ (1= 5) A 6 Lo

This finishes the proof. O

Rearranging this inequality and taking ¢ < we obtain

H EXPERIMENTS

This section provides description of the experiment setup, presents and analyses results of logistic
regression experiments on LIBSVM datasets, studies dependence of history size over convergence.
Moreover, experiments with neural networks optimization for data-parallelism and model-parallelism
are presented and discussed.

43

Under review as a conference paper at ICLR 2025

H.1 TECHNICAL DETAILS

Our implementation of compression operators and algorithms is written in Python 3.10, with the use
of PyTorch optimization library. We implement a simulation of distributed optimization system on a
single machine, which is equivalent in terms of convergence analysis. Our server is AMD Ryzen
Threadripper 2950X 16-Core Processor @ 2.2 GHz CPU and x2 NVIDIA GeForce GTX 1080 Ti
GPU. We use Weights&Biases Biewald| (2020) for experiments tracking and hyperparameters tuning.

H.2 LOGISTIC REGRESSION EXPERIMENTS

We conduct experiments on classification with logistic regression on four datasets: Mushrooms,
A9A, W8A, MNIST. We apply the following optimization algorithms: proposed MQSGD and its
accelerated version AMQSGD, and also use Markovian compressors with popular DIANA [Mishchenko
et al. (2019)) algorithm. In all of our experiments, we do not utilize the steps of the optimizer, but
rather the information that is transmitted by each worker at the current timestamp ¢. This implies that
there are n workers, with each worker sending m coordinates at each iteration of the optimization
step. Consequently, the z-axis displays numbers of the form mn - 1,mn -2,... . mn-t,...,mn-T.
This allows us to understand the performance of compressors with varying values of m and n.

We use convex logistic regression loss with a regularization term A = 0.05. Each dataset is split
horizontally (by rows) equally between N = 10 clients. The feature dimension is denoted as d in the
figures, varying from hundreds to almost a thousand between datasets. The underlying sparsification
compressors in Rand-10% for all logistic regression experiments. Learning rate initial value and decay
rate are fine-tuned for each problem and compressor. Additionally, Markovian-specific parameters
such as history size K, forgetting rate b are also fine-tuned. Table 2] provides hyperparameters grid
for the tuning. We obtain optimal solution 2* for each problem with scipy.optimize method in
order to use this value for the graphics.

Table 2: Hyperparameters values used for tuning in the experiments.

Hyperparameters Values List

Learning rate [0.01,0.03,0.05,0.1,0.3,0.5,1]
Learning rate decay rate [0.5,0.8,1]

History size K [1...40]

Forgetting rate B [1,10,15, 20, 30, 50]

Figures[3] [6]and [7]present relative distance to the optimum and gradient norm for the best runs on
MQSGD, AMQSGD and DIANA, respectively. We observe that Markovian compressors consistently
outperform the Rand-10% baseline in all scenarios, as the diverging trend can be seen. Only in some
experiments with DIANA (MNIST) the advantage is negligible although present. We also observe
that simpler and computational-effective BanLast compressor is often enough to achieve substantial
convergence improvement. Notably, fine-tuned hyperparameters are similar across datasets and
algorithms: for example, BanLast tends to perform best with largest possible values of history size
K, and KAWASAKI forgetting rate b is large. Notice that BanLast compressor with largest K turns
into round-robin compressor with (almost) no stochasticity in coordinates choice.

44

Under review as a conference paper at ICLR 2025

MQSGD on A9A MQSGD on W8A MQSGD on MNIST
MQSGD on MUSHROOMS Q < 10" <
10° Rand(@10) —e— Rand(d/10) —e— Rand(d/10) —e— Rand(d/10)
o - BanLaso, 410) - BanLas(s, 410) - BanLas, 410)
" e KAWASAKI(S, 50,13, |/ |51 4/10) e KAWASAKI(29. 50.(5: |/ | 5]]1.4/10) —h— KAWASAKI(S, 50,151/ [151]1.4/10)
T T T T T T T T T T T T 1077 T T T T T T T T T T
0 5 100 130 200 20 300 0 500 1000 1500 2000 0 500 1000 1300 2000 0 500 1000 1500 2000
Communication Rounds ‘Communication Rounds ‘Communication Rounds Communication Rounds
MQSGD on MUSHROOMS MQSGD on A9A MQSGD on W8A MQSGD on MNIST
—— Rand(@10) —— Rand@10) . —— Rand@10) 100 1 == Ranawnior
a | - BanLasu(8, d/10) M- BanLast(9. d/10) o 10774 —M- BanLast(8, d/10) o - BanLast(9, d/10)
=107 3N A KAWASAKIS, 20,7 /[15]1.4/10) A KAWASAKICS, 50.[7/[5].4/10) = o2 J A A KawasAKICS, 0,151/l 10) =101 3N\ A KAWASAKICS. 50.[71/117]11.4/10)
= e = =02
=02 > S
107 4
107% 4
— T T T T T T T T T T T T T T T T
0 50 100 150 200 230 300 0 S0 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Communication Rounds ‘Communication Rounds ‘Communication Rounds Communication Rounds

Figure 5: MOSGD LIBSVM logistic regression experiments. Best run after hyperparameters tuning is displayed
for each method.

AMQSGD on MUSHROOMS AMQSGD on A9A AMQSGD on WSA AMQSGD on MNIST
L G — =
N - BanLast(9, d/10) - BanLast(9, d/10) = 107 - Banlaso, 10y
A KAWASAKICS, 50,7 1/[[7]1 410) A KAWASAKICS. 5071/ 7l]1./10) A KAWASAKIO, 50.[7 /11711 4/10)
10
—— Rand@10)
+ | B BanLasr. an0) e] .
e KAVASAKIGS 105,/ I71 410 g9 107
T T T T T T T T T T T 1079 At T T T T T T T
0 50 100 150 200 250 300 0 500 1000 1500 2000 0 500 1000 1500 2000 o 500 1000 1500 2000
Communication Rounds Communication Rounds Communication Rounds Communication Rounds
AMQSGD on MUSHROOMS AMQSGD on A9A AMQSGD on WSA AMQSGD on MNIST
100
—— Rand(@10) —— Rund@10) . —— Rund@10) —— Rand@10)
a1 1N\ BaLasg.a10) a_ 107 3\ BanLasio. a10) a 107\ BanLasio. an0) o 10-1 3\ Bankaso,410)
= A KAWASAKIS, 10,51/ 711 410) = e KAWASAKI(IS, 50,71/l 1.4/10) 2 10-2 3\ A KAWASAKIES, 5071/ 4110) = A KAWASAKI, 50,5 /1711 410)
) — Y 1072 o)
= g2 = = 0]
=3 [T [
+ 1044
1073 4 1074 4
0 G0 100 150 200 230 300 0 50 1000 1500 2000 0 500 1000 1500 2000 o 500 1000 1500 2000
Communication Rounds Communication Rounds Communication Rounds Communication Rounds

Figure 6: AMQOSGD LIBSVM logistic regression experiments. Best run after hyperparameters tuning is displayed
for each method.

DIANA on MUSHROOMS DIANA on A9A DIANA on W8A DIANA on MNIST
10° 4 10°
- BunLast(6, 4/10) ~ i~
A KAWASAKIQ0, 15,151/ []1.4/10)
107 4 107% 4
—— Rand(@10) —— Rand(@10) —— Rand(@10)
10 4 < BanLasi6, d10) - BanLasi6, d10) 107° 4/ 4 BanLas1, 410)
== KAWASAKI(25, 30, | /||| 4/10) = KAWASAKI(28, 30./5:]/]5]11.4/10) = KAWASAKIG, 15, 5:/||5]]1,4/10)
T T T T T 107 T T T T 107" T T 107 T T T T
0 S0 100 150 200 0 50 100 150 200 250 0 a0 100 150 0 100 200 300 400 500
Communication Rounds Communication Rounds Communication Rounds Communication Rounds
DIANA on MUSHROOMS DIANA on A9A DIANA on WSA DIANA on MNIST
N 10°
10 { = raniio) —— Rana@10) By~ ranaano) 100 LBy —— Ranaiari0)
o - BanLasi6, d/10) o 1071 4 -l BanLas, /10) o jgen]| - BaLasi,10) o - Banlasi(1, 4/10)
T 10m2 4L A KawASAKIC0, 15,5 /117l 9/10) = e KAWASAKIC2S, 30, 51/ = A KAWASAKI(S. 30,151/ [[5]1.410) 71077 N A KAWASAKIG, 15, 51/}l 4/10)
O R = 3
= = <0 =]
B o = e =
1077 1075 4 100]
0 50 100 150 200 20 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 500 1000 1500 2000
Communication Rounds Communication Rounds Communication Rounds Communication Rounds

Figure 7: DIANA LIBSVM logistic regression experiments. Best run after hyperparameters tuning is displayed
for each method.

H.3 DEPENDENCE ON SIZE HISTORY

As a part of hyperparameter tuning, we additionally analyze how history size K affects the con-
vergence of Markovian compression-based methods. Figure 8] presents dependence of distance to
optimum metric on history size for logistic regression experiments. We observe that BanLast
performs better around larger values of K = 8 or K = 9. In such case for Rand10% used along with
BanLast(9), the compression procedure resembles a permutation: for each 10 iterations, no indices
are repeated, and the transmission cycle repeats after that. KAWASAKT history size seems to have
periodical spikes and drops, achieving minimum at around K = 25. However, statistics for DTANA
differ drastically, indicating that history size should be adjusted for each problem independently.

H.4 COMPARISON WITH PERMUTATION & NATURAL COMPRESSION

In this section, we provide empirical comparison of the proposed compressors with other complex
compression schemes.

45

Under review as a conference paper at ICLR 2025

«10-5 MQSGD on MUSHROOMS %10-5 MQSGD on A9A %10-7 MQSGD on WSA «10-5 MQSGD on MNIST

s - BuLast
A= KAWASAKI

- BanLast
—h— KAWASAKI

B BanLast
—— KAWASAKI

B BanLast
—h— KAWASAKI

64

a4

24

04

0 5 10 15 20 25 30 o 5 10 15 20 25 30 0 10 20 30 40 50 5 00 15 20 25 30

History buffer size K History buffer size K History buffer size K- History buffer size K
10-5 AMQSGD on MUSHROOMS L1090 AMQSGD on A9A Li0-7 AMQSGD on WSA AMQSGD on MNIST
0.000100
~#- BanLast ~#- BanLast 51 ~#- BanLast ~#- BanLast
A KAWASAKI e KAWASAKI A KAWASAKI 0.000075 - A KAWASAKI

0.000050 o

0.000025 4

0.000000 4

0 10 20 30 10 0 5 10 15 20 2w 0 5 1 15 20 2% % 10 20 20
History buffer size K History buffer size K History buffer size K History buffer size K
x10-¢ DIANA on MUSHROOMS x10-? DIANA on A9A *x10-5 DIANA on W8A Xx10-8 DIANA on MNIST
- BanLast

—h— KAWASAKI

- BanLast - BanLast

A KAWASAKI 0o e kAWASAKI N - KAWASAKI

- BanLast

o 5 10 15 2 2 30 0 5 10 15 22 23 30 o 5 10 15 20 2 30 0 10 0 30 10
History buffer size /& History buffer size /& History buffer size K History buffer size /&

Figure 8: Convergence of Markovian-based algorithms on history size K

MQSGD on MNIST AMQSGD on MNIST DIANA on MNIST
10!
—e— Rand(d/10) I\~ rana@no) o = Rand10)
e 10-1 3¢~ Perm(d/10) B 1077 47N ¢~ Perm(d/10) e 107 e perm@10)
By ~0— Natural (x4) 38 ~4~— Natwral (x4) e | A Nawmed
T, | - BanLaso, an0) T 0-2 | - BanLast. 4/10) TIT 1077 1 4 BanLast(1, 4/10)
B —A— KAWASAKICS, 50.[7: |/ [17l11.4/10) | 30 A KAWASAKI(29, 50.[5:|/l11.0/10) | R e KAWASAKIG, 15,[7: /3] 1.4/10)
= v] o= == 107°
L T T T T 1077 T T T T
0.0 0.5 1.0 15 0.0 0.5 1.0 15 0 100000 200000 300000 400000 500000
Information sent x10° Information sent x10° Information sent
MQSGD on MNIST AMQSGD on MNIST DIANA on MNIST

100 —e— Rand(d/10) —e— Rand(d/10) —e— Rand(d/10)
o 3¢~ Perm(d/10) a 3¢~ Perm(d/10) o =36~ Perm(d/10)
100 I~ Nawnl (x4 = —0— Natural (x4) = ~0— Natwral (x4)
B ~l- BanLast(9, d/10) & , ~l- BanLast(9, d/10) = =l BanLast(1, d/10)
l‘; 1072 o == KAWASAKI(28, 50,|5; |/||pll1.d/10) “l; 10 —h— KAWASAKI(29, 50,|5; | /|| 1,d/10) ‘[; —— KAWASAKI(3, 15,5 | /15| 1,d/10)

1073 107%

T T T T T 1 L T T T T T 1
0.00 025 050 0.75 1.00 125 1.50 0.00 025 050 0.75 1.00 125 1.50 0.00 025 050 0.75 1.00 1.25 1.50
Information sent x10° Information sent x10° Information sent x10°

Figure 9: Comparison with PermK compressor and Natural compression. PermK compression factor is 10,
Natural compression factor is 4. Logistic regression with L2 regularization on MNIST dataset for MQSGD,
AMQSGD and DIANA algorithms on N = 5 clients. Best run is shown after fine-tuning learning rate, its decay,
and Markovian compression parameters. X axis represent amount of information communicated.

Markovian compressors proposed in the paper compress vector coordinates dependently over opti-
mization epochs. A similar idea of distributed compression is proposed in PermK [Szlendak et al |
(2021)), where coordinates are arranged between workers at each iteration. Another compressor in the
consideration is Natural compression [Horvath et al.| (2022), an unbiased randomized compressor.

Results of comparison of these compressors on MNIST dataset are presented in Figure[9] The results
justify that Markovian compressors tend to converge faster than the competitors, allowing larger
learning rates.

H.5 COMBINATION WITH OTHER COMPRESSORS

Although markovian compressors are initially targeted to work with sparsification-based compres-
sors, refining coordinates selection probabilities, they are fully compatible with other compressors
afterwards. To illustrate this, and to conduct additional comparison with PermK compressor, we
setup experiments combined with Natural Compression . Precisely, we compare RandK+Natural,
PermK+Natural, BanLast+Natural and KAWASAKI+Natural compressors on logistic regression on
MNIST dataset.

46

Under review as a conference paper at ICLR 2025

1072

MQSGD on MNIST AMQSGD on MNIST
10" = < 100 == Q DIANA on MNIST
—e— Rand(d/10)+Natural —e— Rand(d/10)+Natural

e Perm(d/10)+Natural - 10 Perm(d/I0)+Natural 10°

2[5 10 <= BanLasu®, d/10) + Natural 2& -l BanLasu9, d/10) + Natwral a0

== ol == 10 el LU

|0 A KAWASAKI(28. 50.5:|/[|l]1.4/10) + Natural 11 —A— KAWASAKI(29, 50,|5; | /||5]1.4/10) + Natural 5 10 Rand(@/10)+Natural
e 10-° S R Perm(d/10)+Natural

== s

L@k
F@0)

o A

~M- BanLast(3, d/10) + Natural

-4

10 A KAWASAKIG, 15./5;|/||7]/1.4/10) + Natural
1070 T T T T {
0 500 1000 1500 2000 0 500 1000 1500 2000 0 100 200 300 400 500
Communication Rounds Communication Rounds Communication Rounds
MQSGD on MNIST AMQSGD on MNIST DIANA on MNIST
= = =
~—e— Rand(d/10)+Natural —e— Rand(d/10)+Natural 10° == Rand(d/10)+Natural

10

Perm(d/10)+Natural Perm(d/10)+Natural o Perm(d/10)+Natural

o o
- BanLas(9, d/10) + Natural « 10 M- BanLast(9, d/10) + Natural 2 107 =fl- BanLast(3, d/10) + Natural
B 10T e KAWASAKI(S, 50,17 /[|7]l1,d/10) + Natural & ~f— KAWASAKI(29, 50.|7;|/|||1.d/10) + Natural & =~ KAWASAKI(G, 15.|5;| /|| 1.d/10) + Natural
= = = 104
| > 1072 s 10
Z 1072 = =
1076
-3 -3
10 T T L B T 10 T T T T T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Communication Rounds Communication Rounds Communication Rounds

Figure 10: Experiments with Natural compression, MNIST logistic regression experiments. Best run after
hyperparameters tuning is displayed for each method.

Figure[T0|shows results of combination of mentioned sparsification compressors with natural com-
pression.

H.6 NEURAL NETWORKS EXPERIMENTS: DATA PARALLELISM CASE

To adopt Markovian compression to a more complex task, we perform image classification on CIFAR-
10[Krizhevsky et al|(2009) with Resnet-18 (2016) convolutional neural network. We split the
training set of size 50, 000 equally between N = 5 clients. We use SGD optimizer with momentum
0.9 and weight decay 5 - 10~*. Hyperparameters such as batch size and learning rate are fine-tuned.
Markovian compresors hyperparameters, such as history size K and forgetting rate b are fine-tuned,
while activation function is set to ordinary normalization. Experiments are conducted with several
sparsification compressors, such as Rand-5%, Rand-7%, and Rand-10%, with number of epochs
adjusted for each case.

Figures|[IT] [I2]and [T3]present train loss, gradient norm and test accuracy for each baseline method
and Markovian compressors for Rand-5%, Rand-7% and Rand-10% scenarios, respectively. Summary
on best test accuracy is presented in Table|3| and extended numerical results for Rand-5% compressor
were presented in main experiments Table|I] We observe that in such complex, batched optimization
problem only KAWASAKT obtains a substantial convergence improvement, as opposed to simpler
logistic regression. Nevertheless, BanLast still performs the best when used with large history
size, while both history size and forgetting rate are low for KAWASAKTI. In terms of achieved test set
accuracy, methods differ significantly only on higher compression rates like Rand-5%. This may
imply that Markovian compression tolerates stronger compression, which is useful in practice. To
summarize, Markovian compressors can be successfully applied in neural networks training, with
KAWASAKI compressor significantly improving convergence.

Finally, we also conduct the comparison with Permutatino and Natural compression, both inde-
pendently and in combination. Figure[T4]shows learning curves for training with N' = 20 clients.
KAWASAKI compressor appears to have best convergence in both independently and in combination
with Natural compression againt Permutation compressor.

Training ResNet-18 on CIFAR-10 Training ResNet-18 on CIFAR-10 Training ResNet-18 on CIFAR-10
100 =@= Rand(d/20) 3x10°
~ll- BanLast(19, d/20) a &
—~ A KAWASAKI(10, 5,5 /[|5]]1.020) | = 2% 10° £
= ot ; =@= Rand(d/20) ; 609 =@= Rand(d/20)
= 10° 4 - BanLasi(19, d20)] - BanLast(19, d/20)
—A— KAWASAKI(10, 5,|5;| /|| p]|1,d/20) | 40 —A— KAWASAKI(10, 5.55; | /||]| 1.d/20)
T T T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs

Figure 11: Resnet-18 on CIFAR-10 training results for Rand-5% sparsification.

47

Under review as a conference paper at ICLR 2025

Training ResNet-18 on CIFAR-10 Training ResNet-18 on CIFAR-10 Training ResNet-18 on CIFAR-10
100 =@= Rand(d/14) 3x10°
-~ BanLasi(7, d/14) o 9100 z 80
- A~ KAWASAKI(0,5,[5:|/[15]l1.4/14) | —~ £
B 5 39
= 07! “[‘; 100 | =@= Rand(d/14) 't ,2: 60 =@= Rand(d/14)
= -l BanLast(7, d/14) & ~M- BanLasi(7, d/14)
6% 10~ | == KAWASAKI(10, 5,|5:| /|5l 1.d/14) W —h— KAWASAKI(10, 5,[5;/|5]|1.4/14)
1072 T T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs

Figure 12: Resnet-18 on CIFAR-10 training results for Rand-7% sparsification.

Training ResNet-18 on CIFAR-10 Training ResNet-18 on CIFAR-10 Training ResNet-18 on CIFAR-10
100 =@= Rand(d/10) =@= Rand(d/10)
- BanLast(3, d/10) & - BanLast(3, d/10) 2 80
= 3
—~ ~h— KAWASAKI(15, 10,5:|/||5]l1.4/10) | 2= ~A— KAWASAKI(I5, 10,5 1/||5]1.4/10) | £
8 107" 38 3
i; 10 ; 0 =@= Rand(d/10)
= & - BanLast(3, d/10)
10-2 ~A— KAWASAKI(15, 10,55;|/[|]|1.d/10)
T T T T T T T T T T T T T T T T T
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Epochs Epochs Epochs

Figure 13: Resnet-18 on CIFAR-10 training results for Rand-10% sparsification.

Training ResNet-18 on CIFAR-10 Training ResNet-18 on CIFAR-10
|
@@= Rand(d/20)+Natural 109
10° -
Perm(d/20)+Natural
— == BanLast(19, d/20)+Natural — =@= Rand(d/20) —
= 2
) ~h— KAWASAKI(10, 5,|5; |/ [|5]|1,d/20)+Natural | "8 107" Perm(d/20)
S~ 10-1 S~ + Natural (x4) |
. == BanLast(19, d/20) =
10 —A— KAWASAKI(10, 5.|5:| /]| 1.4/20)
T T T T T T T T T
0 50 100 150 200 0 1000 2000 3000 4000
Epochs Information sent

Figure 14: Comparison with other compressors on Resnet-18 training on CIFAR-10 dataset for Rand-5%
sparsification on /N = 20 clients. Natural compression factor is 4. Left figure is sequential combination with
Natural compression. Right figure is comparison against PermK and Natural compressors independently, with
information sent on x-axis.

Table 3: Best test accuracy % of training ResNet-18 on CIFAR-10 with different compressors

Rand-K% Banlast KAWASAKI

Rand-5% 88.03 88.1 89.27
Rand-7% 89.31 89.38 90.28
Rand-10% 91.46 91.72 91.78

H.7 NEURAL NETWORKS EXPERIMENTS: MODEL PARALLELISM CASE

As opposed to data-parallel setting, model parallelism is paradigm which splits the model (typically a
deep neural network) to a pipeline of layers between workers. Such distributed scenario is especially
relevant for large language models (LLM), which consist of billions of trainable parameters. As
communication is a typical bottleneck in such systems [Diskin et al.| (2021)), various compression
techniques are applied to layer activations and their respective gradients that are transferred between
adjacent pipeline workers. Such techniques include quantization and sparsification Dettmers et al.|

(2022); [Bian et al|(2023), as well as low-rank compression (2023) techniques.

We perform training of Resnet-18 convolutional neural network on CIFAR-10
dataset [Krizhevsky et al.| (2009). We split the ResNet onto 4 workers by resnet blocks, simulated
on a single device with compression of activations and their respective gradients in the places of
communication. We apply Markovian compressors only to gradients in model-parallel setup, using

48

Under review as a conference paper at ICLR 2025

same RandK compression for both activations and gradients independently for each compression
block.

Table 4: Best test accuracy % for model parallelism experiments with Resnet-18 classification of CIFAR-10

Compressor Compression ON Compression OFF
No compression 92.8 92.8
Rand10% 84.6 86.1
BanLastK+Rand10% 85.2 86.4
KAWASAKI(simplex projection)+Rand10% 84.5 85.0
KAWASAKI(normalize)+Rand10% 85.2 86.8
KAWASAKI(softmax)+Rand10% 85.3 87.3

Table [presents best test set accuracy achieved for training with different compressors. While
compression indeed decreases accuracy for Rand-10%, application of Markov compressors, especially
KAWASAKTI with normalization and softmax activation functions, favours the final test accuracy on a
whole one percent. Note that compression is not applied during inference, only on training phase. This
case illustrates potential of Markov compressors beyond data-parallelism setup considered in theory.
In practical training of large neural networks, where both data-parallelism and model-parallelism are
often applied simultaneously, Markov compressors could also be useful, as per shown efficiency on
both these setups in separate.

H.8 FINE-TUNING DEBERTAV3-BASE ON GLUE DEVELOPMENT SET

In this series of experiments, we examine a distributed approach to fine-tuning language models using
LoRA [2021)). This method is based on freezing the model weights that are pre-trained on a
large dataset, and add a low rank adapter with matrices A € R™*" and B € R"*" to some selected
layers Woq € R™*™ of this model, such that W, = Wyq + A - B. Since in practice the parameter
r is chosen to be much smaller than n and m, the new model has much fewer trainable parameters
and can be efficiently trained on downsteram tasks.

In our experiments, we apply LoRA adapters with fixed rank r = 8 to the attention layers of the
DeBERTaV3-base model [202T). The downsteram task is the classical GLUE benchmark
for natural language understanding (Wang et al,[2019). We consider only random sparsification
compressors (DeﬁnitionEI) with 25% compression rate, due to the large computational cost of this
experiment. Figure [T3] shows learning curves for training with N = 10 clients. Our Markovian
compressors appears to have best convergence against independent Randm compressor.

Training DEBERTA on SST2 Training DEBERTA on QNLI Training DEBERTA on COLA
10° o
6x107" 6x 107"
@ 2 6x107" @
% 4x107! 8 8 4x10-1
ngw,l il . . ERES S E
s —e— Rand(d/4) 5] 1 | == Rand@i) S 3x 10! { == Rand(d/4)
& 5 3x10 &
o 10-1 | i BanLast3, di) ~- BanLast(10, d/4) - BanLast(10, d/4)
~h— KAWASAKI(10. 2.5 /||| 1.d4) 2 x 1071 { —A— KAWASAKI(I0,2.[p;|/|5]|1.0/4) 2 10-1 | —— KAWASAKIQ0,2.[5:|/5]l1.d/4)
T T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Step Step Step

Figure 15: Comparison with other compressors on fine-tuning task on GLUE benchmark on N = 10 clients.
We performed experiments on SST2, QNLI and COLA tasks, they are arranged from left to right.

49

	Introduction
	Our contributions
	Related work
	Technical preliminaries

	Main results
	Markovian compressors
	Distributed gradient descent with Markovian compressors
	Accelerated method
	Discussion

	Experiments
	Logistic regression
	Neural networks

	Conclusion
	Auxiliary Lemmas and Facts
	Cauchy–Schwarz inequality
	Fenchel-Young inequality

	Mathematical calculations from Example 1
	Proof of Theorem 1
	Main lemmas
	Extensions for Theorem 2
	Full version of Theorem 2
	Full version of Corollary 1
	Proof of Theorem 2, non-convex case
	Proof of Theorem 2, Under PL-condition

	Convergence of Algorithm 1 without data similarity
	Extensions for Theorem 3
	Full version of Theorem 3
	Full version of Corollary 2
	Proof of Theorem 6

	Experiments
	Technical details
	Logistic Regression experiments
	Dependence on size history
	Comparison with Permutation & Natural Compression
	Combination with other compressors
	Neural Networks Experiments: Data Parallelism Case
	Neural Networks Experiments: Model Parallelism Case
	Fine-tuning DeBERTaV3-base on GLUE development set

