
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MARKOVIAN COMPRESSION: LOOKING TO THE PAST
HELPS ACCELERATE THE FUTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper deals with distributed optimization problems that use compressed
communication to achieve efficient performance and mitigate the communication
bottleneck. We propose a family of compression schemes in which operators trans-
form vectors fed to their input according to a Markov chain, i.e., the stochasticity of
the compressors depends on previous iterations. Intuitively, this should accelerate
the convergence of optimization methods, as considering previous iterations seems
more natural and robust. The compressors are implemented in the vanilla Quantized
Stochastic Gradient Descent (QSGD) algorithm. To further improve efficiency
and convergence rate, we apply the momentum acceleration method. We prove
convergence results for our algorithms with Markovian compressors and show
theoretically that the accelerated method converges faster than the basic version.
The analysis covers non-convex, Polyak-Lojasiewicz (PL), and strongly convex
cases. Experiments are conducted to demonstrate the applicability of the results
to distributed data-parallel optimization problems. Practical results demonstrate
the superiority of methods utilizing our compressors design over several existing
optimization algorithms.

1 INTRODUCTION

The optimization problem is currently a key issue in many practical applications, such as optimization
in neural network training, resource allocation in computational systems, and parameter tuning in
algorithmic trading strategies.
In addition, a variety of algorithms for optimization on a single device, such as SGD Robbins
& Monro (1951), Adam Kingma & Ba (2014), Lion Yazdani & Jolai (2016), have emerged and
been subjected to theoretical analysis. However, in the contemporary landscape of deep learning,
there is an increasing trend towards adopting intricate and expansive models that pose significant
training challenges. Prominent among these challenges are advanced deep learning frameworks for
image analysis, sophisticated natural language processing structures akin to transformers Vaswani
et al. (2017), and complex reinforcement learning methodologies designed for autonomous system
operations Kiran et al. (2021). As a result, the training of such models has become impractical for
execution on a single device due to their requirement for extensive data sets for training, which are
unfeasible to store on a single device. Consequently, optimization algorithms have been specifically
developed for distributed training Verbraeken et al. (2020); Chen et al. (2021). These methods utilize
a large number of devices, with each one processing distinct data subsets and participating in an
effective data exchange mechanism, thereby aiding in the training of these computationally intensive
models. Thus, the problem of classical optimization evolves into a distributed optimization form:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where fi is a function, located on a device i. This formulation encompasses not only distributed
learning, where data is dispersed across multiple devices to expedite training and facilitate the storage
of large amounts of data, but also extends to federated learning Konečnỳ et al. (2016); Li et al. (2020);
Kairouz et al. (2021), where data distribution is motivated by the architecture of the system itself,
allowing for decentralized model training while maintaining data privacy and integrity across diverse
devices.
A downside of this approach manifests as the complexity associated with the transmission of large-
scale data, a phenomenon often referred to as the "communication bottleneck" Gupta et al. (2021).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

This bottleneck can significantly impede the efficiency of the system, particularly in scenarios involv-
ing extensive data exchange across distributed networks. The challenge intensifies in environments
where the bandwidth is limited, requiring solutions to mitigate the impact of data transmission delays
and ensure seamless data flow.
The primary solution at present is the compression of transmitted information Bekkerman et al.
(2011); Chilimbi et al. (2014); Alistarh et al. (2017), wherein not a whole package is sent, but rather
a selected subset. This method involves strategically selecting and compressing the most informative
segments of data for transmission. By doing this way, it significantly reduces the volume of data that
needs to be communicated across the network, thereby alleviating the communication bottleneck.
In recent times, a number of methods employing compression have been conceived and scrutinized
Mishchenko et al. (2019); Gorbunov et al. (2021a); Richtárik et al. (2021). However, a lot of studies
have utilized unbiased compression operators due to their simplicity and amenability to theoretical
analysis. Such compression techniques, including methods as random sparsification and value
rounding Nesterov (2012a); Alistarh et al. (2017); Horvath et al. (2022); Beznosikov et al. (2023a),
fail to consider the integration of information conveyed in prior iterations. We hence highlight a
potential research gap regarding the usage of previously transmitted data in compression operators
and optimization algorithms.
This omission raises the following research questions that we address in the paper:

• Is it possible to design compression operators that take into account information
about what and how we forwarded in previous iterations?
• What methods can we integrate this kind of compression operators into? How
does it affect the convergence rate of the methods, both in theory and in practice?
• Can the methods be made even more efficient, e.g., by using additional momentum
acceleration techniques?

In our paper, we focus on compression-based methods that take into account information collected
across multiple preceding iterations, employing what are termed as Markovian compression operators.
To the best of our knowledge, this approach emerges as novel and unexplored in the existing literature.

1.1 OUR CONTRIBUTIONS

New type of compression operators. We introduce a novel type of compressors that utilizes stochas-
ticity transmitted over several previous iterations. We refer to this type of compressors as Markovian,
because the states of these compressors can be viewed as a Markov chain. We examine two in-
vented examples of such compressors: BanLast(K,m) (Definition 5) and KAWASAKI(K, b, π∆,m)
(Definition 6). The first new compressor operates on a more intuitive basis: it works as random
sparsification, but prohibits the transmission of coordinates that were sent in the previous K iterations.
The latter functions in terms of probabilities: it reduces the likelihood of transmitting coordinates that
appeared in previous iterations. The KAWASAKI(K, b, π∆,m) compressor is more flexible and, in
fact, modify the idea BanLast(K,m), but it introduces two hyperparameters that will be discussed
later in Section 2.1.
New algorithms. The compression operators described above give rise to new methods that utilize
them. In this context, our paper outlines a general framework based on Alistarh et al. (2017) for
distributed gradient descent algorithms that employ Markovian compression operators (MQSGD, see
Algorithm 1). Subsequently, to make this basic algorithm faster we apply the multiple momentum
technique Nesterov (2012a) and obtain the accelerated method AMQSGD. The formulation of such
an algorithm is detailed in Algorithm 2. The basic and accelerated methods are explored both
theoretically and experimentally throughout the paper. Furthermore, experiments utilizing Markovian
operators in the DIANA Mishchenko et al. (2019) and SGD with momentum algorithms are conducted
in Section 3.
Strongly convex and non-convex cases. Motivated by various applications primarily from machine
learning, we provide the theoretical analysis in the strongly convex (Theorem 3) and non-convex / PL-
condition (Theorem 2) cases of the target function f . Notably, we provide proper analysis for both
setups with specific cases, which is rarely present in the field.
Numerical experiments. We conduct experiments with Markovian compressors in a data-parallel
setup for several optimization problems and datasets. In particular, we analyze the proposed MQSGD
and AMQSGD, as well as the DIANA and SGD optimizers for distributed optimization. In all setups,
we observe an acceleration of convergence for methods employing the BanLast and KAWASAKI
compressors compared to the baseline random sparsification.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1.2 RELATED WORK

Compressed communications. The use of compressed communications is a fairly well-known idea
in distributed learning Seide et al. (2014). As soon as the main property of compressed messages
is that they are much easier to transfer, it can be reached in different ways, such as by quantizing
the entries of the input vector Alistarh et al. (2017); Mayekar & Tyagi (2019); Gandikota et al.
(2020); Horvath et al. (2022), or by sparsifying it Richtárik & Takáč (2016); Alistarh et al. (2018), or
even by combining these ideas Albasyoni et al. (2020); Beznosikov et al. (2023a). However, all of
the compression operators could be roughly Condat et al. (2023) separated into two large groups:
unbiased and biased.
The first group is much easier to analyze and is therefore more broadly represented in the literature.
The basic method with unbiased compression was presented in Alistarh et al. (2017). Later this
algorithms were modified using variance reduction technique with compression of gradient differences
Mishchenko et al. (2019); Horváth et al. (2019); Gorbunov et al. (2021a) in order to improve the
theoretical convergence guarantees. One can also note the works Gorbunov et al. (2019) and Khaled
et al. (2020), where the authors developed a general theory for SGD-type methods with unbiased
compression.
On the other hand, our understanding of distributed optimization with biased compressors is more
complicated. In particular, biased compression implies the use of error compensation techniques
Stich et al. (2018). Distributed SGD with biased compression and linear rate of convergence in a
multi-node setting was first introduced in Beznosikov et al. (2023a). In the meantime, other error
compensation techniques are being actively developed, Lin et al. (2022); Richtárik et al. (2021). The
last approach called EF21 was later studied in Fatkhullin et al. (2021), Gruntkowska et al. (2023).
Markovian stochasticity. Another recent trend in the literature is to design algorithms that use
Markovian stochastic processes instead of i.i.d. random variables in various ways. For instance, Duchi
et al. (2012) introduced a version of the Mirror Descent algorithm that yields optimal convergence
rates for non-smooth and convex problems. Later, Doan et al. (2020a); Dorfman & Levy (2023);
Beznosikov et al. (2023b) studied first-order methods in the Markovian noise setting. Alternatively,
token algorithms Hendrikx (2022); Ayache et al. (2022) are also a popular area of research in
Markovian stochasticity. In particular, Even (2023) obtained optimal rates of convergence, and Sun
et al. (2022); Mao et al. (2019); Doan et al. (2020b) looked at the token algorithm from the angle
of the Lagrangian duality and from variants of the ADMM method. At the same time, there exist
particular results, e.g., Bresler et al. (2020), which provide a lower bound for the particular finite sum
problems in the Markovian setting.
Despite all of the above, to the best of our knowledge, there are currently no works that combine
compressed data communications and Markovian stochasticity of the compressors.

1.3 TECHNICAL PRELIMINARIES

Notations. We use ⟨x, y⟩ :=
∑d

i=1 xiyi to denote standard inner product of vectors x, y ∈ Rd and
(x⊙ y)i = xiyi to denote Hadamard product of vectors x, y ∈ Rd. We introduce l2-norm of vector
x ∈ Rd as ∥x∥ :=

√
⟨x, x⟩. We define x∗ ∈ Rd as a point, where we reach the minimum in the

problem (1). We also denote f∗ > −∞ as a global (potentially not unique) minimum of f . We use a
standard notation for (d − 1)-dimensional simplex ∆d :=

{
p ∈ Rd | pj ≥ 0 and

∑d
j=1 pj = 1

}
and for a set of natural numbers 1, n := {1, 2, . . . , n}. We denote Ck

m as the binomial coefficient(
m
k

)
.

Throughout the paper, we assume that the objective functions fi and the function f from (1) satisfy
the following assumptions.
Assumption 1 (Li-smooth). Every function fi is Li-smooth on Rd with Li > 0, i.e. it is differentiable
and there exists a constant Li > 0 such that for all x, y ∈ Rd it holds that ∥∇fi(x)−∇fi(y)∥2 ≤
L2
i ∥x− y∥2 . We define L2 := 1

n

∑n
i=1 L

2
i .

Assumption 2 (µ-strongly convex). The function f is µ-strongly convex on Rd, i.e., it is differentiable
and there is a constant µ > 0 such that for all x, y ∈ Rd it holds that (µ/2) ∥x− y∥2 ≤ f(x) −
f(y)− ⟨∇f(y), x− y⟩ .
Assumption 3 (PL-condition). The function f satisfies the PL-condition, i.e., it is differentiable and
there is a constant µ > 0 such that for all x ∈ Rd it holds that ∥∇f(x)∥2 ≥ 2µ (f(x)− f∗) .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Assumption 4 (Data similarity). The functions fi are similar on Rd, i.e., there are constants δ, σ ≥ 0,
such that the following inequality holds for all x ∈ Rd: ∥∇fi(x)−∇f(x)∥2 ≤ δ2 ∥∇f(x)∥2 + σ2.

The equation above implies that the data stored at each worker does not differ significantly. This
Assumption is quite standard in the literature Shamir et al. (2014); Arjevani & Shamir (2015); Khaled
et al. (2020); Woodworth et al. (2020); Gorbunov et al. (2021b); Beznosikov et al. (2022; 2023b).
Now we introduce important definitions related to the theory of Markov processes.

Definition 1 (Markov chain). Markov chain with a finite state space {νn}Nn=0 is a stochastic process
{Xt}t≥0, that satisfies Markov property, i.e. P{Xt = νt | Xt−1 = νt−1, Xt−2 = νt−2, ..., X0 =
ν0} = P{Xt = νt | Xt−1 = νt−1}.

Definition 2 (Ergodicity of Markov chain). Markov chain {Xt}t≥0 with a finite state space {νn}Nn=0

is referred to be ergodic if for any n ∈ 1, N there exists lim
t→∞

P {Xt = νn | X0 = ν0} = pn, where

0 ≤ pn ≤ 1 does not depend on the ν0. If Markov chain is ergodic, then {pn}Nn=0 ∈ ∆N and there
exist 0 < ρ < 1, C > 0, such that |P {Xt = νn | X0 = ν0} − pn| ≤ Cρt.

Definition 3 (Mixing time of the discrete Markov chain). We say that τmix(ε) is the mixing time of
the ergodic Markov chain {Xt}t≥0 with stationary distribution {pn}Nn=0, if ∀ε > 0,∀t ≥ τmix(ε) ↪→
max
n∈0,N

{|P {Xt = νn | X0 = ν0} − pn|} ≤ ε · pmin, where pmin := minn∈0,N{pn}. From the

Definition 2, it follows that τmix(ε) ≥ log(C/pminε)
log(1/ρ) .

These definitions are extremely important for further analysis of the Markovian compressors, which
are presented in the next section.

2 MAIN RESULTS

2.1 MARKOVIAN COMPRESSORS

In this section, we introduce Markovian compressors that take into account the information transmitted
in previous K operations. It is assumed that these compressors function within an iterative algorithm
aimed at minimizing the problem (1), wherein a distinct discrete variable, denoted as the step t, is
involved. Consequently, due to the dependence of the compressors on previous states, they exhibit a
reliance on the step t. Let us narrow down the class of compressors to be discussed in this paper.
Definition 4 (Random sparsification). Qt(x) is a random sparsification compressor, if it operates on
the vector x ∈ Rd as Qt(x) =

d
mx⊙ 1(νt), where νt is a set of m coordinates : νt ⊆ 1, d.

The classical Randm operator fits Definition 4, in particular, for this compressor subsets νt are
generated uniformly at each step t, therefore it is unbiased, i.e., Et[Qt(x)] = x for all t. In this paper,
we do not generate νt independently, but according to some Markov chain, i.e., compressors start to
take into account past iterations. We formulate this idea as an assumption.
Assumption 5 (Asymptotic unbiasedness of Markovian compressors). We assume that operator Qt

is a random sparsification compressor (Definition 4) and {νt}t≥0 are realizations of some ergodic
Markov chain with uniform stationary distribution.

Assumption 5 implies that in the limit as t → ∞, the compressor Qt is unbiased, i.e., E [Qt(x)] → x
as t → ∞, because the stationary distribution of the Markov chain is uniform. We are now
ready to introduce two compressors that adhere to Assumption 5. The first compressor is called
BanLast(K,m), it prohibits sending coordinates that have been sent at least once in the last K
iterations.
Definition 5 (BanLast(K,m) compressor). Let Qt(x) be a random sparsification compressor
(Definition 4). The j ∈ νt are chosen according to the distribution pt ∈ ∆d and pt is given by the
formula:

ptj =

{
0, if j ∈

⋃t−1
s=t−K νs,

1
d−Km , otherwise.

The BanLast(K,m) compressor exhibits a limitation in its utility due to an application restriction:
d ≥ (K + 1)m, since we need at least m coordinates to have a non-zero probability at each
step t. In order to avoid these limitations, we introduce a more flexible Markovian compressor
KAWASAKI(K, b, π∆,m).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Definition 6 (KAWASAKI(K, b, π∆,m) compressor). Let Qt(x) be a random sparsification com-
pressor (Definition 4). The j ∈ νt are chosen according to the distribution pt ∈ ∆d, which is given
by the formula:

p̃ t
j =

1/d

b# of choices j for the last K iterations , j ∈ 1, d; pt = π∆

(
p̃ t
)
,

where b > 1 is a forgetting rate and π∆ : Rd → ∆d is an activation function.

The KAWASAKI(K, b, π∆,m) compressor is now applicable for arbitrary values of d ≥ m, and K.
However, it introduces two additional hyperparameters in comparison with BanLast(K,m), namely
b and π∆. The parameter b is responsible for the how strongly we penalize a coordinate if it was
selected in previous iterations, the larger b is, the less likely we are to select a coordinate in step t if it
was selected in steps t−K to t− 1. The function π∆ is required in order to obtain the probability
vector pt from the vector p̃ t, the necessary conditions for this function will be introduced later. The
following examples illustrate potential selections for π∆:

(π∆ (p̃))j = |p̃j |/∥p̃∥1, π∆ (p̃) = Softmax (p̃) , π∆ (p̃) = argmin
p∈∆d

{∥p̃− p∥2}.

We now provide an example where using the Markovian compressor BanLast(K,m) (Definition 5)
speeds up the optimization process by a factor of three compared to the unbiased compressor Randm.
Example 1. Consider the QSGD algorithm (Algorithm 1), which solves the problem (1) in the case
n = 1, of the form xt+1 = xt − γQ(∇f(xt)). Assume that at some step t we observe gradient of the
form (1, 0, ..., 0)T ∈ Rd. In the QSGD algorithm, we compress the gradient at each step, therefore,
we do not always send the first coordinate to the server, i.e. we do not move from the point xt.
In the case of m = 0.1 · d, i.e. we send 10% of all coordinates at each step, if we use the
BanLast(K,m) compressor, then the mathematical expectation of the number of steps to leave the
point xt is approximately 3.4 in the case of K = 7. For Rand10% this number is equal to 10, i.e. we
speed up the optimization process by a factor of three. For arbitrary values of d and m, the formula
for calculating the number of steps to leave the point xt is provided in Appendix B.

Moreover, in Appendix B, we obtain more general results for an arbitrary value of α ∈ (0; 1] with
d = α ·m. In particular, we find the exact expression for the dependence of the number of steps
to leave the point xt. For each fixed α we can find the optimal value of K∗(α). It turns out that
empirically this dependence is close to a linear one of the form K∗(α) ≈ 0.73 ·α. Such a rule can be
used as an automatic way of choosing K.
We now present a theorem demonstrating that our Markovian compressors from Definitions 5 and 6
satisfy the conditions outlined in Assumption 5.

Theorem 1 (Asymptotic unbiasedness of BanLast(K,m) and KAWASAKI(K, b, π∆,m)). Com-
pressors from Definitions 5 and 6 can be described using Markov chains with states
{ν1, ν2, ..., νK}ν1,...,νK∈M , where M is the set of all subsets of 1, d of size m. Moreover,

• BanLast(K,m) (Definition 5) is ergodic with a uniform stationary distribution, if d > (K+1)m.

• If d > (2K + 1)m, then for BanLast(K,m) we get

ρ =

√
1−

(
Cm

d−2Km

(Cm
d−Km)2

)K

and C =

(
1−

(
Cm

d−2Km

(Cm
d−Km)2

)K
)−1

.

• If for all permutations ϕ of the set 1, d it holds that π∆ (ϕ (p̃)) = ϕ (π∆ (p̃)), then
KAWASAKI(K, b, π∆,m) (Definition 6) is ergodic with a uniform stationary distribution.

• If (π∆ (p̃))j = |p̃j |/∥p̃∥1, then

ρ = 1−
[
dbK −m(bK − 1)

]−mK
and C =

(
1−

[
dbK −m(bK − 1)

]−mK
)−1

. (2)

The proof of Theorem 1 is provided in Appendix C. The outcomes of Theorem 1 hold significant
importance for the subsequent investigation of algorithms aimed at solving problem (1) employing
Markovian compressors. Note that the examples of activation functions π∆ provided above satisfy
the conditions of Theorem 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.2 DISTRIBUTED GRADIENT DESCENT WITH MARKOVIAN COMPRESSORS

In this section, we propose a new algorithm Markovian QSGD (Algorithm 1). This algorithm is
similar to the vanilla QSGD Alistarh et al. (2017), but in line 7 of Algorithm 1 we use Markovian
compressor Qi

t, that we introduced in Section 2.1, i.e., Qi
t can be either BanLast(K,m) (Definition

5) or KAWASAKI(K, b, π∆,m) (Definition 6).
Theorem 2 (Convergence of MQSGD (Algorithm 1)). Consider Assumptions 1, 4 and 5. Let the
problem (1) be solved by Algorithm 1.
• For any ε, γ > 0, T > τ > τmix(ε) satisfying conditions, described in Appendix E.1, it holds that

E
[∥∥∇f(x̂T)

∥∥2] = O
(
Fτ

γT
+

γLτd2

m2
σ2

)
,

where x̂T is chosen uniformly from {xt}Tt=0.

• If f additionally verifies the PL-condition (Assumption 3), then for any ε > 0, γ > 0, τ > τmix(ε)
and T > τ satisfying conditions, described in Appendix E.1, it holds that

FT = O
((

1− µγ

12

)T−τ

Fτ +
γd2Lτ

µm2
σ2

)
.

Here we use the notations Ft := E [f(xt)− f(x∗)] and Fτ := E [f(xτ)− f(x∗)].

Algorithm 1 Markovian QSGD (MQSGD)

1: Input: starting point x0 ∈ Rd,
2: step size γ > 0,
3: number of iterations T
4: for t = 0 to T do
5: Broadcast xt to all workers
6: for i = 1 to n in parallel do
7: Set gti = Qi

t (∇fi(x
t))

8: Send gti to the server
9: end for

10: Aggregate gt = 1
n

n∑
i=1

gti

11: Update xt+1 = xt − γgt

12: end for

The proof of Theorem 2 is provided in Appendix
E.3, E.4. If Assumption 4 does not hold we ob-
serve different results, which are provided in the
Appendix F.
Usually in convergence evaluations of various meth-
ods, expressions with the term of F0, i.e., something
that depends on the initial choice, arise as constants,
but in Theorem 2, a term of the form Fτ appears.
This can be explained by the fact that at iterations
from t = 0 → τ the Markov chain has not yet been
stabilized, and the initial state can be taken as t = τ .
Sketch proof of Theorem 2. Let us write out a
descent lemma of the form

E
[∥∥xt+1 − x∗∥∥2] = E

[∥∥xt − x∗∥∥2]− 2E
[
γ
〈
∇f(xt), xt − x∗〉]

− 2γ

n

n∑
i=1

E
[〈
Qi

t(∇f(xt))−∇fi(x
t), xt − x∗〉]

︸ ︷︷ ︸
①

+γ2E

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
 .

(3)

The expression ① in (3) is zero if Qi
t are unbiased and independent from iteration t, be-

cause E
[〈
Qi

t(∇f(xt))−∇fi(x
t), xt − x∗〉] = E

[〈
Et

[
Qi

t(∇f(xt))−∇fi(x
t)
]
, xt − x∗〉] = 0,

where Et [·] is the conditional expectation at a step t. Therefore, the theory for such compressors
is highly developed. In our case, Qi

t(x
s) are unbiased only if t − s → ∞, which follows from

asymptotic unbiasedness of our Markovian compressors obtained from Assumption 5. However, we
can use some coarsening rather than unbiasedness when t − s = τ , where τ > τmix(ε), using the
technique of "stepping back" as follows:

E
[〈
Qi

t

(
at−τ

)
− at−τ , bt−τ

〉]
≤ εd

m
E
[∥∥at−τ

∥∥∥∥bt−τ
∥∥] . (4)

Importantly, we must apply the compressor Qt at step t to the vector at−τ at step t− τ , since if we
apply it to the vector at at step t, we will not be able to uncover the conditional expectation, since we
will have randomness in at (see details in Appendix D). As can be seen from (3) we need to apply the
last inequality with at−τ = ∇fi(x

t−τ) and bt−τ = xt−τ − x∗, but in (3) we only obtain expression
with variables at step t, therefore, it has to be handled in some way. In order to resolve this issue we
use a straightforward algebra:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

E
[〈
Qi

t

(
∇fi(x

t)
)
−∇fi(x

t), xt − x∗〉] = E
[〈
Qi

t

(
∇fi(x

t−τ)
)
−∇fi(x

t−τ), xt−τ − x∗〉]
− E

[〈
Qi

t

(
∇fi(x

t)−∇fi(x
t−τ)

)
−∇fi(x

t) +∇fi(x
t−τ), xt − xt−τ

〉]

+ E

[〈
Qi

t

(
∇fi(x

t)−∇fi(x
t−τ)

)
−∇fi(x

t) +∇fi(x
t−τ), xt − x∗

〉]
+ E

[〈
Qi

t

(
∇fi(x

t)
)
−∇fi(x

t), xt − xt−τ
〉]

.

(5)

The first term in the last inequality (5) is solved with the ε-inequality (4), other scalar products are
solved using the Fenchel-Young inequality. Terms with E ∥xt − xt−τ∥2 are evaluated using line
9 of Algorithm 1: xt − xt−τ = −γ

∑t−1
s=t−τ g

s. Terms with E
∥∥Qi

t (∇fi(x
t)−∇fi(x

t−τ))
∥∥2 are

obtained from the following inequalities (see details in Appendix E):

∥∥Qi
t (∇f(x)−∇f(y))

∥∥2 ≤ d2

m2
∥∇f(x)−∇f(y)∥2 ≤ d2L2

m2
∥x− y∥2 ,

Since the evaluation of E
∥∥xt+1 − x∗∥∥2 raises the terms of the form E ∥xt−τ − x∗∥2, we have to do

a summation of E
∥∥xt+1 − x∗∥∥2 from t = τ to t = T . These terms greatly complicate the proof of

Theorem 2 compared to the unbiased compressors. The results of Theorem 2 can be rewritten as an
upper complexity bound on a number of iterations T of the Algorithm 1 by carefully tuning the step
size γ.
Corollary 1 (Step tuning for Theorem 2).
• Under the conditions of Theorem 2 in the non-convex case, choosing γ as in Appendix E.2, in
order to achieve the ϵ-approximate solution (in terms of E

[∥∥∇f(xT)
∥∥2] ≤ ϵ2), it takes

O
(
Lτd2

m2
Fτ

(
δ2 + 1

ϵ2
+

σ2

ϵ4

))
iterations of Algorithm 1.

• Under the conditions of Theorem 2 in the PL-condition (Assumption 3) case, choosing γ as in
Appendix E.2 in order to achieve the ϵ-approximate solution (in terms of E [f(xt)− f(x∗)] ≤ ϵ), it
takes

O
(
d2Lτ

m2µ

(
(δ2 + 1) log

(
1

ϵ

)
+

σ2

µϵ

))
iterations of Algorithm 1.

2.3 ACCELERATED METHOD Algorithm 2 Accelerated Markovian QSGD (AMQSGD)

1: Input: starting point x0 ∈ Rd, step size γ > 0, momentums
θ, η, β, p, number of iterations T

2: for t = 0 to T do
3: Update xt

g = θxt
f + (1− θ)xt

4: Broadcast xt
g to all workers

5: for i = 1 to n in parallel do
6: Set gti = Qi

t

(
∇fi(x

t
g)
)

7: Send gti to the server
8: end for
9: Aggregate gt = 1

n

n∑
i=1

gti

10: Update xt+1
f = xt

g − pγgt

11: Update xt+1 = ηxt+1
f + (p− η)xt

f

12: + (1− p)(1− β)xt + (1− p)βxt
g

13: end for

After giving the convergence re-
sult for the vanilla distributed
SGD with Markovian compres-
sion operator, we now move
on to the accelerated scheme.
Since we do not assume bound-
edness of the gradient variance,
the classical Nesterov acceler-
ation Nesterov (2014) does not
produce the expected effect, and
therefore an additional momen-
tum has to be introduced Nes-
terov (2012b); Vaswani et al.
(2019). By applying a multi-
step strategy partially similar to
Beznosikov et al. (2023b), we
obtain our Algorithm 2.
Theorem 3 (Convergence of AMQSGD (Algorithm 2)). Consider Assumptions 1, 2, 4. Let the problem
(1) be solved by Algorithm 2. Then for any γ, ε > 0, T > τ > τmix(ε), β, θ, η, p satisfying conditions,
described in Appendix G.1,it holds that

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

FT+1 = O

(
exp

[
−(T − τ)

√
p2µγ

3

]
Fτ + exp

[
−T

√
p2µγ

3

]
∆τ +

γ

µ
σ2

)
.

Here we use the notations: Ft := E[∥xt − x∗∥2 + 3/µ(f(xt
f) − f(x∗))] and ∆τ ≤

γ1/2τ−4/3µ−1/3
∑τ

t=0

(
E ∥∇f(xt

g)∥2 + E ∥xt − x∗∥2 + E[f(xt
f)− f(x∗)]

)
.

The above theorem shows that in the strongly convex case Accelerated Markov QSGD with constant
step-size can attain sublinear convergence. In terms of dealing with Markovian stochasticity, its proof
follows quite similar ideas as the proof of Theorem 2: here again we use the technique of stepping
back for mixing time, which allows us to effectively deal with the bias of the gradient estimator.
The full proof is provided in Appendix G.3. The results of Theorem 3 can be rewritten as an upper
complexity bound on a number of iterations T of the Algorithm 2 by carefully tuning the step size γ.
Corollary 2 (Step tuning for Theorem 3). Under the conditions of Theorem 3, choosing γ as in
Appendix G.2 in order to achieve the ϵ-approximate solution (in terms of E

[∥∥xT − x∗∥∥2] ≤ ϵ2), it
takes

O

(
d2L

2
3 τ

4
3

m2µ
2
3

(
(δ2 + 1) log

(
1

ϵ

)
+

σ2

µϵ

))
iterations of Algorithm 2.

2.4 DISCUSSION

Our Example 1 and the numerical experiments in Section 3 show that the using of Markovian
compressors could lead to a better performance quite well, however, the theoretical guarantees turn
out to be poorer than in the unbiased case. In particular, if we use Randm in the QSGD algorithm,
then we observe the following estimates Beznosikov et al. (2023a):

XT = O
(
(1− µγ)TX0 + γ

d

m

σ2

µn

)
,

where Xt = E
[
∥xt − x∗∥2

]
and γ ≲ 1

L(1+d/mn) . However, Theorem 2 gives us such estimates:

FT = O
((

1− µγ

12

)T
Fτ + γ

d2

m2

τLσ2

µ

)
,

where Ft := E
[
f(xT)− f(x∗)

]
and γ ≲ m2

Ld2τ(δ2+1) . It is important to note that not only has
the theory for Markovian compressors not yet been studied, but also dealing with the Markovian
stochasticity itself implies quite strict limitations. For instance,
d/m vs d2/m2. We are forced to uniformly bound the noise of the compressor (linearity in the
compression constant is prevented by this) due to the impossibility of using the expectation trick, in
contrast to the unbiased case Beznosikov et al. (2023a), where the authors estimated the variance of
the compressor noise. The assumption of uniformly bounded noise cannot be rejected by any authors
who work with Markovian stochasticity Beznosikov et al. (2023b); Dorfman & Levy (2023); Doan
et al. (2020a); Sun et al. (2018); Even (2023), therefore, there is no possibility to achieve linearity in
the compression rate in our theoretical guaranties, according to the current theoretical advances.
Mixing time. Furthermore, it is imperative to emphasize that it follows from Theorems 2 and 3
that the convergence rate is improved as τ (and, consequently, K) diminishes. In other words, the
distribution of the compressor’s underlying Markov chain has to converge to a uniform distribution
as fast as possible, but empirically one wants the choice of coordinates to depend on previous
iterations rather than be random (e.g. for Randm compressor τ = 1,K = 0). This causes a logical
contradiction: while using a large K will theoretically give poorer convergence, in practice algorithms
with non-zero values of K perform better (see Section 3). It is also worth mentioning that when
Markovian stochasticity is employed, we can never avoid τ in our estimates, since it appears in the
lower bounds on the convergence rate of methods that involve Markovian properties Bresler et al.
(2020). Thus, our Algorithms 1 and 2 have a reasonably good polynomial dependence on mixing
time (Theorem 2 shows an optimal estimation in terms of τ), considering the fact there are several
works Doan et al. (2020b) whose bounds include terms that are even exponential in the mixing time.
L/µ. In spite of the difficulties listed above, we still can observe that the momentums implementation
in Algorithm 2 gives an acceleration in terms of L/µ compared to vanilla QSGD (Algorithm 1). In

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the classical version of accelerated Gradient Descent, one can achieve an acceleration of the form√
L/µ Nesterov (1983), but our analysis allows only to achieve (L/µ)2/3 in Theorem 3. When

Markovian stochasticity is employed, it is also possible to achieve estimation of the form
√
L/µ

Beznosikov et al. (2023b), but it is obtained by using batches with size scaled as 2j , where j is drawn
from a truncated geometric distribution. Unfortunately, this specific batching technique cannot be
applied in our paper, as we consider compressors that act as random sparsification (Definition 4),
which necessitates that the gradient be compressed only once at each iteration.
Variance reduction. In our paper, we focus on the QSGD method and its accelerated version
(Algorithms 1 and 2). However, in modern studies on distributed optimization, techniques of variance
reduction are of a great interest (DIANA Mishchenko et al. (2019), MARINA Gorbunov et al. (2021a),
DASHA Tyurin & Richtárik (2022)), because these methods converge linearly to the exact solution
of the problem (1), while QSGD (Algorithms 1 and 2) converges only to the σ2-neighborhood of
the solution. We implement Markovian compressors (Definitions 5 and 6) in these methods in our
experiments, but we do not provide theoretical guarantees for such algorithms since we have just
developed a theoretical baseline for the study of Markovian compressors. This represents a promising
direction for future research.
Even though it is not entirely clear whether it is possible to achieve significant improvements in
the theoretical results, due to the peculiarities of dealing with Markovian randomness, for now we
could only highlight a significantly better performance of Algorithms 1 and 2 compared to a similar
algorithms using a vanilla unbiased compressor Randm (see Section 3).

3 EXPERIMENTS

In order to justify the practical usage of the proposed methods and analyze their behavior, we
conduct a series of experiments using Markovian compression on distributed optimization problems,
specifically logistic regression and neural network-based image classification. We observe that
Markovian compressors, when used with MQSGD and AMQSGD, as well as with classical SGD and
DIANA Mishchenko et al. (2019), improve convergence on several benchmarks. Appendix H provides
a description of the technical setup, extended experiments with hyperparameters analysis, and an
application of Markovian compressors to model-parallel neural network training.

3.1 LOGISTIC REGRESSION

Firstly, we experiment on a classification task using a logistic regression model with L2 regularization
of the form:

min
w∈Rd

{
f(w) =

1

n

n∑
i=1

log(1 + exp(−ysw
Txs)) + λ∥w∥2

}
,

0.0 0.5 1.0 1.5

Information sent ×106

10−5

10−3

10−1

101

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

MQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Information sent ×106

10−3

10−2

10−1

100

‖∇
f

(x
k
)‖

2

MQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0.0 0.5 1.0 1.5

Information sent ×106

10−5

10−3

10−1

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

AMQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Information sent ×106

10−3

10−2

10−1

100

‖∇
f

(x
k
)‖

2

AMQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10)

Figure 1: Logistic Regression on MNIST experiments results. All hyperparame-
ters are fine-tuned, and best runs are selected.

with a regularization
term λ = 0.05. The
dataset is split among
n = 10 clients. We
use Mushrooms, A9A,
and W8A datasets from
LibSVM Chang & Lin
(2011) and MNIST Deng
(2012). Experiments are
conducted using Python
3.10 and PyTorch, and a
distributed environment is
simulated. We experiment
with MQSGD, AMQSGD,
and DIANA optimizers,
employing Rand-10% as a
sparsification compressor.
Markovian compressors
were utilized indepen-
dently on each client, with normalization activation function, and with all hyperparameters being
fine-tuned.
Figure 1 shows the convergence of the Rand-10% baseline and Markovian compressors on the MQSGD
and AMQSGD algorithms on MNIST dataset. Both Markovian compressors achieve faster convergence

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

than the baseline and more complex compressors like PermK Szlendak et al. (2021) and Natural
compressors Horvath et al. (2022). In most of our results, BanLast and KAWASAKI show similar
performance with fine-tuned hyperparameters. Experiments on other datasets, and tuning history size
K tuning analysis appear in Appendix H.2. Additionally, as our compressors are fully compatible
with classical compressors, we conduct experiments on combination with Natural compression in
Appendix H.5.

3.2 NEURAL NETWORKS

We also apply Markovian compressors in more complex optimization tasks, such as image clas-
sification on CIFAR-10 Krizhevsky et al. (2009) dataset with ResNet-18 convolutional neural
network He et al. (2016). Formally, we solve optimization problem:

min
w∈Rd

{
f(w) =

1

n

n∑
i=1

l(softmax(f(xi, w)), yi)
}
,

where xi is a training image, yi is its respective class, and l() is a cross-entropy
loss function. Dataset is split equally between n = 5 clients. We use Rand-
5% sparsification operator and SGD optimizer with cosine annealing LR schedule.

Table 1: Numerical results of training ResNet-18 on CIFAR-10 with different
compressors. Each cell represents mean ± standard deviation over 5 runs.

Rand-5% Banlast KAWASAKI
Train Loss 0.0743 ± 0.003 0.0734 ± 0.003 0.0305 ± 0.001
Gradient Norm 1.403±0.029 1.383±0.035 0.745±0.015
Test Accuracy 87.9 ± 0.179 88.0± 0.122 89.05 ± 0.294

0 50 100 150 200

Epochs

10−1

100

f
(x
k
)

Training ResNet-18 on CIFAR-10

Rand(d/20)
BanLast(19, d/20)
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/20)

0 50 100 150 200

Epochs

100

2× 100

3× 100
‖∇

f
(x
k
)‖

2

Training ResNet-18 on CIFAR-10

Rand(d/20)
BanLast(19, d/20)
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/20)

Figure 2: Image classification with ResNet-18 on CIFAR-10 experiments results.
Best runs for each method are displayed.

0 50 100 150 200

Epochs

10−1

100

f
(x
k
)

Training ResNet-18 on CIFAR-10

Rand(d/20)+Natural
Perm(d/20)+Natural
BanLast(19, d/20)+Natural
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/20)+Natural

0 1000 2000 3000 4000

Information sent

10−2

10−1

100

f
(x
k
)

Training ResNet-18 on CIFAR-10

Rand(d/20)
Perm(d/20)
Natural (x4)
BanLast(19, d/20)
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/20)

Figure 3: Comparison with other compressors on Resnet-18 training on CIFAR-
10 dataset for Rand-5% sparsification on N = 20 clients. Natural compression
factor is 4. Left figure is sequential combination with Natural compression.
Right figure is comparison against PermK and Natural compressors indepen-
dently, with information sent on x-axis.

Hyperparameters, such
as the learning rate, batch
size, and Markovian-
specific ones are fine-
tuned.

Figure 2 depicts the train-
ing loss and gradient norm,
with the aggregate values
shown in Table 1. As
in the previous case, the
application of the Marko-
vian compressor favours
faster convergence and bet-
ter validation results. Note
that for more complex op-
timization task, smoother
history accumulation (as in
KAWASAKI) is required.

Figure 3 presents com-
parison with Permutation
and Natural compression,
which confirm practical
usefullness of Markovian
compressors on more com-
plex and non-convex opti-
mization problems. Note
that our compressors can
be applied in combination
with complex randomized
compressor like Natural
compression, making our
method even more flexible.
4 CONCLUSION
In this paper, we propose a family of compression schemes, which takes into account previous
iterations of algorithm and transform the input vector according to a Markov chain. We develop two
sparsification methods BanLast (Definition 5) and KAWASAKI (Definition 6) based on this idea.
These compressors are implemented in QSGD (Algorithm 1) and accelerated QSGD (Algorithm
2). We provide convergence rates under different assumptions on the objective function (Theorems
2 and 3). In experiments, we show that our compression methods outperform the baselines in the
deep neural network optimisation problem. Future research may consider the implementation of our
Markovian compressors in other optimization methods, e.g. using the variance reduction techniques.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alyazeed Albasyoni, Mher Safaryan, Laurent Condat, and Peter Richtárik. Optimal gradient com-
pression for distributed and federated learning, 2020.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in neural information processing
systems, 30, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric
Renggli. The convergence of sparsified gradient methods, 2018.

Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and
optimization. Advances in neural information processing systems, 28, 2015.

Ghadir Ayache, Venkat Dassari, and Salim El Rouayheb. Walk for learning: A random walk approach
for federated learning from heterogeneous data, 2022.

Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning: Parallel and
distributed approaches. Cambridge University Press, 2011.

Aleksandr Beznosikov, Pavel Dvurechenskii, Anastasiia Koloskova, Valentin Samokhin, Sebastian U
Stich, and Alexander Gasnikov. Decentralized local stochastic extra-gradient for variational
inequalities. Advances in Neural Information Processing Systems, 35:38116–38133, 2022.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. Journal of Machine Learning Research, 24(276):1–50, 2023a.

Aleksandr Beznosikov, Sergey Samsonov, Marina Sheshukova, Alexander Gasnikov, Alexey Naumov,
and Eric Moulines. First order methods with markovian noise: from acceleration to variational
inequalities. arXiv preprint arXiv:2305.15938, 2023b.

Song Bian, Dacheng Li, Hongyi Wang, Eric P. Xing, and Shivaram Venkataraman. Does compressing
activations help model parallel training?, 2023.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://
www.wandb.com/. Software available from wandb.com.

Guy Bresler, Prateek Jain, Dheeraj Nagaraj, Praneeth Netrapalli, and Xian Wu. Least squares
regression with markovian data: Fundamental limits and algorithms, 2020.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Mingzhe Chen, Deniz Gündüz, Kaibin Huang, Walid Saad, Mehdi Bennis, Aneta Vulgarakis Feljan,
and H Vincent Poor. Distributed learning in wireless networks: Recent progress and future
challenges. IEEE Journal on Selected Areas in Communications, 39(12):3579–3605, 2021.

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam:
Building an efficient and scalable deep learning training system. In 11th USENIX symposium on
operating systems design and implementation (OSDI 14), pp. 571–582, 2014.

Laurent Condat, Kai Yi, and Peter Richtárik. Ef-bv: A unified theory of error feedback and variance
reduction mechanisms for biased and unbiased compression in distributed optimization, 2023.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier, Anton Sinitsin, Dmitry Popov,
Dmitry V Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova del Moral, et al.
Distributed deep learning in open collaborations. Advances in Neural Information Processing
Systems, 34:7879–7897, 2021.

11

https://www.wandb.com/
https://www.wandb.com/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thinh T. Doan, Lam M. Nguyen, Nhan H. Pham, and Justin Romberg. Convergence rates of
accelerated markov gradient descent with applications in reinforcement learning, 2020a.

Thinh T. Doan, Lam M. Nguyen, Nhan H. Pham, and Justin Romberg. Finite-time analysis of
stochastic gradient descent under markov randomness, 2020b.

Ron Dorfman and Kfir Y. Levy. Adapting to mixing time in stochastic optimization with markovian
data, 2023.

John C. Duchi, Alekh Agarwal, Mikael Johansson, and Michael I. Jordan. Ergodic mirror descent,
2012.

Mathieu Even. Stochastic gradient descent under markovian sampling schemes, 2023.

Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. Ef21 with bells &
whistles: Practical algorithmic extensions of modern error feedback, 2021.

Venkata Gandikota, Daniel Kane, Raj Kumar Maity, and Arya Mazumdar. vqsgd: Vector quantized
stochastic gradient descent, 2020.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of sgd: Variance reduction,
sampling, quantization and coordinate descent, 2019.

Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. Marina: Faster non-
convex distributed learning with compression. In International Conference on Machine Learning,
pp. 3788–3798. PMLR, 2021a.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new efficient
methods. In International Conference on Artificial Intelligence and Statistics, pp. 3556–3564.
PMLR, 2021b.

Kaja Gruntkowska, Alexander Tyurin, and Peter Richtárik. Ef21-p and friends: Improved theoretical
communication complexity for distributed optimization with bidirectional compression, 2023.

Vipul Gupta, Avishek Ghosh, Michal Derezinski, Rajiv Khanna, Kannan Ramchandran, and Michael
Mahoney. Localnewton: Reducing communication bottleneck for distributed learning. arXiv
preprint arXiv:2105.07320, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention, 2021. URL https://arxiv.org/abs/2006.03654.

Hadrien Hendrikx. A principled framework for the design and analysis of token algorithms, 2022.

Samuel Horvath, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtarik. Natural compression for distributed deep learning, 2022.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik.
Stochastic distributed learning with gradient quantization and variance reduction, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identical
and heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pp.
4519–4529. PMLR, 2020.

12

https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani,
and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Computers
& Industrial Engineering, 149:106854, 2020.

Chung-Yi Lin, Victoria Kostina, and Babak Hassibi. Differentially quantized gradient methods, 2022.

Xianghui Mao, Kun Yuan, Yubin Hu, Yuantao Gu, Ali H. Sayed, and Wotao Yin. Walkman: A
communication-efficient random-walk algorithm for decentralized optimization, 2019.

Prathamesh Mayekar and Himanshu Tyagi. Ratq: A universal fixed-length quantizer for stochastic
optimization, 2019.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012a. doi: 10.1137/100802001. URL https:
//doi.org/10.1137/100802001.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k**
2). Doklady Akademii Nauk SSSR, 269(3):543, 1983.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
J. Optim., 22:341–362, 2012b. URL https://api.semanticscholar.org/CorpusID:
1424102.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 1 edition, 2014. ISBN 1461346916.

J v Neumann. Proof of the quasi-ergodic hypothesis. Proceedings of the National Academy of
Sciences, 18(1):70–82, 1932.

Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156:433–484, 2016.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better,
and practically faster error feedback. Advances in Neural Information Processing Systems, 34:
4384–4396, 2021.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Interspeech, 2014. URL
https://api.semanticscholar.org/CorpusID:2189412.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization
using an approximate newton-type method. In International conference on machine learning, pp.
1000–1008. PMLR, 2014.

Jaeyong Song, Jinkyu Yim, Jaewon Jung, Hongsun Jang, Hyung-Jin Kim, Youngsok Kim, and Jinho
Lee. Optimus-cc: Efficient large nlp model training with 3d parallelism aware communication
compression. In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, pp. 560–573, 2023.

13

https://doi.org/10.1137/100802001
https://doi.org/10.1137/100802001
https://api.semanticscholar.org/CorpusID:1424102
https://api.semanticscholar.org/CorpusID:1424102
https://api.semanticscholar.org/CorpusID:2189412

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. Advances
in Neural Information Processing Systems, 31, 2018.

Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient descent. Advances in neural
information processing systems, 31, 2018.

Tao Sun, Dongsheng Li, and Bao Wang. Adaptive random walk gradient descent for decentralized
optimization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 20790–20809. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/sun22b.html.

Rafał Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably faster
distributed nonconvex optimization. arXiv preprint arXiv:2110.03300, 2021.

Alexander Tyurin and Peter Richtárik. Dasha: Distributed nonconvex optimization with communica-
tion compression, optimal oracle complexity, and no client synchronization, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron, 2019.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S
Rellermeyer. A survey on distributed machine learning. Acm computing surveys (csur), 53(2):
1–33, 2020.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding, 2019. URL
https://arxiv.org/abs/1804.07461.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020.

Maziar Yazdani and Fariborz Jolai. Lion optimization algorithm (loa): a nature-inspired metaheuristic
algorithm. Journal of computational design and engineering, 3(1):24–36, 2016.

14

https://proceedings.mlr.press/v162/sun22b.html
https://arxiv.org/abs/1804.07461

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Supplementary Material
CONTENTS

B Mathematical calculations from Example 1 16

C Proof of Theorem 1 17

D Main lemmas 19

E Extensions for Theorem 2 21

E.1 Full version of Theorem 2 . 21

E.2 Full version of Corollary 1 . 22

E.3 Proof of Theorem 2, non-convex case . 22

E.4 Proof of Theorem 2, Under PL-condition . 26

F Convergence of Algorithm 1 without data similarity 29

G Extensions for Theorem 3 32

G.1 Full version of Theorem 3 . 32

G.2 Full version of Corollary 2 . 33

G.3 Proof of Theorem 6 . 33

H Experiments 43

H.1 Technical details . 44

H.2 Logistic Regression experiments . 44

H.3 Dependence on size history . 45

H.4 Comparison with Permutation & Natural Compression 45

H.5 Combination with other compressors . 46

H.6 Neural Networks Experiments: Data Parallelism Case 47

H.7 Neural Networks Experiments: Model Parallelism Case 48

H.8 Fine-tuning DeBERTaV3-base on GLUE development set 49

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A AUXILIARY LEMMAS AND FACTS

In this section we list auxiliary facts and our results that we use several times in our proofs.

A.1 CAUCHY–SCHWARZ INEQUALITY

For all x, y ∈ Rd

⟨x, y⟩ ≤ ∥x∥ ∥y∥ .

A.2 FENCHEL-YOUNG INEQUALITY

For all x, y ∈ Rd and β > 0

2 ⟨x, y⟩ ≤ β−1∥x∥2 + β∥y∥2.

B MATHEMATICAL CALCULATIONS FROM EXAMPLE 1

By definition of the mathematical expectation of an integer positive random variable Z, we obtain
that E[Z] =

∑∞
s=1 s · P{Z = s}. In our problem, Z is the number of an iteration where we first

selected the desired coordinate. For Randm compressor, we have P{Z = s} = m
d ·
(
1− m

d

)s−1
.

The first term is the probability of picking the desired coordinate at iteration s and the second term
is the probability of not picking the desired coordinate at iterations from 1 to s− 1. Using this, the
mathematical expectation of the number of steps to quit the point xt for Randm compressor is equal
to

∞∑
s=1

s
(
1− m

d

)s−1 m

d
=

d

m
. (6)

Now we calculate the expectation for BanLast(K,m) compressor (Definition 5). If s > K,

similarly to the Randm case, we obtain that P{Z = s} = m
d−Km

(
1− m

d−Km

)s−1

, because we
cannot choose Km coordinates. If s ≤ K, then the formula of P{Z = s} becomes a bit more
complicated, because the probability of not picking the desired coordinate at iterations from 1 to
s− 1 is different at each iteration and is equal to

∏s−2
h=0

(
1− m

d−hm

)
. If s = 1, then this probability

is equal to one. Using this, we can calculate the mathematical expectation of the number of steps to
leave the point xt for BanLast(K,m) compressor:

K∑
s=1

sm

d− (s− 1)m

s−2∏
h=0

(
1− m

d− hm

)
+

∞∑
s=K+1

s

(
1− m

d−Km

)s−1
m

d−Km

=

K∑
s=1

sm

d− (s− 1)m

s−2∏
h=0

(
1− m

d− hm

)
+

d

m

(
1− m

d−Km

)K

=

K∑
s=1

s

α− (s− 1)

s−2∏
h=0

(
1− 1

α− h

)
+ α

(
1− 1

α−K

)K

,

(7)

where we used the notation α = d/m to show that (7) depends only on d/m, but not on d and m
separately. We can consider (7) as an optimization problem with respect to K. Since K is an integer
and the objective function in (7) is complex, we numerically find the optimal K for different α. For
the sake of clarity, we show the difference between formulas (6) and (7) on Figure 4(c).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We consider α ∈ [5.3, 6.7, 8.3, 10, 11.1, 12.5, 14.3, 16.7, 20] and find the optimal K by a complete
brute force search – see Figure 4 (a). Then, we perform a linear approximation and obtain the formula
K∗(α) ≈ 0.7323α – see Figure 4 (b). Since the correlation coefficient between the points and the
approximated line is equal to 0.73, we can consider this formula to be accurate enough for practical
applications.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

History buffer size K

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ex
pe

ct
ed

 n
ub

er
 o

f i
te

ra
tio

ns

d/m = 20.0
d/m = 16.7
d/m = 14.3
d/m = 12.5
d/m = 11.1
d/m = 10.0
d/m = 8.3
d/m = 6.7
d/m = 5.3

6 8 10 12 14 16 18 20

d / m

4

6

8

10

12

14

Hi
st

or
y

bu
ffe

r s
ize

 K

Linaer approximation
k=0.7323, b=-0.0853
r2-score=0.9948

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d / m

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ex
pe

ct
ed

 n
ub

er
 o

f i
te

ra
tio

ns

Randm
BanLastK

(a) (b) (c)

Figure 4: Theoretical estimate on dependence of history buffer size K on parameter α = d/m: (a) represents
expected number of iterations required to transfer all coordinates to server on history buffer size K for different
α, (b) represents scaling of optimal history buffer size K∗ on α. (c) represents comparison of expected number
of iterations required to transfer all coordinates to server on problems parameter α for Randm and BanLastK.

C PROOF OF THEOREM 1

Lemma 1. If P is a transition matrix of a finite homogeneous Markov chain, i.e.

P := (pij)
n
i,j=1,

where pij is probability of moving from i to j in one time step. And the matrix P is symmetric, i.e.
PT = P , then stationary distribution exists and it is uniformly distributed.

Proof of Lemma 1. Let us look at uniform distribution

π :=

(
1

n
,
1

n
, . . . ,

1

n

)
.

We can easily obtain that π is a stationary distribution, using symmetry and stochastic property of
matrix P :

πP =
1

n
1TP =

1

n
(P1)T =

1

n
1T = π.

Proof of Theorem 1. We consider states of Markov chain as s := {ν1, ν2, ..., νK}ν1,...,νK∈M , where
M is the set of all subsets of 1, d of size m. We define p(s, s′, i) as the probability to move from state
s to state s′ for the number of steps i.

• For both compressors BanLast(K,m) (Definition 5) and KAWASAKI(K, b, π∆,m) (Definition 6)
corresponding Markov chain is finite and indecomposable.

The finiteness of the chain is apparent, as the number of states can be explicitly expressed as
|M | = (Cm

d)K . We show that both chains are indecomposable below. Then we deduce that the
chain is ergodic based on the Ergodic Theorem Neumann (1932). Thus, we know that a stationary
distribution exists. Than we show that the statinary distribution is uniform over the set of states using
Lemma 1.

All that remains is to show that both chains are indecomposable and that transition matrixes for both
chaines are symmetric.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We will start with BanLast(K,m). Restriction on K,m and d is d > (K + 1)m. That makes
obvious that any two states are communicated, i.e. for any s, s′ there exists way from s to s′. Thus,
the Markov chain is indecomposable.

For the compressor probability to move from s to s′ in one time step can be explicitly expressed as:

p(s, s′, 1) =

(
1

Cm
d−Km

)K

,

where Cm
d−Km = (d−Km)!

m!(d−(K+1)m)! is a binomial coefficient. And all these states are equal in proba-
bility. If d = (K + 1)m, then for s there will be only one set s′, such that p(s, s′, 1) > 0, in this
case chain will not be ergodic. If d > (K + 1)m, then there are more then one state s′, for witch
p(s, s′, 1) > 0, therefore chain will be ergodic.

• According to the Ergodic Theorem, ρ = (1− δ)1/N0 and C = (1− δ)−1, where N0 is the minimal
number of iterations through which is strictly greater then zero and δ := mins,s′{p(s, s′, N0)} > 0.
For BanLast(K,m) in case of d > (2K + 1)m it holds that

N0 = 2 and δ = p(s, s, 2) =

(
Cm

d−2Km

Cm
d−Km

)K

·
(

1

Cm
d−Km

)K

,

because the smallest probability is to return to state s in two steps.

• For KAWASAKI(K, b, π∆,m) from any given state, there exists a path to any other state in just
one iteration, because probabilities to choose any set of coordinates ν are non-zero. Thus, the
corresponding markov chain is indecomposable.

We focus on the case where K = 1 and that generalize analysis to accommodate larger values of
K. Let us look at probabilities to move from νi to νj and from νj to νi. We show that both these
probabilities correspond to random choice of the same indexes with the same distribution vector p,
defined in 6, i.e. the probabilities are equal. For this case let us define ν as operator

Ψi(1, d) := νi,

i.e. operator chooses indexes that are in νi from 1, d. And

Φ(p,Ψi) := P{choose νi with distribution vector p}.

According to 6, probability to move from νi to νj equals a probability to choose indexes νj with
distribution

pi = π∆(p̃i),

where

p̃ki =

{
1/bd if k ∈ νi
1/d if k /∈ νi

,

i.e.
pij = Φ(pi,Ψj).

By the definition of Φ, for arbitrary permutation ϕ and index choice Ψ holds

Φ(ϕ(p),Ψ ◦ ϕ) = Φ(p,Ψ).

Now we point out that for arbitrary νi and νj exists permutation ϕij , such that

Ψj ◦ ϕij = Ψi.

For such permutation holds ϕij(p̃i) = p̃j , i.e. the permutations moves indexes from νi to indexes
from νj . Then we need to use the property of π∆ to get the same equality for pi, pj :

ϕij(pi) = ϕij(π∆(p̃i)) = π∆ϕij((p̃i)) = π∆(pj).

This allows us to write

pij = Φ(pi,Ψj) = Φ(ϕij(pi),Ψj ◦ ϕij) = Φ(pj ,Ψi) = pji.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Thus we get equality of probabilities to move from νj to νi and to opposite way.

Now we can easily generalize the proof for arbitrary K. All that is required is to consider, instead
of the sets of indices ν, combinations of sets of indices that were chosen for transmission over the
previous K steps. In this way, the number of states is increased, but the logic of reasoning remains
unchanged.

• As was mentioned above, for KAWASAKI(K, b, π∆,m) N0 = 1. We now compute δ := p(s, s, 1),
where s = {ν, ..., ν}, where ν occurs K times. In this case probability to choose ν another K times
is equal to P{j ∈ ν}mK . And

P{j ∈ ν} = min

{
π∆

[
p̃ :=

(1/d

bK
, ...,

1/d

bK︸ ︷︷ ︸
m

,
1/d

1
, ...,

1/d

1︸ ︷︷ ︸
d−m

)T]}
.

If we consider (π∆ (p̃))j = |p̃j |/∥p̃∥1, then, since ∥p̃∥1 = 1
dbk

(dbK − m(bK − 1)), it hold that
δ = (dbK −m(bK − 1))−mK . This finishes the proof.

D MAIN LEMMAS

Lemma 2. For any i ∈ 1, n, ε > 0, τ > τmix(ε), t > τ , for any at−τ , bt−τ ∈ Rd, such that if we fix
all randomness up to step t− τ , at−τ and bt−τ become non-random, it holds that

E
[〈
Qi

t

(
at−τ

)
− at−τ , bt−τ

〉]
≤ εd

m
E
[∥∥at−τ

∥∥ · ∥∥bt−τ
∥∥] .

Proof. We begin by using tower property:

E
[〈
Qi

t

(
at−τ

)
− at−τ , bt−τ

〉]
= E

[〈
Et−τ

[
Qi

t

(
at−τ

)
− at−τ

]
, bt−τ

〉]
, (8)

where Et−τ [·] is the conditional expectation with fixed randomness of all steps up to t− τ . Since
on a step t we compress vector at−τ according to distribution πi

t by the formula Qi
t (a

t−τ) =
d/mat−τ ⊙ 1(νit), where νit is some set of m coordinates : νit ⊂ 1, d and 1(νit) is vector with 1 on
coordinates νit on 0 otherwise. Using this we can obtain:

Et−τ

[
Qi

t

(
at−τ

)
− at−τ

]
=
∑
ν̃i∈M

(
Pt−τ

{
νit = ν̃i

}
− 1

Cm
d

)
at−τ ⊙ 1(ν̃i)

d

m
,

where M is set of all subsets of 1, d of size m. This equality follows from the fact that
∑

ν̃i∈M at−τ ⊙
1(ν̃i) = Cm−1

d−1 at−τ and Cm−1
d−1 /Cm

d = m/d. Now with the help of Cauchy–Schwarz inequality A.1
we can estimate (8):

(8) ≤ E

 ∑
ν̃i∈M

∣∣∣∣Pt−τ

{
νit = ν̃i

}
− 1

Cm
d

∣∣∣∣ ∥∥at−τ ⊙ 1(ν̃i)
∥∥ d

m

∥∥bt−τ
∥∥ . (9)

Since t > τ and τ > τmix(ε) it holds that
∣∣Pt−τ

{
νit = ν̃i

}
− 1/Cm

d

∣∣ ≤ ε · 1/Cm
d , because stationary

distribution of our Markov chain is uniform. Using the fact that ∥at−τ ⊙ 1(ν̃i)∥ ≤ ∥at−τ∥ we can
obtain:

(9) ≤ E

 ∑
ν̃i∈M

ε
1

Cm
d

∥∥at−τ
∥∥ d

m

∥∥bt−τ
∥∥ =

εd

m
E
[∥∥at−τ

∥∥ · ∥∥bt−τ
∥∥] .

This finishes the proof.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lemma 3. For any i ∈ 1, n, ε > 0, τ > τmix(ε), t > τ , for any at−τ ∈ Rd, such that if we fix all
randomness up to step t− τ , at−τ becomes non-random, it holds that

E
[∥∥Et−τ

[
Qi

t(a
t−τ)

]
− at−τ

∥∥2] ≤ ε2d2

m2
E
[∥∥at−τ

∥∥2] .
Proof. Using same notation as in the proof of Lemma 3 we obtain

E
[
∥Et−τ

[
Qi

t(a
t−τ)

]
−at−τ∥2

]
= E


∥∥∥∥∥∥
∑
ν̃i∈M

(
Pt−τ

{
νit = ν̃i

}
− 1

Cm
d

)
d

m
at−τ ⊙ 1(ν̃i)

∥∥∥∥∥∥
2


≤ E

 d2

m2
Cm

d

∑
ν̃i∈M

(∣∣∣∣Pt−τ

{
νit = ν̃i

}
− 1

Cm
d

∣∣∣∣2 ∥∥at−τ ⊙ 1(ν̃i)
∥∥2) .

Since t > τ and τ > τmix(ε) it holds that
∣∣Pt−τ

{
νit = ν̃i

}
− 1/Cm

d

∣∣ ≤ ε · 1/Cm
d , because stationary

distribution of our Markov chain is uniform. Using the fact that ∥at−τ ⊙ 1(ν̃i)∥ ≤ ∥at−τ∥ we can
obtain:

E
[∥∥Et−τ

[
Qi

t(a
t−τ)

]
− at−τ

∥∥2] ≤ ε2d2

m2
E
[∥∥at−τ

∥∥2] .
This finishes the proof.

Lemma 4. For any i ∈ 1, n and a ∈ Rd it holds that

∥∥Qi(a)
∥∥2 ≤ d2

m2
∥a∥2 and

∥∥Qi(a)− a
∥∥2 ≤ 4

d2

m2
∥a∥2 .

Proof. Consider the first inequality. Since Qi (a) = d/ma ⊙ 1(νi), then
∥∥Qi(a)

∥∥ ≤ d/m ∥a∥,
therefore

∥∥Qi(a)
∥∥2 ≤ d2

m2
∥a∥2 .

Consider the second inequality. Using Fenchel-Young inequality A.2 with β = 1 we can estimate

∥∥Qi(a)− a
∥∥2 ≤ 2

∥∥Qi(a)
∥∥2 + 2 ∥a∥2 ≤ 2

(
d2

m2
+ 1

)
∥a∥2 ≤ 4

d2

m2
∥a∥2 .

This finishes the proof.

Corollary 3. For any i ∈ 1, n, ε > 0, τ > τmix(ε), t > τ , for any at, bt ∈ Rd, such that if we fix all
randomness up to step t, at and bt become non-random. And for any ât−τ , b̂t−τ , such that if we fix
all randomness up to step t− τ , ât−τ and b̂t−τ become non-random, it holds that

2
∣∣E [〈Qi

t

(
at
)
− at, bt

〉]∣∣ ≤ εd

mβ0
E
[∥∥ât−τ

∥∥2]+ εdβ0

m
E
[∥∥∥b̂t−τ

∥∥∥2]+ 1

β2
E
[∥∥bt∥∥2] ,

+

(
1

β1
+

1

β3

)
E
[∥∥∥bt − b̂t−τ

∥∥∥2]+ 4
d2

m2
β3E

[∥∥at∥∥2]+ 4
d2 (β1 + β2)

m2
E
[∥∥at − ât−τ

∥∥2]
where β0, β1, β2, β3 > 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. Using straightforward algebra we obtain

E
[〈
Qi

t

(
at
)
− at, bt

〉]
= E

[〈
Qi

t

(
ât−τ

)
− ât−τ , b̂t−τ

〉]
− E

[〈
Qi

t

(
at − ât−τ

)
− at + ât−τ , bt − b̂t−τ

〉]
+ E

[〈
Qi

t

(
at − ât−τ

)
− at + ât−τ , bt

〉]
+ E

[〈
Qi

t

(
at
)
− at, bt − b̂t−τ

〉]
.

Using Lemma 2 with at−τ = ât−τ , bt−τ = b̂t−τ and Fenchel-Young inequality A.2 with β1, β2, β3 >
0 we obtain:

2
∣∣E [〈Qi

t

(
at
)
− at, bt

〉]∣∣ ≤ 2
εd

m
E
[∥∥ât−τ

∥∥ · ∥∥∥b̂t−τ
∥∥∥]

+ β1E
[∥∥Qi

t

(
at − ât−τ

)
− at + ât−τ

∥∥2]+ 1

β1
E
[∥∥∥bt − b̂t−τ

∥∥∥2]
+ β2E

[∥∥Qi
t

(
at − ât−τ

)
− at + ât−τ

∥∥2]+ 1

β2
E
[∥∥bt∥∥2]

+ β3E
[∥∥Qi

t

(
at
)
− at

∥∥2]+ 1

β3
E
[∥∥∥bt − b̂t−τ

∥∥∥2] .
Using Lemma 4 and Fenchel-Young inequality A.2 with β0 > 0 we obtain

2
∣∣E [〈Qi

t

(
at
)
− at, bt

〉]∣∣ ≤ εd

mβ0
E
[∥∥ât−τ

∥∥2]+ εdβ0

m
E
[∥∥∥b̂t−τ

∥∥∥2]
+ 4

d2

m2
(β1 + β2)E

[∥∥at − ât−τ
∥∥2]+ (1

β1
+

1

β3

)
E
[∥∥∥bt − b̂t−τ

∥∥∥2]
+ 4

d2

m2
β3E

[∥∥at∥∥2]+ 1

β2
E
[∥∥bt∥∥2] .

This finishes the proof.

Lemma 5. Assume 4, then for any x ∈ Rd it holds that

1

n

n∑
i=1

∥∇fi(x)∥2 ≤ 2(δ2 + 1) ∥∇f(x)∥2 + 2σ2.

Proof. Using straightforward algebra and Fenchel-Young inequality A.2 with β = 1 we obtain

1

n

n∑
i=1

∥∇fi(x)∥2 ≤ 2

n

n∑
i=1

∥∇fi(x)−∇f(x)∥2 + 2 ∥∇f(x)∥2

≤ 2(δ2 + 1) ∥∇f(x)∥2 + 2σ2.

The last inequity follows from 4. This finishes the proof.

E EXTENSIONS FOR THEOREM 2

E.1 FULL VERSION OF THEOREM 2

Theorem 4 (Convergence of MQSGD (Algorithm 1), extension of 2). Consider Assumptions 1, 4 and
5. Let problem (1) be solved by Algorithm 1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• For any ε > 0, γ > 0, τ > τmix(ε) and T > τ satisfying

γ ≲
m2

d2L(δ2 + 1)τ
and ε ≲

m2

d2(δ2 + 1)
,

it holds that

E
[∥∥∇f(x̂T)

∥∥2] = O
(
Fτ

γT
+

γLτd2

m2
σ2

)
,

where x̂T is chosen uniformly from {xt}Tt=0.

• If f additionally verifies the PL-condition (Assumption 3), then for any ε > 0, γ > 0, τ > τmix(ε)
and T > τ satisfying

γ ≲
m2

Ld2τ(δ2 + 1)
and ε =

√
γLτ ≲

m

d
√
δ2 + 1

,

it holds that

FT = O
((

1− µγ

12

)T−τ

Fτ +
γd2Lτ

µm2
σ2

)
.

Here we use a notation Ft := E [f(xt)− f(x∗)] .

E.2 FULL VERSION OF COROLLARY 1

Corollary 4 (Step tuning for Theorem 2, extension of Corollary 1).
• Under the conditions of Theorem 2 in the non-convex case, choosing γ as

γ ≲
m

d
√
Lτ

min

{
m

d(δ2 + 1)
√
Lτ

;

√
Fτ

Tσ2
,

}
,

in order to achieve ϵ-approximate solution (in terms of E
[∥∥∇f(xT)

∥∥2] ≤ ϵ2) it takes

O
(
Lτd2

m2
Fτ

(
δ2 + 1

ϵ2
+

σ2

ϵ4

))
iterations of Algorithm 1.

• Under the conditions of Theorem 2 in the PL-condition (Assumption 3) case, choosing γ as

γ ≲ min

 m2

Ld2τ(δ2 + 1)
;
log
(
max

{
2; µ2m2FτT

d2Lτσ2

})
µT

 ,

in order to achieve ϵ-approximate solution (in terms of E [f(xt)− f(x∗)] ≤ ϵ) it takes

O
(
d2Lτ

m2µ

(
(δ2 + 1) log

(
1

ϵ

)
+

σ2

µϵ

))
iterations of Algorithm 1.

E.3 PROOF OF THEOREM 2, NON-CONVEX CASE

Proof. Denoting Ft := E [f(xt)− f(x∗)], we have using L-smoothness:

Ft+1 − Ft ≤ −γE

[〈
1

n

n∑
i=1

Qi
t(∇fi(x

t)),∇f(xt)

〉]
+

γ2L

2
E

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
 .

(10)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Consider −γE
[〈

1
n

n∑
i=1

Qi
t(∇fi(x

t)),∇f(xt)

〉]
. Using straightforward algebra: ±∇fi(x

t−τ) and

±∇f(xt−τ) we can re-write this term:

− γ E

[〈
1

n

n∑
i=1

Qi
t(∇fi(x

t)),∇f(xt)

〉]

= −γE

[〈
1

n

n∑
i=1

Qi
t(∇fi(x

t−τ)),∇f(xt−τ)

〉]
︸ ︷︷ ︸

①

−γE

[〈
1

n

n∑
i=1

Qi
t(∇fi(x

t)),∇f(xt)−∇f(xt−τ)

〉]
︸ ︷︷ ︸

②

−γE

[〈
1

n

n∑
i=1

Qi
t(∇fi(x

t)−∇fi(x
t−τ)),∇f(xt−τ)

〉]
︸ ︷︷ ︸

③

.

Consider ①. Using straightforward algebra, tower property, Lemmas 3 and 5 we obtain

① = −γE

[〈
1

n

n∑
i=1

Et−τ

[
Qi

t(∇fi(x
t−τ))

]
,∇f(xt−τ)

〉]

= −γ

2
E

∥∥∥∥∥ 1n
n∑

i=1

Et−τ

[
Qi

t(∇fi(x
t−τ))

]∥∥∥∥∥
2


+
γ

2
E

∥∥∥∥∥∇f(xt−τ)− 1

n

n∑
i=1

Et−τ

[
Qi

t(∇fi(x
t−τ))

]∥∥∥∥∥
2
− γ

2
E
[∥∥∇f(xt−τ)

∥∥2]

≤ γ

2
ε2

d2

m2

1

n

n∑
i=1

E
[∥∥∇fi(x

t−τ)
∥∥2]− γ

2
E
[∥∥∇f(xt−τ)

∥∥2]
≤ γ

(
ε2

d2

m2
(δ2 + 1)− 1

2

)
E
[∥∥∇f(xt−τ)

∥∥2]+ γε2
d2

m2
σ2

≤ −γ

4
E
[∥∥∇f(xt−τ)

∥∥2]+ γε2
d2

m2
σ2.

(11)

The last inequality follows from the fact, that

ε ≤ m

2d
√
δ2 + 1

.

Consider ②. Using Cauchy-Schwarz A.1 and Fenchel-Young A.2 with β = 1 inequalities we obtain

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

② ≤ E

[∥∥∥∥∥−γ

n

n∑
i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥∥∥∇f(xt)−∇f(xt−τ)
∥∥]

≤ γLE

[∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥ ∥∥xt − xt−τ
∥∥]

= γ2LE

[∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
∥∥∥∥∥

t−1∑
s=t−τ

1

n

n∑
i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
]

≤ γ2L

2

τE

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
+

t−1∑
s=t−τ

E

∥∥∥∥∥ 1n
n∑

i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
2
 .

(12)

Third equality holds since xt − xt−τ = γ
∑t−1

s=t−τ
1
n

n∑
i=1

Qi
s(∇fi(x

s)). Consider ③. Using Cauchy-

Schwarz A.1 and Fenchel-Young A.2 with β = m/d inequalities we obtain

③ ≤ E

[∥∥∥∥∥−γ

n

n∑
i=1

Qi
t(∇fi(x

t)−∇fi(x
t−τ))

∥∥∥∥∥∥∥∇f(xt−τ)
∥∥]

≤ γLE

[∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t)−∇fi(x
t−τ)

∥∥∥∥∥ ∥∥∇f(xt−τ)
∥∥]

≤ γ2L
d

m
E

[∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
∥∥∥∥∥

t−1∑
s=t−τ

1

n

n∑
i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
]

≤ γ2L

2

 t−1∑
s=t−τ

E

∥∥∥∥∥ 1n
n∑

i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
2
+

d2τ

m2
E
[∥∥∇f(xt−τ)

∥∥2] .

(13)

Wrapping (10) - (13) up we obtain

Ft+1 − Ft ≤
γ2L

2
E

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
− γ

4
E
[∥∥∇f(xt−τ)

∥∥2]+ γε2
d2

m2
σ2

+
γ2L

2

τE

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
+

t−1∑
s=t−τ

E

∥∥∥∥∥ 1n
n∑

i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
2


+
γ2L

2

 t−1∑
s=t−τ

E

∥∥∥∥∥ 1n
n∑

i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
2
+

d2τ

m2
E
[∥∥∇f(xt−τ)

∥∥2]
≤ γ2LτE

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t))

∥∥∥∥∥
2
+ γε2

d2

m2
σ2

+ γ2L

t−1∑
s=t−τ

E

∥∥∥∥∥ 1n
n∑

i=1

Qi
s(∇fi(x

s))

∥∥∥∥∥
2
+

(
γ2Lτd2

2m2
− γ

4

)
E
[∥∥∇f(xt−τ)

∥∥2] .
Using Lemma 5 we obtain

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Ft+1 − Ft ≤
2d2γ2Lτ

m2

(
(δ2 + 1)E

[∥∥∇f(xt)
∥∥2]+ σ2

)
+

(
γ2Lτd2

2m2
− γ

4

)
E
[∥∥∇f(xt−τ)

∥∥2]
+

2d2γ2L

m2

t−1∑
s=t−τ

(
(δ2 + 1)E

[
∥∇f(xs)∥2

]
+ σ2

)
+ γε2

d2

m2
σ2

=
2d2γ2L(δ2 + 1)τ

m2
E
[∥∥∇f(xt)

∥∥2]+ 2d2γ2L(δ2 + 1)

m2

t−1∑
s=t−τ

E
[
∥∇f(xs)∥2

]
+

(
γ2Lτd2

2m2
− γ

4

)
E
[∥∥∇f(xt−τ)

∥∥2]+ γd2

m2

(
4γLτ + ε2

)
σ2.

(14)

Summing (14) from t = τ to t = T and using the fact that ε2 ≤ γLτ and 1 + δ2 ≥ 1 we obtain

T∑
t=τ

γ

4
E
[∥∥∇f(xt−τ)

∥∥2] ≤ Fτ +
2d2γ2L(δ2 + 1)

m2

(
τ

T∑
t=τ

E
[∥∥∇f(xt)

∥∥2]
+

T∑
t=τ

t−1∑
s=t−τ

E
[
∥∇f(xs)∥2

]
+ τ

T∑
t=τ

E
[∥∥∇f(xt−τ)

∥∥2])+

T∑
t=τ

5
γ2Lτd2

m2
σ2.

Since
∑T

t=τ

∑t−1
s=t−τ E

[
∥∇f(xs)∥2

]
≤ τ

∑T
t=0 E

[
∥∇f(xt)∥2

]
, we get

γ

T−τ∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ 4Fτ +
24d2γ2L(δ2 + 1)τ

m2

T∑
t=0

E
[∥∥∇f(xt)

∥∥2]+ 20

T∑
t=τ

γ2Lτd2

m2
σ2.

Taking

γ ≤ m2

48d2L(δ2 + 1)τ
,

we obtain

γ

T−τ∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ 8Fτ +
48d2γ2L(δ2 + 1)τ

m2

T∑
t=T−τ

E
[∥∥∇f(xt)

∥∥2]+ 40

T∑
t=τ

γ2Lτd2

m2
σ2.

(15)

We now prove that for any t ≥ 0, we have

sup
t≤s≤t+τ

{
E
[
∥∇f(xs)∥2

]}
≤ 4E

[∥∥∇f(xt)
∥∥2]+ 8L2γ2τ2

d2

m2
σ2.

For t ≤ s ≤ t+ τ it holds that

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E
[
∥∇f(xs)∥2

]
≤ 2E

[∥∥∇f(xt)
∥∥2]+ E

[∥∥∇f(xs)−∇f(xt)
∥∥2]

≤ 2E
[∥∥∇f(xt)

∥∥2]+ 2L2γ2E

∥∥∥∥∥
s−1∑
r=t

1

n

n∑
i=1

Qi
r(∇fi(x

r))

∥∥∥∥∥
2


≤ 2E
[∥∥∇f(xt)

∥∥2]+ 2L2γ2τ
d2

m2

s−1∑
r=t

1

n

n∑
i=1

E
[
∥∇fi(x

r)∥2
]

≤ 2E
[∥∥∇f(xt)

∥∥2]+ 4L2γ2τ
d2

m2

s−1∑
r=t

(
(δ2 + 1)E

[
∥∇f(xr)∥2

]
+ σ2

)
≤ 2E

[∥∥∇f(xt)
∥∥2]+ 4L2γ2τ2

d2

m2

(
(δ2 + 1) sup

t≤s≤t+τ

{
E
[
∥∇f(xs)∥2

]}
+ σ2

)
.

Since
γ ≤ m√

8dL
√
δ2 + 1τ

,

it holds that

sup
t≤s≤t+τ

{
E
[
∥∇f(xs)∥2

]}
≤ 4E

[∥∥∇f(xt)
∥∥2]+ 8L2γ2τ2

d2

m2
σ2.

Using this (15) takes form

γ

T−τ∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ 8Fτ +
192d2γ2L(δ2 + 1)τ

m2

T−τ∑
t=T−2τ

E
[∥∥∇f(xt)

∥∥2]

+ 384L3γ4τ3
d4

m4
(δ2 + 1)σ2 + 40

T∑
t=τ

γ2Lτd2

m2
σ2.

Taking

γ ≤ m

384dL
√
δ2 + 1τ

,

and dividing both sides of the inequality by T − τ , we obtain

1

T − τ

T−τ∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ 16
Fτ

γ(T − τ)
+ 80

γ2Lτd2

m2
σ2.

Therefore, if x̂T is chosen uniformly from {xt}T−1
t=0 , then it holds that

E
[∥∥∇f(x̂T)

∥∥2] ≤ 16
Fτ

γT
+ 80

γ2Lτd2

m2
σ2.

This finishes the proof.

E.4 PROOF OF THEOREM 2, UNDER PL-CONDITION

Proof. We start from (14):

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Ft+1 − Ft =
2d2γ2L(δ2 + 1)τ

m2
E
[∥∥∇f(xt)

∥∥2]+ 2d2γ2L(δ2 + 1)

m2

t−1∑
s=t−τ

E
[
∥∇f(xs)∥2

]
+

(
γ2Lτd2

2m2
− γ

4

)
E
[∥∥∇f(xt−τ)

∥∥2]+ γd2

m2

(
4γLτ + ε2

)
σ2.

If f satisfies PL-inequality (Assumption 3), then −E
[
∥∇f(xt−τ∥2

]
≤ −2µFt−τ , so that, for some

0 < α < 1 we obtain

Ft+1 − Ft =
2d2γ2L(δ2 + 1)τ

m2
E
[∥∥∇f(xt)

∥∥2]+ 2d2γ2L(δ2 + 1)

m2

t−1∑
s=t−τ

E
[
∥∇f(xs)∥2

]
+

(
γ2Lτd2

2m2
− (1− α)γ

4

)
E
[∥∥∇f(xt−τ)

∥∥2]
− αγµ

2
Ft−τ +

γd2

m2

(
4γLτ + ε2

)
σ2.

(16)

For t ≥ 0, let pt = pt and p = (1− αµγ/4)−1. We multiply the above expression by pt and sum for
t < T , hoping for cancellations. Using PL-condition (Assumption 3), for T ≥ τ we obtain

T−1∑
t=τ

pt+1

(
Ft − Ft+1 −

αγµ

4
Ft−τ

)
=

T−1∑
t=τ

pt+1

[(
1− αγµ

4

)
Ft − Ft+1 +

αγµ

4
(Ft − Ft−τ)

]
=

T−1∑
t=τ

ptFt −
T∑

t=τ+1

ptFt +
αγµ

4

T−1∑
t=τ

pt+1(Ft − Ft−τ)

≤ pτFτ − pTFT +
αγµ

4

T−1∑
t=τ

pt+1Ft

− αγµpτ
4

T−1−τ∑
t=0

pt+1Ft

≤ pτFτ − pTFT +
αγµ

4

T−1∑
t=T−τ

pt+1Ft

≤ pτFτ − pTFT +
αγ

8

T−1∑
t=T−τ

pt+1E
[∥∥∇f(xt)

∥∥2] .
For any t ≥ 0 we use a notation bt := E

[
∥∇f(xt)∥2

]
. We now handle bt terms from (16).

−
T−1∑
t=τ

(1− α)γ

4
pt+1bt−τ + γ2L

d2

m2

T−1∑
t=τ

pt+1

(
2τ(δ2 + 1)bt + 2(δ2 + 1)

t−1∑
s=t−τ

bs +
τ

2
bt−τ

)
.

(17)

If pt = pt, p = (1− αµγ/2)−1 and γ = γ1/τ , then, using the fact that (1− a/x)−x ≤ 2ea ≤ 2e if
x ≥ 2 and 0 ≤ a ≤ 1, we can get that 1 ≥ pτ = (1− µγ1/(2τ))

−τ ≤ 2eµγ1/2 ≤ 2e ≤ 6. Then

T∑
t=τ

pt+1

t−1∑
s=t−τ

bs ≤ pτ
T∑

t=τ

t−1∑
s=t−τ

ps+1bs ≤ 6τ

T∑
t=0

pt+1bt.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Now we can estimate (17):

(17) ≤ −
T−τ−1∑
t=0

(1− α)γ

4
pt+1bt + γ2L

d2τ

m2

(
2(δ2 + 1)

T−1∑
t=τ

bt + 12(δ2 + 1)

T−1∑
t=0

bt + 3

T−τ∑
t=0

bt

)

≤ −
T−τ−1∑
t=0

pt+1γbt

(
1− α

4
− 17γL

d2τ(δ2 + 1)

m2

)
+ 14γ2L

d2τ(δ2 + 1)

m2

T−1∑
t=T−τ

pt+1bt.

Taking

γ ≤ m2(1− α)

136Ld2τ(δ2 + 1)β
,

where β ≥ 1, we obtain

(17) ≤ − (1− α)γ

8

T−τ−1∑
t=0

pt+1bt +
(1− α)γ

4β

T−1∑
t=T−τ

pt+1bt.

Now we can estimate (16):

0 ≤ pτFτ − pTFT +

(
αγ

8
+

(1− α)γ

4β

) T−1∑
t=T−τ

pt+1bt −
(1− α)γ

8

T−τ−1∑
t=0

pt+1bt

+

T−1∑
t=τ

pt+1
γd2

m2

(
4γLτ + ε2

)
σ2.

(18)

Using that we proved in E.3 we have bt ≤ 4bt−τ + 8L2γ2τ2 d2

m2σ
2. Then, we can obtain

γ

(
α

8
+

1− α

4β

) T−1∑
t=T−τ

pt+1bt ≤ 24γ

(
α

8
+

1− α

4β

) T−τ−1∑
t=T−2τ

pt+1bt

+ 48L2γ3τ3
d2

m2

(
α

8
+

1− α

4β

)
σ2.

Taking α = 1/6 and β = 4, we obtain

α

8
+

1− α

4β
=

1− α

8
,

and (18) takes form

0 ≤ pτFτ − pTFT + 48L2γ3τ3
d2

m2
σ2 +

T−1∑
t=τ

pt+1
γd2

m2

(
4γLτ + ε2

)
σ2. (19)

Using the fact that

T∑
t=τ

(
1− αµγ

2

)T−t

=

T−τ∑
t=0

(
1− αµγ

2

)t
≤

+∞∑
t=0

(
1− αµγ

2

)t
=

2

αµγ
,

and taking

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

γ ≤ m2

625Ld2τ(δ2 + 1)
and ε =

√
γLτ ≤ m

25d
√
δ2 + 1

,

by dividing (19) by pτ , we obtain

E
[
f(xT)− f(x∗)

]
≤
(
1− µγ

12

)T−τ

E [f(xτ)− f(x∗)] + 636
γd2Lτ

µm2
σ2.

This finishes the proof.

F CONVERGENCE OF ALGORITHM 1 WITHOUT DATA SIMILARITY

Theorem 5 (Convergence of GD Algorithm 1 without data similarity). Consider Assumptions 1 and
2. Let problem (1) be solved by Algorithm 1. Then for any ε > 0, γ > 0, τ > τmix(ε) and T > τ
satisfying

γ ≤
m2√µ

24d2L3/2τ
and ε ≤

m
√
µ

24d
min

{
1

L3/2
;
√
µ

}
,

it holds that

E
[∥∥xT+1 − x∗∥∥2] ≤ (1− µγ

2

)T−τ

E
[
∥xτ − x∗∥2

]
+
(
1− µγ

2

)T
∆τ + 26

γd2τ

µm2
σ2
∗,

where

∆τ = O

(
γ2d2

m2

√
µ

L

τ∑
t=0

[
τE
[∥∥xt − x∗∥∥2]+ 4LE

[
f(xt)− f(x∗)

]])
.

Proof of Theorem 5. We start by writing out step of the Algorithm 1:

E
[∥∥xt+1 − x∗∥∥2] = E

[∥∥xt − x∗∥∥2]− 2γE

[
1

n

d∑
i=1

〈
Qi

t

(
∇fi(x

t)
)
−∇fi(x

t), xt − x∗〉]

− 2γE
[〈
∇f(xt), xt − x∗〉]+ γ2E

∥∥∥∥∥ 1n
n∑

i=1

Qi
t

(
∇fi(x

t)
)∥∥∥∥∥

2
 .

(20)

Consider E
[〈
Qi

t (∇fi(x
t))−∇fi(x

t), xt − x∗〉]. Using Corollary 3 with at = ∇fi(x
t), bt =

xt − x∗, ât−τ = ∇fi(x
t−τ) and b̂t−tau = xt−τ − x∗ we obtain

2E[
1

n

n∑
i=1

|⟨Qi
t

(
∇fi(x

t)
)
−∇fi(x

t), xt − x∗⟩|] ≤ εd

mβ0

1

n

n∑
i=1

E
[∥∥∇fi(x

t−τ)
∥∥2]

+
εdβ0

m
E
[∥∥xt−τ − x∗∥∥2]+ 4

d2L2

m2
(β1 + β2)E

[∥∥xt − xτ
∥∥2]+ (1

β1
+

1

β3

)
E
[∥∥xt − xτ

∥∥2]
+ 4

d2

m2
β3

1

n

d∑
i=1

E
[∥∥∇fi(x

t)
∥∥2]+ 1

β2
E
[∥∥xt − x∗∥∥2] .

(21)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Using the fact that fi are L-smooth, we can obtain:

1

n

n∑
i=1

∥∥∇fi(x
t)
∥∥2 =

1

n

n∑
i=1

∥∥∇fi(x
t)−∇fi(x

∗) +∇fi(x
∗)
∥∥2

≤ 2

n

n∑
i=1

∥∥∇fi(x
t)−∇fi(x

∗)
∥∥2 + 2

n

n∑
i=1

∥∇fi(x
∗)∥2

≤ 4L

n

n∑
i=1

(
fi(x

t)− fi(x
∗)−

〈
∇fi(x

∗), xt − x∗〉)+ 2σ2
∗

= 4L(f(xt)− f(x∗)) + 2σ2
∗,

(22)

where we use a notation σ2
∗ := 1

n

∑n
i=1 ∥∇fi(x

∗)∥2. Now we can estimate (21):

(21) ≤ 2εd

mβ0
(2LE

[
f(xt−τ)− f(x∗)

]
+ σ2

∗) +
εdβ0

m
E
[∥∥xt−τ − x∗∥∥2]

+

(
4
d2L2

m2
(β1 + β2) +

1

β1
+

1

β3

)
E

∥∥∥∥∥−γ

t−1∑
s=t−τ

1

n

n∑
i=1

Qi
s (∇fi(x

s))

∥∥∥∥∥
2


+ 8
d2

m2
β3(2LE

[
f(xt)− f(x∗)

]
+ σ2

∗) +
1

β2
E
[∥∥xt − x∗∥∥2] .

Now we can estimate (20). Using Lemma 4 and Assumption 2 we can obtain

E
[∥∥∥xt+1 − x∗

∥∥∥2] ≤ (1− µγ +
γ

β2

)
E
[∥∥xt − x∗∥∥2]+ εdβ0γ

m
E
[∥∥xt−τ − x∗∥∥2]

+ 4LE

[
εdγ

mβ0
(f(xt−τ)− f(x∗)) + 4

d2β3γ

m2
(f(xt)− f(x∗))

+

(
4
d2L2

m2
(β1 + β2) +

1

β1
+

1

β3

)
γ3τd2

m2

t−1∑
s=t−τ

(f(xs)− f(x∗))

+
γ2d2

m2
(f(xt)− f(x∗))− γ

2L
(f(xt)− f(x∗))

]

+ 2

[
εdγ

mβ0
+ 4

d2β3γ

m2
+

(
4
d2L2

m2
(β1 + β2) +

1

β1
+

1

β3

)
γ3τ2d2

m2
+

γ2d2

m2

]
σ2
∗.

(23)

Taking β0 = β1 = 1, β3 = γ, β2 = 4/µ and using fact, that ε ≤ γτd/m inequality (23) takes form

E
[∥∥xt+1 − x∗∥∥2] ≤ (1− 3

4µγ

)
E
[∥∥xt − x∗∥∥2]+ εdβ0γ

m
E
[∥∥xt−τ − x∗∥∥2]

+ 4LE

[
εdγ

mβ0
(f(xt−τ)− f(x∗)) + 5

d2γ2

m2
(f(xt)− f(x∗))

+ 20
d4L2

m4

γ3τ

µ

t−1∑
s=t−τ

(f(xs)− f(x∗))− γ

2L
(f(xt)− f(x∗))

]

+ 4
d2γ2τ

m2

[
3 + 10

d2L2

m2

γ

µ

]
σ2
∗.

(24)

Let us perform the summation from t = τ to t = T > τ of equations (24) with coefficients pk:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

T∑
t=τ

ptE
[∥∥xt+1 − x∗∥∥2] ≤ T∑

t=τ

pt(1−
3µγ

4
)E
[∥∥xt − x∗∥∥2]

+

T∑
t=τ

pt
γεd

m
E
[∥∥xt−τ − x∗∥∥2]

+

T∑
t=τ

pt4L

(
γεd

m
+ 5

γ2d2τ

m2
− γ

2L

)
E
[
f(xt)− f(x∗)

]
+ 20

T∑
t=τ

pt4L
d4L2

m4

γ3τ

µ

t−1∑
s=t−τ

E [f(xs)− f(x∗)]

+

T∑
t=τ

pt4
d2γ2τ

m2

[
3 + 10

d2L2

m2

γ

µ

]
σ2
∗.

(25)

If pt = pt, p = (1− µγ/2)−1 and γ = γ1/τ , then, using the fact that (1− a/x)−x ≤ 2ea ≤ 2e if
x ≥ 2 and 0 ≤ a ≤ 1, we can get that pτ = (1− µγ1/(2τ))

−τ ≤ 2eµγ1/2 ≤ 2e ≤ 6.

T∑
t=τ

pt

t−1∑
s=t−τ

as ≤ pτ
T∑

t=τ

t−1∑
s=t−τ

psas ≤ 6τ

T∑
t=0

ptat.

Using this we can estimate (25):
T∑

t=τ

ptE
[∥∥xt+1 − x∗∥∥2] ≤ T∑

t=τ

pt

(
1− µγ + 6

γεd

m

)
E
[∥∥xt − x∗∥∥2]

+

T∑
t=τ

4ptL

(
γεd

m
+ 5

γ2d2τ

m2
+ 120

d4L2

m4

γ3τ2

µ
− γ

2L

)
E
[
f(xt)− f(x∗)

]
+ 4

T∑
t=τ

pt

[
3 + 10

d2L2

m2

γ

µ

]
σ2
∗ +

τ∑
t=0

pt+τ
γεd

m
E
[∥∥xt − x∗∥∥2]

+ 80

τ∑
t=0

pt+τL
d4L2

m4

γ3τ

µ
E
[
f(xt)− f(x∗)

]
.

(26)

Taking

γ ≤
m2√µ

24d2L3/2τ
and ε = min

{
γdτ

m
;
µm

24d

}
≤

m
√
µ

24d
min

{
1

L3/2
;
√
µ

}
.

We get

γεd

m
+ 5

γ2d2τ

m2
+ 120

d4L2

m4

γ3τ2

µ
− γ

2L
≤ 0 and 1− 3µγ

4
+ 6

γεd

m
= 1− µγ

2
.

Assume a notation

∆τ :=

τ∑
t=0

pt+τ
γεd

m
E
[∥∥xt − x∗∥∥2]+ 80

τ∑
t=0

pt+τL
d4L2

m4

γ3τ

µ
E
[
f(xt)− f(x∗)

]
≤ 120

γ2d2

m2

√
µ

L

τ∑
t=0

(
τE
[∥∥xt − x∗∥∥2]+ 4LE

[
f(xt)− f(x∗)

])
.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Using the notation of ∆τ , (26) takes form

T∑
t=τ

ptE
[∥∥xt+1 − x∗∥∥2] ≤ T∑

t=τ

pt

(
1− µγ

2

)
E
[∥∥xt − x∗∥∥2]+ T∑

t=τ

13pt
γ2d2τ

m2
σ2
∗ +∆τ .

Using pt = pt and p = (1− µγ/2)
−1 we can obtain:

T∑
t=τ

(
1− µγ

2

)−t

E
[∥∥xt+1 − x∗∥∥2] ≤ T∑

t=τ

(
1− µγ

2

)−t+1

E
[∥∥xt − x∗∥∥2]

+

T∑
t=τ

13
(
1− µγ

2

)−t γ2d2τ

m2
σ2
∗ +∆τ .

The summed terms on the left and right sides are reduced, therefore this expression takes the form:

(
1− µγ

2

)−T

E
[∥∥xT+1 − x∗∥∥2] ≤ (1− µγ

2

)−τ

E
[
∥xτ − x∗∥2

]
+

T∑
t=τ

13
(
1− µγ

2

)−t γ2d2τ

m2
σ2
∗ +∆τ .

We can re-arrange this inequality:

E
[∥∥xT+1 − x∗∥∥2] ≤ (1− µγ

2

)T−τ

E
[
∥xτ − x∗∥2

]
+

T∑
t=τ

13
(
1− µγ

2

)T−t γ2d2τ

m2
σ2
∗ +

(
1− µγ

2

)T
∆τ .

Using the fact that

T∑
t=τ

(
1− µγ

2

)T−t

=

T−τ∑
t=0

(
1− µγ

2

)t
≤

+∞∑
t=0

(
1− µγ

2

)t
=

2

µγ
.

We can estimate:

E
[∥∥xT+1 − x∗∥∥2] ≤ (1− µγ

2

)T−τ

E
[
∥xτ − x∗∥2

]
+
(
1− µγ

2

)T
∆τ + 26

γd2τ

µm2
σ2
∗.

This finishes the proof.

G EXTENSIONS FOR THEOREM 3

G.1 FULL VERSION OF THEOREM 3

Theorem 6 (Convergence of AMQSGD Algorithm 2, full version). Consider Assumptions 1, 2 and
4. Let problem (1) be solved by Algorithm 2. Then for any γ > 0, ε > 0, τ > τmix(ε), T > τ and
β, θ, η, p satisfying

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

γ ≲
µ

1
3m

1
2

τL
4
3 d

1
2

, p ≲
m2

τ2d2(δ2 + 1)
, ε ≲ min

{ m
7
4

d
7
4 τ

5
4L(δ2 + 1)

;
m

15
4

d
15
4 τ

13
4 (δ2 + 1)2

}

β =

√
2p2µγ

3
, η =

√
3

2µγ
, θ =

pη−1 − 1

βpη−1 − 1

it holds that

FT+1 = O

(
exp

[
−(T − τ)

√
p2µγ

3

]
Fτ + exp

[
−T

√
p2µγ

3

]
∆τ +

γ

µ
σ2

)
.

Here we use notations: Ft := E[∥xt − x∗∥2 + 3
µ (f(x

t
f) − f(x∗))] and ∆τ ≤

√
γ

τ
4
3 µ

1
3

τ∑
t=0

(
E
∥∥∇f(xt

g)
∥∥+ E ∥xt − x∗∥2 + E[f(xt

f)− f(x∗)]
)
.

G.2 FULL VERSION OF COROLLARY 2

Corollary 5 (Step tuning for Theorem 3, full version of Corollary 2). Under the conditions of
Theorem 3, choosing γ as

γ ≲ min


µ

1
3

L
4
3 τ

8
3

;

log

(
max

{
2; µ

2
3 (Fτ+∆τ)T

τ
4
3 L

2
3 σ2

})
µp2T 2

 ,

in order to achieve ϵ-approximate solution (in terms of E
[∥∥xT − x∗∥∥2] ≤ ϵ2) it takes

O

(
d2L

2
3 τ

4
3

m2µ
2
3

(
(δ2 + 1) log

(
1

ϵ

)
+

σ2

µϵ

))
iterations.

G.3 PROOF OF THEOREM 6

Lemma 6. Consider Algorithm 2 with θ = (pη−1 − 1)/(βη−1 − 1) < 1. Then for any yt =

κxt
f + (1− κ)xt ∈ conv

{
xt
f , x

t
}

for any s < t exist constants αs
f , α

s ≥ 0 and cr ≥ 0 such that

yt = ỹs − pγ

t−1∑
r=s

crg
r = αs

fx
s
f + αsxs − pγ

t−1∑
r=s

crg
r.

And αs
f + αs = 1 for any s < t. If (1− κ)η ≤ 1, then cr ≤ t− s+ 2, otherwise we can only use the

estimate cr ≤ η.

Proof. We start by writing out lines 3 and 10 of Algorithm 2:

xs
f = xs−1

g − pγgs−1 = θxs−1
f + (1− θ)xs−1 − pγgs−1. (27)

Now let us handle expression ηxk
g + (p − η)xk

f + (1 − p)(1 − β)xk + (1 − p)βxk
g − x∗ for a

while. Taking into account the choice of θ such that θ = (pη−1 − 1)/(βpη−1 − 1) (in particular,
(pη−1 − 1) = (βpη−1 − 1)θ and η(1− βpη−1)(1− θ) = p(1− β)), we get

ηxk
g + (p− η)xk

f + (1− p)(1− β)xk + (1− p)βxk
g

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

= (η + (1− p)β)xk
g + (p− η)xk

f + (1− p)(1− β)xk

= (η + (1− p)β)xk
g + η(pη−1 − 1)xk

f + (1− p)(1− β)xk

= (η + (1− p)β)xk
g + η(βpη−1 − 1)θxk

f + (1− p)(1− β)xk

= (η + (1− p)β)xk
g + η(βpη−1 − 1)(xk

g − (1− θ)xk) + (1− p)(1− β)xk

= (η + (1− p)β)xk
g + η(βpη−1 − 1)(xk

g − (1− θ)xk) + (1− p)(1− β)xk

= βxk
g − η(βpη−1 − 1)(1− θ)xk + (1− p)(1− β)xk

= βxk
g + p(1− β)xk + (1− p)(1− β)xk

= βxk
g + (1− β)xk .

Now we write out line 11 of Algorithm 2:

xs = βxs−1
g + (1− β)xs−1 − ηxs−1

g + ηxs
f = βxs−1

g + (1− β)xs−1 − ηpγgs−1

= β(θxs−1
f + (1− θ)xs−1) + (1− β)xs−1 − ηpγgs−1

= βθxs−1
f + (1− βθ)xs−1 − ηpγgs−1.

(28)

Now we use induction. xt
f = θxs−1

f +(1−θ)xs−1−pγgs−1, then αt−1
f = θ ≥ 0, αt−1 = 1−θ ≥ 0,

cr = 1 ≤ η and αt−1
f + αt−1 = 1, therefore base step is fulfilled. If xt

f = αs
fx

s
f + αsxs −

pγ
∑t−1

r=s crg
r for some s < t, when with help of (27) and (28) we can write out

xt
f = αs

f

(
θxs−1

f + (1− θ)xs−1 − pγgs−1
)

+ αs
(
βθxs−1

f + (1− βθ)xs−1 − ηpγgs−1
)
− pγ

t−1∑
r=s

crg
r.

Therefore αs−1
f = αs

fθ+αsβθ ≥ 0, αs−1 = αs
f (1−θ)+αs(1−βθ) ≥ 0 and cs−1 = αs

f+ηαs ≤ η.
Then, the step of the induction is fulfilled, since αs−1

f + αs−1 = 1. Therefore results of this Lemma

are true for yt = xt
f ∈ conv

{
xt
f , x

t
}

.

Consider yt = xt ∈ conv
{
xt
f , x

t
}

. Form (28) follows that αt−1
f = βθ and αt−1 = 1−βθ, therefore

base step is fulfilled. The step of the induction will be the same as in yt = xt
f . Therefore results of

this Lemma are true for yt = xt. Then, they are true for any yt ∈ conv
{
xt
f , x

t
}

.

If yt = κxt
f + (1 − κ)xt, then αs(y) = καs(xt

f) + (1 − κ)αs(xt). Since (1 − θ)η ≤ 1, then
αt−1(xt

f)η ≤ 1 = t − (t − 1). Therefore αs(xt
f)η ≤ t − s by induction, since αs−1(xt

f)η =

αs
f (x

t
f)(1− θ)η + (1− βθ)αs(xt

f)η ≤ αs
f (x

t
f) + (1− βθ)(t− s) ≤ t− s+ 1.

Then, if (1−κ)η ≤ 1, then αs(yt)η = καs(xt
f)η+(1−κ)ηαs(xt) ≤ κ(t−s)+αs(xt) ≤ t−s+1.

Now we consider cs(yt). cs(yt) = αs
f (y

t) + αs(yt)η ≤ αs
f (y

t) + t− s+ 1 ≤ t− s+ 2.

Lemma 7. Assume 1, 2 and 4. Then for iterates of Algorithm 2 with θ = (pη−1 − 1)/(βpη−1 −
1), θ > 0, η ≥ 1, it holds that

E ∥xt+1 − x∗∥2

≤ (1− β)(1 +
β

4
)E
∥∥xt − x∗∥∥2 + β(1 +

β

4
)E
∥∥xt

g − x∗∥∥2 + (β2 − β)E
∥∥xt − xt

g

∥∥2
+ 10

d2

m2
(δ2 + 1)p2γ2η2 E

∥∥∇f(xt
g)
∥∥2 + p2γ2η2τ

(
32

τ2d2L2p2γ2

m2β
+

5

4

) t−1∑
r=t−τ

∥gr∥2

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

+ 3εpγηL
d

m

√
δ2 + 1E

[∥∥xt−τ − x∗∥∥2]+ 3εpγηL
d

m

√
δ2 + 1E

[∥∥∥xt−τ
f − x∗

∥∥∥2] (29)

− 2γη2 E
〈
∇f(xt

g), x
t
g + (pη−1 − 1)xt

f − pη−1x∗〉+ 2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

)
σ2.

Proof. Using lines 10 and 11 of Algorithm 2, we get

E ∥xt+1 − x∗∥2 = E
∥∥∥ηxt+1

f + (p− η)xt
f + (1− p)(1− β)xt + (1− p)βxt

g − x∗
∥∥∥2

= E
∥∥ηxt

g − pγηgt + (p− η)xt
f + (1− p)(1− β)xt + (1− p)βxt

g − x∗∥∥2
= E

∥∥ηxt
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗∥∥2 + p2γ2η2 E

∥∥gt∥∥2
− 2pγη E

〈
gt, ηxt

g + (p− η)xt
f + (1− p)(1− β)xt + (1− p)βxt

g − x∗〉
= E

∥∥ηxt
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗∥∥2︸ ︷︷ ︸

①

+ p2γ2η2 E
∥∥gt∥∥2︸ ︷︷ ︸

②

−2pγη E
〈
gt −∇f(xt

g), ηx
t
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗〉︸ ︷︷ ︸

③

−2pγη E
〈
∇f(xt

g), ηx
t
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗〉︸ ︷︷ ︸

④

.

Consider ①. From Lemma 6, we know that

ηxt
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g = βxt

g + (1− β)xt.

It implies

∥ηxt
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗∥2

=
∥∥βxt

g + (1− β)xt − x∗∥∥2
=
∥∥β(xt

g − xt) + xt − x∗∥∥2
=
∥∥xt − x∗∥∥2 + 2β

〈
xt − x∗, xt

g − xt
〉
+ β2

∥∥xt
g − xt

∥∥2
=
∥∥xt − x∗∥∥2 + β(

∥∥xt
g − x∗∥∥2 − ∥∥xt − x∗∥∥2 − ∥∥xt

g − xt
∥∥2) + β2

∥∥xt
g − xt

∥∥2
= (1− β)

∥∥xt − x∗∥∥2 + β
∥∥xt

g − x∗∥∥2 + (β2 − β)
∥∥xt − xt

g

∥∥2 .
(30)

Consider ②. Using convexity of squared Euclidean norm and Lemma 4, one can obtain

p2γ2η2 E
∥∥gt∥∥2 = p2γ2η2 E

∥∥∥∥∥ 1n
n∑

i=1

Qi
t(∇fi(x

t
g))

∥∥∥∥∥
2

≤ p2γ2η2
1

n

n∑
i=1

E
∥∥Qi

t(∇fi(x
t
g))
∥∥2

(4)
≤ p2γ2η2

d2

m2

1

n

n∑
i=1

E
∥∥∇fi(x

t
g)
∥∥2

(5)
≤ 2p2γ2η2

d2

m2
(δ2 + 1)E

∥∥∇f(xt
g)
∥∥2 + 2p2γ2η2

d2

m2
σ2,

(31)

where in the last inequality we used Lemma 5.
Consider ③. We first use Lemma 6 twice

xt
g = θxt

f + (1− θ)xt = αt−τ
f xt−τ

f + αt−τxt−τ − pγ

t−1∑
r=t−τ

crg
r

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

ηxt
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g = βxt

g + (1− β)xt

= βθxt
f + (1− βθ)xt

= α̂t−τ
f xt−τ

f + α̂t−τxt−τ − pγ

t−1∑
r=t−τ

ĉrg
r.

Next, we apply Corollary 3 with ât−τ = ∇fi(x̃
t−τ
g), where x̃t−τ

g = αt−τ
f xt−τ

f + αt−τxt−τ , and
b̂t−τ = α̂t−τ

f xt−τ
f + α̂t−τxt−τ − x∗, leading us to

− 2pγη E
〈
gt −∇f(xt

g), ηx
t
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗

〉
= −2pγη

1

n

n∑
i=1

E
〈
Qi

t(∇fi(x
t
g))−∇fi(x

t
g), ηx

t
g + (p− η)xt

f + (1− p)(1− β)xt

+ (1− p)βxt
g − x∗

〉
≤ εd

mβ0
pγη

1

n

n∑
i=1

E
[∥∥∇fi(x̃

t−τ
g)

∥∥2]+ εdβ0

m
pγηE

[∥∥∥α̂t−τ
f xt−τ

f + α̂t−τxt−τ − x∗
∥∥∥2]

+ 4
d2

m2
pγη (β1 + β2)

1

n

n∑
i=1

E
[∥∥∇fi(x

t
g)−∇fi(x̃

t−τ
g)

∥∥2]

+ pγη

(
1

β1
+

1

β3

)
E

∥∥∥∥∥−pγ

t−1∑
r=t−τ

ĉrg
r

∥∥∥∥∥
2


+ 4
d2

m2
pγηβ3

1

n

n∑
i=1

E
[∥∥∇fi(x

t
g)
∥∥2]+ pγη

β2
E
[∥∥βxt

g + (1− β)xt − x∗∥∥2] .
Using Assumption 1 and Lemma 5 with cr ≤ τ ≤ 2τ and ĉr ≤ η one might obtain

− 2pγη E
〈
gt −∇f(xt

g), ηx
t
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗

〉
≤ 2εd

mβ0
pγη(δ2 + 1)E

[∥∥∇f(x̃t−τ
g)

∥∥2]+ εdβ0

m
pγηE

[∥∥∥α̂t−τ
f xt−τ

f + α̂t−τxt−τ − x∗
∥∥∥2]

+ 4
d2L2

m2
pγη (β1 + β2)E

∥∥∥∥∥−pγ

t−1∑
r=t−τ

crg
r

∥∥∥∥∥
2
+ pγη

(
1

β1
+

1

β3

)
E

∥∥∥∥∥−pγ

t−1∑
r=t−τ

ĉrg
r

∥∥∥∥∥
2


+ 8
d2

m2
(δ2 + 1)pγηβ3E

[∥∥∇f(xt
g)
∥∥2]+ pγη

β2
E
[∥∥βxt

g + (1− β)xt − x∗∥∥2]
+ 2pγη(

εd

mβ0
+ 4

d2β3

m2
)σ2 (32)

≤ εd

m
pγη

(
2(δ2 + 1)L2αt−τ

f

1

β0
+ β0α̂

t−τ
f

)
E
[∥∥∥xt−τ

f − x∗
∥∥∥2]

+
εd

m
pγη

(
2(δ2 + 1)L2αt−τ 1

β0
+ β0α̂

t−τ

)
E
[∥∥xt−τ − x∗∥∥2]

+ p3γ3ητ

(
4
τ2d2L2

m2
(β1 + β2) + η2

(1

β1
+

1

β3

)) t−1∑
r=t−τ

∥gr∥2

+ 8
d2

m2
(δ2 + 1)pγηβ3E

[∥∥∇f(xt
g)
∥∥2]

+
pγη

β2
βE
[∥∥xt

g − x∗∥∥2]+ pγη

β2
(1− β)E

[∥∥xt − x∗∥∥2]+ 2pγη(
εd

mβ0
+ 4

d2β3

m2
)σ2.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Consider ④. Taking into account line 4 and the choice of θ such that θ = (pη−1 − 1)/(βpη−1 − 1),
one can note

ηxk
g + (p− η)xk

f + (1− p)(1− β)xk + (1− p)βxk
g − x∗

= (η + (1− p)β)xk
g + (p− η)xk

f + (1− p)(1− β)xk − x∗

= ηp−1
(
(p+ (1− p)p−1ηβ)xk

g + (pη−1 − 1)pxk
f + (1− p)(1− β)pη−1xk − η−1px∗)

= ηp−1
(
(p+ (1− p)p−1ηβ)xk

g + (pη−1 − 1)pxk
f + (1− p)(1− βpη−1)(1− θ)xk − η−1px∗)

= ηp−1
(
(p+ (1− p)p−1ηβ)xk

g + (pη−1 − 1)pxk
f + (1− p)(1− βpη−1)(xk

g − θxk
f)− η−1px∗)

= ηp−1
(
xk
g + (pη−1 − 1)pxk

f − (1− p)(1− βpη−1)θxk
f − η−1px∗)

= ηp−1
(
xk
g + (pη−1 − 1)pxk

f − (1− p)(pη−1 − 1)xk
f − η−1px∗)

= ηp−1
(
xk
g + (pη−1 − 1)xk

f − η−1px∗) . (33)

Using that, we get

−2pγη E
〈
∇f(xt

g), ηx
t
g + (p− η)xt

f + (1− p)(1− β)xt + (1− p)βxt
g − x∗

〉
= −2γη2 E

〈
∇f(xt

g), x
t
g + (pη−1 − 1)xt

f − pη−1x∗〉 .
(34)

Summing (30), (31), (32) and (34) with β0 =
√
δ2 + 1L, β1 = β2 = 4pγη

β and β3 = pγη we finish
the proof.

Lemma 8. Assume 1, 2 and 4. Then for iterates of Algorithm 2 and for any u ∈ Rd it holds that

E
[
f(xt+1

f)
]
≤ E [f(u)]− E

[〈
∇f(xt

g), u− xt
g

〉]
− µ

2

∥∥u− xt
g

∥∥− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]

+ 2εγE
[∥∥∇f(x̃t−τ

g)
∥∥2]+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 23

L2d3γ3p2τ4

m3
σ2,

where

γ ≤ 1

L
and p ≤ m2

12(δ2 + 1)d2
.

Proof. Using 1 with x = xt+1
f , y = xt

g and line 3 of Algorithm 2 we get

E
[
f(xt+1

f)
]
≤ E

[
f(xt

g)
]
+ E

[〈
∇f(xt

g), x
t+1
f − xt

g

〉]
+

L

2
E
[∥∥∥xt+1

f − xt
g

∥∥∥2]
= E

[
f(xt

g)
]
− pγE

[〈
∇f(xt

g), g
t
〉]

+
Lp2γ2

2
E
[∥∥gt∥∥2]

= E
[
f(xt

g)
]
− pγE

[〈
∇f(xt

g),∇f(xt
g)
〉]

− pγE
[〈
∇f(xt

g), g
k −∇f(xt

g)
〉]

+
Lp2γ2

2
E
[∥∥gt∥∥2] .

(35)

Consider E
[〈
∇f(xt

g), g
k −∇f(xt

g)
〉]

. Using Corollary 3 with at = ∇fi(x
t
g), b

t =

∇f(xt
g), â

t−τ = ∇fi(x̃
t−τ
g), b̂t−τ = ∇f(x̃t−τ

g), where xt
g ∈ conv

{
xt
f , x

t
}

= x̃t−τ
g −

pγ
∑t−1

s=t−τ csg
s from Lemma 6. Using Assumption 1 we obtain

2
∣∣E [〈∇f(xt

g), g
k −∇f(xt

g)
〉]∣∣ ≤ εd

mβ0
E

[
1

n

n∑
i=1

∥∥∇fi(x̃
t−τ
g)

∥∥2]+ εdβ0

m
E
[∥∥∇f(x̃t−τ

g)
∥∥2]

+ 4
d2L2

m2
(β1 + β2)E

[∥∥xt
g − x̃t−τ

g

∥∥2]+ L2

(
1

β1
+

1

β3

)
E
[∥∥xt

g − x̃t−τ
g

∥∥2]
37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

+ 4
d2

m2
β3E

[
1

n

n∑
i=1

∥∥∇fi(x
t
g)
∥∥2]+ 1

β2
E
[∥∥∇f(xt

g)
∥∥2] .

Taking β0 =
√
δ2 + 1, β1 = m/d, β2 = m/(dp), β3 = pm/d and using results from Lemma 5 we

obtain

2
∣∣E [〈∇f(xt

g), g
k −∇f(xt

g)
〉]∣∣ ≤ 2εd

m

(√
δ2 + 1E

[∥∥∇f(x̃t−τ
g)

∥∥2]+ σ2

√
δ2 + 1

)

+
dp

m
E
[∥∥∇f(xt

g)
∥∥2]+ 10

L2d

pm
E

∥∥∥∥∥−pγ

t−1∑
s=t−τ

cs
1

n

n∑
i=1

Qi
s(∇fi(x

s
g))

∥∥∥∥∥
2


+
8dp

m

(
(δ2 + 1)E

[∥∥∇f(xt
g)
∥∥2]+ σ2

)
+

εd
√
δ2 + 1

m
E
[∥∥∇f(x̃t−τ

g)
∥∥2] .

Using Lemma 4 and 5, convexity of the squared norm and the fact that cs ≤ t− s+ 2 ≤ τ + 2 ≤ 2τ
we obtain

2
∣∣E [〈∇f(xt

g), g
k −∇f(xt

g)
〉]∣∣ ≤ 3εd

√
δ2 + 1

m
E
[∥∥∇f(x̃t−τ

g)
∥∥2]+

+ 40
L2d3γ2pτ3

m3

t−1∑
s=t−τ

E
[
(δ2 + 1)

∥∥∇f(xs
g)
∥∥2 + σ2

]
+

9dp(δ2 + 1)

m
E
[∥∥∇f(xt

g)
∥∥2]+ 2d

m

(
ε√

δ2 + 1
+ p

)
σ2.

Using the fact that L2γ2d2/m2τ4η2 ≥ 1 and ε ≤
√
δ2 + 1p we obtain

2
∣∣E [〈∇f(xt

g), g
k −∇f(xt

g)
〉]∣∣ ≤ 3εd

√
δ2 + 1

m
E
[∥∥∇f(x̃t−τ

g)
∥∥2]+ 44

L2d3γ2pη2τ4

m3
σ2

+ 40
L2d3γ2pτ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 9dp(δ2 + 1)

m
E
[∥∥∇f(xt

g)
∥∥2] .

Using this result, Lemmas 4 and 5 we can estimate (35):

E
[
f(xt+1

f)
]
= E

[
f(xt

g)
]
− pγE

[∥∥∇f(xt
g)
∥∥2]

− pγE
[〈
∇f(xt

g), g
k −∇f(xt

g)
〉]

+
L

2
E
[∥∥gt∥∥2]

≤ E
[
f(xt

g)
]
− pγE

[∥∥∇f(xt
g)
∥∥2]+ 2εpγd

√
δ2 + 1

m
E
[∥∥∇f(x̃t−τ

g)
∥∥2]+

+ 20
L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 5dγp2(δ2 + 1)

m
E
[∥∥∇f(xt

g)
∥∥2]

+ 22
L2d3γ3p2τ4

m3
σ2 +

Lp2γ2d2

m2
(δ2 + 1)E

[∥∥∇f(xt
g)
∥∥2]+ Lp2γ2d2

m2
σ2.

Taking

γ ≤ 1

L
and p ≤ m2

12(δ2 + 1)d2
,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

we obtain

E
[
f(xt+1

f)
]
≤ E

[
f(xt

g)
]
− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]+ 2εγE

[∥∥∇f(x̃t−τ
g)

∥∥2]+
+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 23

L2d3γ3p2τ4

m3
σ2.

Using 2 with x = u and y = xt
g , one can conclude that for any u ∈ Rd it holds

E
[
f(xt+1

f)
]
≤ E [f(u)]− E

[〈
∇f(xt

g), u− xt
g

〉]
− µ

2

∥∥u− xt
g

∥∥
− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]+ 2εγE

[∥∥∇f(x̃t−τ
g)

∥∥2]+
+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 23

L2d3γ3p2τ4

m3
σ2.

This finishes the proof.

Theorem 7 (Theorem 3). Consider Assumptions 1, 2 and 4. Let problem (1) be solved by Algorithm
2. Then for any γ > 0, ε > 0, τ > τmix(ε), T > τ and β, θ, η, p satisfying

γ ≤ µ
1
3m

1
2

2τL
4
3 d

1
2

, ε ≤ min
{ m

7
4

6d
7
4 τ

5
4L(δ2 + 1)

;
m

5
4

√
2τ

3
4µ

1
3L

2
3 d

5
4

;
m

15
4

6d
15
4 τ

13
4 (δ2 + 1)2

}
,

p ≤ m2

13d2(δ2 + 1)τ2
, β =

√
2p2µγ

3
, η =

√
3

2µγ
, θ =

pη−1 − 1

βpη−1 − 1
.

it holds that

E[∥xT+1 − x∗∥2 + 3

µ
(f(xT+1

f)− f(x∗))] ≤ exp

(
− (T − τ)

√
2p2µγ

3

)
Fτ

+ exp

(
− T

√
2p2µγ

3

)
∆τ +

45γ

µ
σ2,

where Fτ := E[∥xτ − x∗∥2 + 3
µ (f(x

τ
f) − f(x∗))] and ∆τ ≤

√
γ

τ
4
3 µ

1
3

τ∑
t=0

(
E
∥∥∇f(xt

g)
∥∥ +

E ∥xt − x∗∥2 + E[f(xt
f)− f(x∗)]

)
.

Proof. We start by using Lemma 8 with u = x∗ and u = xt
f

E
[
f(xt+1

f)
]
≤ E [f(x∗)]− E

[〈
∇f(xt

g), x
∗ − xt

g

〉]
− µ

2

∥∥x∗ − xt
g

∥∥− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]

+ 2εγE
[∥∥∇f(x̃t−τ

g)
∥∥2]+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 23

L2d3γ3p2τ4

m3
σ2,

E
[
f(xt+1

f)
]
≤ E

[
f(xt

f)
]
− E

[〈
∇f(xt

g), x
t
f − xt

g

〉]
− µ

2

∥∥xt
f − xt

g

∥∥− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]

+ 2εγE
[∥∥∇f(x̃t−τ

g)
∥∥2]+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]+ 23

L2d3γ3p2τ4

m3
σ2.

Summing the first inequality with coefficient 2pγη, the second with coefficient 2pγη(η− p) and (29),
we get

E[∥xt+1 − x∗∥2 + 2γη2f(xt+1
f)]

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

≤ (1− β)(1 +
β

4
)E
∥∥xt − x∗∥∥2 + β(1 +

β

4
)E
∥∥xt

g − x∗∥∥2 + (β2 − β)E
∥∥xt − xt

g

∥∥2
+ 10

d2

m2
(δ2 + 1)p2γ2η2 E

∥∥∇f(xt
g)
∥∥2 + p2γ2η2τ

(
32

τ2d2L2p2γ2

m2β
+

5

4

) t−1∑
r=t−τ

∥gr∥2

+ 3εpγηL
d

m

√
δ2 + 1E

[∥∥xt−τ − x∗∥∥2]+ 3εpγηL
d

m

√
δ2 + 1E

[∥∥∥xt−τ
f − x∗

∥∥∥2]
− 2γη2 E

〈
∇f(xt

g), x
t
g + (pη−1 − 1)xt

f − pη−1x∗〉+ 2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

)
σ2

+ 2pγη

(
E [f(x∗)]− E

[〈
∇f(xt

g), x
∗ − xt

g

〉]
− µ

2

∥∥x∗ − xt
g

∥∥− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]

+ 2εγE
[∥∥∇f(x̃t−τ

g)
∥∥2]+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]

+ 23
L2d3γ3p2τ4

m3
σ2

)

+ 2γη(η − p)

(
E
[
f(xt

f)
]
− E

[〈
∇f(xt

g), x
t
f − xt

g

〉]
− µ

2

∥∥xt
f − xt

g

∥∥− pγ

2
E
[∥∥∇f(xt

g)
∥∥2]

+ 2εγE
[∥∥∇f(x̃t−τ

g)
∥∥2]+ 20

L2d3γ3p2τ3(δ2 + 1)

m3

t−1∑
s=t−τ

E
[∥∥∇f(xs

g)
∥∥2]

+ 23
L2d3γ3p2τ4

m3
σ2

)

≤ (1− β)(1 +
β

4
)E
∥∥xt − x∗∥∥2 + (β +

β2

4
− pγηµ)E

∥∥xt
g − x∗∥∥2 + (β2 − β)E

∥∥xt − xt
g

∥∥2
+ p2γ2η2

(
10

d2

m2
(δ2 + 1)− 1

p

)
E
∥∥∇f(xt

g)
∥∥+ 2pγη E f(x∗) + 2γη(η − p)E f(xt

f)

+ p2γ2η2τ(δ2 + 1)
d2

m2

(
32

τ2d2L2p2γ2

m2β
+

5

4

) t−1∑
r=t−τ

E
∥∥∇f(xr

g)
∥∥

+ εγηL(3p
d

m

√
δ2 + 1 + 2γηL)E

[∥∥xt−τ − x∗∥∥2]
+ εγηL(3p

d

m

√
δ2 + 1 + 2γηL)E

[∥∥∥xt−τ
f − x∗

∥∥∥2]
+ 2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

+ 23pγ3ητ4
d3

m3
L2 + pγητ2

d2

m2

(
16

τ2d2L2p2γ2

m2β
+

5

8

))
σ2,

where in the last inequality we used Lemma 5 and Assumption 1. Since β < 1, the choice of
pγηµ = 3β

2 gives

(1− β)(1 +
β

4
) ≤ 1− 3β

4
,

β +
β2

4
− pγηµ ≤ 3β

2
− pγηµ ≤ 0,

β2 − β ≤ 0.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

This lead us to

E[∥xt+1 − x∗∥2 + 2γη2(f(xt+1
f)− f(x∗))]

≤ (1− 3β

4
)E
∥∥xt − x∗∥∥2 + 2pγη2(1− p

η
)E[f(xt

f)− f(x∗)]

+ p2γ2η2

(
10

d2

m2
(δ2 + 1)− 1

p

)
E
∥∥∇f(xt

g)
∥∥

+ p2γ2η2τ(δ2 + 1)
d2

m2

(
32

τ2d2L2p2γ2

m2β
+

5

4

) t−1∑
r=t−τ

E
∥∥∇f(xr

g)
∥∥ (36)

+ εγηL(3p
d

m

√
δ2 + 1 + 2γηL)E

[∥∥xt−τ − x∗∥∥2]
+ εγηL(3p

d

m

√
δ2 + 1 + 2γηL)

2

µ
E[f(xt−τ

f)− f(x∗)]

+ 2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

+ 23pγ3ητ4
d3

m3
L2 + pγητ2

d2

m2

(
16

τ2d2L2p2γ2

m2β
+

5

8

))
σ2,

where we also used Assumption 2 and subtracted 2γη2f(x∗) from both sides. Next, we perform the
summation from t = τ to t = T > τ of equations (36) with coefficients pt:

T∑
t=τ

pt E[∥xt+1 − x∗∥2 + 2γη2(f(xt+1
f)− f(x∗))]

≤
T∑

t=τ

pt(1−
3β

4
)E
∥∥xt − x∗∥∥2

+

T∑
t=τ

pt2pγη
2(1− p

η
)E[f(xt

f)− f(x∗)] +
T∑

t=τ

ptp
2γ2η2

(
10

d2

m2
(δ2 + 1)− 1

p

)
E
∥∥∇f(xt

g)
∥∥

+

T∑
t=τ

ptp
2γ2η2τ(δ2 + 1)

d2

m2

(
32

τ2d2L2p2γ2

m2β
+

5

4

) t−1∑
r=t−τ

E
∥∥∇f(xr

g)
∥∥

+

T∑
t=τ

ptεγηL(3p
d

m

√
δ2 + 1 + 2γηL)E

[∥∥xt−τ − x∗∥∥2]
+

T∑
t=τ

ptεγηL(3p
d

m

√
δ2 + 1 + 2γηL)

2

µ
E[f(xt−τ

f)− f(x∗)]

+

T∑
t=τ

pt2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

+ 23pγ3ητ4
d3

m3
L2 + pγητ2

d2

m2

(
16

τ2d2L2p2γ2

m2β
+

5

8

))
σ2.

Similar as in Theorem 5 we take pt = pt, p = (1− β
2)

−1, it implies pτ ≤ 6 and therefore

T∑
t=τ

pt E[∥xt+1 − x∗∥2 + 2γη2(f(xt+1
f)− f(x∗))]

≤
T∑

t=τ

pt

(
1− 3β

4
+ 6εγηL

(
3p

d

m

√
δ2 + 1 + 2γηL

))
E
∥∥xt − x∗∥∥2

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

+

T∑
t=τ

pt

(
2pγη2(1− p

η
) + 12

εγηL

µ

(
3p

d

m

√
δ2 + 1 + 2γηL

))
E[f(xt

f)− f(x∗)]

+

T∑
t=τ

ptp
2γ2η2

(
10

d2

m2
(δ2 + 1)− 1

p
+ τ2(δ2 + 1)

d2

m2

(
32

τ2d2L2p2γ2

m2β
+

5

4

))
E
∥∥∇f(xt

g)
∥∥

+

τ∑
t=0

pt+τ8p
2γ4η2(δ2 + 1)

d3

m3
τ3L2

(
2p2d

mβ
+ 5

)
t−1∑

r=t−τ

E
∥∥∇f(xr

g)
∥∥

+

τ∑
t=0

pt+τεγηL(3p
d

m

√
δ2 + 1 + 2γηL)E

[∥∥xt − x∗∥∥2]
+

τ∑
t=0

pt+τεγηL(3p
d

m

√
δ2 + 1 + 2γηL)

2

µ
E[f(xt

f)− f(x∗)]

+

T∑
t=τ

pt2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2
+ 23pγ3ητ4

d3

m3
L2

+ pγητ2
d2

m2

(
16

τ2d2L2p2γ2

m2β
+

5

8

))
σ2.

Taking

γ ≤ µ
1
3m

1
2

2τL
4
3 d

1
2

, p ≤ m2

13d2(δ2 + 1)τ2
,

ε ≤ min
{ m

7
4

6d
7
4 τ

5
4L(δ2 + 1)

;
m

5
4

√
2τ

3
4µ

1
3L

2
3 d

5
4

;
m

15
4

6d
15
4 τ

13
4 (δ2 + 1)2

}
,

we get

10
d2

m2
(δ2 + 1)− 1

p
+ τ2(δ2 + 1)

d2

m2

(
32

τ2d2L2p2γ2

m2β
+

5

4

)
≤ 0,

6εγηL
(
3p

d

m

√
δ2 + 1 + 2γηL

)
≤ β

4
,

12
εγηL

µ
(3p

d

m

√
δ2 + 1 + 2γηL) ≤ 2pγη2

p

2η
,

and therefore with β = p
η

T∑
t=τ

pt E[∥xt+1 − x∗∥2 + 2γη2(f(xt+1
f)− f(x∗))]

≤
T∑

t=τ

pt

(
1− β

2

)
E[∥xt − x∗∥2 + 2γη2(f(xt

f)− f(x∗))]

+

τ∑
t=0

pt+τ8p
2γ4η2(δ2 + 1)

d3

m3
τ3L2

(
2p2d

mβ
+ 5

)
t−1∑

r=t−τ

E
∥∥∇f(xr

g)
∥∥

+

τ∑
t=0

pt+τεγηL(3p
d

m

√
δ2 + 1 + 2γηL)E

[∥∥xt − x∗∥∥2]
+

τ∑
t=0

pt+τεγηL(3p
d

m

√
δ2 + 1 + 2γηL)

2

µ
E[f(xt

f)− f(x∗)]

+

T∑
t=τ

pt2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

+ 23pγ3ητ4
d3

m3
L2 + pγητ

d2

m2

(
16

τ2d2L2p2γ2

m2β
+

5

8

))
σ2.

Assume the following notation

∆τ :=

τ∑
t=0

pt+τ8p
2γ4η2(δ2 + 1)

d3

m3
τ3L2

(
2p2d

mβ
+ 5

)
t−1∑

r=t−τ

E
∥∥∇f(xr

g)
∥∥

+

τ∑
t=0

pt+τεγηL(3p
d

m

√
δ2 + 1 + 2γηL)E

[∥∥xt − x∗∥∥2]
+

τ∑
t=0

pt+τεγηL(3p
d

m

√
δ2 + 1 + 2γηL)

2

µ
E[f(xt

f)− f(x∗)]

≤
√
γ

τ
4
3µ

1
3

τ∑
t=0

(
E
∥∥∇f(xt

g)
∥∥+ E

∥∥xt − x∗∥∥2 + E[f(xt
f)− f(x∗)]

)
Now we substitute pt, this lead us to

T∑
t=τ

(
1− β

2

)−t

E[∥xt+1 − x∗∥2 + 2γη2(f(xt+1
f)− f(x∗))]

≤
T∑

t=τ

(
1− β

2

)−t+1

E[∥xt − x∗∥2 + 2γη2(f(xt
f)− f(x∗))] + ∆τ

+

T∑
t=τ

(
1− β

2

)−t

2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

+ 23pγ3ητ4
d3

m3
L2 + pγητ

d2

m2

(
16

τ2d2L2p2γ2

m2β
+

5

8

))
σ2.

This implies(
1− β

2

)−T

E[∥xT+1 − x∗∥2 + 2γη2(f(xT+1
f)− f(x∗))] ≤

(
1− β

2

)τ
E[∥xτ − x∗∥2

+ 2γη2(f(xτ
f)− f(x∗))] + ∆τ

+

T∑
t=τ

(
1− β

2

)−t

2pγη

(
εd

m
√
δ2 + 1L

+ 4pγη
d2

m2

+ 23pγ3ητ4
d3

m3
L2 + pγητ

d2

m2

(
16

τ2d2L2p2γ2

m2β
+

5

8

))
σ2.

Rearranging this inequality and taking ε ≤
√
γm√
µd we obtain

E[∥xT+1 − x∗∥2 + 2γη2(f(xT+1
f)− f(x∗))]

≤
(
1− β

2

)T−τ

E[∥xτ − x∗∥2 + 2γη2(f(xτ
f)− f(x∗))] +

(
1− β

2

)T
∆τ + 6

√
γ

µ
σ2.

This finishes the proof.

H EXPERIMENTS

This section provides description of the experiment setup, presents and analyses results of logistic
regression experiments on LIBSVM datasets, studies dependence of history size over convergence.
Moreover, experiments with neural networks optimization for data-parallelism and model-parallelism
are presented and discussed.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

H.1 TECHNICAL DETAILS

Our implementation of compression operators and algorithms is written in Python 3.10, with the use
of PyTorch optimization library. We implement a simulation of distributed optimization system on a
single machine, which is equivalent in terms of convergence analysis. Our server is AMD Ryzen
Threadripper 2950X 16-Core Processor @ 2.2 GHz CPU and x2 NVIDIA GeForce GTX 1080 Ti
GPU. We use Weights&Biases Biewald (2020) for experiments tracking and hyperparameters tuning.

H.2 LOGISTIC REGRESSION EXPERIMENTS

We conduct experiments on classification with logistic regression on four datasets: Mushrooms,
A9A, W8A, MNIST. We apply the following optimization algorithms: proposed MQSGD and its
accelerated version AMQSGD, and also use Markovian compressors with popular DIANA Mishchenko
et al. (2019) algorithm. In all of our experiments, we do not utilize the steps of the optimizer, but
rather the information that is transmitted by each worker at the current timestamp t. This implies that
there are n workers, with each worker sending m coordinates at each iteration of the optimization
step. Consequently, the x-axis displays numbers of the form mn · 1,mn · 2, . . . ,mn · t, . . . ,mn · T .
This allows us to understand the performance of compressors with varying values of m and n.

We use convex logistic regression loss with a regularization term λ = 0.05. Each dataset is split
horizontally (by rows) equally between N = 10 clients. The feature dimension is denoted as d in the
figures, varying from hundreds to almost a thousand between datasets. The underlying sparsification
compressors in Rand-10% for all logistic regression experiments. Learning rate initial value and decay
rate are fine-tuned for each problem and compressor. Additionally, Markovian-specific parameters
such as history size K, forgetting rate b are also fine-tuned. Table 2 provides hyperparameters grid
for the tuning. We obtain optimal solution x∗ for each problem with scipy.optimize method in
order to use this value for the graphics.

Table 2: Hyperparameters values used for tuning in the experiments.

Hyperparameters Values List
Learning rate [0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1]

Learning rate decay rate [0.5, 0.8, 1]

History size K [1 . . . 40]

Forgetting rate B [1, 10, 15, 20, 30, 50]

Figures 5, 6 and 7 present relative distance to the optimum and gradient norm for the best runs on
MQSGD, AMQSGD and DIANA, respectively. We observe that Markovian compressors consistently
outperform the Rand-10% baseline in all scenarios, as the diverging trend can be seen. Only in some
experiments with DIANA (MNIST) the advantage is negligible although present. We also observe
that simpler and computational-effective BanLast compressor is often enough to achieve substantial
convergence improvement. Notably, fine-tuned hyperparameters are similar across datasets and
algorithms: for example, BanLast tends to perform best with largest possible values of history size
K, and KAWASAKI forgetting rate b is large. Notice that BanLast compressor with largest K turns
into round-robin compressor with (almost) no stochasticity in coordinates choice.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300

Communication Rounds

10−4

10−2

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

MQSGD on MUSHROOMS

Rand(d/10)
BanLast(8, d/10)
KAWASAKI(25, 20,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−6

10−4

10−2

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

MQSGD on A9A

Rand(d/10)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−9

10−6

10−3

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

MQSGD on W8A

Rand(d/10)
BanLast(8, d/10)
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−5

10−3

10−1

101

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

MQSGD on MNIST

Rand(d/10)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0 50 100 150 200 250 300

Communication Rounds

10−3

10−2

10−1

‖∇
f

(x
k
)‖

2

MQSGD on MUSHROOMS

Rand(d/10)
BanLast(8, d/10)
KAWASAKI(25, 20,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−4

10−3

10−2

10−1

100

‖∇
f

(x
k
)‖

2

MQSGD on A9A

Rand(d/10)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−4

10−3

10−2

10−1

‖∇
f

(x
k
)‖

2

MQSGD on W8A

Rand(d/10)
BanLast(8, d/10)
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−3

10−2

10−1

100

‖∇
f

(x
k
)‖

2

MQSGD on MNIST

Rand(d/10)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

Figure 5: MQSGD LIBSVM logistic regression experiments. Best run after hyperparameters tuning is displayed
for each method.

0 50 100 150 200 250 300

Communication Rounds

10−4

10−2

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

AMQSGD on MUSHROOMS

Rand(d/10)
BanLast(7, d/10)
KAWASAKI(33, 10,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−6

10−4

10−2

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

AMQSGD on A9A

Rand(d/10)
BanLast(9, d/10)
KAWASAKI(18, 50,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−9

10−7

10−5

10−3

10−1

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

AMQSGD on W8A

Rand(d/10)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−5

10−3

10−1

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

AMQSGD on MNIST

Rand(d/10)
BanLast(9, d/10)
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10)

0 50 100 150 200 250 300

Communication Rounds

10−3

10−2

10−1

‖∇
f

(x
k
)‖

2

AMQSGD on MUSHROOMS

Rand(d/10)
BanLast(7, d/10)
KAWASAKI(33, 10,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−4

10−3

10−2

10−1

100

‖∇
f

(x
k
)‖

2

AMQSGD on A9A

Rand(d/10)
BanLast(9, d/10)
KAWASAKI(18, 50,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−4

10−3

10−2

10−1

‖∇
f

(x
k
)‖

2

AMQSGD on W8A

Rand(d/10)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−3

10−2

10−1

‖∇
f

(x
k
)‖

2

AMQSGD on MNIST

Rand(d/10)
BanLast(9, d/10)
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10)

Figure 6: AMQSGD LIBSVM logistic regression experiments. Best run after hyperparameters tuning is displayed
for each method.

0 50 100 150 200

Communication Rounds

10−9

10−7

10−5

10−3

10−1

101

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

DIANA on MUSHROOMS

Rand(d/10)
BanLast(6, d/10)
KAWASAKI(20, 15,|p̃i|/‖p̃‖1,d/10)

0 50 100 150 200 250

Communication Rounds

10−9

10−6

10−3

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

DIANA on A9A

Rand(d/10)
BanLast(6, d/10)
KAWASAKI(25, 30,|p̃i|/‖p̃‖1,d/10)

0 50 100 150

Communication Rounds

10−8

10−6

10−4

10−2

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

DIANA on W8A

Rand(d/10)
BanLast(6, d/10)
KAWASAKI(28, 30,|p̃i|/‖p̃‖1,d/10)

0 100 200 300 400 500

Communication Rounds

10−9

10−6

10−3

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

DIANA on MNIST

Rand(d/10)
BanLast(1, d/10)
KAWASAKI(3, 15,|p̃i|/‖p̃‖1,d/10)

0 50 100 150 200 250 300

Communication Rounds

10−4

10−2

100

‖∇
f

(x
k
)‖

2

DIANA on MUSHROOMS

Rand(d/10)
BanLast(6, d/10)
KAWASAKI(20, 15,|p̃i|/‖p̃‖1,d/10)

0 50 100 150 200 250 300

Communication Rounds

10−5

10−3

10−1

‖∇
f

(x
k
)‖

2

DIANA on A9A

Rand(d/10)
BanLast(6, d/10)
KAWASAKI(25, 30,|p̃i|/‖p̃‖1,d/10)

0 50 100 150 200 250 300

Communication Rounds

10−6

10−4

10−2

100

‖∇
f

(x
k
)‖

2

DIANA on W8A

Rand(d/10)
BanLast(6, d/10)
KAWASAKI(28, 30,|p̃i|/‖p̃‖1,d/10)

0 500 1000 1500 2000

Communication Rounds

10−6

10−4

10−2

100

‖∇
f

(x
k
)‖

2

DIANA on MNIST

Rand(d/10)
BanLast(1, d/10)
KAWASAKI(3, 15,|p̃i|/‖p̃‖1,d/10)

Figure 7: DIANA LIBSVM logistic regression experiments. Best run after hyperparameters tuning is displayed
for each method.

H.3 DEPENDENCE ON SIZE HISTORY

As a part of hyperparameter tuning, we additionally analyze how history size K affects the con-
vergence of Markovian compression-based methods. Figure 8 presents dependence of distance to
optimum metric on history size for logistic regression experiments. We observe that BanLast
performs better around larger values of K = 8 or K = 9. In such case for Rand10% used along with
BanLast(9), the compression procedure resembles a permutation: for each 10 iterations, no indices
are repeated, and the transmission cycle repeats after that. KAWASAKI history size seems to have
periodical spikes and drops, achieving minimum at around K = 25. However, statistics for DIANA
differ drastically, indicating that history size should be adjusted for each problem independently.

H.4 COMPARISON WITH PERMUTATION & NATURAL COMPRESSION

In this section, we provide empirical comparison of the proposed compressors with other complex
compression schemes.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30

History buffer size K

2

4

6

8

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−5 MQSGD on MUSHROOMS

BanLast
KAWASAKI

0 5 10 15 20 25 30

History buffer size K

0.0

0.5

1.0

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−5 MQSGD on A9A

BanLast
KAWASAKI

0 10 20 30 40 50

History buffer size K

0

1

2

3

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−7 MQSGD on W8A

BanLast
KAWASAKI

5 10 15 20 25 30

History buffer size K

0

2

4

6

8

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−5 MQSGD on MNIST

BanLast
KAWASAKI

0 10 20 30 40

History buffer size K

2

4

6

8

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−5 AMQSGD on MUSHROOMS

BanLast
KAWASAKI

0 5 10 15 20 25 30

History buffer size K

0

2

4

6

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−6 AMQSGD on A9A

BanLast
KAWASAKI

0 5 10 15 20 25 30

History buffer size K

0

2

4

6

8

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−7 AMQSGD on W8A

BanLast
KAWASAKI

10 20 30

History buffer size K

0.000000

0.000025

0.000050

0.000075

0.000100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

AMQSGD on MNIST

BanLast
KAWASAKI

0 5 10 15 20 25 30

History buffer size K

0

2

4

6

8

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−9 DIANA on MUSHROOMS

BanLast
KAWASAKI

0 5 10 15 20 25 30

History buffer size K

3.5

4.0

4.5

5.0

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−9 DIANA on A9A

BanLast
KAWASAKI

0 5 10 15 20 25 30

History buffer size K

0.9

1.0

1.1

1.2

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−8 DIANA on W8A

BanLast
KAWASAKI

0 10 20 30 40

History buffer size K

1

2

3

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

×10−8 DIANA on MNIST

BanLast
KAWASAKI

Figure 8: Convergence of Markovian-based algorithms on history size K

0.0 0.5 1.0 1.5

Information sent ×106

10−5

10−3

10−1

101

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

MQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0.0 0.5 1.0 1.5

Information sent ×106

10−5

10−3

10−1

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

AMQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10)

0 100000 200000 300000 400000 500000

Information sent

10−9

10−6

10−3

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

DIANA on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(1, d/10)
KAWASAKI(3, 15,|p̃i|/‖p̃‖1,d/10)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Information sent ×106

10−3

10−2

10−1

100

‖∇
f

(x
k
)‖

2

MQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Information sent ×106

10−3

10−2

10−1

100

‖∇
f

(x
k
)‖

2

AMQSGD on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(9, d/10)
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Information sent ×106

10−6

10−4

10−2

100

‖∇
f

(x
k
)‖

2

DIANA on MNIST

Rand(d/10)
Perm(d/10)
Natural (x4)
BanLast(1, d/10)
KAWASAKI(3, 15,|p̃i|/‖p̃‖1,d/10)

Figure 9: Comparison with PermK compressor and Natural compression. PermK compression factor is 10,
Natural compression factor is 4. Logistic regression with L2 regularization on MNIST dataset for MQSGD,
AMQSGD and DIANA algorithms on N = 5 clients. Best run is shown after fine-tuning learning rate, its decay,
and Markovian compression parameters. X axis represent amount of information communicated.

Markovian compressors proposed in the paper compress vector coordinates dependently over opti-
mization epochs. A similar idea of distributed compression is proposed in PermK Szlendak et al.
(2021), where coordinates are arranged between workers at each iteration. Another compressor in the
consideration is Natural compression Horvath et al. (2022), an unbiased randomized compressor.

Results of comparison of these compressors on MNIST dataset are presented in Figure 9. The results
justify that Markovian compressors tend to converge faster than the competitors, allowing larger
learning rates.

H.5 COMBINATION WITH OTHER COMPRESSORS

Although markovian compressors are initially targeted to work with sparsification-based compres-
sors, refining coordinates selection probabilities, they are fully compatible with other compressors
afterwards. To illustrate this, and to conduct additional comparison with PermK compressor, we
setup experiments combined with Natural Compression . Precisely, we compare RandK+Natural,
PermK+Natural, BanLast+Natural and KAWASAKI+Natural compressors on logistic regression on
MNIST dataset.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000

Communication Rounds

10−3

10−1

101

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

MQSGD on MNIST

Rand(d/10)+Natural
Perm(d/10)+Natural
BanLast(9, d/10) + Natural
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10) + Natural

0 500 1000 1500 2000

Communication Rounds

10−4

10−3

10−2

10−1

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

AMQSGD on MNIST

Rand(d/10)+Natural
Perm(d/10)+Natural
BanLast(9, d/10) + Natural
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10) + Natural

0 100 200 300 400 500

Communication Rounds

10−9

10−6

10−3

100

f
(x
k

)−
f

(x
∗
)

f
(x

0
)−
f

(x
∗
)

DIANA on MNIST

Rand(d/10)+Natural
Perm(d/10)+Natural
BanLast(3, d/10) + Natural
KAWASAKI(3, 15,|p̃i|/‖p̃‖1,d/10) + Natural

0 500 1000 1500 2000

Communication Rounds

10−3

10−2

10−1

100

‖∇
f

(x
k
)‖

2

MQSGD on MNIST

Rand(d/10)+Natural
Perm(d/10)+Natural
BanLast(9, d/10) + Natural
KAWASAKI(28, 50,|p̃i|/‖p̃‖1,d/10) + Natural

0 500 1000 1500 2000

Communication Rounds

10−3

10−2

10−1

‖∇
f

(x
k
)‖

2

AMQSGD on MNIST

Rand(d/10)+Natural
Perm(d/10)+Natural
BanLast(9, d/10) + Natural
KAWASAKI(29, 50,|p̃i|/‖p̃‖1,d/10) + Natural

0 500 1000 1500 2000

Communication Rounds

10−6

10−4

10−2

100

‖∇
f

(x
k
)‖

2

DIANA on MNIST

Rand(d/10)+Natural
Perm(d/10)+Natural
BanLast(3, d/10) + Natural
KAWASAKI(3, 15,|p̃i|/‖p̃‖1,d/10) + Natural

Figure 10: Experiments with Natural compression, MNIST logistic regression experiments. Best run after
hyperparameters tuning is displayed for each method.

Figure 10 shows results of combination of mentioned sparsification compressors with natural com-
pression.

H.6 NEURAL NETWORKS EXPERIMENTS: DATA PARALLELISM CASE

To adopt Markovian compression to a more complex task, we perform image classification on CIFAR-
10 Krizhevsky et al. (2009) with Resnet-18 He et al. (2016) convolutional neural network. We split the
training set of size 50, 000 equally between N = 5 clients. We use SGD optimizer with momentum
0.9 and weight decay 5 · 10−4. Hyperparameters such as batch size and learning rate are fine-tuned.
Markovian compresors hyperparameters, such as history size K and forgetting rate b are fine-tuned,
while activation function is set to ordinary normalization. Experiments are conducted with several
sparsification compressors, such as Rand-5%, Rand-7%, and Rand-10%, with number of epochs
adjusted for each case.

Figures 11, 12 and 13 present train loss, gradient norm and test accuracy for each baseline method
and Markovian compressors for Rand-5%, Rand-7% and Rand-10% scenarios, respectively. Summary
on best test accuracy is presented in Table 3, and extended numerical results for Rand-5% compressor
were presented in main experiments Table 1. We observe that in such complex, batched optimization
problem only KAWASAKI obtains a substantial convergence improvement, as opposed to simpler
logistic regression. Nevertheless, BanLast still performs the best when used with large history
size, while both history size and forgetting rate are low for KAWASAKI. In terms of achieved test set
accuracy, methods differ significantly only on higher compression rates like Rand-5%. This may
imply that Markovian compression tolerates stronger compression, which is useful in practice. To
summarize, Markovian compressors can be successfully applied in neural networks training, with
KAWASAKI compressor significantly improving convergence.

Finally, we also conduct the comparison with Permutatino and Natural compression, both inde-
pendently and in combination. Figure 14 shows learning curves for training with N = 20 clients.
KAWASAKI compressor appears to have best convergence in both independently and in combination
with Natural compression againt Permutation compressor.

0 50 100 150 200

Epochs

10−1

100

f
(x
k
)

Training ResNet-18 on CIFAR-10

Rand(d/20)
BanLast(19, d/20)
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/20)

0 50 100 150 200

Epochs

100

2× 100

3× 100

‖∇
f

(x
k
)‖

2

Training ResNet-18 on CIFAR-10

Rand(d/20)
BanLast(19, d/20)
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/20)

0 50 100 150 200

Epochs

40

60

80

Te
st

ac
cu

ra
cy

Training ResNet-18 on CIFAR-10

Rand(d/20)
BanLast(19, d/20)
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/20)

Figure 11: Resnet-18 on CIFAR-10 training results for Rand-5% sparsification.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

0 50 100 150 200

Epochs

10−2

10−1

100

f
(x
k
)

Training ResNet-18 on CIFAR-10

Rand(d/14)
BanLast(7, d/14)
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/14)

0 50 100 150 200

Epochs

100

6× 10−1

2× 100

3× 100

‖∇
f

(x
k
)‖

2

Training ResNet-18 on CIFAR-10

Rand(d/14)
BanLast(7, d/14)
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/14)

0 50 100 150 200

Epochs

60

80

Te
st

ac
cu

ra
cy

Training ResNet-18 on CIFAR-10

Rand(d/14)
BanLast(7, d/14)
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/14)

Figure 12: Resnet-18 on CIFAR-10 training results for Rand-7% sparsification.

0 50 100 150 200 250

Epochs

10−2

10−1

100

f
(x
k
)

Training ResNet-18 on CIFAR-10

Rand(d/10)
BanLast(3, d/10)
KAWASAKI(15, 10,|p̃i|/‖p̃‖1,d/10)

0 50 100 150 200 250

Epochs

100

‖∇
f

(x
k
)‖

2

Training ResNet-18 on CIFAR-10

Rand(d/10)
BanLast(3, d/10)
KAWASAKI(15, 10,|p̃i|/‖p̃‖1,d/10)

0 50 100 150 200 250

Epochs

60

80

Te
st

ac
cu

ra
cy

Training ResNet-18 on CIFAR-10

Rand(d/10)
BanLast(3, d/10)
KAWASAKI(15, 10,|p̃i|/‖p̃‖1,d/10)

Figure 13: Resnet-18 on CIFAR-10 training results for Rand-10% sparsification.

0 50 100 150 200

Epochs

10−1

100

f
(x
k
)

Training ResNet-18 on CIFAR-10

Rand(d/20)+Natural
Perm(d/20)+Natural
BanLast(19, d/20)+Natural
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/20)+Natural

0 1000 2000 3000 4000

Information sent

10−2

10−1

100

f
(x
k
)

Training ResNet-18 on CIFAR-10

Rand(d/20)
Perm(d/20)
Natural (x4)
BanLast(19, d/20)
KAWASAKI(10, 5,|p̃i|/‖p̃‖1,d/20)

Figure 14: Comparison with other compressors on Resnet-18 training on CIFAR-10 dataset for Rand-5%
sparsification on N = 20 clients. Natural compression factor is 4. Left figure is sequential combination with
Natural compression. Right figure is comparison against PermK and Natural compressors independently, with
information sent on x-axis.

Table 3: Best test accuracy % of training ResNet-18 on CIFAR-10 with different compressors

Rand-K% Banlast KAWASAKI
Rand-5% 88.03 88.1 89.27
Rand-7% 89.31 89.38 90.28
Rand-10% 91.46 91.72 91.78

H.7 NEURAL NETWORKS EXPERIMENTS: MODEL PARALLELISM CASE

As opposed to data-parallel setting, model parallelism is paradigm which splits the model (typically a
deep neural network) to a pipeline of layers between workers. Such distributed scenario is especially
relevant for large language models (LLM), which consist of billions of trainable parameters. As
communication is a typical bottleneck in such systems Diskin et al. (2021), various compression
techniques are applied to layer activations and their respective gradients that are transferred between
adjacent pipeline workers. Such techniques include quantization and sparsification Dettmers et al.
(2022); Bian et al. (2023), as well as low-rank compression Song et al. (2023) techniques.

We perform training of Resnet-18 He et al. (2016) convolutional neural network on CIFAR-10
dataset Krizhevsky et al. (2009). We split the ResNet onto 4 workers by resnet blocks, simulated
on a single device with compression of activations and their respective gradients in the places of
communication. We apply Markovian compressors only to gradients in model-parallel setup, using

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

same RandK compression for both activations and gradients independently for each compression
block.

Table 4: Best test accuracy % for model parallelism experiments with Resnet-18 classification of CIFAR-10

Compressor Compression ON Compression OFF
No compression 92.8 92.8
Rand10% 84.6 86.1
BanLastK+Rand10% 85.2 86.4
KAWASAKI(simplex projection)+Rand10% 84.5 85.0
KAWASAKI(normalize)+Rand10% 85.2 86.8
KAWASAKI(softmax)+Rand10% 85.3 87.3

Table 4 presents best test set accuracy achieved for training with different compressors. While
compression indeed decreases accuracy for Rand-10%, application of Markov compressors, especially
KAWASAKI with normalization and softmax activation functions, favours the final test accuracy on a
whole one percent. Note that compression is not applied during inference, only on training phase. This
case illustrates potential of Markov compressors beyond data-parallelism setup considered in theory.
In practical training of large neural networks, where both data-parallelism and model-parallelism are
often applied simultaneously, Markov compressors could also be useful, as per shown efficiency on
both these setups in separate.

H.8 FINE-TUNING DEBERTAV3-BASE ON GLUE DEVELOPMENT SET

In this series of experiments, we examine a distributed approach to fine-tuning language models using
LoRA (Hu et al., 2021). This method is based on freezing the model weights that are pre-trained on a
large dataset, and add a low rank adapter with matrices A ∈ Rn×r and B ∈ Rr×m to some selected
layers Wold ∈ Rn×m of this model, such that Wnew = Wold +A ·B. Since in practice the parameter
r is chosen to be much smaller than n and m, the new model has much fewer trainable parameters
and can be efficiently trained on downsteram tasks.

In our experiments, we apply LoRA adapters with fixed rank r = 8 to the attention layers of the
DeBERTaV3-base model (He et al., 2021). The downsteram task is the classical GLUE benchmark
for natural language understanding (Wang et al., 2019). We consider only random sparsification
compressors (Definition 4) with 25% compression rate, due to the large computational cost of this
experiment. Figure 15 shows learning curves for training with N = 10 clients. Our Markovian
compressors appears to have best convergence against independent Randm compressor.

0 100 200 300 400 500

Step

2× 10−1

3× 10−1

4× 10−1

6× 10−1

tr
ai

n/
lo

ss

Training DEBERTA on SST2

Rand(d/4)
BanLast(3, d/4)
KAWASAKI(10, 2,|p̃i|/‖p̃‖1,d/4)

0 100 200 300 400 500

Step

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

tr
ai

n/
lo

ss

Training DEBERTA on QNLI

Rand(d/4)
BanLast(10, d/4)
KAWASAKI(10, 2,|p̃i|/‖p̃‖1,d/4)

0 100 200 300 400 500

Step

2× 10−1

3× 10−1

4× 10−1

6× 10−1

tr
ai

n/
lo

ss

Training DEBERTA on COLA

Rand(d/4)
BanLast(10, d/4)
KAWASAKI(10, 2,|p̃i|/‖p̃‖1,d/4)

Figure 15: Comparison with other compressors on fine-tuning task on GLUE benchmark on N = 10 clients.
We performed experiments on SST2, QNLI and COLA tasks, they are arranged from left to right.

49

	Introduction
	Our contributions
	Related work
	Technical preliminaries

	Main results
	Markovian compressors
	Distributed gradient descent with Markovian compressors
	Accelerated method
	Discussion

	Experiments
	Logistic regression
	Neural networks

	Conclusion
	Auxiliary Lemmas and Facts
	Cauchy–Schwarz inequality
	Fenchel-Young inequality

	Mathematical calculations from Example 1
	Proof of Theorem 1
	Main lemmas
	Extensions for Theorem 2
	Full version of Theorem 2
	Full version of Corollary 1
	Proof of Theorem 2, non-convex case
	Proof of Theorem 2, Under PL-condition

	Convergence of Algorithm 1 without data similarity
	Extensions for Theorem 3
	Full version of Theorem 3
	Full version of Corollary 2
	Proof of Theorem 6

	Experiments
	Technical details
	Logistic Regression experiments
	Dependence on size history
	Comparison with Permutation & Natural Compression
	Combination with other compressors
	Neural Networks Experiments: Data Parallelism Case
	Neural Networks Experiments: Model Parallelism Case
	Fine-tuning DeBERTaV3-base on GLUE development set

