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Abstract
Split Conformal Prediction (SCP) provides a
computationally efficient way to construct confi-
dence intervals in prediction problems. Notably,
most of the theory built around SCP is focused
on the single test point setting. In real-life, infer-
ence sets consist of multiple points, which raises
the question of coverage guarantees for many
points simultaneously. While on average, the
False Coverage Proportion (FCP) remains con-
trolled, it can fluctuate strongly around its mean,
the False Coverage Rate (FCR). We observe that
when a dataset is split multiple times, classi-
cal SCP may not control the FCP in a major-
ity of the splits. We propose CoJER, a novel
method that achieves sharp FCP control in prob-
ability for conformal prediction, based on a re-
cent characterization of the distribution of con-
formal p-values in a transductive setting. This
procedure incorporates an aggregation scheme
which provides robustness with respect to mod-
eling choices. We show through extensive real
data experiments that CoJER provides FCP con-
trol while standard SCP does not. Furthermore,
CoJER yields shorter intervals than the state-of-
the-art method for FCP control and only slightly
larger intervals than standard SCP.

1. Introduction
In the realm of uncertain predictions, conformal prediction
methods provide a robust approach to obtaining confidence
intervals that maintain a predetermined coverage with sta-
tistical guarantees. Introduced by Vovk et al., 2005, con-
formal prediction methods are nonparametric techniques
that can be applied to any predictive model to generate pre-
diction intervals that are valid under minimal assumptions
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about the underlying data distribution. These methods are
used across various fields such as medicine, finance, and
engineering, where decision-making requires quantifiable
estimates of uncertainty.

Split conformal prediction (SCP) is the standard practical
approach within the conformal prediction framework, of-
fering improved computational efficiency and scalability.
In this method, the dataset is divided into two parts: a train-
ing set and a calibration set. The model is first trained
on the training set, and then the calibration set is used to
compute non-conformity scores and ultimately confidence
intervals. This approach simplifies the computation com-
pared to full conformal prediction, as the calibration set re-
mains fixed while the model parameters are tuned. Split
conformal prediction ensures marginal coverage, meaning
that on average, the prediction intervals will contain the
true value a specified proportion of the time – e.g., 90%
or 95% – providing a reliable measure of uncertainty.

Many real-world applications, such as healthcare (predict-
ing outcomes for multiple patients), finance (forecasting
ranges for multiple assets), and manufacturing (quality
control across batches), inherently require predictions for
multiple data points simultaneously. However, SCP en-
counters limitations when applied to multiple test points si-
multaneously, as discussed by Vovk, 2013. A key concern
in this transductive setting is to control the false coverage
proportion (FCP), that is, the proportion of prediction in-
tervals that fail to contain the true value. In applications
involving a large number of simultaneous predictions, it is
important to ensure that the FCP remains within acceptable
bounds. While SCP controls the expected proportion of
non-covered points (FCR; False Coverage Rate), it does not
guarantee control over the actual proportion of non-covered
intervals across multiple test points with high probability.

To address this, we introduce a method to control the FCP
using conformal p-values within a Joint Error Rate (JER,
Blanchard et al., 2020) control framework and cumula-
tive distribution function (CDF) formulations (Gazin et al.,
2024). This approach allows controlling the FCP with high
probability across multiple predictions, ensuring that the
proportion of incorrect intervals does not exceed a pre-
specified level. While the approach of Gazin et al., 2024
yields valid FCP bounds, the latter can be conservative, as
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discussed by the authors. We propose a novel method that
relies on nonparametric calibration to obtain sharper FCP
bounds.

Furthermore, to mitigate the impact of modeling deci-
sions, we extend this procedure to aggregate conformal
prediction intervals given by different models. Notably,
we manage to obtain a fully nonparametric method valid
for any aggregation scheme, which ensures valid coverage
while maintaining relatively small prediction intervals.

Through extensive experimental validation on OpenML
datasets, we demonstrate that our proposed methods effec-
tively control the FCP and produce sharp prediction inter-
vals. We also show that the proposed aggregation proce-
dure retains FCP control while yielding more informative
intervals than existing methods. Our results highlight the
practical utility of these contributions in improving the re-
liability and interpretability of conformal prediction meth-
ods.

2. Refresher on Conformal Prediction
Notation. The input data are denoted by
(X1, Y1) , . . . , (Xn, Yn) with (Xi, Yi) ∈ Rp × R,
where n is the number of samples and p the number of
variables. For any set S, |S| denotes the cardinality of S.
For any positive integer k, JkK denotes the set {1, . . . , k}.
For a vector z = (zj)j∈JpK and S ⊂ JpK, we denote by
z(j:S) (or z(j) when there is no ambiguity) the jth smallest
value in the sub-vector (zs)s∈S . Equality in distribution is
denoted by d

=, Sn is the symmetric group of degree n, and
U [0, 1] denotes the uniform distribution on [0, 1].

Problem setup. The goal is to build a confidence interval
given a predictive model and a new sample Xn+1 ∈ Rp.
The associated true outcome Yn+1 is not observed but
should lie inside the confidence interval with high proba-
bility. Formally, the goal is to build a confidence interval
Ĉα such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α. (1)

2.1. Split Conformal Prediction

Split Conformal Prediction (SCP) offers a simple and flex-
ible approach to constructing reliable prediction intervals.
This method offers the desired guarantee in a model-
agnostic way at the cost of splitting the n observations into
a training setDtrain and a calibration setDcal. For notation
simplicity, we assume that the calibration set Dcal consists
of all n observations, and that an external training data set
Dtrain (say (Xi, Yi)−t+1≤i≤0) is also available.

The intuition behind SCP is that the calibration set provides

a realistic measure of the performance of the trained model.
We consider arbitrary non-conformity scores S1, . . . Sn,
where the only requirement is that Si = ŝ(Xi, Yi) for i ∈
JnK, where ŝ depends on the observations only via Dtrain.
Typically, the non-conformity score Si is an increasing
function of the distance between Yi and the prediction at
point Xi. For example, in a regression framework, the non-
conformity scores can be obtained as Si = |Yi − µ̂ (Xi)|,
where µ̂(x) is a point prediction of Yi given Xi = x learned
on Dtrain. Alternative non-conformity scores in the same
framework include normalized residuals or model-based
uncertainties.

Relying on non-conformity scores avoids making assump-
tions about data distributions or model characteristics. To
obtain valid intervals, non-conformity scores have to be ex-
changeable across the calibration set and test point. For-
mally, a random vector (Z1, . . . , Zk) is said to be ex-
changeable (see e.g. Vovk et al., 2005) if for any permu-
tation τ ∈ Sk,

(Z1, . . . , Zk)
d
= (Zτ(1), . . . , Zτ(k)).

Provided that the vector of non-conformity scores
(S1, . . . , Sn+1) is exchangeable, SCP yields the following
valid interval:

Ĉα =
[
µ̂ (Xn+1)± S(⌈(n+1)(1−α)⌉)

]
.

This construction is detailed and thoroughly studied in Pa-
padopoulos et al., 2002; Lei et al., 2018. Alternatively, this
interval can also be obtained by thresholding a so-called
conformal p-value (Vovk et al., 2005; Lei et al., 2018). The
conformal p-value of test point (Xn+1, Yn+1) is defined as:

p =
1

n+ 1

1 +

n∑
j=1

1 {Sn+1 ≤ Sj}

 (2)

Intuitively, this p-value quantifies how unlikely the non-
conformity score Sn+1 = ŝ(Xn+1, Yn+1) is, given the ob-
served non-conformity scores (Si)i∈JnK computed on the
calibration set. In our setting, since Yn+1 is unobserved,
so are Sn+1 and the associated conformal p-value. This
naturally leads to the following definition of a conformal
p-value function.

Definition 1 (Conformal p-value function, (Barber et al.,
2021)). The conformal p-value function associated to the
score function ŝ is P : Rp × R→ [0, 1] with :

P (X, y)=
1

n+1

1+ n∑
j=1

1 {ŝ(Xn+1, y) ≤ ŝ(Xj , Yj)}

 .

With this definition, the conformal p-value (2) corresponds
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to p = P (Xn+1, Yn+1). In turn, the split conformal pre-
diction confidence interval Ĉα can be written as

Ĉα(Xn+1) = {y ∈ R s.t. P (Xn+1, y) > α},

which is also sometimes abbreviated as Ĉα = {p > α}.
With this notation, the coverage property (1) is equivalent
to

P {p ≤ α} ≤ α,

which is indeed the definition of a valid p-value. This du-
ality between confidence intervals and p-values in the con-
text of conformal prediction is the basis of the main con-
tributions of the present paper. Reformulating split confor-
mal prediction as a p-value thresholding procedure unlocks
tools of the rich literature on p-value-based error control.

2.2. Conformal Prediction for Multiple Test Points

In practical applications, the test set for which we wish
to obtain confidence intervals may contain many points.
We consider the transductive setting introduced by Vovk
(2013), in which m test points Xn+1, . . . , Xn+m are ob-
served while the corresponding outcomes Yn+1, . . . , Yn+m

are not observed. Performing split conformal prediction
yields m confidence intervals C(α) = (Ĉi,α)i∈JmK with

Ĉi,α =
[
µ̂ (Xn+i)± S(⌈(n+1)(1−α)⌉)

]
. (3)

Split conformal inference for multiple test points relies on
the assumption of exchangeability of the vector of non-
conformity scores:

(Si)i∈Jn+mKis exchangeable (Exch)

Under (Exch), the following marginal guarantee holds:

∀i ∈ JmK, P
{
Yn+i ∈ Ĉi,α (Xn+i)

}
≥ 1− α. (4)

To provide a quantitative measure of coverage on the set
of m points using intervals I = (Ii)i∈JmK, we define the
False Coverage Proportion (FCP) and False Coverage Rate
(FCR):

FCP(I) := 1

m

m∑
i=1

1 {Yn+i /∈ Ii} ,

FCR(I) := E[FCP(I)].

By (4), FCR control holds at level α for standard split con-
formal prediction:

FCR(C(α)) = 1

m

m∑
i=1

P
{
Yn+i /∈ Ĉi,α(Xn+i)

}
≤ α.

However, this does not guarantee that FCP(C(α)) ≤ α
with high probability, as noted by Gazin et al., 2024. This is
akin to the distinction between False Discovery Proportion
control and False Discovery Rate control highlighted in the
multiple testing literature (Genovese & Wasserman, 2006).

To ensure informative and interpretable control, our aim is
to build FCP upper bounds that hold with high probability.
For any pre-specified level δ > 0, this amounts to building(
FCPα,δ

)
α∈[0,1]

such that:

P
(
∀α ∈ [0, 1], FCP(C(α)) ≤ FCPα,δ

)
≥ 1− δ. (5)

3. Tight FCP Control for Conformal
Prediction

3.1. FCP Control and Conformal p-values

In this section, we recall the approach introduced by Gazin
et al. (2024) to obtain FCP control. This approach stems
from a close link between FCP control and the empir-
ical Cumulative Distribution Function (CDF) of confor-
mal p-values. Given non-conformity scores (Si)i∈Jn+mK
the conformal p-value of the test point (Xn+i, Yn+i) for
1 ≤ i ≤ m is defined as:

pi :=
1

n+ 1

1 +

n∑
j=1

1 {Sn+i ≤ Sj}

 .

Note that these p-values are unobserved, because the def-
inition of pi involves the unobserved value Yn+i via the
corresponding non-conformity score Sn+i. These p-values
can also be written as pi = P (Xn+i, Yn+i), where P is the
conformal p-value function introduced in Definition 1. The
SCP confidence intervals can then be written as

Ĉi,α = {pi ≤ α}.

Lemma 1 (Empirical CDF of p-values and FCP, Gazin
et al., 2024). Denote by F̂m the empirical CDF of the joint
distribution of (p1, . . . , pm). For any α ∈ [0, 1] denote by
C(α) the split conformal intervals. Then:

FCP(C(α)) = F̂m(α).

Lemma 1 implies that the FCP only depends on the joint
distribution of the conformal p-values. A key result of
Gazin et al., 2024 is the characterization of this distri-
bution under (Exch). This characterization involves the
definition of a discrete distribution denoted by PU on{

ℓ
n+1 , ℓ ∈ Jn+ 1K

}
associated with any fixed vector U =

(U1, . . . , Un) ∈ [0, 1]n, as follows:

PU ({ℓ/(n+ 1)}) = U(ℓ) − U(ℓ−1), ℓ ∈ Jn+ 1K, (6)

where 0 = U(0) ≤ U(1) ≤ · · · ≤ U(n) ≤ U(n+1) = 1.
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Proposition 1 (Joint distribution of conformal p-values,
Gazin et al., 2024). Assume that the non-conformity
score vector (Si)i∈Jn+mK satisfies (Exch) and has no
ties. Then the m conformal p-values are distributed as
(q1, . . . , qm), where (q1, . . . , qm | U)

i.i.d.∼ PU , with U =

(U1, . . . , Un)
i.i.d.∼ U([0, 1]).

The approach of Gazin et al., 2024 to FCP control
consists in using this distribution to obtain a Dvoret-
zky–Kiefer–Wolfowitz–Massart like inequality (DKWM;
Massart, 1990). The original DWKM inequality only holds
under independence and therefore cannot be used in this
context. The obtained inequality bounds the gap between
the empirical CDF and the true CDF with high probability.
FCP bounds can in turn be obtained using the CDF formu-
lation of Lemma 1.

3.2. FCP and Joint Error Rate Control

To obtain FCP control, we instead rely on Joint Error Rate
control as introduced by Blanchard et al. (2020). For
kmax ∈ JmK, we define a threshold family of size kmax

as a vector t = (tj)j∈JkmaxK such that 0 ≤ t1 ≤ · · · ≤
tkmax

≤ 1. The Joint Error Rate (JER) is formally defined
as follows:

Definition 2 (Joint Error Rate, Blanchard et al., 2020). De-
note by p(j) the jth smallest value among (p1, . . . , pm).
The JER associated with t = (tj)j∈JmK is:

JER(t) = P
(
∃j ∈ JkmaxK : p(j) < tj

)
. (7)

The threshold family t is said to control the JER at level δ
if JER(t) ≤ δ.

A threshold family t is a (vector) parameter, which has to
be chosen in order to provide JER control. In the multiple
hypothesis testing literature, JER control has been success-
fully used to derive bounds on the False Discovery Pro-
portion in various settings (Blanchard et al., 2020; Blain
et al., 2022; Durand et al., 2020). Here, we intend to obtain
JER control for conformal p-values and derive FCP bounds
from this control. We first derive from Lemma 1 a tight link
between FCP control and JER control.

Proposition 2 (FCP and JER). Let t be an arbitrary thresh-
old family. Denote j0(α) = min{j ∈ JmK : α ≤ tj} for
α ∈ [0, 1]. Then:

P
(
∃α ∈ [0, 1], FCP(C(α)) > j0(α)

m

)
≤ JER(t).

Proof. We write JER(t) as a function of F̂m:

JER(t) = P
(
∃j ∈ JmK : p(j) < tj

)
= P

(
∃j ∈ JmK :

m∑
i=1

1 {pi ≤ tj} ≥ j

)

= P
(
∃j ∈ JmK : F̂m(tj) ≥

j

m

)
.

Then, we note that if for some α ∈ [0, 1] we have
FCP(C(α)) ≥ j0(α)/m, then by definition of j0(α) com-
bined with Lemma 1, j := j0(α) ∈ JmK is such that
F̂m(tj) ≥ F̂m(α) = FCP(C(α)) ≥ j/m.

As an immediate consequence of Proposition 2, bounds of
the form (5) with FCPα,δ = j0(α)/m are obtained di-
rectly from JER controlling families. Indeed, assuming that
t controls the JER at level δ > 0, then by Proposition 2 the
associated jδ0(α) = min{j ∈ JmK : α ≤ tj} satisfies:

P
(
∀α ∈ [0, 1], FCP(C(α)) ≤ jδ0(α)

m

)
≥ 1− δ. (8)

Note that the dependence of jδ0(α) in δ comes from the fact
that t is assumed to control JER at level δ. As a conse-
quence of the above results, we obtain confidence intervals
with uniform in-probability FCP control associated to any
on a JER controlling family.

Corollary 1. Assume that t controls the JER at level
δ > 0. For α ∈ [0, 1], let α̃ = t⌊αm⌋. Then the
associated intervals C(α̃) = (Ĉi,α̃)i∈[[m]] with Ĉi,α̃ =[
µ̂ (Xn+i)± S(⌈(n+1)(1−α̃)⌉)

]
satisfy:

P (∀α ∈ (0, 1),FCP(C(α̃)) ≤ α) ≥ 1− δ.

To prove Corollary 1, it is sufficient to note that the choice
α̃ = t⌊αm⌋ in (8) yields jδ0(α̃)/m = ⌊αm⌋/m ≤ α. Corol-
lary 1 states that the intervals C(α̃) have FCP below α with
high probability, uniformly in α. In order to build these
intervals in practice, it only remains to obtain a JER con-
trolling family t.

3.3. Building a JER Controlling Family

We follow the approach of Blain et al., 2023, which have
exploited related ideas to reach False Discovery control in
for Knockoff inference (Candès et al., 2018). As already
noted, we can view the threshold family t as a tuning pa-
rameter for JER control. In a nutshell, we first provide
an algorithm to estimate the JER associated to a given t,
and then use this algorithm to choose a family t achieving
the tightest possible JER control among a set of candidates
(which will be called a template).
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We start by introducing Algorithm 1, which uses Propo-
sition 1 to draw B Monte-Carlo samples of the joint dis-
tribution of conformal p-values, and sorts each of them to
obtain order statistics. These order statistics are denoted by

Algorithm 1 Sampling order statistics of conformal p-
values using Proposition 1.

1: Input: B the number of MC draws; n the number of
calibration points; m the number of test points

2: Output: Π0 ∈ [0, 1]B×m a matrix of simulated p-
values

3: Π0 ← zeros(B,m)
4: for b ∈ {1, . . . , B} do
5: Sample U = [u1, . . . , un] from U([0, 1])n
6: Sample [q1, . . . , qm] from PU // using (6)
7: Π0[b]← [q1, . . . , qm]
8: end for
9: Π0 ← line_sort (Π0)

10: Return Π0

pb(1) ≤ · · · ≤ pb(m) for each b ∈ JBK. This allows us
to evaluate the empirical JER, which estimates the actual
JER.

Definition 3 (Empirical JER). Let t be a threshold family
of size kmax. The empirical JER of t associated to a set
of B samples of order statistics of conformal p-values (as
obtained from Algorithm 1) is defined as:

ĴERB(t) =
1

B

B∑
b=1

1
{
∃k ∈ JkmaxK : pb(k) < tk

}
.

In practice, we compute the empirical JER using Algo-
rithm 2 (Appendix B). In order to ensure JER control, it
remains to choose t such that ĴER(t) ≤ δ. To this end, we
consider a sorted set of candidate threshold families called
a template:

Definition 4 (Template (Blanchard et al., 2020)). A tem-
plate is a component-wise non-decreasing function T :
[0, 1] 7→ Rp that maps a parameter λ ∈ [0, 1] to a threshold
family T(λ) ∈ Rp.

This definition is naturally extended to the case of tem-
plates containing a finite number of threshold families. The
template corresponding to B′ threshold families is then de-
noted by (T (b′/B′))b′∈JB′K.

Once a template is specified, the calibration procedure
(Blanchard et al., 2020) can be performed. This con-
sists in finding, among the template, the least conservative
threshold family t that controls the empirical JER at level
δ. Formally, we consider the threshold family defined by

tBδ = T(λB(δ)), where

λB(δ)=
1

B′ max

{
b′∈JB′K s.t. ĴERB

(
T

(
b′

B′

))
≤δ

}
.

Gazin et al. (2024) also discuss (in Appendix B) possible a
priori choices for template families in order to obtain FCP
control. Here, we propose to derive the template from the
joint distribution of conformal p-values itself. Indeed, as
observed by Blain et al. (2022), optimal power is reached
when the candidate families match the shape of the distri-
bution of the p-values under exchangeability. Therefore,
we define a template based on the distribution of the con-
formal p-values appearing in Proposition 1. In practice,
we apply Algorithm 1 to obtain a B′ × m matrix of B′

samples or order statistics of conformal p-values, indepen-
dently from the first B Monte Carlo samples in order to
avoid circularity biases. By sorting each column of this ma-
trix, we obtain a B′×m matrix Q of empirical quantiles of
these order statistics. This defines a discrete template T0

in the sense of Definition 4, where T0 (b′/B′) is the b′-th
row of Q for b′ ∈ JB′K. This construction is summarized in
Algorithm 3 (Appendix B). We obtain the following result,
which is akin to Theorem 2 in Blain et al. (2023):
Proposition 3 (JER control for conformal p-values). Con-
sider the threshold family defined by tBδ = T0(λB(δ)).
Then, as B → +∞,

JER(tBδ ) ≤ δ +OP (1/
√
B).

Proposition 3 is a consequence of the fact that
ĴERB

(
tBδ
)
≤ δ (which holds by the definition of tBδ ),

combined with the fact that the difference between JERB

and its Monte-Carlo approximation ĴERB is uniformly
bounded in probability by 1/

√
B as B → +∞. The proof

of Proposition 3 is given in Appendix A for completeness.

The number B of Monte-Carlo samples in Proposition 3
can be chosen arbitrarily large to obtain JER control. This
leads to a valid FCP bound by Corollary 1. Algorithm 3
describes all the steps needed to compute tBδ . The resulting
FCP bound is fully nonparametric and therefore expected
to yield tighter intervals than Gazin et al., 2024’s approach.
We call the resulting approach CoJER (Conformal - JER).

4. Aggregated Conformal Prediction
While conformal prediction coverage guarantees are distri-
bution free, the confidence interval output by the method
can strongly depend on the chosen model µ̂ in practice.
Mitigating the consequences of such modeling decisions
motivates the use of aggregation schemes to obtain more
stable and generalizable confidence intervals.

Let us assume that we have K models µ̂1, . . . , µ̂K fitted on
Dtrain. The goal of aggregation is to build a valid confi-
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dence interval Ĉ(α) that takes into account the information
provided by each model. Aggregating schemes for con-
formal prediction have been introduced in Lei et al., 2018;
Barber et al., 2021. Lei et al., 2018 propose a Bonferroni-
type construction, where the confidence interval of each of
the K models is built at level α/K. An union bound argu-
ment shows that the intersection of these intervals is valid
at level α, therefore yielding FCR control at level α.

Barber et al., 2021 propose a method that relies on a p-
value aggregation result which states that twice the arith-
metic mean of valid p-values is a valid p-value – see e.g.
Vovk & Wang (2020). This results in a FCR controlling
procedure. Therefore, existing solutions require the con-
struction of valid aggregated p-values. Here, we define a
generic aggregation scheme that yields FCP control using
the same tools as in Blain et al., 2023. In particular, our
proposed construction does not require the result of aggre-
gation to be a valid p-value. First, let us define an aggrega-
tion procedure:

Definition 5. Given K models, an aggregation procedure
is a function f : RK 7→ R that maps a vector of (pk)k∈JKK
statistics to a scalar statistic p.

In practice, since we have m test points, aggregation is per-
formed for each test point, i.e.:

∀j ∈ JmK, pj = f(p1j , . . . , p
K
j ).

Then, inference is performed on the vector of aggregated
p-values (p1, . . . , pm).

For a fixed aggregation scheme f , we can naturally extend
the calibration procedure of the preceding section. Instead
of drawing a single B × p matrix of conformal p-values
containing pb ∈ Rp for each b ∈ JBK, we draw K such
matrices. Given k ∈ JKK, each matrix contains pkb ∈ Rp

for each b ∈ JBK. We then perform aggregation: pb =
f
(
(pkb )k∈JKK

)
. The JER in the aggregated case is defined

as:

JER(t) = P
(
∃j ∈ JkmaxK : p(j) < tj

)
.

We obtain the aggregated template following the same pro-
cedure, i.e. drawing K templates and aggregating them.
For each b′ ∈ JB′K, the aggregated threshold family is writ-
ten:

T

(
b′

B′

)
= f

((
Tk

(
b′

B′

))
k∈JKK

)
.

We can then write the empirical JER in the aggregated case
as:

ĴER

(
T

(
b′

B′

))
=

1

B

B∑
b=1

1

{
∃j∈JkmaxK : pb(j)<Tj

(
b′

B′

)}
.

Calibration can be performed in the same way as in the
non-aggregated case. Note that we perform calibration af-
ter aggregation; therefore, JER control is ensured directly
on aggregated p-values and is not a result of aggregat-
ing JER controlling families. Importantly, this approach
holds without additional assumptions on the aggregation
scheme f . In particular, contrary to the approaches of Lei
et al., 2018; Barber et al., 2021, our aggregated p-values
are not required to be valid p-values for the corresponding
intersection hypothesis. We consider the threshold family
t
B
δ = T(λB(δ)), where

λB(δ)=
1

B′ max

{
b′∈JB′K s.t. ĴERB

(
T

(
b′

B′

))
≤δ

}
.

With T
0

a template composed of B′ candidate curves that
match quantiles of the distribution of aggregated conformal
p-values p, we obtain the following result:

Proposition 4 (JER control for aggregated conformal
p-values). Consider the threshold family defined by t

B
δ =

T
0
(λB(δ)). Then, as B → +∞,

JER(t
B
δ ) ≤ δ +OP (1/

√
B).

Proof. The proof is identical to that of Proposition 3 using
the empirical aggregated JER.

The calibrated aggregated threshold family yields valid
FCP upper bounds via Corollary 1. We therefore achieve a
fully nonparametric aggregation scheme for conformal pre-
diction, along with guarantees on the FCP.

5. Experiments
Setup. We use 17 OpenML (Vanschoren et al., 2014)
datasets from (Grinsztajn et al., 2022). Each dataset is ran-
domly split (nsplit = 30 times) into a train, calibration and
test set. The latter is of size m and denoted by Ds

test. We
fit 5 regression models on the training sets1: Random For-
est (RF) (Breiman, 2001), Multi-Layer Perceptron (MLP)
(Hinton, 1990), Support Vector Regression (SVR) (Platt
et al., 1999) K-Nearest Neighbors (KNN; Cover & Hart,
1967) and Lasso (Tibshirani, 1996).

FCP control. We consider three methods for comparison:
classical Split Conformal Prediction, the method proposed
by Gazin et al., 2024 to obtain FCP control via DKW-type
bounds (Massart, 1990) and the proposed approach. We
use α = 0.1 for all methods. For FCP controlling methods,
we set δ = 0.1 and use SCP with the largest level α′ such
that FCPα′,δ ≤ α.

1All experiments were performed using 40 CPUs, Intel(R)
Xeon(R) CPU E5-2660 v2 @ 2.20GHz
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For each dataset, we compute for each split the empirical
FCP for each model and conformal prediction method. For-
mally, for a given data set, denoting by Cs =

(
Ĉs

i

)
i∈Ds

test

the confidence intervals obtained for the s-th split for a
given method, the associated empirical FCP is given by:

FCP(Cs) = 1

m

∑
i∈Ds

test

1
{
Yi /∈ Ĉsi

}
.

Then for each dataset, we compute the associated empiri-
cal coverage as the proportion of splits for which the FCP
control event holds:

1

nsplits

nsplits∑
s=1

1 {FCP(Cs) < α} .

We also compute the interval length of each method for
each dataset. We report the relative length to the shortest
interval found among all methods, averaged across all splits
for each dataset. This allows having a comparable metric
for interval informativeness across all datasets.

The left panel of Figure 1 shows that across all models
and datasets, standard Split Conformal does not guarantee
FCP control at level α – this is consistent with theory, as
Split Conformal prediction only guarantees FCR control.
Strikingly, the proportion of splits for which FCP ≤ α for
Split Conformal can be as low as 35% for certain models
and datasets. Both the proposed method and the method of
Gazin et al., 2024 control the FCP as expected. Concretely,
this means that for all datasets, the proportion of splits for
which FCP ≤ α is indeed superior to 1− δ.

The right panel of Figure 1 shows that SCP yields the short-
est intervals in all settings. This is expected, as FCR con-
trol is less stringent than FCP control, leading to shorter in-
tervals. Among the two FCP controlling methods, the pro-
posed method is less conservative than the method of Gazin
et al., 2024. On average across all models and datasets,
the proposed method yields intervals that are only ∼ 15%
larger than standard SCP. In worst-case scenarios, the pro-
posed method yields intervals ∼ 25% larger than SCP,
while intervals obtained using the method of Gazin et al.,
2024 are ∼ 80% larger than SCP intervals. Overall, the
proposed method yields sharp FCP control at a modest cost
in terms of interval length compared to SCP.

Aggregation. We use the five regression models men-
tioned above and consider three aggregation methods for
comparison: the method based on the arithmetic mean of
p-value functions proposed by Barber et al., 2021 labeled

CV+, the Bonferroni-like construction of Lei et al., 2018
and the proposed method. For the proposed method, we
use the harmonic mean as the aggregation scheme. In Ap-
pendix C we provide a comparison to other possible ag-
gregation schemes (arithmetic mean, geometric mean and
quantile aggregation). This comparison shows that the har-
monic mean consistently outperformed the other aggrega-
tion schemes considered in terms of interval tightness.

As in the first experiment, we compute the FCP coverage of
each method and the relative interval length. The left panel
of Figure 2 shows that all three methods control the FCP at
level δ = 0.1. While CoJER offers a theoretical guarantee
on this control, this is not the case for CV+ and Bonferroni.
These two methods likely control the FCP due to excessive
conservativeness, as the FCP event is controlled 100% of
the time for most datasets using CV+ and Bonferroni inter-
section.

The right panel of Figure 2 shows that CoJER yields the
most informative intervals across all datasets. The intervals
yielded by the CV+ procedure are∼ 75% larger on average
than those of CoJER. The Bonferroni-intersection intervals
are∼ 20% larger on average than those of CoJER. Overall,
these experiments show that the proposed nonparametric
aggregation scheme achieves sharp FCP control while pro-
viding tighter intervals that state-of-the-art methods.

6. Discussion
In this paper, we have proposed a novel method that allows
sharp control of the false coverage proportion in confor-
mal prediction. This method builds upon JER control in-
troduced by (Blanchard et al., 2020) and on a characteriza-
tion of the joint distribution of conformal p-values recently
established by (Gazin et al., 2024). Our main contribution
of this paper with respect to these papers is twofold. First,
we build tighter FCP confidence bounds than (Gazin et al.,
2024) by deriving the shape of the template family from the
distribution of conformal p-values itself. Second, we in-
troduce an aggregation scheme which yields an integrated
method which provides robustness with respect to model-
ing choices, and yields tighter intervals than other existing
aggregation schemes.

The computational cost of this method is comparable to
classical SCP. For given sizes of calibration and test sets,
sampling conformal p-values from Algorithm 1 can be
done once and for all. Calibration using Algorithm 3 is per-
formed via binary search of complexityO(log(B′)). Com-
puting the empirical JER of a threshold family using Algo-
rithm 2 has a computational complexity of O(Bkmax).

Additionally, once calibration is performed, the bound of
Corollary 1 holds simultaneously for all values of α. In
practice, users can try different values of α post hoc while
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Figure 1: Coverage and relative interval length for 5 models. We use 17 OpenML (Vanschoren et al., 2014) datasets
from (Grinsztajn et al., 2022). Each dataset is split (30 times) into a train, calibration and test set. We fit 5 regression
models on the training sets: Random Forest (RF), Multi-Layer Perceptron (MLP), Support Vector Regression (SVR), K-
Nearest Neighbors (KNN) and Lasso. Calibration sets are used to compute SCP intervals and conformal p-values. For
each method and dataset, we report the FCP coverage, i.e. the proportion of test splits for which the event FCP ≤ α was
realized. We also report the interval length, relative to the smallest valid interval found among all methods. Notice that
standard SCP does not guarantee FCP control at level α: for certain datasets and models, FCP event coverage can be as
low as 30%. Both the proposed approach and Gazin et al., 2024 obtain FCP control. However, the proposed approach is
much less conservative.

retaining valid FCP bounds without needing to relaunch the
complete procedure.

Notably, valid p-values are not needed to obtain FCP con-
trol. Since this control is a direct consequence of JER con-
trol on aggregated p-values, it can be obtained for any ag-
gregation scheme f . In particular, our use of the harmonic
mean to aggregate p-values leads to valid FCP control, even
if the harmonic mean does not always yield valid p-values
(Chen et al., 2024).

While we have focused on the regression setting for the nu-
merical experiments reported in this paper, our proposed
method inherits the genericity of SCP and could thus also
be applied to classification tasks. This method could also
be extended to other uncertainty quantification frameworks
such as bootstrap or resampling based methods like the
jackknife+ (Barber et al., 2021). Since valid p-values
are not needed, characterizing the distribution of statistics
quantifying uncertainty is sufficient to apply the proposed
method.

Another interesting avenue of work is to study the impact
of controlling the FCP rather than the FCR for downstream
decisions taken using confidence intervals. This type of
analysis has been conducted in Vovk & Bendtsen, 2018 in
the classical conformal prediction framework and in Perez-
Lebel et al., 2024 in the field of model calibration.

An implementation of CoJER is available at https://

github.com/sanssouci-org/CoJER-paper, to-
gether with the code to reproduce the numerical results of
this paper.
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A. Proofs
Lemma 2. For any threshold family t, we have

JER (t)− ĴERB(t) = OP (1/
√
B)

Proof of Lemma 2. Let ZB(t) =√
B
(
JER (t)− ĴERB(t)

)
. By the Central Limit

Theorem, we have

ZB(t)
d−−−−→

B→∞
Z(t),

where Z(t) is a centered Gaussian random variable with
variance σ2(t) = JER (t)(1− JER (t)). As such, for any
M > 0, we have

P (|ZB(t)| ≥M) −−−−→
B→∞

P (|Z(t)| ≥M) .

Since JER0 (t) ≤ 1, we have σ2(t) ≤ 1/4 for any t,
so that Z(t) is stochastically dominated by N (0, 1/4),
which does not depend on the threshold family t. As such,
we have P (|Z(t)| ≥M) = 2P (Z(t) ≥M) ≤ 2Φ(2M),
where Φ denotes the tail function of the standard normal
distribution. Since Φ(x) tends to 0 as x → +∞, we have
proved that ZB(t) = OP (1).

Proposition 3 (JER control for conformal p-values). Con-
sider the threshold family defined by tBδ = T0(λB(δ)).
Then, as B → +∞,

JER(tBδ ) ≤ δ +OP (1/
√
B).

Proof. We treat the case where tBδ is well defined for all B,
i.e. that there exists a threshold family among T0 controls
the empirical JER0 for B draws. If this is not the case for
some B, then tBδ is set to the null family and the result
holds.

We can write:

JER (t) = ĴERB(t) +
(
JER (t)− ĴERB(t)

)
= ĴERB(t) +OP (1/

√
B)

by Lemma 2. Applying the above to t = tBδ yields the
desired result since ĴERB(t

B
δ ) ≤ δ by definition.

B. Algorithms
In this section, we provide Algorithm 2 to compute the em-
pirical JER of Definition 3 and Algorithm 3 to perform the
calibration procedure on conformal p-values.
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Algorithm 2 Computing the Empirical JER. The empir-
ical JER is computed for a given threshold family and a
matrix of conformal p-values. This algorithm is similar to
Algorithm 3 of (Blain et al., 2022).

1: Input: Π a matrix of conformal p-values; t a threshold
family; kmax the size of the threshold family

2: Output: ĴER, the empirical JER of threshold family t
3: (B, m)← shape(Π)
4: ĴER← 0
5: for b ∈ {1, . . . , B} do
6: for i ∈ {1, . . . , kmax} do
7: diff[i] ← Π[b][i] − t[i] // Check JER

control at rank i
8: end for
9: if min(diff) < 0 then

10: ĴER← ĴER + 1
B // Increment risk if

JER control event is violated
11: end if
12: end for
13: Return ĴER

Algorithm 3 Performing calibration on conformal p-
values. First, we use Algorithm 1 to build a suitable tem-
plate and estimate the JER of each candidate threshold fam-
ily. Then, we perform calibration to select the least conser-
vative possible threshold family that controls the JER at a
given level δ.

1: Input: δ the desired coverage; B the number of MC
draws for JER estimation; B′ the number of candidate
threshold families

2: Output: tδ the calibrated threshold family at level δ
3: Π← draw_conformal_p(B,m) // Algo. 1
4: Π

′ ← draw_conformal_p(B′,m) // Algo. 1
5: for b′ ∈ {1, . . . , B′} do
6: Q[b′] ← quantiles(Π

′
, b′/B′) // Build

template
7: ĴER[b′] ← empirical_jer(Π,Q[b′]) // Apply

Algorithm 2 to each family
8: end for
9: b′cal ← max{b′ ∈ {1, . . . , B′} s.t. ĴER[b′] ≤ δ} //

Perform calibration
10: tδ ← Q[b′cal]
11: Return tδ

C. Comparison Between Aggregation
Schemes

We performed an additional experiment on the 17 OpenML
datasets used in Section 5. In this experiment, we com-
pare four possible aggregation schemes: harmonic mean,
arithmetic mean, geometric mean and quantile aggregation
(Meinshausen et al., 2009).

We use the setup described in Section 5 - i.e. α = 0.1, δ =
0.1. Importantly, we first check that the FCP is controlled
for all types of aggregation by reporting the FCP event cov-
erage. This value is expected to be above 1−δ = 90%. We
also compute the (relative) interval width for each aggrega-
tion scheme, averaged across 20 splits.

FCP event
coverage

Interval width
increase (vs best)

Harmonic mean 94% 0%
Geometric mean 100% +24%
Arithmetic mean 100% +230%
Quantile aggregation 100% +54%

Table 1: Comparing four possible aggregation schemes on
17 OpenML datasets. We report the empirical FCP cover-
age (for a target coverage of 1 − δ = 90%) and relative
interval width for harmonic mean, arithmetic mean, geo-
metric mean and quantile aggregation (Meinshausen et al.,
2009). The FCP is controlled for all four aggregation
schemes. Harmonic mean aggregation consistently outper-
forms the other aggregation schemes.

The results are presented in Table 1. Coherently with the
theoretical guarantees obtained in Proposition 4, the FCP
is controlled for all four aggregation schemes. In terms of
interval tightness, harmonic mean aggregation outperforms
arithmetic mean, geometric mean and quantile aggregation
consistently.
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