
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SWE-RM: EXECUTION-FREE FEEDBACK FOR SOFT-
WARE ENGINEERING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Execution-based feedback like unit testing is widely used in the development of
coding agents through test-time scaling (TTS) and reinforcement learning (RL).
This paradigm requires scalable and reliable collection of unit test cases to pro-
vide accurate feedback, and the resulting feedback is often sparse and cannot
effectively distinguish between trajectories that are both successful or both un-
successful. In contrast, execution-free feedback from reward models can provide
more fine-grained signals without depending on unit test cases. Despite this poten-
tial, execution-free feedback for realistic software engineering (SWE) agents re-
mains underexplored. Aiming to develop versatile reward models that are effective
across TTS and RL, however, we observe that two verifiers with nearly identical
TTS performance can nevertheless yield very different results in RL. Intuitively,
TTS primarily reflects the model’s ability to select the best trajectory, but this abil-
ity does not necessarily generalize to RL. To address this limitation, we identify
two additional aspects that are crucial for RL training: classification accuracy and
calibration. We then conduct comprehensive controlled experiments to investi-
gate how to train a robust reward model that performs well across these metrics.
In particular, we analyze the impact of various factors such as training data scale,
policy mixtures, and data source composition. Guided by these investigations, we
introduce SWE-RM, an accurate and robust reward model adopting a mixture-of-
experts architecture with 30B total parameters and 3B activated during inference.
SWE-RM substantially improves SWE agents on both TTS and RL performance.
For example, it increases the accuracy of Qwen3-Coder-Flash from 51.6%
to 62.0%, and Qwen3-Coder-Max from 67.0% to 74.6% on SWE-Bench Ver-
ified using TTS, achieving new state-of-the-art performance among open-source
models. On RL training, SWE-RM lifts the resolve rate of execution-based coun-
terparts by 3 absolute points on SWE-Bench Verified.1

1 INTRODUCTION

The automation of complex software development tasks through coding agents represents a signif-
icant frontier in large language models (LLMs). A critical component in developing these agents
is the feedback mechanism used during training and evaluation, particularly through reinforcement
learning (RL) (Wei et al., 2025; Qwen Team, 2025) and test-time scaling (TTS) (Xia et al., 2024;
Jain et al., 2025). Broadly, these mechanisms fall into two categories: execution-based verifiers (Xia
et al., 2024; Jain et al., 2025), which rely on concrete outcomes like unit test results, and execution-
free verifiers2 (Pan et al., 2025; Luo et al., 2025), which are typically model-based reward models
that provide a continuous score without sandbox environments.

While widely used, execution-based feedback has inherent limitations. It provides only a sparse,
binary signal (pass/fail), which makes it difficult to distinguish between different successful or un-
successful trajectories. Beyond this lack of granularity, unit tests require comprehensive coverage to
yield accurate assessments, which is often unavailable. To address this challenge, exiting works rely
on extracting unit test from Github repos (Jimenez et al., 2024) or model-generated unit tests (Yang
et al., 2025; Jain et al., 2025) that are not rigorously validated. For example, in issue-fixing tasks, the

1The SWE-RM model will be open-sourced after the review period to facilitate SWE agent development.
2Throughout this paper, we will use “reward model” and “execution-free verifier” interchangeably.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

20 40 80 160 320 640 1000
Model Size (B)

30

35

40

45

50

55

60

65

70

75

Sw
e-

be
nc

h
Ve

rif
ie

d
Re

so
lv

e
Ra

te
(%

)

DeepSWE (42.2%)

DeepSWE (59.0%)

SWE-Gym (32.0%)
R2E-Gym-32B (34.4%)
OpenHands-LM-32B-v0.1 (37.2%)

R2E-Gym-32B (51.0%)
Skywork-32B (47%)

Devstral-small-2505 (46.8%)

SWE-agent-LM-32B (40.2%)

MiniMax-M1 (56.0%)

CGM-SWE-PY (50.4%)
Kimi-Dev (48.0%)

Kimi-Dev (60.4%)

Qwen3-235B-A22B (34.4%)

DeepSeek-R1-0528 (57.8%)

DeepSeek-V3 (42.0%)

Kimi-K2 (65.8%)

Kimi-K2 (71.6%)

Qwen3-Coder-Flash (51.6%)

Qwen3-Coder-Flash + SWE-RM TTS (62.0%)
Qwen3-Coder-Max (67.0%)

Qwen3-Coder-Max + SWE-RM TTS (74.6%)

+10.4

+7.6

Pass@1
With Test-time Scaling

Figure 1: The pass@1 and TTS resolve rate of various open-source and proprietary models on SWE-
Bench Verified. Part of the baseline results are referenced from He et al. (2025).

unit tests used from real GitHub repositories are often overly specific, and in some cases, entirely
unrelated to the target issue (OpenAI, 2025). As a result, execution-based feedback limits the code
data that can be used for effective reinforcement learning or test-time scaling due to requirements
of high-quality unit tests. When such tests are unreliable, the resulting feedback becomes a signif-
icant challenge for RL, where nuanced and consistent reward signals are essential. Execution-free
feedback offers a compelling alternative by providing continuous, fine-grained scores across entire
trajectories, allowing for better discrimination among candidate solutions and reducing bias toward
specific patches. Despite its promise, execution-free feedback remains largely underexplored, and
its properties in the context of SWE agents are not yet well understood.

In this work, we aim to develop a versatile and effective reward model usable across different sce-
narios such as TTS and RL for software engineering. While it is straightforward to adopt TTS (e.g.,
best of k) performance directly as the metric to guide the reward model training (Pan et al., 2025),
our initial findings reveal that two verifiers with nearly identical TTS performance can show dras-
tically different behavior in RL. This leads us to a fundamental research question: What properties
determine a reward model’s effectiveness in RL training, and how can we develop an all-round SWE
reward model that performs well in both TTS and RL?

Intuitively, TTS primarily measures a verifier’s ability to rank the correct solution highest among
multiple candidates, but it overlooks aspects that are essential for RL: the ability to effectively dis-
tinguish correct from incorrect trajectories and to produce scores that reliably correspond to the de-
gree of correctness. Based on this observation, we further evaluate reward models using additional
metrics: AUC, which reflects the correctness of relative ordering across trajectories, and ECE (Guo
et al., 2017), which measures calibration representing whether the verifier’s scores align with em-
pirical correctness. We demonstrate that AUC and calibration provide complementary information
to TTS and are both critical for ensuring the reward model delivers reliable signals in RL.

To train a reward model that performs well across these metrics, we conduct large-scale ablation
studies examining the effects of training data scale, the ratio of positive to negative samples, mix-
tures of data sources, and context length. These investigations lead to a practical recipe for building
robust, execution-free reward models tailored to SWE tasks. Guided by these investigations, we
obtain SWE-RM, an accurate and robust reward model with 30B total and 3B activated parameters
for advancing SWE agents. On SWE-bench Verified (OpenAI, 2025), SWE-RM lifts the accuracy
of Qwen3-Coder-Flash from 51.6% to 62.0% and Qwen3-Coder-Max from 67.0% to 74.6%,
achieving best-in-class among 30B-level and all open-source models respectively, as shown in Fig-
ure 1. Moreover, SWE-RM is highly effective when used as a reward signal in agentic RL training.
For example, it improves the RL performance of execution-based counterparts by 3 absolute points
on SWE-bench Verified.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Training Steps
25

30

35

40

45

50

55

SW
E-

Be
nc

h
Ve

rif
ie

d
 R

es
ol

ve
 R

at
e

(%
)

Verifier A (Good AUC & Cali.)
Verifier B (Bad AUC & Cali.)

Figure 2: RL training curves of two verifiers
with similar TTS performance. Despite compa-
rable TTS, the downstream RL outcomes differ
drastically.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Verifier A TTS
Verifier B TTS

Verifier A (AUC = 0.764)
Verifier B (AUC = 0.669)
Random Classifier

Figure 3: Two models with similar TTS per-
formance (Model A with +4.7% and Model
B with +4.5%) show significant differences in
their AUC scores.

2 RELATED WORK

In Software Engineering (SWE) tasks, verifiers fall into two categories: execution-based, which rely
on unit tests (e.g., Agentless (Xia et al., 2024), R2E-Gym (Jain et al., 2025), DeepSWE (Luo et al.,
2025)), and execution-free, which use model-based scoring (e.g., SWE-Gym (Pan et al., 2025),
OpenHands Critic (Team, 2025)). Existing work on execution-free verifiers has primarily empha-
sized test-time scaling (Pan et al., 2025; Jain et al., 2025; Luo et al., 2025), with limited attention to
other quality dimensions. We show that an execution-free verifier’s quality also depends on classi-
fication accuracy and calibration, and provide a systematic study of training such verifiers. In rein-
forcement learning for SWE agents (e.g., OpenHands (Wang et al., 2025), SWE-Agent (Yang et al.,
2024)), execution-based feedback—akin to rule-based metrics in math (DeepSeek-AI, 2025)—has
enabled recent model training (e.g., Qwen3-Coder (Qwen Team, 2025), GLM-4.5 (Team et al.,
2025a), MiniMax-M1 (MiniMax, 2025)), but is constrained by noisy test suites and sparse signals.
We are the first to integrate execution-free feedback into SWE agentic RL, demonstrating its poten-
tial to deliver finer-grained rewards and improve efficiency. An extended related work are discussed
in Appendix B.

3 WHAT DEFINES A VERSATILE REWARD MODEL FOR SWE?

Our goal is to develop a versatile reward model that performs well across both TTS and RL. Follow-
ing common practice, we begin by examining whether TTS performance can serve as a reliable guide
for selecting a reward model for RL. We first present our initial findings that highlight the limitations
of relying solely on TTS performance to guide reward model training. This result demonstrates that
TTS alone cannot explain downstream success in RL, raising important questions about what prop-
erties of a verifier matter. To resolve this gap, we next revisit the role of TTS as an evaluation metric,
analyze its limitations, and introduce complementary criteria—AUC and calibration—that provide
a more holistic view of verifier quality.

3.1 INITIAL FINDINGS: LIMITATIONS OF RELYING SOLELY ON TTS

As we aim to develop a versatile reward model that can be applied across different scenarios such
as TTS and RL, but it is unknown what defines such a versatile reward model and whether TTS and
RL impose different requirements. A natural question to ask is whether a reward model that per-
forms well on TTS will also perform well on RL. To avoid ambiguity, the reward model is trained
purely through supervised next-token prediction instead of using TTS as the training signal. TTS
is used exclusively as an evaluation metric for model selection etc. More training details will be
introduced in § 4.1. Our initial exploration reveals an intriguing finding: two execution-free veri-
fiers that achieve nearly identical TTS improvements give rise to strikingly different behaviors when
used as reward models in reinforcement learning. As shown in Figure 2, both verifier A and verifier

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

B achieve similar TTS improvements, indicating, at first glance, that they are equally effective at
choosing the correct solution highest among candidate trajectories. Yet, when deployed in RL train-
ing, verifier A supports smooth improvement, while verifier B exhibits significant instability, failing
to provide reliable learning signals and eventually causing RL training to collapse.

This result challenges the widely adopted view of TTS as a sufficient proxy for verifier qual-
ity (Lightman et al., 2023; Pan et al., 2025). If two models are judged equivalent by TTS but
behave so differently in RL, then TTS alone cannot capture the aspects of a verifier that truly matter
for reinforcement learning. In other words, TTS provides only a partial picture: it summarizes top-1
ranking ability but hides other properties that directly affect how reward signals shape policy up-
dates. These findings prompt us to ask a fundamental research question: What properties determine
a reward model’s effectiveness in RL training, and how can we develop an all-round SWE reward
model that performs well in both TTS and RL?

To answer this, we must carefully reconsider what TTS actually measures, why it fails to explain the
RL discrepancy observed, and what alternative metrics can reveal the missing dimensions of verifier
quality. This motivates our shift beyond TTS to a broader and versatile evaluation.

3.2 MOVING BEYOND TTS: THE NEED FOR MORE VERSATILE EVALUATION ON VERIFIER
QUALITY

At first glance, TTS appears to be a natural metric: it checks whether the correct solution trajectory
is ranked highest among a pool of candidates. Intuitively, this reflects a verifier’s ability to make
the right top-1 decision, however, TTS only measures a narrow slice of verifier capability. By fo-
cusing exclusively on whether the single best trajectory is ranked first, TTS ignores two properties
that become critical once the verifier is used as a reward model in reinforcement learning. The first
overlooked dimension is discriminative ability. In RL, the agent generates a wide range of trajecto-
ries, some of which are unresolved. The verifier must provide accurate feedback not just for the best
trajectory, but across many near-miss or partially correct candidates. A verifier with weak discrim-
inative ability will assign similar scores to both correct and incorrect trajectories, producing noisy
reward signals that compromise policy updates. The second is confidence reliability, or calibration.
In RL, verification scores are often interpreted as proxies for the likelihood of correctness, serving as
the reward magnitudes used to guide policy learning. If these scores are mis-calibrated, for instance,
a normalized score of 0.9 reflects only a 60% probability of being actual correct—then the policy
receives misleading signals about the expected value of its actions. Poor calibration can therefore
poison the reward shaping process, leading to unstable or collapsed training dynamics even if top-1
accuracy (TTS) appears satisfactory.

These overlooked dimensions provide a natural explanation for the discrepancies we observed in
Figure 2, and to capture these dimensions, we supplement TTS with two complementary metrics.
AUC (Bradley, 1997) evaluates discriminative ability by measuring how well the verifier separates
resolved from unresolved trajectories across the entire distribution, rather than focusing only on
the best. Calibration (Wang, 2025) quantifies the alignment between predicted confidence scores
and empirical correctness, for example by using Expected Calibration Error (ECE) (Guo et al.,
2017). A higher AUC means models can better descriminate resolved and unresolved trajectories
while a lower ECE means there is lower mismatch between confidence and accuracy, indicating
higher reliability. Together, these three metrics—TTS, AUC, and calibration—form a more versatile
evaluation toolkit: they jointly capture top-1 ranking accuracy, overall discriminative power, and
reliability of confidence estimates.

Empirical analysis demonstrates the importance of considering all three. (1) Discriminative gap
despite equal TTS: As shown in Figure 3, verifier A and verifier B obtain nearly identical TTS im-
provements (+4.7% vs. +4.5%), yet their AUC scores differ by 0.095. Thus, although both appear
equivalent by TTS, only verifier A reliably distinguishes resolved from unresolved trajectories—a
property crucial for producing consistent reward signals. (2) Calibration and score distribution
disparity: Figure 4 reveals that verifier B suffers from widespread over- and under-confidence,
while verifier A is three times better calibrated according to expected calibration error. Again,
TTS fails to reflect this difference, though it directly affects the trustworthiness of reward magni-
tudes. Figure 5 further highlights why this matters: across 32 runs of random selected 8 instances,
Model A consistently assigns high scores to resolved trajectories and low scores to unresolved ones,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 0.2 0.4 0.6 0.8 1.0
Model Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

es
ol

ve
d ECE = 0.077

0 0.2 0.4 0.6 0.8 1.0
Model Confidence

0.0

0.2

0.4

0.6

0.8

1.0
ECE = 0.210

Accuracy
Under Confidence

Over Confidence
Perfect Calibration

Figure 4: Reliability diagrams for verifier A
(left) and verifier B (right) with similar TTS per-
formance.

ast
rop

y-1
29

07

ast
rop

y-1
32

36

dja
ng

o-1
16

03

py
lint

-46
61

ast
rop

y-1
45

39

sci
kit

-le
arn

-26
19

4

sym
py

-20
15

4

sph
inx

-77
48

0.0

0.2

0.4

0.6

0.8

1.0

Ve
rif

ie
r's

 S
co

re

ast
rop

y-1
29

07

ast
rop

y-1
32

36

dja
ng

o-1
16

03

py
lint

-46
61

ast
rop

y-1
45

39

sci
kit

-le
arn

-26
19

4

sym
py

-20
15

4

sph
inx

-77
48

0.0

0.2

0.4

0.6

0.8

1.0

Resolved Traj. Unresolved Traj.

Figure 5: Score distribution cases for verifier A
(left) and verifier B (right) with similar TTS per-
formance.

making it possible to set a reliable threshold for acceptance. In contrast, Model B frequently as-
sign unexpectedly low scores for resolved trajectories, while unresolved trajectories receive inflated
scores—producing overlapping distributions that might confuse policy models. The trajectories
used for calibration and score distribution analysis are sampled from Qwen3-Coder-Max while
the other setting are same as the one we will show in Appendix D.1. This combination of miscali-
bration and poor separation explains why Model A provides misleading signals in RL even when its
TTS remains competitive. We also include a theoretical analysis between the three metrics and RL
dynamics in Appendix Cs

These observations underscore that TTS, accuracy, and calibration are complementary metrics, each
capturing a distinct aspect of verifier capability. The discussion of metrics in this section is lim-
ited to using early, small-scale RM variants as illustrative examples. And in subsequent investiga-
tion—beginning after we motivate the need for AUC and calibration—marks the start of the actual
supervised RM training and large-scale, comprehensive ablations. We will show how to obtain a
versatile and robust reward model in § 4 and discuss the implications for reinforcement learning in
§ 5.

4 HOW TO TRAIN A VERSATILE REWARD MODEL FOR SWE?

To build a versatile and robust reward model as discussed in § 3, we conclude and analyze several
critical factors that significantly influence final performance. Specifically, we systematically inves-
tigate training data scale, the ratio of positive to negative samples, policy, data source, and context
length, and discuss their impact on the verifier’s three core abilities. These observations collectively
guide the development of SWE-RM, which achieves superior performance.

4.1 TRAINING METHODS

Following SWE-Gym (Pan et al., 2025), we formulate reward modeling as a generative classification
task, where the reward model takes a trajectory as input and outputs a special token (e.g., YES/NO).
Given the full multi-turn trajectory, the model is prompted to output a single special token, either
YES (resolved) or NO (unresolved). And the supervised fine-tuning utilizes standard next-token pre-
diction loss on this special token. At inference time, by obtaining the log probability of the special
token YES(ly) and NO(ln), the final score r is calculated by exp (ly)/(exp (ly) + exp (ln)) ,which
maps to a continuous reward model score r ∈ [0, 1]. The probability assigned to this token is then
mapped to a continuous score. To construct training data, we collect agent trajectories by deploy-
ing different policy models (Qwen3-Coder and Claude-4) to interact with the agent scaffold
OpenHands (Wang et al., 2025) across multiple training data sources, including SWE-Gym (Pan
et al., 2025), SWE-rebench (Badertdinov et al., 2025), SWE-smith (Yang et al., 2025), and R2E-
Gym (Jain et al., 2025). These trajectories are then labeled as positive or negative based on their
execution results with the provided fail2pass test.

RM Training Setup We use Qwen3-30B-A3B (Qwen Team, 2025) as the base model for reward
model training, as it provides a balance between efficiency and strong coding capabilities. Evalua-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2 4 6 8 10 12 16 20 24 28 32
Number of Rollouts (k)

0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58

Re
so

lv
e

Ra
te

 R
M

@
k

Train data = 500
Train data = 2k
Train data = 5k
Train data = 25k
Train data = 100k

500 2k 5k 25k #100k
Model with # of Training Data

0.0

0.2

0.4

0.6

0.8

1.0

Ve
rif

ie
r's

 S
co

re

ECE = 0.481 ECE = 0.158 ECE = 0.232 ECE = 0.137 ECE = 0.067

Resolved Unresolved

Figure 6: Left: Test-time Scaling curve of models trained with different # of training data. Right:
Distribution of verifier scores across all evaluated trajectories. Clearer separation between resolved
and unresolved trajectories, along with a lower ECE, indicates better performance.

tion is primarily conducted on SWE-bench Verified (Jimenez et al., 2024), a curated subset of 500
human-verified tasks designed to reliably assess model performance on real-world software engi-
neering problems. For the evaluation metrics, test-time scaling is measured using 32 independent
runs for each instance on SWE-bench Verified. Accuracy is calculated using the AUC score across
all 32 × 500 trajectories, while calibration is assessed by the expected calibration error (Guo et al.,
2017). RM@K is defined as the resolve rate of the final selected trajectories from k samples. For
each k < 32, we report the mean and variance over 5 random runs to ensure fair evaluation. Further
details on the reward model training setup can be found in Appendix D.

4.2 DATA SCALING AND RATIO EFFECT

Poorly trained reward models often exhibit unexpected behavior when evaluated on out-of-domain
(OOD) data. This OOD generalization challenge is particularly severe in SWE tasks, where multi-
turn interactions create a substantially larger output space compared to traditional reasoning tasks,
which might requires more training data. As shown in Figure 6, we uniformly sampled varying
amounts of training data from different policy models and data sources. The left subfigure demon-
strates that models trained on more than 20k samples generally achieve improved test-time scaling
performance as k increases, whereas models trained on fewer samples (e.g., fewer than 5k) may
even experience declining performance. We attribute this to the limited generalization capacity of
under-trained models: as k grows, the probability of encountering OOD trajectories increases, and
test-time scaling becomes highly sensitive to such cases. Even a single erroneously high score as-
signed to an incorrect trajectory can significantly distort the final resolve rate.

While TTS performance improves as the training data size increases up to 25k, further expansion to
100k yields diminishing returns. the score distributions in the right subfigure of Figure 6 reveal that
larger training datasets enhance discriminative ability, as evidenced by clearer separation between
resolved and unresolved trajectories. Moreover, models trained on more data demonstrate improved
calibration: for instance, a model trained with only 500 examples has an ECE of 0.481—seven times
higher than that of a model trained with 100k examples. This indicates that scaling up training data
produces more reliable scores, highlighting the effectiveness of data scaling.

To further investigate the role of data composition, we fix the total amount of training data and vary
the ratio of positive to negative trajectories, as shown in Table 1. We observe that across both model
scales, the 2:1 ratio generally achieves the best overall performance in terms of AUC, calibration,
and test-time scaling. Due to the limited availability of positive data, we experiment with ratios up
to 2:1. To further investigate the role of data composition, we fix the total amount of training data
and vary the ratio of positive to negative trajectories, as shown in Table 1. We observe that across
both model scales, the 2:1 ratio generally achieves the best overall performance in terms of AUC,
calibration, and test-time scaling. By contrast, more balanced ratios such as 1:1 avoid extreme skew
but still fall short of the 2:1 configuration. Importantly, the 2:1 ratio also offers higher efficiency, as
it requires a smaller pool of negative data while still utilizing all available positive data in practice.
Considering this balance between effectiveness and efficiency, we adopt the 2:1 ratio as the default
configuration in subsequent experiments.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Effect of training verifiers with different positive-to-negative data ratios on AUC, ECE, and
test-time scaling performance (best results in bold).

RATIO
Qwen3-Coder-Flash Qwen3-Coder-Max

AUC ECE ↓ RM@32 AUC ECE ↓ RM@32

2 : 1 0.805 0.080 62.0% 0.755 0.121 71.0%
1 : 1 0.782 0.132 60.8% 0.734 0.157 70.2%
1 : 2 0.789 0.235 61.0% 0.736 0.371 69.4%
1 : 4 0.789 0.185 61.6% 0.742 0.299 71.8%
1 : 8 0.778 0.349 60.2% 0.738 0.541 70.6%

4.3 CONTEXT LENGTH CONSTRAINT

Table 2: Effect of Context Length Scaling on veri-
fier’s score rate and test-time scaling performance.
Score rate represent how many percent of trajecto-
ries can be successfully scored without exceeding
the context window.

CONTEXT LEN. SCORE RATE RM@32

16 k 0.5% 66.8%
32 k 12.5% 67.4%
64 k 88.3% 70.6%
128 k 99.5% 73.0%
256 k 100% 74.4%

While previous execution-free verifiers in SWE
mainly support a context length of 32k (Pan
et al., 2025; Jain et al., 2025), our execution-
free verifiers are the first to scale up to 256k
context length, enabling the scoring of complex
and long trajectories. This is especially impor-
tant for challenging questions, which typically
involve extremely long contexts. As shown in
Table 2, only when the context length is ex-
tended to 128k can more than 99% of trajec-
tories be successfully scored without exceeding
the limit. Furthermore, as models are able to
score more trajectories, execution-free verifiers
achieve better test-time scaling performance, as reflected in the increasing RM@32. A more detailed
discussion on context length are in Appendix D.4.

4.4 POLICY AND SOURCE ABLATION

We also examine the impact of training data collected from different policy models on verifier per-
formance. For on-policy data, we sample training examples using the corresponding Flash/Max
model on SWE-rebench, while for off-policy data we sample using Claude-sonnet-4 (Anthropic).
As shown in Table 3 policy ablation, while on-policy data sometimes yields stronger results on
specific metrics (e.g., TTS on Qwen3-Coder-Max), overall the Mix-Policy setting provides a bet-
ter balance across AUC, ECE, and ranking. This indicates that combining on- and off-policy data
enhances the generalization ability of the verifier. Such findings also reflect the advantage of our
comprehensive evaluation in revealing robust trends that TTS-only analyses might overlook.

We further investigate the impact of training data sources on verifier performance. As shown in
Table 3, under single-source settings, SWE-rebench achieves the best results in both AUC and
RM@32, indicating that rebench may provide the highest-quality data. However, incorporating
SWE-smith and SWE-Gym leads to improved calibration (lower ECE), and adding more sources
enhances data scaling effects as we shown in § 4.2. Based on these observations, our final setup
uses a mixture primarily derived from SWE-rebench, supplemented with data from SWE-smith and
SWE-Gym, achieving a balance between quality, calibration, and scalability.

5 SWE-RM: A VERSATILE REWARD MODEL FOR TTS AND RL

In this section, we present SWE-RM, an accurate and robust execution-free verifier that not only
achieves state-of-the-art test-time scaling performance but also significantly improves downstream
reinforcement learning. We first demonstrate the superior performance of SWE-RM in TTS (§ 5.1)
and then RL (§ 5.2).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Effect of training verifiers with different policy mixture and data source on three core
abilities(best results in bold).

METHODS / MODELS
Qwen3-Coder-Flash Qwen3-Coder-Max

AUC ECE ↓ RM@32 AUC ECE ↓ RM@32

Policy Ablation

On-Policy 0.785 0.148 58.6 0.727 0.067 71.0
Off-Policy 0.778 0.113 58.2 0.728 0.145 70.6
Mix-Policy 0.804 0.033 59.6 0.751 0.082 70.2

Source Ablation

SWE-rebench (Badertdinov et al., 2025) 0.814 0.076 0.612 0.774 0.048 0.718
SWE-smith (Yang et al., 2025) 0.781 0.033 0.584 0.736 0.039 0.70
SWE-Gym (Pan et al., 2025) 0.776 0.087 0.588 0.742 0.044 0.714
SWE-Gym + SWE-smith 0.813 0.034 0.602 0.772 0.035 0.72
SWE-Gym + SWE-rebench 0.802 0.087 0.61 0.762 0.039 0.712
SWE-rebench + SWE-smith 0.807 0.138 0.596 0.765 0.107 0.714
SWE-rebench + SWE-smith + SWE-Gym 0.807 0.067 0.612 0.766 0.033 0.718

Table 4: Comparison of different verifiers on three core abilities. Evaluation trajectories are sampled
from Qwen3-Coder and OpenHands-LM-32B on SWE-bench Verified. EB means execution-
based verifier while EF stands for execution-free verifier. Best results are in bold.

VERIFIER TYPE
OpenHands-LM-32B Qwen3-Coder-Flash Qwen3-Coder-Max

AUC ECE ↓ RM@32 AUC ECE ↓ RM@32 AUC ECE ↓ RM@32

AGENTLESS (Xia et al., 2024) EB - - 42.4% - - 52.6% - - 65.0%
SWE-GYM (Pan et al., 2025) EF 0.718 0.164 41.6% 0.776 0.223 51.2% 0.752 0.283 65.4%

DEEP SWE (Luo et al., 2025) EB - - 44.2% - - 54.6% - - 67.6%
EF 0.732 0.118 44.6% 0.758 0.124 53.2% 0.74 0.139 66.2%

SWE-RM-30A3B EF 0.748 0.080 48.8% 0.783 0.051 62.0% 0.768 0.047 74.6%

5.1 A NEW STATE-OF-THE-ART IN TTS

Based on the investigation in § 4, our final trained SWE-RM achieves state-of-the-art performance
compared with previous works. We begin by discussing the baselines and evaluation setup, followed
by an analysis of the SWE-RM results on TTS, AUC, and calibration.

Baselines We compare our trained execution-free verifier against several existing execution-free
and execution-based verifiers: (1) Agentless (Xia et al., 2024), an execution-based method that gen-
erates reproduction tests for each trajectory and re-ranks them based on test results; (2) SWE-Gym
Verifier (Pan et al., 2025), an execution-free verifier based on Qwen2.5-32B and trained on the
SWE-Gym dataset; (3) DeepSWE-EB Verifier (Luo et al., 2025), the execution-based component of
the current state-of-the-art DeepSWE Hybrid-TTS. This verifier extends the R2E-Gym execution-
based verifier (Jain et al., 2025) and follows a similar mechanism to Agentless; (4) DeepSWE-EF
Verifier (Luo et al., 2025), the execution-free component of DeepSWE Hybrid-TTS, which improves
upon the R2E-Gym execution-free verifier. The evaluation setup for SWE-RM are same as the set-
ting illustrated in § 4.1.

SWE-RM performance Our results in Table 4 show that SWE-RM consistently outperforms all
baselines across AUC, ECE, and RM@32, achieving the best TTS, discrimination and calibra-
tion ability. The gains are not limited to Qwen3-Coder series models, where RM@32 improves
pass@1 by 7-10 points, but also extend to OpenHands-LM-32B, where SWE-RM delivers the
highest overall performance. This demonstrates the generalization ability of our verifier.

5.2 REINFORCEMENT LEARNING WITH EXECUTION-FREE FEEDBACK IN SWE

Different from reinforcement learning in math problems, which easily receive scalable, correct re-
ward by comparing with the ground truth answers, reinforcement learning from verifiable reward
(RLVR) are facing two major challenges in software engineering tasks: (1) Most training data are
constructed by some automated pipelines with unchecked quality unit tests, the execution-based
feedback are not guaranteed to be correct. (2) The long horizon context length and sandbox ex-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Training Steps

30

35

40

45

50

55

Re
so

lv
e

Ra
te

 (%
)

54.8%

51.8%

Hybrid Feedback
Poor Calibrated RM
Execution-based only Feedback
Execution-free only Feedback

0 20 40 60 80 100
Training Steps

0.25

0.50

0.75

1.00

1.25

Tr
ai

ni
ng

 R
ew

ar
d

Figure 7: Left: RL performance on SWE-bench Verified when using different feedback. Right:
Average training reward for different models.

ecution significantly limit the scale of RL, leading to slow improvements especially under sparse
0/1 reward. In this subsection, we show execution-free feedback offers a promising approach to not
only accelerate training but also further enhance overall performance by providing more fine-grained
reward signals. We first establish the RL setup in § 5.2.1 and then discuss the results in § 5.2.2.

5.2.1 RL SETUP

Scaffold and Model For training scaffold, we adapt verl (Sheng et al., 2024) with Mega-
tron (Shoeybi et al., 2019) which enables efficient multi-turn agentic reinforcement learning
and SGLang for trajectory rollout. For agent scaffold, similar to the reward model rollout,
we employ OpenHands (Wang et al., 2025) for tool interactions. For base models, we use
Qwen3-30B-A3B (Qwen Team, 2025) with warm-up.

Evaluation Setup Similar to reward model evaluation, we conduct our evaluation on SWE-bench
Verified (Jimenez et al., 2024). In the RL setting, we only generate 1 trajectory and 1 patch for each
instance using greedy decoding following OpenHands (Wang et al., 2025), without any test-time
scaling, as the final pass@1 score.

Baselines We compare different types of feedback during reinforcement learning: (1) Hybrid feed-
back, where the feedback is a combination of execution-free (SWE-RM) and execution-based sig-
nals, as will be defined in Eq. 1; (2) Execution-free feedback only, where the feedback is provided
solely by SWE-RM; (3) Execution-based feedback only, where the feedback is derived exclusively
from the execution results of fail2pass tests; (4) Poorly calibrated execution-free feedback, where the
feedback comes from a reward model with comparable TTS but lower AUC and weaker calibration
ability.

Implementation Details We adapt GSPO (Zheng et al., 2025) which provides greater sta-
bility for Mixture-of-Experts RL training and we define the execution-free feedback as
ScoreEF (q, τ, patch) ∈ [0, 1], and the overall reward is computed as:

r(q, τi) =


1 + ScoreEF (q, τi, patchi), if issue resolve,
−0.5 + ScoreEF (q, τi, patchi), unfinished,
0 + ScoreEF (q, τi, patchi), otherwise.

(1)

More details about the RL training such as data, hyper-parameters are shown in Appendix E.

5.2.2 EXECUTION-FREE FEEDBACK BENEFITS RL TRAINING

As shown in Figure 7, using the hybrid reward as described in Eq. 1 yields the best RL performance
and efficiency. Compared to the execution-based baseline, hybrid feedback improves pass@1 by
about 3 absolute points (54.8% vs. 51.8%) and shows faster, smoother improvements, indicating
effective reward shaping. For execution-based feedback only, we observe slower early gains and
an early plateau due to the sparsity of the 0/1 signals and issues with test noise and coverage. In

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Performance after RL on different SWE tasks other than SWE-Bench Verified, and Terminal
Bench when using different feedback. SW.B. is short for SWE-Bench and Bold stands for the best.

METHOD SW.B. LIVE (LITE) SW.B. MULTILINGUAL MULTI-SW.B. MINI TERMINAL BENCH

Hybrid 22.4 35.7 20.0 32.5
Execution-free only 20.4 33.0 18.8 31.3
Execution-based only 20.0 33.3 18.5 30.0
Poor Calibrated RM 12.0 21.0 10.0 15.0

contrast, execution-free feedback alone shows faster initial progress due to continuous signals but
weaker convergence in later stages, likely caused by inaccuracies in its unverified signals. While
our main evaluation focuses on SWE-Bench Verified, we additionally conducted experiments on a
broader suite of SWE tasks—including SWE-Bench Live (Lite), SWE-Bench Multilingual, Multi-
SWE-Bench Mini, and Terminal Bench—to assess generalization beyond the original domain. As
shown in Table 5, hybrid feedback consistently achieves better RL performance, while execution-
free only feedback shows comparable results to execution-based only feedback. And if using feed-
back from a poorly calibrated RM, the model will also show a significant decrease in other tasks.
Overall, combining execution-free feedback with verifiable signals balances efficiency and reliabil-
ity, achieving the strongest final results by providing both continuous and trustworthy rewards.

6 CONCLUSION

In this paper, we show that test-time scaling alone is an insufficient measure of verifier quality for
SWE agents. Beyond top-1 ranking, reward models must also deliver strong discrimination (AUC)
and reliable calibration (low ECE) to provide stable, useful signals, especially for RL. Guided by
large-scale ablations on data scale, positive/negative ratios, policy mixtures, source composition etc.,
we develop SWE-RM—a 30B MoE (3B activated) execution-free verifier with up to 256k context.
SWE-RM achieves state-of-the-art open-source TTS gains on SWE-Bench Verified and, when used
for RL, yields faster, more stable training and +3 absolute pass@1 over execution-based feedback
counterparts. This establishes execution-free, well-calibrated reward modeling as a practical and
powerful foundation for advancing SWE agents in both TTS and RL.

7 REPRODUCIBILITY STATEMENT

We describe the reward model experimental setup in § 4.1, the RL experimental setup in § 5.2.1,
with detailed information on the framework, statistics, and hyperparameters provided in Appendix D
and Appendix E.

REFERENCES

Anthropic. Claude sonnet 4 \ anthropic. URL https://www.anthropic.com/claude/
sonnet. [Online; accessed 2025-09-24].

Ibragim Badertdinov, Alexander Golubev, Maksim Nekrashevich, Anton Shevtsov, Simon Karasik,
Andrei Andriushchenko, Maria Trofimova, Daria Litvintseva, and Boris Yangel. Swe-rebench:
An automated pipeline for task collection and decontaminated evaluation of software engineering
agents, 2025. URL https://arxiv.org/abs/2505.20411.

Andrew P. Bradley. The use of the area under the roc curve in the evaluation of ma-
chine learning algorithms. Pattern Recognit., 30:1145–1159, 1997. URL https://api.
semanticscholar.org/CorpusID:13806304.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.

10

https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://arxiv.org/abs/2505.20411
https://api.semanticscholar.org/CorpusID:13806304
https://api.semanticscholar.org/CorpusID:13806304
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

1321–1330. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/
guo17a.html.

Zhenyu He, Qingping Yang, Wei Sheng, Xiaojian Zhong, Kechi Zhang, Chenxin An, Wenlei Shi,
Tianle Cai, Di He, Jiaze Chen, Jingjing Xu, and Mingxuan Wang. Swe-swiss: A multi-task
fine-tuning and rl recipe for high-performance issue resolution. https://www.notion.
so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-
Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88,
2025. Notion Blog.

Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-gym:
Procedural environments and hybrid verifiers for scaling open-weights swe agents. arXiv preprint
arXiv:2504.07164, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Shang Zhu Tarun Venkat, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran Li,
Raluca Ada Popa, Koushik Sen, and Ion Stoica. Deepswe: Training a state-of-the-art coding agent
from scratch by scaling rl. https://pretty-radio-b75.notion.site/DeepSWE-
Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-
Scaling-RL-22281902c1468193aabbe9a8c59bbe33, 2025. Notion Blog.

MiniMax. Minimax-m1: Scaling test-time compute efficiently with lightning attention, 2025. URL
https://arxiv.org/abs/2506.13585.

OpenAI. Introducing swe-bench verified | openai, Sept 2025. URL https://openai.com/
index/introducing-swe-bench-verified/. [Online; accessed 2025-09-22].

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with swe-gym. In Proceedings of the 42nd
International Conference on Machine Learning (ICML 2025), 2025. URL https://arxiv.
org/abs/2412.21139. arXiv:2412.21139, accepted at ICML 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

GLM-4.5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie,
Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu,
Rui Lu, Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin
Niu, Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen,
Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi
Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin,
Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo
Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke
Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan Liu,
Huilong Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi Wang,
Jiayi Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan

11

https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://www.notion.so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88
https://www.notion.so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88
https://www.notion.so/SWE-Swiss-A-Multi-Task-Fine-Tuning-and-RL-Recipe-for-High-Performance-Issue-Resolution-21e174dedd4880ea829ed4c861c44f88
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2305.20050
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://arxiv.org/abs/2506.13585
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2505.09388

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Li, Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang, Liang Xu,
Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan Xu, Mingming
Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shangtong Yang,
Shaoyou Lu, Shijie Li, Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu Yu, Wei Tian,
Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang, Xiaohan Jia,
Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze Zhang,
Xiuqing Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong Wang, Yilin Zhou, Yiming
Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yipeng Geng, Yitong Zhu, Yongkun Yang,
Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang, Zezhen
Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao, Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zihan
Wang, Zijun Yao, Zikang Wang, Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wenguang
Chen, Jidong Zhai, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yuxiao Dong, and Jie
Tang. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models, 2025a. URL https:
//arxiv.org/abs/2508.06471.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
2025b. URL https://arxiv.org/abs/2507.20534.

OpenHands Team. Sota on swe-bench verified with inference-time scaling and critic
model, 4 2025. URL https://www.all-hands.dev/blog/sota-on-swe-bench-
verified-with-inference-time-scaling-and-critic-model. [Online; ac-
cessed 2025-09-22].

Cheng Wang. Calibration in deep learning: A survey of the state-of-the-art, 2025. URL https:
//arxiv.org/abs/2308.01222.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=OJd3ayDDoF.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via rein-
forcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

12

https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2507.20534
https://www.all-hands.dev/blog/sota-on-swe-bench-verified-with-inference-time-scaling-and-critic-model
https://www.all-hands.dev/blog/sota-on-swe-bench-verified-with-inference-time-scaling-and-critic-model
https://arxiv.org/abs/2308.01222
https://arxiv.org/abs/2308.01222
https://openreview.net/forum?id=OJd3ayDDoF

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint, 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://arxiv.org/abs/2405.15793.

John Yang, Kilian Lieret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents, 2025. URL https://arxiv.org/abs/2504.21798.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy op-
timization, 2025. URL https://arxiv.org/abs/2507.18071.

13

https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2507.18071

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Comparison of SWE-RM with other execution-free verifiers’ setting: SWE-Gym Veri-
fier (Pan et al., 2025), R2E-Gym Verifier (Jain et al., 2025), OpenHands Critic (Team, 2025) and
DeepSWE Verifier (Luo et al., 2025). - means the statistic are not disclosed. *: Our training data
source contains SWE-Gym (Pan et al., 2025), R2E-Gym (Jain et al., 2025), SWE-smith (Yang et al.,
2025) and SWE-rebench (Badertdinov et al., 2025).

REWARD MODEL # DATA # REPO POLICY SOURCE CONTEXT LEN. PROMPT

SWE-Gym Verifier 2636 11 Mix SWE-Gym 32k Traj.
R2E-Gym Verifier 3321 10 Claude-3.5 R2E-Gym 32K Traj. + Patch
Openhands Critic - 11 - SWE-Gym 32k Traj.
DeepSWE Verifier - 10 - R2E-Gym 76k Traj. + Patch

SWE-RM ∼ 100k ∼ 170 Mix Multiple* 256k Traj. + Patch

A THE USE OF LARGE LANGUAGE MODELS

For this paper, large language models(LLMs) are used solely for polishing the writing. The entire
research process, including but not limited to ideation, was conducted without any assistance from
LLMs.

B EXTENDED RELATED WORK

B.1 VERIFIERS FOR SWE TASKS

In Software Engineering (SWE) tasks, there are mainly two kinds of verifiers: (1) execution-based
verifiers and (2) execution-free verifiers. Execution-based verifiers typically consist of various types
of unit tests, either human-written or model-generated. Agentless (Xia et al., 2024), R2E-Gym (Jain
et al., 2025), and DeepSWE (Luo et al., 2025) have demonstrated the effectiveness of execution-
based verifiers in test-time scaling by ranking patches based on the number of unit tests passed.
However, execution-based verifiers struggle to distinguish between patches that achieve the same
number of test passes, and they suffer from the inherent unreliability of poorly written or model
generated unit tests. In contrast, execution-free verifiers are typically model-based and provide
a continuous score for a given trajectory, allowing finer-grained discrimination. Early work such
as SWE-Gym (Pan et al., 2025) and OpenHands Critic (Team, 2025), has initially explored naive
execution-free verifiers with limited coverage and were confined to relatively simple settings. Subse-
quent work, including R2E-Gym (Jain et al., 2025) and DeepSWE (Luo et al., 2025), has shown that
combining execution-based and execution-free verifiers leads to improved test-time scaling. Nev-
ertheless, as summarized in Table 6, the exploration of execution-free verifiers remains preliminary
and has largely focused only on scaling performance. Different from them, this work first demon-
strates that test-time scaling (TTS) performance alone is not a sufficient measure of an execution-free
verifier’s quality – its accuracy and calibration are equally important. We further present a system-
atic study on training versatile execution-free verifiers, considering factors such as data scaling, data
ratio, policy mixture, source mixture, and context length.

B.2 AGENTIC REINFORCEMENT LEARNING FEEDBACK IN SWE TASKS

Unlike non-agent scaffolds such as Agentless (Xia et al., 2024), which are single-turn and pipeline-
based, agent scaffolds in SWE such as OpenHands (Wang et al., 2025) and SWE-Agent (Yang et al.,
2024) deploy a sandbox environment that allows models to interact in a multi-turn setting. Upon
completion, a fail-to-pass unit test is executed to assess whether the generated patch resolves the is-
sue. This type of execution-based feedback plays a role similar to that of rule-based metrics in math
problems (DeepSeek-AI, 2025), as it aims to provide a verifiable and relatively accurate reward for
reinforcement learning. Such feedback has been widely adopted in recent coding agent training, in-
cluding Qwen3-Coder (Qwen Team, 2025), GLM-4.5 (Team et al., 2025a), and MiniMax-M1 (Min-
iMax, 2025). While effective in principle, execution-based feedback is limited by the quality of the
test suites it relies on. It assumes that the test oracle is perfect, yet in practice, many test cases are
model-generated, making them an unreliable proxy for correctness. In addition, execution-based
feedback cannot distinguish between trajectories that yield the same outcome, either passing or fail-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ing a test. Consequently, it often provides signals that are overly sparse or even misleading for
reinforcement learning. In this work, we are the first to integrate execution-free feedback into SWE
agentic reinforcement learning. We find that a versatile execution-free feedback can offer more
fine-grained rewards, and lead to improved training efficiency and performance.

C THEORETICAL LINK BETWEEN TTS, AUC, AND ECE AND RL
DYNAMICS

In this section, we make explicit how the three metrics—TTS, AUC, and ECE—correspond to three
distinct failure modes of reward models (RMs) when used as optimization signals in RL. Throughout
this section, let τ ∼ πθ denote a sampled trajectory from the policy, r(τ) ∈ [0, 1] is the RM score,
and c(τ) ∈ {0, 1} the binary correctness label (the ideal true correctness). If the RM score is used
directly as the reward, the policy-gradient update is

∇θJ(θ) ≈ Eτ∼πθ
[r(τ)∇θ log πθ(τ)] . (2)

The ideal update using the true correctness label is

∇θJ
⋆(θ) = Eτ∼πθ

[c(τ)∇θ log πθ(τ)] . (3)

The gap between (2) and (3) determines the stability and correctness of RL. Here we use simple
policy gradient as an example, which has same nature to GRPO (DeepSeek-AI, 2025)/GSPO (Zheng
et al., 2025), one can simply extend the analysis to GRPO setting. We then analyze below how TTS,
AUC, and ECE each correspond to a different component of this gap.

C.1 TTS: EXTREME-TOP ERRORS AND THEIR IMPACT ON RL

TTS@k evaluates whether the highest-scored trajectory among k RM-scored samples is correct:

TTS@k = Pr(c(τ⋆) = 1) , τ⋆ = arg max
i∈[1:k]

r(τi). (4)

Thus (1−TTS@k) is exactly the probability that an unresolved trajectory receives the largest reward
among the k samples.

Implication for RL When the top-1 trajectory τ⋆ is incorrect (c(τ⋆) = 0), we know that

r(τ⋆−) = max
i∈[1:k]

r(τi).

This does not imply that negatives have larger average rewards than positives, but it does imply that
the batch contains a negative trajectory with the largest reward weight.
Since policy-gradient updates scale linearly with reward,

∇θJ(θ) ≈
k∑

i=1

r(τi)∇θ log πθ(τi),

the contribution of τ⋆− becomes a dominant term in the update, even if all other negatives have small
scores.
Conditioning on correctness of the top-ranked sample gives the decomposition:

∇θJ(θ) = TTS@k · E[update | c(τ⋆) = 1] + (1− TTS@k) · E[update dominated by τ⋆−]. (5)

Under the event c(τ⋆) = 0, RL receives the strongest possible reward signal for an unresolved tra-
jectory. This causes the policy πθ to increase the probability of sampling this undesirable behavior,
and the effect compounds over iterations.

C.2 AUC: PAIRWISE RANKING QUALITY AND REVERSED-GRADIENT FREQUENCY

AUC measures the probability that the RM correctly orders a positive trajectory above a negative
one (for all trajectories):

AUC = Pr
(
r(τ+) > r(τ−)

)
. (6)

Therefore the mis-ranking probability is

1−AUC = Pr
(
r(τ−) > r(τ+)

)
. (7)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Mis-rankings imply reversed gradient contributions Whenever r(τ−) > r(τ+), the RM assigns
higher reward to an incorrect trajectory. The corresponding policy-gradient contributions satisfy

r(τ−)∇θ log πθ(τ−) > r(τ+)∇θ log πθ(τ+), (8)

which is opposite to what the ideal update (3) would encourage. Thus a fraction 1 − AUC of all
positive–negative trajectory pairs induce updates pointing in the wrong direction. Conditioning on
the correctness of ranking yields the decomposition

∇θJ(θ) ≈ AUC · E[correct pair update] + (1−AUC) · E[reversed pair update]. (9)

Consequences for RL stability Since gradient contributions aggregate linearly, the expected frac-
tion of bad (reversed) updates grows exactly in proportion to (1−AUC). Therefore,

low AUC =⇒ many reversed-gradient terms =⇒ unstable or divergent RL behavior.

Unlike TTS (which concerns only the extreme top), AUC measures global ranking correctness,
which affects every sampled trajectory in RL.

C.3 ECE: CALIBRATION ERROR AND SYSTEMATIC BIAS IN RL UPDATES

For a reward model that outputs a score r(τ) (interpreted as confidence in “this trajectory is good”)
and a binary “good/bad” ground truth c ∈ {0, 1}. A reward model is calibrated if

Pr(c = 1 | r = α) = α, ∀α ∈ [0, 1]. (10)

Using the binned approximation for the reward-model scores across a dataset of trajectories, we can
compute:

ECE =

M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣. (11)

where Bm is the divided bins and:

conf(Bm) =
1

|Bm|
∑
i∈Bm

ri, acc(Bm) =
1

|Bm|
∑
i∈Bm

ci

Calibration and unbiased RL updates If Eq. (10) holds, then E[c | r] = r, e.g. For all trajecto-
ries to which the model assigns a confidence score of (r = 0.7), the actual proportion of successful
trajectories should also be 70%. This is exactly the statement (E[c | r = 0.7] = 0.7), meaning it
matches the model’s own predicted confidence (r). And thus

E[r(τ)∇θ log πθ(τ)] = E[c(τ)∇θ log πθ(τ)], (12)

meaning the RM induces no systematic bias in the expected gradient.

Bias induced by miscalibration In general, the deviation between the RM-induced and ideal
updates is

∆bias = Eτ∼πθ

[
∇θ log πθ(τ)

(
r(τ)− E[c | r(τ)]

)]
. (13)

Define the calibration bias function

b(α) = E[c | r = α]− α,

so that
r(τ)− E[c | r(τ)] = −b(r(τ)).

Here b(α) measures the calibration bias at confidence level α: among all trajectories for which the
RM predicts score r = α, E[c | r = α] is the true success frequency, while α is the predicted
success probability. Their difference therefore captures the systematic over- or under-confidence of
the reward model at that score. ECE is then a binned approximation of the expected magnitude of
this bias over the score distribution, meaning high ECE ⇒ large systematic distortion in (13).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Additional effect: gradient variance inflation. Write the RM-induced gradient estimator as

g(τ) = r(τ)∇θ log πθ(τ).

Using the decomposition
r(τ) = E[c(τ) | r(τ)]− b

(
r(τ)

)
,

we obtain
g(τ) = E[c(τ) | r(τ)]∇θ log πθ(τ)︸ ︷︷ ︸

g⋆(τ)

− b
(
r(τ)

)
∇θ log πθ(τ)︸ ︷︷ ︸
δg(τ)

.

Here g⋆(τ) is the “calibrated” part of the gradient (which would be obtained if we replaced r(τ)
by the true success probability E[c(τ) | r(τ)]), while δg(τ) is a purely micalibration-induced noise
term. The variance of g(τ) decomposes as

Var[g(τ)] = Var[g⋆(τ)] + Var[δg(τ)] + 2Cov
(
g⋆(τ), δg(τ)

)
.

In particular, we always have
Var[g(τ)] ≥ Var[g⋆(τ)],

with the excess variance controlled by

Var[δg(τ)] = Var
[
b(r(τ))∇θ log πθ(τ)

]
.

Thus calibration error b(r) couples multiplicatively with the policy gradient ∇θ log πθ(τ), injecting
additional variance into the gradient estimator. Since ECE is a discrete approximation of Er[|b(r)|],
higher ECE typically implies a larger variance contribution from δg(τ) and therefore less stable RL
training.

D REWARD MODEL TRAINING DETAILS

D.1 DETAILED TRAINING SETUP

Data Collection To train a reward model, we first rollout and collect over 400k multi-turn tra-
jectories up to 100 iterations using OpenHands (Wang et al., 2025) and SWE-Agent (Yang et al.,
2024), which are two widely used open-sourced coding agent scaffold using different policy mod-
els and data sources, including SWE-Gym (Pan et al., 2025), SWE-rebench (Badertdinov et al.,
2025), SWE-smith (Yang et al., 2025), and R2E-Gym (Jain et al., 2025). Specifically, we adapt
Qwen3-Coder-Max, Qwen3-Coder-Flash, Claude-4-sonnet for rollout. Since a large
portion of the data might be unresolved and some trajectories may be incomplete or contains bad
tool calls, thus the final usable trajectories for training is around 100k.

These trajectories are then labeled as positive(resolved) or negative(unresolved) based on their exe-
cution results with the provided fail2pass test. Though some of them might be noisy as we discussed
that unit tests might not be able to truly reflect the correctness of the generated patch, we applied data
cleaning such as filtering out instances without any successful trajectory (typically cases affected by
over-strict/unfair unit tests or under-specified descriptions) to maintain the highest possible label
quality. With data filtering, we believe reward model can still achieve relative good performance by
training on a large number of data.a sufficiently large and diverse dataset enables the RM to learn a
denoised and generalized correctness signal despite noisy supervision

Scaffold and Model For training scaffold, we adapt Megatron (Shoeybi et al., 2019) for supervised
fine-tuning which enables efficient long context training. For rollout, we use SGLang together with
agent scaffold OpenHands (Team, 2025) and SWE-Agent (Yang et al., 2024). And for base models,
we use Qwen3-30B-A3B (Qwen Team, 2025) which is small but with strong coding ability.While
for the base model, we use Qwen3-30B-A3B (Qwen Team, 2025) as the backbone for further
training. This MoE architecture is not a choice that claiming the calibration advantages,rather,
we follow the prevailing practice in state-of-the-art coding agents (e.g., Qwen3-Coder, Kimi-K2,
MiniMax-M1/2), which predominantly adopt MoE backbones. Using the same backbone ensures
compatibility with existing pipelines(e.g. infra) and allows our reward model and trained policies
to be directly integrated without additional adaptation overhead. Our focus is therefore on reward-
model training and calibration, while architectural comparisons (MoE vs. Dense vs. Adapters) are
left to future work.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Baselines We compare our trained execution-free verifier with the following different execution-
free verifiers as well as execution-based verifiers: (1) Agentless (Xia et al., 2024), which proposes
an execution-based method that generates reproduction tests for each trajectory and re-ranks based
on passed test numbers; (2) SWE-Gym Verifier (Pan et al., 2025), which releases a Qwen2.5-32B
based execution-free verifier trained on SWE-Gym; (3) DeepSWE-EB Verifier (Luo et al., 2025):
which is the execution-based component of current State-of-the-art DeepSWE Hybrid-TTS, which
is also the improved version of R2E-Gym Execution-based verifier (Jain et al., 2025) with similar
mechanism to Agentless. (4) DeepSWE EF Verifier (Luo et al., 2025): which is the execution-free
component of current State-of-the-art DeepSWE Hybrid-TTS also the improved version of R2E-
Gym execution-free verifier.

Evaluation Setup We mainly conduct the evaluation on SWE-bench Verified (Jimenez et al.,
2024) which is a curated subset of 500 human-verified tasks for reliably assessing model perfor-
mance on real-world software engineering tasks. For test-time scaling and further accuracy and
calibration evaluation, we use the most widely used open-sourced coding agent scaffold Open-
Hands to collect 32 independent runs for each instance, resulting 32 × 500 trajectories in total.
The sampling configs use a temperature of 1.0, top_p of 0.95, max_iterations of 100. Accuracy is
calculated by AUC score on all 16k trajectories while calibration is measured by expected calibra-
tion error(Guo et al., 2017), where ECE =

∑M
m=1

|Bm|
n

∣∣∣ acc(Bm) − conf(Bm)
∣∣∣, conf(Bm) =

1
|Bm|

∑
i∈Bm

ri, acc(Bm) = 1
|Bm|

∑
i∈Bm

ci. And we follow common practice to divide confi-
dence into 10 bins (M = 10).

Pass@k defines the resolve rate of model with at least one successful solution among k trajectories
which is also the upper bound while RM@K defines the resolve rate of final selected trajectories
from k samples. For every k < 32, we obtain the mean and variance of 5 random runs for fair
assessment.

D.2 TRAINING TEMPLATE

Following SWE-Gym (Pan et al., 2025), we adapt from their template which splices all turns (model
action output and tool responses) and end with a YES/NO token for reward model classification.
Given the full multi-turn trajectory, the model is prompted to output a single special token, either
<YES> (resolved) or <NO> (unresolved). And the supervised fine-tuning utilizes standard next-
token prediction loss on this special token. At inference time,Bby obtaining the log probability of
the special token <YES>(ly) and <NO>(ln), the final score r is calculated by exp (ly)/(exp (ly) +
exp (ln)) ,which maps to a continuous reward model score r ∈ [0, 1]. For tool parsing, we adapt
Qwen3-Coder’s XML format, which optimized for code-related argument parsing. The example
trajectory is shown in Figure 8.

D.3 TRAINING HYPER-PARAMETERS

For reward model training hyperparameters, we adapt a 256k context window to support scoring
for complex questions which contains extremely long contexts. The global batch size is set to 128.
Also widely used AdamW optimizer and cosine decay learning rate scheduler are used. The detailed
training hyperparameters are listed in Table 7 below. We use 4 nodes of H100 for large scale, long
context reward model training, which takes around 20 hours for 100k samples.

Table 7: The detailed training hyperparameters for reward model.

Model Size Global Batch Size Learning Rate Schedular LR Warmup Optimizer Epoch

30BA3 128 7e-6 → 7e-7 cosine 3% AdamW 1
235BA22 128 7e-6 → 7e-7 cosine 3% AdamW 1
480BA35 128 7e-6 → 7e-7 cosine 3% AdamW 1

We also summarize the detailed training setting for Verifiers we used (Verifier A, Verifier B and Poor
calibrated RM in Figure 7) in Table 8 below.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

<user>
Please evaluate the following interaction between an AI assistant and a user:
=== INTERACTION LOG ===
*** System Message that describes the assistant's behavior ***

[system message here]

*** Turn 1 - USER ***
…

*** Turn 1 - ASSISTANT ***
…

…

*** Turn 9 - ASSISTANT ***
Let's ignore the existing error and focus on our specific issue. …
<tool_call>
<function=str_replace_editor>
<parameter=path>
/workspace/astropy__specreduce__1.2/specreduce/tests
</parameter>
<parameter=command>
view
</parameter>
</function>
</tool_call>

*** Turn 10 - USER ***
<tool_response>
Here's the files and directories up to 2 levels deep in /workspace/
astropy__specreduce__1.2/specreduce/tests,
…
</tool_response>

…
=== END INTERACTION ===
=== GENERATED PATCH ===
[patch here]
=== END GENERATED PATCH ===
Based on the above interaction and the generated patch, did the assistant
successfully resolve the user's initial request? Respond with YES or NO.
</user>
<assistant>
<judgement>NO

Figure 8: Prompt template for reward model training. Pink refer to the tool parsing XML format
example.

D.4 ADDITIONAL ANALYSIS ON CONTEXT CONSTRAINT

In § 4.3 we show a substantial performance increase when we raise the context window from 32k
to 256k tokens. The larger context allows the model to cover far more tokens of the input (for

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: Comparison of detailed training setting of Verifier A, Verifier B in Figure 2,3,4,5 and Poorly
Calibrated RM in Figure 7.

REWARD MODEL # DATA RATIO POLICY SOURCE CONTEXT LEN.

Verifier A 20k 2:1 Mix-Policy Mixed-Source 256k
Verifier B 20k 1:4 Off-Policy SWE-Rebench 256k
Poorly Cali. RM in Figure 7 5k 1:2 Off-Policy SWE-Rebench 256k

example, longer trajectories, multi-file code, richer history) without needing to compress or truncate
information. When the window is small, many long trajectories cannot be scored at all (i.e., fall
out of the window) and thus receive no valid reward signal, meaning correct but long solutions
are effectively dropped from TTS selection. With a 256 k context, we reduce the “no-score” rate
(increase the score rate), thereby enabling full-trajectory scoring and enabling our verifier to pick
up solutions that would otherwise be ignored. And another reason for us to insist on 256k reward
model training is that modern high-end coding agent policy models such as Claude, GPT-5, Qwen3-
Coder-Max support 256k token windows (and up to 1 M tokens in some settings). The community
therefore urgently needs a reward model that is compatible with this scale, so trajectories from
such long-context agents can be properly scored — yet many existing reward/verifier models are
constrained to much shorter context windows and thus cannot handle those long trajectories.

By aligning our verifier to the 256 k-token scale we fill a crucial gap. Finally, we acknowledge
that increasing the context to 256k tokens is not free — it incurs higher memory usage. However,
since our output generation only contains one token, all prompt computation can be run in parallel,
thus the latency is more or less the same for different context length at inference time. While for
deployment, a 256k model takes only around 2x GPU memory usage than a 32k model, a user with
2x A100 GPUs can easily deploy the model with high efficiency.

E RL TRAINING DETAILS

E.1 RL SETUP

Models We conduct reinforcement learning based on a Qwen3-30B-A3B (Qwen Team, 2025)
with SFT warm-up. WE use in-house collected agentic trajectories including but not limited to
SWE tasks to fine-tune the base model. Then this fine-tuned model served as the starting point of
our RL experiments. We use MoE architecture, following the prevailing practice in state-of-the-art
coding agents (e.g., Qwen3-Coder (Qwen Team, 2025), Kimi-K2 (Team et al., 2025b), MiniMax-
M1/2 (MiniMax, 2025)), which predominantly adopt MoE backbones. Using the same backbone
ensures compatibility with existing pipelines(e.g. infra) and allows our trained policies to be directly
integrated without additional adaptation overhead.

Implementation Details We train the model using curated data from SWE-Gym (Pan et al., 2025)
and SWE-rebench (Badertdinov et al., 2025) with a batch size of 64. For each problem, we sample
16 rollouts, use a maximum of 100 iterations, and set the context length to 128k. This context
length was selected because it accommodates most problem cases within a single context window
while being more cost-efficient than a 256k context window. The training data is further filtered by
difficulty, as problems that are either too easy or too difficult can negatively affect RL performance.

Unlike single-turn RL training, where the model needs to generate only one response per prob-
lem, agentic RL requires interaction with an agent scaffold (i.e., tool calls) across multiple turns
to construct a full trajectory. Specifically, given a problem q, the policy model generates an ac-
tion ai and then receives a tool response oi, repeating this process T times to form a trajectory
τ = {a1, o1, a2, o2, . . . , aT , oT }. During optimization, tool responses are masked. Instead of the
GRPO objective, we adopt the GSPO objective (Zheng et al., 2025), which provides greater stability,
particularly in Mixture-of-Experts (MoE) RL training:

JGSPO(θ) = Eq∼D,{τi}Gi=1∼πold(·|q)[
1

G

G∑
i=1

min

((
πθ(τi | q)
πθold(τi | q)

) 1
|τi|

Âi, clip

((
πθ(τi | q)
πθold(τi | q)

) 1
|τi|

, 1− ε, 1 + ε

)
Âi

)]
(14)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

with the group-based advantage estimation:

Âi =
r(q, τi)− mean

(
{r(q, τi)}Gi=1

)
std ({r(q, τi)}Gi=1)

(15)

The optimization integrate several standard tricks such as Clip High (Yu et al., 2025), NO KL
loss (Yu et al., 2025) etc.

21

	Introduction
	Related Work
	What Defines a Versatile Reward Model for SWE?
	Initial Findings: Limitations of Relying Solely on TTS
	Moving Beyond TTS: The Need for More Versatile Evaluation on Verifier Quality

	How to Train a Versatile Reward Model for SWE?
	Training Methods
	Data Scaling and Ratio Effect
	Context Length Constraint
	Policy and Source Ablation

	SWE-RM: a Versatile Reward Model for TTS and RL
	A New State-of-the-art in TTS
	Reinforcement Learning with Execution-free Feedback in SWE
	RL Setup
	Execution-free Feedback benefits RL training

	Conclusion
	Reproducibility Statement
	The Use of Large Language Models
	Extended Related Work
	Verifiers for SWE Tasks
	Agentic Reinforcement Learning Feedback in SWE Tasks

	Theoretical Link Between TTS, AUC, and ECE and RL Dynamics
	TTS: Extreme-Top Errors and Their Impact on RL
	AUC: Pairwise Ranking Quality and Reversed-Gradient Frequency
	ECE: Calibration Error and Systematic Bias in RL Updates

	Reward Model Training Details
	Detailed Training Setup
	Training Template
	Training Hyper-parameters
	Additional Analysis on Context Constraint

	RL Training Details
	RL Setup

