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ABSTRACT

Execution-based feedback like unit testing is widely used in the development of
coding agents through test-time scaling (TTS) and reinforcement learning (RL).
This paradigm requires scalable and reliable collection of unit test cases to pro-
vide accurate feedback, and the resulting feedback is often sparse and cannot
effectively distinguish between trajectories that are both successful or both un-
successful. In contrast, execution-free feedback from reward models can provide
more fine-grained signals without depending on unit test cases. Despite this poten-
tial, execution-free feedback for realistic software engineering (SWE) agents re-
mains underexplored. Aiming to develop versatile reward models that are effective
across TTS and RL, however, we observe that two verifiers with nearly identical
TTS performance can nevertheless yield very different results in RL. Intuitively,
TTS primarily reflects the model’s ability to select the best trajectory, but this abil-
ity does not necessarily generalize to RL. To address this limitation, we identify
two additional aspects that are crucial for RL training: classification accuracy and
calibration. We then conduct comprehensive controlled experiments to investi-
gate how to train a robust reward model that performs well across these metrics.
In particular, we analyze the impact of various factors such as training data scale,
policy mixtures, and data source composition. Guided by these investigations, we
introduce SWE-RM, an accurate and robust reward model adopting a mixture-of-
experts architecture with 30B total parameters and 3B activated during inference.
SWE-RM substantially improves SWE agents on both TTS and RL performance.
For example, it increases the accuracy of Qwen3-Coder-Flash from 51.6%
to 62.0%, and Qwen3-Coder-Max from 67.0% to 74.6% on SWE-Bench Ver-
ified using TTS, achieving new state-of-the-art performance among open-source
models. On RL training, SWE-RM lifts the resolve rate of execution-based coun-
terparts by 3 absolute points on SWE-Bench Verified.1

1 INTRODUCTION

The automation of complex software development tasks through coding agents represents a signif-
icant frontier in large language models (LLMs). A critical component in developing these agents
is the feedback mechanism used during training and evaluation, particularly through reinforcement
learning (RL) (Wei et al., 2025; Qwen Team, 2025) and test-time scaling (TTS) (Xia et al., 2024;
Jain et al., 2025). Broadly, these mechanisms fall into two categories: execution-based verifiers (Xia
et al., 2024; Jain et al., 2025), which rely on concrete outcomes like unit test results, and execution-
free verifiers2 (Pan et al., 2025; Luo et al., 2025), which are typically model-based reward models
that provide a continuous score without sandbox environments.

While widely used, execution-based feedback has inherent limitations. It provides only a sparse,
binary signal (pass/fail), which makes it difficult to distinguish between different successful or un-
successful trajectories. Beyond this lack of granularity, unit tests require comprehensive coverage to
yield accurate assessments, which is often unavailable. To address this challenge, exiting works rely
on extracting unit test from Github repos (Jimenez et al., 2024) or model-generated unit tests (Yang
et al., 2025; Jain et al., 2025) that are not rigorously validated. For example, in issue-fixing tasks, the

1The SWE-RM model will be open-sourced after the review period to facilitate SWE agent development.
2Throughout this paper, we will use “reward model” and “execution-free verifier” interchangeably.
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Figure 1: The pass@1 and TTS resolve rate of various open-source and proprietary models on SWE-
Bench Verified. Part of the baseline results are referenced from He et al. (2025).

unit tests used from real GitHub repositories are often overly specific, and in some cases, entirely
unrelated to the target issue (OpenAI, 2025). As a result, execution-based feedback limits the code
data that can be used for effective reinforcement learning or test-time scaling due to requirements
of high-quality unit tests. When such tests are unreliable, the resulting feedback becomes a signif-
icant challenge for RL, where nuanced and consistent reward signals are essential. Execution-free
feedback offers a compelling alternative by providing continuous, fine-grained scores across entire
trajectories, allowing for better discrimination among candidate solutions and reducing bias toward
specific patches. Despite its promise, execution-free feedback remains largely underexplored, and
its properties in the context of SWE agents are not yet well understood.

In this work, we aim to develop a versatile and effective reward model usable across different sce-
narios such as TTS and RL for software engineering. While it is straightforward to adopt TTS (e.g.,
best of k) performance directly as the metric to guide the reward model training (Pan et al., 2025),
our initial findings reveal that two verifiers with nearly identical TTS performance can show dras-
tically different behavior in RL. This leads us to a fundamental research question: What properties
determine a reward model’s effectiveness in RL training, and how can we develop an all-round SWE
reward model that performs well in both TTS and RL?

Intuitively, TTS primarily measures a verifier’s ability to rank the correct solution highest among
multiple candidates, but it overlooks aspects that are essential for RL: the ability to effectively dis-
tinguish correct from incorrect trajectories and to produce scores that reliably correspond to the de-
gree of correctness. Based on this observation, we further evaluate reward models using additional
metrics: AUC, which reflects the correctness of relative ordering across trajectories, and ECE (Guo
et al., 2017), which measures calibration representing whether the verifier’s scores align with em-
pirical correctness. We demonstrate that AUC and calibration provide complementary information
to TTS and are both critical for ensuring the reward model delivers reliable signals in RL.

To train a reward model that performs well across these metrics, we conduct large-scale ablation
studies examining the effects of training data scale, the ratio of positive to negative samples, mix-
tures of data sources, and context length. These investigations lead to a practical recipe for building
robust, execution-free reward models tailored to SWE tasks. Guided by these investigations, we
obtain SWE-RM, an accurate and robust reward model with 30B total and 3B activated parameters
for advancing SWE agents. On SWE-bench Verified (OpenAI, 2025), SWE-RM lifts the accuracy
of Qwen3-Coder-Flash from 51.6% to 62.0% and Qwen3-Coder-Max from 67.0% to 74.6%,
achieving best-in-class among 30B-level and all open-source models respectively, as shown in Fig-
ure 1. Moreover, SWE-RM is highly effective when used as a reward signal in agentic RL training.
For example, it improves the RL performance of execution-based counterparts by 3 absolute points
on SWE-bench Verified.
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Figure 2: RL training curves of two verifiers
with similar TTS performance. Despite compa-
rable TTS, the downstream RL outcomes differ
drastically.
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Figure 3: Two models with similar TTS per-
formance (Model A with +4.7% and Model
B with +4.5%) show significant differences in
their AUC scores.

2 RELATED WORK

In Software Engineering (SWE) tasks, verifiers fall into two categories: execution-based, which rely
on unit tests (e.g., Agentless (Xia et al., 2024), R2E-Gym (Jain et al., 2025), DeepSWE (Luo et al.,
2025)), and execution-free, which use model-based scoring (e.g., SWE-Gym (Pan et al., 2025),
OpenHands Critic (Team, 2025)). Existing work on execution-free verifiers has primarily empha-
sized test-time scaling (Pan et al., 2025; Jain et al., 2025; Luo et al., 2025), with limited attention to
other quality dimensions. We show that an execution-free verifier’s quality also depends on classi-
fication accuracy and calibration, and provide a systematic study of training such verifiers. In rein-
forcement learning for SWE agents (e.g., OpenHands (Wang et al., 2025), SWE-Agent (Yang et al.,
2024)), execution-based feedback—akin to rule-based metrics in math (DeepSeek-AI, 2025)—has
enabled recent model training (e.g., Qwen3-Coder (Qwen Team, 2025), GLM-4.5 (Team et al.,
2025a), MiniMax-M1 (MiniMax, 2025)), but is constrained by noisy test suites and sparse signals.
We are the first to integrate execution-free feedback into SWE agentic RL, demonstrating its poten-
tial to deliver finer-grained rewards and improve efficiency. An extended related work are discussed
in Appendix B.

3 WHAT DEFINES A VERSATILE REWARD MODEL FOR SWE?

Our goal is to develop a versatile reward model that performs well across both TTS and RL. Follow-
ing common practice, we begin by examining whether TTS performance can serve as a reliable guide
for selecting a reward model for RL. We first present our initial findings that highlight the limitations
of relying solely on TTS performance to guide reward model training. This result demonstrates that
TTS alone cannot explain downstream success in RL, raising important questions about what prop-
erties of a verifier matter. To resolve this gap, we next revisit the role of TTS as an evaluation metric,
analyze its limitations, and introduce complementary criteria—AUC and calibration—that provide
a more holistic view of verifier quality.

3.1 INITIAL FINDINGS: LIMITATIONS OF RELYING SOLELY ON TTS

As we aim to develop a versatile reward model that can be applied across different scenarios such
as TTS and RL, but it is unknown what defines such a versatile reward model and whether TTS and
RL impose different requirements. A natural question to ask is whether a reward model that per-
forms well on TTS will also perform well on RL. To avoid ambiguity, the reward model is trained
purely through supervised next-token prediction instead of using TTS as the training signal. TTS
is used exclusively as an evaluation metric for model selection etc. More training details will be
introduced in § 4.1. Our initial exploration reveals an intriguing finding: two execution-free veri-
fiers that achieve nearly identical TTS improvements give rise to strikingly different behaviors when
used as reward models in reinforcement learning. As shown in Figure 2, both verifier A and verifier

3
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B achieve similar TTS improvements, indicating, at first glance, that they are equally effective at
choosing the correct solution highest among candidate trajectories. Yet, when deployed in RL train-
ing, verifier A supports smooth improvement, while verifier B exhibits significant instability, failing
to provide reliable learning signals and eventually causing RL training to collapse.

This result challenges the widely adopted view of TTS as a sufficient proxy for verifier qual-
ity (Lightman et al., 2023; Pan et al., 2025). If two models are judged equivalent by TTS but
behave so differently in RL, then TTS alone cannot capture the aspects of a verifier that truly matter
for reinforcement learning. In other words, TTS provides only a partial picture: it summarizes top-1
ranking ability but hides other properties that directly affect how reward signals shape policy up-
dates. These findings prompt us to ask a fundamental research question: What properties determine
a reward model’s effectiveness in RL training, and how can we develop an all-round SWE reward
model that performs well in both TTS and RL?

To answer this, we must carefully reconsider what TTS actually measures, why it fails to explain the
RL discrepancy observed, and what alternative metrics can reveal the missing dimensions of verifier
quality. This motivates our shift beyond TTS to a broader and versatile evaluation.

3.2 MOVING BEYOND TTS: THE NEED FOR MORE VERSATILE EVALUATION ON VERIFIER
QUALITY

At first glance, TTS appears to be a natural metric: it checks whether the correct solution trajectory
is ranked highest among a pool of candidates. Intuitively, this reflects a verifier’s ability to make
the right top-1 decision, however, TTS only measures a narrow slice of verifier capability. By fo-
cusing exclusively on whether the single best trajectory is ranked first, TTS ignores two properties
that become critical once the verifier is used as a reward model in reinforcement learning. The first
overlooked dimension is discriminative ability. In RL, the agent generates a wide range of trajecto-
ries, some of which are unresolved. The verifier must provide accurate feedback not just for the best
trajectory, but across many near-miss or partially correct candidates. A verifier with weak discrim-
inative ability will assign similar scores to both correct and incorrect trajectories, producing noisy
reward signals that compromise policy updates. The second is confidence reliability, or calibration.
In RL, verification scores are often interpreted as proxies for the likelihood of correctness, serving as
the reward magnitudes used to guide policy learning. If these scores are mis-calibrated, for instance,
a normalized score of 0.9 reflects only a 60% probability of being actual correct—then the policy
receives misleading signals about the expected value of its actions. Poor calibration can therefore
poison the reward shaping process, leading to unstable or collapsed training dynamics even if top-1
accuracy (TTS) appears satisfactory.

These overlooked dimensions provide a natural explanation for the discrepancies we observed in
Figure 2, and to capture these dimensions, we supplement TTS with two complementary metrics.
AUC (Bradley, 1997) evaluates discriminative ability by measuring how well the verifier separates
resolved from unresolved trajectories across the entire distribution, rather than focusing only on
the best. Calibration (Wang, 2025) quantifies the alignment between predicted confidence scores
and empirical correctness, for example by using Expected Calibration Error (ECE) (Guo et al.,
2017). A higher AUC means models can better descriminate resolved and unresolved trajectories
while a lower ECE means there is lower mismatch between confidence and accuracy, indicating
higher reliability. Together, these three metrics—TTS, AUC, and calibration—form a more versatile
evaluation toolkit: they jointly capture top-1 ranking accuracy, overall discriminative power, and
reliability of confidence estimates.

Empirical analysis demonstrates the importance of considering all three. (1) Discriminative gap
despite equal TTS: As shown in Figure 3, verifier A and verifier B obtain nearly identical TTS im-
provements (+4.7% vs. +4.5%), yet their AUC scores differ by 0.095. Thus, although both appear
equivalent by TTS, only verifier A reliably distinguishes resolved from unresolved trajectories—a
property crucial for producing consistent reward signals. (2) Calibration and score distribution
disparity: Figure 4 reveals that verifier B suffers from widespread over- and under-confidence,
while verifier A is three times better calibrated according to expected calibration error. Again,
TTS fails to reflect this difference, though it directly affects the trustworthiness of reward magni-
tudes. Figure 5 further highlights why this matters: across 32 runs of random selected 8 instances,
Model A consistently assigns high scores to resolved trajectories and low scores to unresolved ones,
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Figure 5: Score distribution cases for verifier A
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formance.

making it possible to set a reliable threshold for acceptance. In contrast, Model B frequently as-
sign unexpectedly low scores for resolved trajectories, while unresolved trajectories receive inflated
scores—producing overlapping distributions that might confuse policy models. The trajectories
used for calibration and score distribution analysis are sampled from Qwen3-Coder-Max while
the other setting are same as the one we will show in Appendix D.1. This combination of miscali-
bration and poor separation explains why Model A provides misleading signals in RL even when its
TTS remains competitive. We also include a theoretical analysis between the three metrics and RL
dynamics in Appendix Cs

These observations underscore that TTS, accuracy, and calibration are complementary metrics, each
capturing a distinct aspect of verifier capability. The discussion of metrics in this section is lim-
ited to using early, small-scale RM variants as illustrative examples. And in subsequent investiga-
tion—beginning after we motivate the need for AUC and calibration—marks the start of the actual
supervised RM training and large-scale, comprehensive ablations. We will show how to obtain a
versatile and robust reward model in § 4 and discuss the implications for reinforcement learning in
§ 5.

4 HOW TO TRAIN A VERSATILE REWARD MODEL FOR SWE?

To build a versatile and robust reward model as discussed in § 3, we conclude and analyze several
critical factors that significantly influence final performance. Specifically, we systematically inves-
tigate training data scale, the ratio of positive to negative samples, policy, data source, and context
length, and discuss their impact on the verifier’s three core abilities. These observations collectively
guide the development of SWE-RM, which achieves superior performance.

4.1 TRAINING METHODS

Following SWE-Gym (Pan et al., 2025), we formulate reward modeling as a generative classification
task, where the reward model takes a trajectory as input and outputs a special token (e.g., YES/NO).
Given the full multi-turn trajectory, the model is prompted to output a single special token, either
YES (resolved) or NO (unresolved). And the supervised fine-tuning utilizes standard next-token pre-
diction loss on this special token. At inference time, by obtaining the log probability of the special
token YES(ly) and NO(ln), the final score r is calculated by exp (ly)/(exp (ly) + exp (ln)) ,which
maps to a continuous reward model score r ∈ [0, 1]. The probability assigned to this token is then
mapped to a continuous score. To construct training data, we collect agent trajectories by deploy-
ing different policy models (Qwen3-Coder and Claude-4) to interact with the agent scaffold
OpenHands (Wang et al., 2025) across multiple training data sources, including SWE-Gym (Pan
et al., 2025), SWE-rebench (Badertdinov et al., 2025), SWE-smith (Yang et al., 2025), and R2E-
Gym (Jain et al., 2025). These trajectories are then labeled as positive or negative based on their
execution results with the provided fail2pass test.

RM Training Setup We use Qwen3-30B-A3B (Qwen Team, 2025) as the base model for reward
model training, as it provides a balance between efficiency and strong coding capabilities. Evalua-
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tion is primarily conducted on SWE-bench Verified (Jimenez et al., 2024), a curated subset of 500
human-verified tasks designed to reliably assess model performance on real-world software engi-
neering problems. For the evaluation metrics, test-time scaling is measured using 32 independent
runs for each instance on SWE-bench Verified. Accuracy is calculated using the AUC score across
all 32 × 500 trajectories, while calibration is assessed by the expected calibration error (Guo et al.,
2017). RM@K is defined as the resolve rate of the final selected trajectories from k samples. For
each k < 32, we report the mean and variance over 5 random runs to ensure fair evaluation. Further
details on the reward model training setup can be found in Appendix D.

4.2 DATA SCALING AND RATIO EFFECT

Poorly trained reward models often exhibit unexpected behavior when evaluated on out-of-domain
(OOD) data. This OOD generalization challenge is particularly severe in SWE tasks, where multi-
turn interactions create a substantially larger output space compared to traditional reasoning tasks,
which might requires more training data. As shown in Figure 6, we uniformly sampled varying
amounts of training data from different policy models and data sources. The left subfigure demon-
strates that models trained on more than 20k samples generally achieve improved test-time scaling
performance as k increases, whereas models trained on fewer samples (e.g., fewer than 5k) may
even experience declining performance. We attribute this to the limited generalization capacity of
under-trained models: as k grows, the probability of encountering OOD trajectories increases, and
test-time scaling becomes highly sensitive to such cases. Even a single erroneously high score as-
signed to an incorrect trajectory can significantly distort the final resolve rate.

While TTS performance improves as the training data size increases up to 25k, further expansion to
100k yields diminishing returns. the score distributions in the right subfigure of Figure 6 reveal that
larger training datasets enhance discriminative ability, as evidenced by clearer separation between
resolved and unresolved trajectories. Moreover, models trained on more data demonstrate improved
calibration: for instance, a model trained with only 500 examples has an ECE of 0.481—seven times
higher than that of a model trained with 100k examples. This indicates that scaling up training data
produces more reliable scores, highlighting the effectiveness of data scaling.

To further investigate the role of data composition, we fix the total amount of training data and vary
the ratio of positive to negative trajectories, as shown in Table 1. We observe that across both model
scales, the 2:1 ratio generally achieves the best overall performance in terms of AUC, calibration,
and test-time scaling. Due to the limited availability of positive data, we experiment with ratios up
to 2:1. To further investigate the role of data composition, we fix the total amount of training data
and vary the ratio of positive to negative trajectories, as shown in Table 1. We observe that across
both model scales, the 2:1 ratio generally achieves the best overall performance in terms of AUC,
calibration, and test-time scaling. By contrast, more balanced ratios such as 1:1 avoid extreme skew
but still fall short of the 2:1 configuration. Importantly, the 2:1 ratio also offers higher efficiency, as
it requires a smaller pool of negative data while still utilizing all available positive data in practice.
Considering this balance between effectiveness and efficiency, we adopt the 2:1 ratio as the default
configuration in subsequent experiments.
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Table 1: Effect of training verifiers with different positive-to-negative data ratios on AUC, ECE, and
test-time scaling performance (best results in bold).

RATIO
Qwen3-Coder-Flash Qwen3-Coder-Max

AUC ECE ↓ RM@32 AUC ECE ↓ RM@32

2 : 1 0.805 0.080 62.0% 0.755 0.121 71.0%
1 : 1 0.782 0.132 60.8% 0.734 0.157 70.2%
1 : 2 0.789 0.235 61.0% 0.736 0.371 69.4%
1 : 4 0.789 0.185 61.6% 0.742 0.299 71.8%
1 : 8 0.778 0.349 60.2% 0.738 0.541 70.6%

4.3 CONTEXT LENGTH CONSTRAINT

Table 2: Effect of Context Length Scaling on veri-
fier’s score rate and test-time scaling performance.
Score rate represent how many percent of trajecto-
ries can be successfully scored without exceeding
the context window.

CONTEXT LEN. SCORE RATE RM@32

16 k 0.5% 66.8%
32 k 12.5% 67.4%
64 k 88.3% 70.6%
128 k 99.5% 73.0%
256 k 100% 74.4%

While previous execution-free verifiers in SWE
mainly support a context length of 32k (Pan
et al., 2025; Jain et al., 2025), our execution-
free verifiers are the first to scale up to 256k
context length, enabling the scoring of complex
and long trajectories. This is especially impor-
tant for challenging questions, which typically
involve extremely long contexts. As shown in
Table 2, only when the context length is ex-
tended to 128k can more than 99% of trajec-
tories be successfully scored without exceeding
the limit. Furthermore, as models are able to
score more trajectories, execution-free verifiers
achieve better test-time scaling performance, as reflected in the increasing RM@32. A more detailed
discussion on context length are in Appendix D.4.

4.4 POLICY AND SOURCE ABLATION

We also examine the impact of training data collected from different policy models on verifier per-
formance. For on-policy data, we sample training examples using the corresponding Flash/Max
model on SWE-rebench, while for off-policy data we sample using Claude-sonnet-4 (Anthropic).
As shown in Table 3 policy ablation, while on-policy data sometimes yields stronger results on
specific metrics (e.g., TTS on Qwen3-Coder-Max), overall the Mix-Policy setting provides a bet-
ter balance across AUC, ECE, and ranking. This indicates that combining on- and off-policy data
enhances the generalization ability of the verifier. Such findings also reflect the advantage of our
comprehensive evaluation in revealing robust trends that TTS-only analyses might overlook.

We further investigate the impact of training data sources on verifier performance. As shown in
Table 3, under single-source settings, SWE-rebench achieves the best results in both AUC and
RM@32, indicating that rebench may provide the highest-quality data. However, incorporating
SWE-smith and SWE-Gym leads to improved calibration (lower ECE), and adding more sources
enhances data scaling effects as we shown in § 4.2. Based on these observations, our final setup
uses a mixture primarily derived from SWE-rebench, supplemented with data from SWE-smith and
SWE-Gym, achieving a balance between quality, calibration, and scalability.

5 SWE-RM: A VERSATILE REWARD MODEL FOR TTS AND RL

In this section, we present SWE-RM, an accurate and robust execution-free verifier that not only
achieves state-of-the-art test-time scaling performance but also significantly improves downstream
reinforcement learning. We first demonstrate the superior performance of SWE-RM in TTS (§ 5.1)
and then RL (§ 5.2).
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Table 3: Effect of training verifiers with different policy mixture and data source on three core
abilities(best results in bold).

METHODS / MODELS
Qwen3-Coder-Flash Qwen3-Coder-Max

AUC ECE ↓ RM@32 AUC ECE ↓ RM@32

Policy Ablation

On-Policy 0.785 0.148 58.6 0.727 0.067 71.0
Off-Policy 0.778 0.113 58.2 0.728 0.145 70.6
Mix-Policy 0.804 0.033 59.6 0.751 0.082 70.2

Source Ablation

SWE-rebench (Badertdinov et al., 2025) 0.814 0.076 0.612 0.774 0.048 0.718
SWE-smith (Yang et al., 2025) 0.781 0.033 0.584 0.736 0.039 0.70
SWE-Gym (Pan et al., 2025) 0.776 0.087 0.588 0.742 0.044 0.714
SWE-Gym + SWE-smith 0.813 0.034 0.602 0.772 0.035 0.72
SWE-Gym + SWE-rebench 0.802 0.087 0.61 0.762 0.039 0.712
SWE-rebench + SWE-smith 0.807 0.138 0.596 0.765 0.107 0.714
SWE-rebench + SWE-smith + SWE-Gym 0.807 0.067 0.612 0.766 0.033 0.718

Table 4: Comparison of different verifiers on three core abilities. Evaluation trajectories are sampled
from Qwen3-Coder and OpenHands-LM-32B on SWE-bench Verified. EB means execution-
based verifier while EF stands for execution-free verifier. Best results are in bold.

VERIFIER TYPE
OpenHands-LM-32B Qwen3-Coder-Flash Qwen3-Coder-Max

AUC ECE ↓ RM@32 AUC ECE ↓ RM@32 AUC ECE ↓ RM@32

AGENTLESS (Xia et al., 2024) EB - - 42.4% - - 52.6% - - 65.0%
SWE-GYM (Pan et al., 2025) EF 0.718 0.164 41.6% 0.776 0.223 51.2% 0.752 0.283 65.4%

DEEP SWE (Luo et al., 2025) EB - - 44.2% - - 54.6% - - 67.6%
EF 0.732 0.118 44.6% 0.758 0.124 53.2% 0.74 0.139 66.2%

SWE-RM-30A3B EF 0.748 0.080 48.8% 0.783 0.051 62.0% 0.768 0.047 74.6%

5.1 A NEW STATE-OF-THE-ART IN TTS

Based on the investigation in § 4, our final trained SWE-RM achieves state-of-the-art performance
compared with previous works. We begin by discussing the baselines and evaluation setup, followed
by an analysis of the SWE-RM results on TTS, AUC, and calibration.

Baselines We compare our trained execution-free verifier against several existing execution-free
and execution-based verifiers: (1) Agentless (Xia et al., 2024), an execution-based method that gen-
erates reproduction tests for each trajectory and re-ranks them based on test results; (2) SWE-Gym
Verifier (Pan et al., 2025), an execution-free verifier based on Qwen2.5-32B and trained on the
SWE-Gym dataset; (3) DeepSWE-EB Verifier (Luo et al., 2025), the execution-based component of
the current state-of-the-art DeepSWE Hybrid-TTS. This verifier extends the R2E-Gym execution-
based verifier (Jain et al., 2025) and follows a similar mechanism to Agentless; (4) DeepSWE-EF
Verifier (Luo et al., 2025), the execution-free component of DeepSWE Hybrid-TTS, which improves
upon the R2E-Gym execution-free verifier. The evaluation setup for SWE-RM are same as the set-
ting illustrated in § 4.1.

SWE-RM performance Our results in Table 4 show that SWE-RM consistently outperforms all
baselines across AUC, ECE, and RM@32, achieving the best TTS, discrimination and calibra-
tion ability. The gains are not limited to Qwen3-Coder series models, where RM@32 improves
pass@1 by 7-10 points, but also extend to OpenHands-LM-32B, where SWE-RM delivers the
highest overall performance. This demonstrates the generalization ability of our verifier.

5.2 REINFORCEMENT LEARNING WITH EXECUTION-FREE FEEDBACK IN SWE

Different from reinforcement learning in math problems, which easily receive scalable, correct re-
ward by comparing with the ground truth answers, reinforcement learning from verifiable reward
(RLVR) are facing two major challenges in software engineering tasks: (1) Most training data are
constructed by some automated pipelines with unchecked quality unit tests, the execution-based
feedback are not guaranteed to be correct. (2) The long horizon context length and sandbox ex-
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Figure 7: Left: RL performance on SWE-bench Verified when using different feedback. Right:
Average training reward for different models.

ecution significantly limit the scale of RL, leading to slow improvements especially under sparse
0/1 reward. In this subsection, we show execution-free feedback offers a promising approach to not
only accelerate training but also further enhance overall performance by providing more fine-grained
reward signals. We first establish the RL setup in § 5.2.1 and then discuss the results in § 5.2.2.

5.2.1 RL SETUP

Scaffold and Model For training scaffold, we adapt verl (Sheng et al., 2024) with Mega-
tron (Shoeybi et al., 2019) which enables efficient multi-turn agentic reinforcement learning
and SGLang for trajectory rollout. For agent scaffold, similar to the reward model rollout,
we employ OpenHands (Wang et al., 2025) for tool interactions. For base models, we use
Qwen3-30B-A3B (Qwen Team, 2025) with warm-up.

Evaluation Setup Similar to reward model evaluation, we conduct our evaluation on SWE-bench
Verified (Jimenez et al., 2024). In the RL setting, we only generate 1 trajectory and 1 patch for each
instance using greedy decoding following OpenHands (Wang et al., 2025), without any test-time
scaling, as the final pass@1 score.

Baselines We compare different types of feedback during reinforcement learning: (1) Hybrid feed-
back, where the feedback is a combination of execution-free (SWE-RM) and execution-based sig-
nals, as will be defined in Eq. 1; (2) Execution-free feedback only, where the feedback is provided
solely by SWE-RM; (3) Execution-based feedback only, where the feedback is derived exclusively
from the execution results of fail2pass tests; (4) Poorly calibrated execution-free feedback, where the
feedback comes from a reward model with comparable TTS but lower AUC and weaker calibration
ability.

Implementation Details We adapt GSPO (Zheng et al., 2025) which provides greater sta-
bility for Mixture-of-Experts RL training and we define the execution-free feedback as
ScoreEF (q, τ, patch) ∈ [0, 1], and the overall reward is computed as:

r(q, τi) =


1 + ScoreEF (q, τi, patchi), if issue resolve,
−0.5 + ScoreEF (q, τi, patchi), unfinished,
0 + ScoreEF (q, τi, patchi), otherwise.

(1)

More details about the RL training such as data, hyper-parameters are shown in Appendix E.

5.2.2 EXECUTION-FREE FEEDBACK BENEFITS RL TRAINING

As shown in Figure 7, using the hybrid reward as described in Eq. 1 yields the best RL performance
and efficiency. Compared to the execution-based baseline, hybrid feedback improves pass@1 by
about 3 absolute points (54.8% vs. 51.8%) and shows faster, smoother improvements, indicating
effective reward shaping. For execution-based feedback only, we observe slower early gains and
an early plateau due to the sparsity of the 0/1 signals and issues with test noise and coverage. In
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Table 5: Performance after RL on different SWE tasks other than SWE-Bench Verified, and Terminal
Bench when using different feedback. SW.B. is short for SWE-Bench and Bold stands for the best.

METHOD SW.B. LIVE (LITE) SW.B. MULTILINGUAL MULTI-SW.B. MINI TERMINAL BENCH

Hybrid 22.4 35.7 20.0 32.5
Execution-free only 20.4 33.0 18.8 31.3
Execution-based only 20.0 33.3 18.5 30.0
Poor Calibrated RM 12.0 21.0 10.0 15.0

contrast, execution-free feedback alone shows faster initial progress due to continuous signals but
weaker convergence in later stages, likely caused by inaccuracies in its unverified signals. While
our main evaluation focuses on SWE-Bench Verified, we additionally conducted experiments on a
broader suite of SWE tasks—including SWE-Bench Live (Lite), SWE-Bench Multilingual, Multi-
SWE-Bench Mini, and Terminal Bench—to assess generalization beyond the original domain. As
shown in Table 5, hybrid feedback consistently achieves better RL performance, while execution-
free only feedback shows comparable results to execution-based only feedback. And if using feed-
back from a poorly calibrated RM, the model will also show a significant decrease in other tasks.
Overall, combining execution-free feedback with verifiable signals balances efficiency and reliabil-
ity, achieving the strongest final results by providing both continuous and trustworthy rewards.

6 CONCLUSION

In this paper, we show that test-time scaling alone is an insufficient measure of verifier quality for
SWE agents. Beyond top-1 ranking, reward models must also deliver strong discrimination (AUC)
and reliable calibration (low ECE) to provide stable, useful signals, especially for RL. Guided by
large-scale ablations on data scale, positive/negative ratios, policy mixtures, source composition etc.,
we develop SWE-RM—a 30B MoE (3B activated) execution-free verifier with up to 256k context.
SWE-RM achieves state-of-the-art open-source TTS gains on SWE-Bench Verified and, when used
for RL, yields faster, more stable training and +3 absolute pass@1 over execution-based feedback
counterparts. This establishes execution-free, well-calibrated reward modeling as a practical and
powerful foundation for advancing SWE agents in both TTS and RL.

7 REPRODUCIBILITY STATEMENT

We describe the reward model experimental setup in § 4.1, the RL experimental setup in § 5.2.1,
with detailed information on the framework, statistics, and hyperparameters provided in Appendix D
and Appendix E.
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Table 6: Comparison of SWE-RM with other execution-free verifiers’ setting: SWE-Gym Veri-
fier (Pan et al., 2025), R2E-Gym Verifier (Jain et al., 2025), OpenHands Critic (Team, 2025) and
DeepSWE Verifier (Luo et al., 2025). - means the statistic are not disclosed. *: Our training data
source contains SWE-Gym (Pan et al., 2025), R2E-Gym (Jain et al., 2025), SWE-smith (Yang et al.,
2025) and SWE-rebench (Badertdinov et al., 2025).

REWARD MODEL # DATA # REPO POLICY SOURCE CONTEXT LEN. PROMPT

SWE-Gym Verifier 2636 11 Mix SWE-Gym 32k Traj.
R2E-Gym Verifier 3321 10 Claude-3.5 R2E-Gym 32K Traj. + Patch
Openhands Critic - 11 - SWE-Gym 32k Traj.
DeepSWE Verifier - 10 - R2E-Gym 76k Traj. + Patch

SWE-RM ∼ 100k ∼ 170 Mix Multiple* 256k Traj. + Patch

A THE USE OF LARGE LANGUAGE MODELS

For this paper, large language models(LLMs) are used solely for polishing the writing. The entire
research process, including but not limited to ideation, was conducted without any assistance from
LLMs.

B EXTENDED RELATED WORK

B.1 VERIFIERS FOR SWE TASKS

In Software Engineering (SWE) tasks, there are mainly two kinds of verifiers: (1) execution-based
verifiers and (2) execution-free verifiers. Execution-based verifiers typically consist of various types
of unit tests, either human-written or model-generated. Agentless (Xia et al., 2024), R2E-Gym (Jain
et al., 2025), and DeepSWE (Luo et al., 2025) have demonstrated the effectiveness of execution-
based verifiers in test-time scaling by ranking patches based on the number of unit tests passed.
However, execution-based verifiers struggle to distinguish between patches that achieve the same
number of test passes, and they suffer from the inherent unreliability of poorly written or model
generated unit tests. In contrast, execution-free verifiers are typically model-based and provide
a continuous score for a given trajectory, allowing finer-grained discrimination. Early work such
as SWE-Gym (Pan et al., 2025) and OpenHands Critic (Team, 2025), has initially explored naive
execution-free verifiers with limited coverage and were confined to relatively simple settings. Subse-
quent work, including R2E-Gym (Jain et al., 2025) and DeepSWE (Luo et al., 2025), has shown that
combining execution-based and execution-free verifiers leads to improved test-time scaling. Nev-
ertheless, as summarized in Table 6, the exploration of execution-free verifiers remains preliminary
and has largely focused only on scaling performance. Different from them, this work first demon-
strates that test-time scaling (TTS) performance alone is not a sufficient measure of an execution-free
verifier’s quality – its accuracy and calibration are equally important. We further present a system-
atic study on training versatile execution-free verifiers, considering factors such as data scaling, data
ratio, policy mixture, source mixture, and context length.

B.2 AGENTIC REINFORCEMENT LEARNING FEEDBACK IN SWE TASKS

Unlike non-agent scaffolds such as Agentless (Xia et al., 2024), which are single-turn and pipeline-
based, agent scaffolds in SWE such as OpenHands (Wang et al., 2025) and SWE-Agent (Yang et al.,
2024) deploy a sandbox environment that allows models to interact in a multi-turn setting. Upon
completion, a fail-to-pass unit test is executed to assess whether the generated patch resolves the is-
sue. This type of execution-based feedback plays a role similar to that of rule-based metrics in math
problems (DeepSeek-AI, 2025), as it aims to provide a verifiable and relatively accurate reward for
reinforcement learning. Such feedback has been widely adopted in recent coding agent training, in-
cluding Qwen3-Coder (Qwen Team, 2025), GLM-4.5 (Team et al., 2025a), and MiniMax-M1 (Min-
iMax, 2025). While effective in principle, execution-based feedback is limited by the quality of the
test suites it relies on. It assumes that the test oracle is perfect, yet in practice, many test cases are
model-generated, making them an unreliable proxy for correctness. In addition, execution-based
feedback cannot distinguish between trajectories that yield the same outcome, either passing or fail-
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ing a test. Consequently, it often provides signals that are overly sparse or even misleading for
reinforcement learning. In this work, we are the first to integrate execution-free feedback into SWE
agentic reinforcement learning. We find that a versatile execution-free feedback can offer more
fine-grained rewards, and lead to improved training efficiency and performance.

C THEORETICAL LINK BETWEEN TTS, AUC, AND ECE AND RL
DYNAMICS

In this section, we make explicit how the three metrics—TTS, AUC, and ECE—correspond to three
distinct failure modes of reward models (RMs) when used as optimization signals in RL. Throughout
this section, let τ ∼ πθ denote a sampled trajectory from the policy, r(τ) ∈ [0, 1] is the RM score,
and c(τ) ∈ {0, 1} the binary correctness label (the ideal true correctness). If the RM score is used
directly as the reward, the policy-gradient update is

∇θJ(θ) ≈ Eτ∼πθ
[r(τ)∇θ log πθ(τ)] . (2)

The ideal update using the true correctness label is

∇θJ
⋆(θ) = Eτ∼πθ

[c(τ)∇θ log πθ(τ)] . (3)

The gap between (2) and (3) determines the stability and correctness of RL. Here we use simple
policy gradient as an example, which has same nature to GRPO (DeepSeek-AI, 2025)/GSPO (Zheng
et al., 2025), one can simply extend the analysis to GRPO setting. We then analyze below how TTS,
AUC, and ECE each correspond to a different component of this gap.

C.1 TTS: EXTREME-TOP ERRORS AND THEIR IMPACT ON RL

TTS@k evaluates whether the highest-scored trajectory among k RM-scored samples is correct:

TTS@k = Pr(c(τ⋆) = 1) , τ⋆ = arg max
i∈[1:k]

r(τi). (4)

Thus (1−TTS@k) is exactly the probability that an unresolved trajectory receives the largest reward
among the k samples.

Implication for RL When the top-1 trajectory τ⋆ is incorrect (c(τ⋆) = 0), we know that

r(τ⋆−) = max
i∈[1:k]

r(τi).

This does not imply that negatives have larger average rewards than positives, but it does imply that
the batch contains a negative trajectory with the largest reward weight.
Since policy-gradient updates scale linearly with reward,

∇θJ(θ) ≈
k∑

i=1

r(τi)∇θ log πθ(τi),

the contribution of τ⋆− becomes a dominant term in the update, even if all other negatives have small
scores.
Conditioning on correctness of the top-ranked sample gives the decomposition:

∇θJ(θ) = TTS@k · E[update | c(τ⋆) = 1] + (1− TTS@k) · E[update dominated by τ⋆−]. (5)

Under the event c(τ⋆) = 0, RL receives the strongest possible reward signal for an unresolved tra-
jectory. This causes the policy πθ to increase the probability of sampling this undesirable behavior,
and the effect compounds over iterations.

C.2 AUC: PAIRWISE RANKING QUALITY AND REVERSED-GRADIENT FREQUENCY

AUC measures the probability that the RM correctly orders a positive trajectory above a negative
one (for all trajectories):

AUC = Pr
(
r(τ+) > r(τ−)

)
. (6)

Therefore the mis-ranking probability is

1−AUC = Pr
(
r(τ−) > r(τ+)

)
. (7)
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Mis-rankings imply reversed gradient contributions Whenever r(τ−) > r(τ+), the RM assigns
higher reward to an incorrect trajectory. The corresponding policy-gradient contributions satisfy

r(τ−)∇θ log πθ(τ−) > r(τ+)∇θ log πθ(τ+), (8)

which is opposite to what the ideal update (3) would encourage. Thus a fraction 1 − AUC of all
positive–negative trajectory pairs induce updates pointing in the wrong direction. Conditioning on
the correctness of ranking yields the decomposition

∇θJ(θ) ≈ AUC · E[correct pair update] + (1−AUC) · E[reversed pair update]. (9)

Consequences for RL stability Since gradient contributions aggregate linearly, the expected frac-
tion of bad (reversed) updates grows exactly in proportion to (1−AUC). Therefore,

low AUC =⇒ many reversed-gradient terms =⇒ unstable or divergent RL behavior.

Unlike TTS (which concerns only the extreme top), AUC measures global ranking correctness,
which affects every sampled trajectory in RL.

C.3 ECE: CALIBRATION ERROR AND SYSTEMATIC BIAS IN RL UPDATES

For a reward model that outputs a score r(τ) (interpreted as confidence in “this trajectory is good”)
and a binary “good/bad” ground truth c ∈ {0, 1}. A reward model is calibrated if

Pr(c = 1 | r = α) = α, ∀α ∈ [0, 1]. (10)

Using the binned approximation for the reward-model scores across a dataset of trajectories, we can
compute:

ECE =

M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣. (11)

where Bm is the divided bins and:

conf(Bm) =
1

|Bm|
∑
i∈Bm

ri, acc(Bm) =
1

|Bm|
∑
i∈Bm

ci

Calibration and unbiased RL updates If Eq. (10) holds, then E[c | r] = r, e.g. For all trajecto-
ries to which the model assigns a confidence score of (r = 0.7), the actual proportion of successful
trajectories should also be 70%. This is exactly the statement (E[c | r = 0.7] = 0.7), meaning it
matches the model’s own predicted confidence (r). And thus

E[r(τ)∇θ log πθ(τ)] = E[c(τ)∇θ log πθ(τ)], (12)

meaning the RM induces no systematic bias in the expected gradient.

Bias induced by miscalibration In general, the deviation between the RM-induced and ideal
updates is

∆bias = Eτ∼πθ

[
∇θ log πθ(τ)

(
r(τ)− E[c | r(τ)]

)]
. (13)

Define the calibration bias function

b(α) = E[c | r = α]− α,

so that
r(τ)− E[c | r(τ)] = −b(r(τ)).

Here b(α) measures the calibration bias at confidence level α: among all trajectories for which the
RM predicts score r = α, E[c | r = α] is the true success frequency, while α is the predicted
success probability. Their difference therefore captures the systematic over- or under-confidence of
the reward model at that score. ECE is then a binned approximation of the expected magnitude of
this bias over the score distribution, meaning high ECE ⇒ large systematic distortion in (13).
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Additional effect: gradient variance inflation. Write the RM-induced gradient estimator as

g(τ) = r(τ)∇θ log πθ(τ).

Using the decomposition
r(τ) = E[c(τ) | r(τ)]− b

(
r(τ)

)
,

we obtain
g(τ) = E[c(τ) | r(τ)]∇θ log πθ(τ)︸ ︷︷ ︸

g⋆(τ)

− b
(
r(τ)

)
∇θ log πθ(τ)︸ ︷︷ ︸
δg(τ)

.

Here g⋆(τ) is the “calibrated” part of the gradient (which would be obtained if we replaced r(τ)
by the true success probability E[c(τ) | r(τ)]), while δg(τ) is a purely micalibration-induced noise
term. The variance of g(τ) decomposes as

Var[g(τ)] = Var[g⋆(τ)] + Var[δg(τ)] + 2Cov
(
g⋆(τ), δg(τ)

)
.

In particular, we always have
Var[g(τ)] ≥ Var[g⋆(τ)],

with the excess variance controlled by

Var[δg(τ)] = Var
[
b(r(τ))∇θ log πθ(τ)

]
.

Thus calibration error b(r) couples multiplicatively with the policy gradient ∇θ log πθ(τ), injecting
additional variance into the gradient estimator. Since ECE is a discrete approximation of Er[ |b(r)| ],
higher ECE typically implies a larger variance contribution from δg(τ) and therefore less stable RL
training.

D REWARD MODEL TRAINING DETAILS

D.1 DETAILED TRAINING SETUP

Data Collection To train a reward model, we first rollout and collect over 400k multi-turn tra-
jectories up to 100 iterations using OpenHands (Wang et al., 2025) and SWE-Agent (Yang et al.,
2024), which are two widely used open-sourced coding agent scaffold using different policy mod-
els and data sources, including SWE-Gym (Pan et al., 2025), SWE-rebench (Badertdinov et al.,
2025), SWE-smith (Yang et al., 2025), and R2E-Gym (Jain et al., 2025). Specifically, we adapt
Qwen3-Coder-Max, Qwen3-Coder-Flash, Claude-4-sonnet for rollout. Since a large
portion of the data might be unresolved and some trajectories may be incomplete or contains bad
tool calls, thus the final usable trajectories for training is around 100k.

These trajectories are then labeled as positive(resolved) or negative(unresolved) based on their exe-
cution results with the provided fail2pass test. Though some of them might be noisy as we discussed
that unit tests might not be able to truly reflect the correctness of the generated patch, we applied data
cleaning such as filtering out instances without any successful trajectory (typically cases affected by
over-strict/unfair unit tests or under-specified descriptions) to maintain the highest possible label
quality. With data filtering, we believe reward model can still achieve relative good performance by
training on a large number of data.a sufficiently large and diverse dataset enables the RM to learn a
denoised and generalized correctness signal despite noisy supervision

Scaffold and Model For training scaffold, we adapt Megatron (Shoeybi et al., 2019) for supervised
fine-tuning which enables efficient long context training. For rollout, we use SGLang together with
agent scaffold OpenHands (Team, 2025) and SWE-Agent (Yang et al., 2024). And for base models,
we use Qwen3-30B-A3B (Qwen Team, 2025) which is small but with strong coding ability.While
for the base model, we use Qwen3-30B-A3B (Qwen Team, 2025) as the backbone for further
training. This MoE architecture is not a choice that claiming the calibration advantages,rather,
we follow the prevailing practice in state-of-the-art coding agents (e.g., Qwen3-Coder, Kimi-K2,
MiniMax-M1/2), which predominantly adopt MoE backbones. Using the same backbone ensures
compatibility with existing pipelines(e.g. infra) and allows our reward model and trained policies
to be directly integrated without additional adaptation overhead. Our focus is therefore on reward-
model training and calibration, while architectural comparisons (MoE vs. Dense vs. Adapters) are
left to future work.
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Baselines We compare our trained execution-free verifier with the following different execution-
free verifiers as well as execution-based verifiers: (1) Agentless (Xia et al., 2024), which proposes
an execution-based method that generates reproduction tests for each trajectory and re-ranks based
on passed test numbers; (2) SWE-Gym Verifier (Pan et al., 2025), which releases a Qwen2.5-32B
based execution-free verifier trained on SWE-Gym; (3) DeepSWE-EB Verifier (Luo et al., 2025):
which is the execution-based component of current State-of-the-art DeepSWE Hybrid-TTS, which
is also the improved version of R2E-Gym Execution-based verifier (Jain et al., 2025) with similar
mechanism to Agentless. (4) DeepSWE EF Verifier (Luo et al., 2025): which is the execution-free
component of current State-of-the-art DeepSWE Hybrid-TTS also the improved version of R2E-
Gym execution-free verifier.

Evaluation Setup We mainly conduct the evaluation on SWE-bench Verified (Jimenez et al.,
2024) which is a curated subset of 500 human-verified tasks for reliably assessing model perfor-
mance on real-world software engineering tasks. For test-time scaling and further accuracy and
calibration evaluation, we use the most widely used open-sourced coding agent scaffold Open-
Hands to collect 32 independent runs for each instance, resulting 32 × 500 trajectories in total.
The sampling configs use a temperature of 1.0, top_p of 0.95, max_iterations of 100. Accuracy is
calculated by AUC score on all 16k trajectories while calibration is measured by expected calibra-
tion error(Guo et al., 2017), where ECE =

∑M
m=1

|Bm|
n

∣∣∣ acc(Bm) − conf(Bm)
∣∣∣, conf(Bm) =

1
|Bm|

∑
i∈Bm

ri, acc(Bm) = 1
|Bm|

∑
i∈Bm

ci. And we follow common practice to divide confi-
dence into 10 bins (M = 10).

Pass@k defines the resolve rate of model with at least one successful solution among k trajectories
which is also the upper bound while RM@K defines the resolve rate of final selected trajectories
from k samples. For every k < 32, we obtain the mean and variance of 5 random runs for fair
assessment.

D.2 TRAINING TEMPLATE

Following SWE-Gym (Pan et al., 2025), we adapt from their template which splices all turns (model
action output and tool responses) and end with a YES/NO token for reward model classification.
Given the full multi-turn trajectory, the model is prompted to output a single special token, either
<YES> (resolved) or <NO> (unresolved). And the supervised fine-tuning utilizes standard next-
token prediction loss on this special token. At inference time,Bby obtaining the log probability of
the special token <YES>(ly) and <NO>(ln), the final score r is calculated by exp (ly)/(exp (ly) +
exp (ln)) ,which maps to a continuous reward model score r ∈ [0, 1]. For tool parsing, we adapt
Qwen3-Coder’s XML format, which optimized for code-related argument parsing. The example
trajectory is shown in Figure 8.

D.3 TRAINING HYPER-PARAMETERS

For reward model training hyperparameters, we adapt a 256k context window to support scoring
for complex questions which contains extremely long contexts. The global batch size is set to 128.
Also widely used AdamW optimizer and cosine decay learning rate scheduler are used. The detailed
training hyperparameters are listed in Table 7 below. We use 4 nodes of H100 for large scale, long
context reward model training, which takes around 20 hours for 100k samples.

Table 7: The detailed training hyperparameters for reward model.

Model Size Global Batch Size Learning Rate Schedular LR Warmup Optimizer Epoch

30BA3 128 7e-6 → 7e-7 cosine 3% AdamW 1
235BA22 128 7e-6 → 7e-7 cosine 3% AdamW 1
480BA35 128 7e-6 → 7e-7 cosine 3% AdamW 1

We also summarize the detailed training setting for Verifiers we used (Verifier A, Verifier B and Poor
calibrated RM in Figure 7) in Table 8 below.
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<user>
Please evaluate the following interaction between an AI assistant and a user:
=== INTERACTION LOG ===
*** System Message that describes the assistant's behavior ***

[system message here]
-----------------------------------------------------------------
*** Turn 1 - USER ***
…
-----------------------------------------------------------------
*** Turn 1 - ASSISTANT ***
…
-----------------------------------------------------------------
…
-----------------------------------------------------------------
*** Turn 9 - ASSISTANT ***
Let's ignore the existing error and focus on our specific issue. …
<tool_call>
<function=str_replace_editor>
<parameter=path>
/workspace/astropy__specreduce__1.2/specreduce/tests
</parameter>
<parameter=command>
view
</parameter>
</function>
</tool_call>
-----------------------------------------------------------------
*** Turn 10 - USER ***
<tool_response>
Here's the files and directories up to 2 levels deep in /workspace/
astropy__specreduce__1.2/specreduce/tests,
…
</tool_response>
-----------------------------------------------------------------
…
=== END INTERACTION ===
=== GENERATED PATCH ===
[patch here]
=== END GENERATED PATCH ===
Based on the above interaction and the generated patch, did the assistant
successfully resolve the user's initial request? Respond with YES or NO.
</user>
<assistant>
<judgement>NO

Figure 8: Prompt template for reward model training. Pink refer to the tool parsing XML format
example.

D.4 ADDITIONAL ANALYSIS ON CONTEXT CONSTRAINT

In § 4.3 we show a substantial performance increase when we raise the context window from 32k
to 256k tokens. The larger context allows the model to cover far more tokens of the input (for
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Table 8: Comparison of detailed training setting of Verifier A, Verifier B in Figure 2,3,4,5 and Poorly
Calibrated RM in Figure 7.

REWARD MODEL # DATA RATIO POLICY SOURCE CONTEXT LEN.

Verifier A 20k 2:1 Mix-Policy Mixed-Source 256k
Verifier B 20k 1:4 Off-Policy SWE-Rebench 256k
Poorly Cali. RM in Figure 7 5k 1:2 Off-Policy SWE-Rebench 256k

example, longer trajectories, multi-file code, richer history) without needing to compress or truncate
information. When the window is small, many long trajectories cannot be scored at all (i.e., fall
out of the window) and thus receive no valid reward signal, meaning correct but long solutions
are effectively dropped from TTS selection. With a 256 k context, we reduce the “no-score” rate
(increase the score rate), thereby enabling full-trajectory scoring and enabling our verifier to pick
up solutions that would otherwise be ignored. And another reason for us to insist on 256k reward
model training is that modern high-end coding agent policy models such as Claude, GPT-5, Qwen3-
Coder-Max support 256k token windows (and up to 1 M tokens in some settings). The community
therefore urgently needs a reward model that is compatible with this scale, so trajectories from
such long-context agents can be properly scored — yet many existing reward/verifier models are
constrained to much shorter context windows and thus cannot handle those long trajectories.

By aligning our verifier to the 256 k-token scale we fill a crucial gap. Finally, we acknowledge
that increasing the context to 256k tokens is not free — it incurs higher memory usage. However,
since our output generation only contains one token, all prompt computation can be run in parallel,
thus the latency is more or less the same for different context length at inference time. While for
deployment, a 256k model takes only around 2x GPU memory usage than a 32k model, a user with
2x A100 GPUs can easily deploy the model with high efficiency.

E RL TRAINING DETAILS

E.1 RL SETUP

Models We conduct reinforcement learning based on a Qwen3-30B-A3B (Qwen Team, 2025)
with SFT warm-up. WE use in-house collected agentic trajectories including but not limited to
SWE tasks to fine-tune the base model. Then this fine-tuned model served as the starting point of
our RL experiments. We use MoE architecture, following the prevailing practice in state-of-the-art
coding agents (e.g., Qwen3-Coder (Qwen Team, 2025), Kimi-K2 (Team et al., 2025b), MiniMax-
M1/2 (MiniMax, 2025)), which predominantly adopt MoE backbones. Using the same backbone
ensures compatibility with existing pipelines(e.g. infra) and allows our trained policies to be directly
integrated without additional adaptation overhead.

Implementation Details We train the model using curated data from SWE-Gym (Pan et al., 2025)
and SWE-rebench (Badertdinov et al., 2025) with a batch size of 64. For each problem, we sample
16 rollouts, use a maximum of 100 iterations, and set the context length to 128k. This context
length was selected because it accommodates most problem cases within a single context window
while being more cost-efficient than a 256k context window. The training data is further filtered by
difficulty, as problems that are either too easy or too difficult can negatively affect RL performance.

Unlike single-turn RL training, where the model needs to generate only one response per prob-
lem, agentic RL requires interaction with an agent scaffold (i.e., tool calls) across multiple turns
to construct a full trajectory. Specifically, given a problem q, the policy model generates an ac-
tion ai and then receives a tool response oi, repeating this process T times to form a trajectory
τ = {a1, o1, a2, o2, . . . , aT , oT }. During optimization, tool responses are masked. Instead of the
GRPO objective, we adopt the GSPO objective (Zheng et al., 2025), which provides greater stability,
particularly in Mixture-of-Experts (MoE) RL training:

JGSPO(θ) = Eq∼D,{τi}Gi=1∼πold(·|q)[
1

G

G∑
i=1

min

((
πθ(τi | q)
πθold(τi | q)

) 1
|τi|

Âi, clip

((
πθ(τi | q)
πθold(τi | q)

) 1
|τi|

, 1− ε, 1 + ε

)
Âi

)]
(14)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

with the group-based advantage estimation:

Âi =
r(q, τi)− mean

(
{r(q, τi)}Gi=1

)
std ({r(q, τi)}Gi=1)

(15)

The optimization integrate several standard tricks such as Clip High (Yu et al., 2025), NO KL
loss (Yu et al., 2025) etc.
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